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Abstract—In this paper, we consider the problem of Multiple-
Input-Multiple-Output (MIMO) Free-Space Optical (FSO) co m-
munications under the Poisson photon-counting detection model.
Aiming for high bit rate objectives, we consider the spatial-
multiplexing (SMux) solution with M -ary pulse position modula-
tion (PPM) where we propose appropriate optimal and subopti-
mal decoders and evaluate their complexities. Such novel decoder
designs are needed since the widely spread Gaussian noise based
MIMO decoders are not suitable for the Poisson model. We also
carry out an asymptotic performance analysis that guides a candi-
date constellation confinement where transmissions are limited to
some selected information vectors of the multi-dimensional SMux
constellation in an attempt for compromising the multiplexing
gains for error-rate improvements. The analyzed SMux solutions
with both the unconfined and confined constellations transmit
at higher data rates compared to the existing single-aperture
systems, MIMO systems with repetition coding and MIMO
systems based on spatial modulation.

Index Terms—Free-Space Optics, FSO, Multiple-Input-
Multiple-Output, MIMO, maximum-likelihood, spatial mult iplex-
ing, Poisson noise, suboptimal decoders, constellation confine-
ment, performance analysis.

I. I NTRODUCTION

Multiple-Input-Multiple-Output (MIMO) techniques take
advantage from the underlying spatial degree of freedom in
wireless communication systems for the sake of achieving en-
hanced capacities in a bandwidth-efficient and power-efficient
manner. MIMO solutions were extensively considered not only
in the context of Radio Frequency (RF) systems but also
for Free-Space Optical (FSO) systems [1]–[14]. The resem-
blance between MIMO-RF and MIMO-FSO systems resides
in the variability of the path gains even though the sources
of this randomness are different where they originate from
multi-path propagation (fading) in the former case and from
atmospheric turbulence (scintillation) in the latter case. The
differentiation between the analysis of MIMO-RF and MIMO-
FSO systems arises from the type of detection where intensity-
modulation with direct-detection (IM/DD) is commonly used
with FSO systems. This has a direct impact on the transmitted
modulation schemes where non-negative real-valued signal
constellations, such as On-Off Keying (OOK) or Pulse Position
Modulation (PPM), are often used. The second main difference
resides in the nature of noise where the Gaussian noise model
is often adopted for RF systems while FSO systems are de-
scribed by the more general Poisson photon-counting detection
model where the number of photons generated by the optical
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information-carrying signal and by the background radiation
is modeled by a Poisson point process [8], [9], [15], [16].
It is worth noting that the signal-independent additive white
Gaussian noise (AWGN) model is a common approximation
that is often adopted for the analysis of FSO systems. This
approximation is valid only when the shot noise caused by
background radiation is dominant with respect to the other
noise components such as thermal noise and dark currents
[10]–[12].

Numerous MIMO-FSO IM/DD solutions were investigated
in the literature including space-time coding (STC) [1], [2],
repetition coding (RC) [3]–[9], spatial multiplexing (SMux)
[10]–[12] and optical spatial modulation (OSM) [13], [14].
Real-valued STCs were proposed in [1] and [2] for OOK and
PPM, respectively, where the AWGN model was considered.
On the other hand, RC constitutes the most widely investigated
MIMO-FSO scheme capable of achieving spatial diversity
gains in a simplified manner where the same information
symbol is repeated from all transmit apertures [3]–[9]. In [3],
it has been proven that RC outperforms STC with OOK;
similarly, it has been proven in [4] that RC outperforms
parallel-relaying cooperative systems with binary-PPM. Both
[3] and [4] considered the Gaussian noise model. The AWGN
model was also adopted in [5]–[7] where, in [5], the outage
probability of RC-PPM was analyzed over lognormal, expo-
nential and gamma-gamma turbulence-induced channels; in
[6], expressions for the ergodic capacity with RC-OOK were
derived over gamma-gamma channels while [7] targeted the
bit error rate (BER) analysis of RC-OOK systems with equal
gain combining (EGC) and maximum ratio combining (MRC)
over gamma-gamma channels. Unlike the RC AWGN-based
studies [3]–[7], references [8] and [9] considered RC with the
Poisson photon-counting detection model for PPM and OOK
modulations, respectively. While the BER was analyzed in
[8] over lognormal and exponential channels, multiple-symbol
detection was tackled in [9].

While the MIMO-FSO RC scheme is fully diverse with an
appealing decoding complexity that is practically the same
as that of Single-Input-Single-Output (SISO) systems, this
scheme is limited by its incapability of achieving any mul-
tiplexing gains where the MIMO-RC schemes transmit at the
same data rate as SISO systems. This motivated the inves-
tigation of MIMO-FSO SMux solutions where independent
data streams are transmitted from theP transmit apertures
resulting in aP -fold increase in the bit rate [10]–[12]. The
diversity-multiplexing tradeoff over lognormal channelswas
investigated in [10], the performance of MIMO-FSO SMux
systems under lognormal fading and pointing errors was
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evaluated in [11] while different MIMO-FSO IM/DD schemes
were compared in [12] with OOK. In this context, it is worth
noting that all of the existing MIMO-FSO SMux systems
were analyzed exclusively under the Gaussian noise model
rendering the input-output baseband relations and signal-to-
noise ratio (SNR) expressions very similar to their RF counter-
parts. While the highly spectral-efficient SMux solutions suffer
from the decoding complexity where joint detection needs to
be carried out onP data streams, OSM solutions constitute
simpler alternatives to SMux where only one transmit aperture
is activated in a time-slot thus eradicating the inter-channel
interference at the receiver [13], [14]. While both the SMux
and OSM schemes do not profit from the transmit diversity
(unlike STC and RC), OSM solutions suffer from reduced bit
rates compared to SMux. In fact, for SMux the number of bits
per channel use (pcu) is multiplied byP with respect to SISO
systems while for OSM onlylog2(P ) additional bits pcu can
be communicated. As the SMux solutions, the MIMO-FSO
OSM systems were considered exclusively in the context of
AWGN noise.

The problem of sequence detection with photon-counting
receivers was addressed in [9], [15], [16] with the following
central differences with the detectors proposed in this work.
References [9], [15], [16] considered the transmission of se-
quences ofL OOK symbols[s1, . . . , sL] where the transmitted
symbols do not interfere with other. This holds for the SISO
systems in [15], [16] as well as the MIMO-RC system in [9].
Therefore, the noise statistics in thel-th bit duration depend
only on bit sl independently from the values taken by the
other bitssl′ for l′ 6= l. Consequently, theL Poisson random
variables observed in theL bit durations are independent;
moreover, they are identically distributed for the same bit
values. On the other hand, for MIMO-SMux systems, the
P transmittedM -PPM symbols[s1, . . . , sP ] interfere with
each other over the same symbol duration. Therefore, not
only the parameter of the Poisson random variable observed
in the m-th PPM slot will depend on the values taken by
all symbols s1, . . . , sP , but also this parameter will vary
from one symbol duration to another rendering the detection
problem completely different. Finally, unlike this work where
we assume that the CSI is available at the receiver, [9], [15],
[16] operate in the absence of CSI at the receiver. For these
references, sequence detection rather than symbol-by-symbol
detection was considered in order to explicitly account forthe
unknown values of the channel irradiances. In this context,
operating in the presence of CSI at the receiver not only results
in better performance but it is also judged to be not very
problematic since the pilot-symbols overhead is negligible
given the large coherence times of the FSO channels.

This work targets the design and analysis of MIMO-FSO
systems in the case where the channel state information
(CSI) is available at the receiver but not at the transmitter
in a way that is analogous to [10]–[14]. In particular, we
consider the problem of SMux with the more general Poisson
photon-counting detection where this adopted model clearly
distinguishes the current work from the previous works on
MIMO-FSO SMux systems that all considered the AWGN
model [10]–[12]. The Poisson model affects not only the

performance analysis but it profoundly alters the design of
the decoders where the existing MIMO-RF decoders that
were designed to separate the MIMO data streams in the
case of Gaussian noise will fail in guaranteeing successful
detection with Poisson noise. The existing optimal Maximum-
Likelihood (ML) decoders [17], linear minimum mean square
error (MMSE) decoders and V-Blast decoders [18] are all
tailored to systems corrupted by AWGN not to systems based
on photon-counting. Even the MRC scheme that maximizes
the SNR with Gaussian noise [19] is not suitable under Poisson
statistics. Based on what preceded, the first set of contributions
of this work can be summarized as follows:

- Proposing an optimal MIMO-FSO ML decoder under
Poisson statistics.

- Proposing two simplified suboptimal MIMO-FSO de-
coders under Poisson statistics. One of these decoders
is capable of achieving optimal detection in the MISO
case.

- Evaluating the complexities of the above decoders.

Building this work around spatial multiplexing stems from
the need to meet the primary interest of increasing the data
rate of FSO systems through MIMO techniques. While, under
specific bandwidth requirements, the bit rate of RF systems
can be easily increased by increasing the cardinality of the
transmitted constellation (often QAM or PSK) without affect-
ing the spectral efficiency, this issue is more subtle with FSO
systems. In fact, FSO IM/DD systems are often associated
with OOK or PPM. Therefore, for a given baud rate and
transceiver bandwidth, the use of OOK fixes the achievable
bit rate and all one-dimensional PAM signal expansions will
severely deteriorate the performance. On the other hand, the
FSO IM/DD bit rate can be increased by increasing the
cardinality of the PPM signal set. Despite the fact that this
increase reduces the error rate, it results in a decrease in the
spectral efficiency. Consequently, moderate sizes of the PPM
constellations are considered in practice. As a conclusion,
since the use of OOK fixes the bit rate while the use ofM -
PPM with large values ofM limits the spectral efficiency, the
SMux solution constitutes a viable option for delivering higher
rates with FSO communications.

While the SMux solution meets the high data rate require-
ments, this comes at the expense of reduced performance
levels [12]. This motivates the second direction of research in
this work which corresponds to proposing a variant of SMux
that compromises the bit rate to BER. As such, the second set
of contributions is as follows:

- Carrying out an asymptotic performance analysis of
MIMO-FSO SMux systems. This results in the classi-
fication of the pairwise error probabilities into a number
of categories.

- Proposing an adequate constellation confinement based
on the above classification. The cardinality of this con-
stellation exceeds the cardinality of RC (M symbols with
M -PPM) in [3]–[7] and that of space shift keying (P
symbols) in [13], [14] for all values ofM andP . This
cardinality also exceeds that of the OSM system based
on joint position and antenna modulation in [13] (MP
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symbols) for all values ofP whenM > 2.

II. SYSTEM MODEL

Consider aP ×Q MIMO system where the transmitter and
receiver are equipped withP and Q apertures, respectively.
The MIMO-FSO system under consideration is based on
IM/DD with M -ary PPM. In this case, the symbol duration
Ts is divided into M slots and a light signal is sent in
only one of these slots. We denote bysp ∈ {1, . . . ,M}
the position of the pulse transmitted by thep-th aperture
for p = 1, . . . , P . The analyzed system revolves around
spatial multiplexing where the transmitted vector is denoted
by s = [s1, . . . , sP ] ∈ {1, . . . ,M}P .

The channel irradiance between thep-th transmit aperture
and q-th receive aperture will be denoted byIq,p for p =
1, . . . , P and q = 1, . . . , Q. The PQ FSO channels are as-
sumed to be independent and identically distributed according
to the channel model proposed in [20]. In this case, the channel
irradiance can be expressed asI = IlIaIp taking into account
the combined effects of path loss (Il), atmospheric turbulence-
induced scintillation (Ia) and misalignment-induced fading
caused by pointing errors (Ip). The path loss is given by
Il = e−σd where σ stands for the attenuation coefficient
while d stands for the distance between the transmitter and
receiver. In this work, we adopt the gamma-gamma model to
characterize the atmospheric scintillation where the probability
density function (PDF) ofIa is given by:

fIa(Ia) =
2(ϕ1ϕ2)

(ϕ1+ϕ2)/2

Γ(ϕ1)Γ(ϕ2)
I

ϕ1+ϕ2
2 −1

a

Kϕ1−ϕ2

(

2
√

ϕ1ϕ2Ia

)

; Ia ≥ 0, (1)

whereΓ(.) is the Gamma function andKn(.) is the modified
Bessel function of the second kind of ordern. The distance-
dependent parameters of the gamma-gamma distribution are

given by ϕ1 =
[

exp
(

0.49σ2
R/(1+1.11σ

12/5
R )7/6

)

− 1
]−1

and ϕ2 =
[

exp
(

0.51σ2
R/(1+0.69σ

12/5
R )5/6

)

− 1
]−1

where

σ2
R = 1.23C2

nk
7/6d11/6 is the Rytov variance,k = 2π

λ is the
wave number andC2

n denotes the refractive index structure
parameter.

The PDF of the nonzero boresight pointing error was
derived in [20]:

fIp(Ip) =
ξ2 exp

(

− s2

2σ2
s

)

Aξ2

0

Iξ
2−1

p

I0





s

σ2
s

√

ω2
zeq ln

A0

Ip

2



 ; 0 ≤ Ip ≤ A0, (2)

whereI0(.) is the modified Bessel function of the first kind
of order zero. In (2),A0 = erf2(ν), ω2

zeq = ω2
z

√
πerf(ν)

2ν exp(−ν2) and

ξ =
ωzeq

2σs
whereν =

√

π
2

a
ωz

. In these relations, erf(.) is the
error function whilea, ωz, σs and s stand for the receiver
radius, beam waist, jitter standard deviation and boresight
displacement, respectively.

The decisions in IM/DD photon-counter receivers are based
on the numbers of photoelectrons detected in theM PPM
slots. The average number of photoelectrons generated by
the information-carrying light signal (in the absence of scin-
tillation) in a PPM slot will be denoted byλs. Similarly,
the average number of noise photoelectrons generated by
background radiation (and dark currents) in a PPM slot will
be denoted byλb. These two quantities are given by:

λs = η
PsTs/M

hf
, η

Es

hf
; λb = η

PbTs/M

hf
, (3)

wherePs andPb stand for the incident optical power and the
power of background noise, respectively.η is the detector’s
quantum efficiency,h is Planck’s constant andf is the optical
center frequency taken to be1.94 × 1014 Hz (corresponding
to a wavelength of 1550 nm). Finally,Es = PsTs/M corre-
sponds to the received optical energy per PPM slot.

Denote byRq,m the random variable corresponding to the
number of photoelectrons detected by theq-th receive aperture
in the m-th slot. Rq,m follows the Poisson distribution with
parameter:

E [Rq,m] =
λs

P

P
∑

p=1

δsp,mIq,p + λb, (4)

where E[.] stands for the averaging operator whileδi,j stands
for the Kronecker delta withδi,j = 1 if i = j and δi,j = 0
otherwise. The termδsp,m indicates whether thep-th aperture
is transmitting in them-th PPM slot or not. Finally, the
normalization byP in (4) follows from evenly splitting the
power among theP transmit apertures in the absence of CSI
at the transmitter.

III. O PTIMAL AND SUBOPTIMAL DECODERS

A. ML MIMO Decoder (ML)

1) Decoder Implementation:The maximum likelihood
(ML) detection procedure is based on the decision variables
Rq,m (for q = 1, . . . , Q andm = 1, . . . ,M ) as follows:

ŝ = arg max
s∈{1,...,M}P

{

Q
∏

q=1

M
∏

m=1

Pr(Rq,m = rq,m)

}

, (5)

where rq,m stands for the actual number of photoelectrons
detected in them-th PPM slot at theq-th receiver aperture.
From the Poisson parameters in (4), the ML rule in (5) can
be written as:

ŝ = arg max
s∈{1,...,M}P

{

Q
∏

q=1

M
∏

m=1

e−λbλ
rq,m
b

rq,m!

e−
λs
P

∑P
p=1 δsp,mIq,p

(

1 +
λs

Pλb

P
∑

p=1

δsp,mIq,p

)rq,m}

. (6)
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Removing the terme−λbλ
rq,m

b

rq,m! that does not depend ons,
equation (6) is equivalent to:

ŝ = arg max
s∈{1,...,M}P

{

e−
λs
P

∑Q
q=1

∑P
p=1 Iq,p

∑M
m=1 δsp,m

Q
∏

q=1

M
∏

m=1

(

1 +
λs

Pλb

P
∑

p=1

δsp,mIq,p

)rq,m}

, (7)

where, sincesp assumes a unique value in{1, . . . ,M}, then
∑M

m=1 δsp,m is always equal to1 implying that the first term

in (7) simplifies to the expressione−
λs
P

∑Q
q=1

∑P
p=1 Iq,p that

does not depend ons and, hence, can be removed from the
ML decision rule. Now, taking the logarithm of the remaining
part of (7) results in the following optimal ML decoder:

ŝ = arg max
s∈{1,...,M}P

{

Q
∑

q=1

M
∑

m=1

rq,m log

(

1 +
λs

Pλb

P
∑

p=1

δsp,mIq,p

)}

(8)

, arg max
s∈{1,...,M}P

{

Q
∑

q=1

χ(q)(s)

}

. (9)

2) Decoder Complexity:The complexity of the decoder
will be evaluated based on the number of multiplications. In
other words, we ignore the complexity that is associated with
the additions that incur much less processing requirements
compared to the multiplication operations.

At a first glance, (8) might suggest that(MQ)M
P

mul-
tiplications are needed for the implementation of the ML
decoder. However, the termlog

(

1 + λs

Pλb

∑P
p=1 δsp,mIq,p

)

might be zero if there are no apertures transmitting
in the m-th PPM slot implying that no multiplica-
tions will be needed for the evaluation of the corre-
sponding term rq,m log

(

1 + λs

Pλb

∑P
p=1 δsp,mIq,p

)

in (8).
Therefore, a more thorough analysis is needed. It can
be observed that, for a particular value ofq, the set
{

log
(

1 + λs

Pλb

∑P
p=1 δsp,mIq,p

)}

s∈{1,...,M}P

m=1,...,M

comprises ex-

actly 2P − 1 non-zero elements each corresponding to a non-
empty subset of{1, . . . , P}. Therefore, defining the termα(q)

P
as:

α
(q)
P , log



1 +
λs

Pλb

∑

p∈P
δsp,mIq,p



 for P ⊂ {1, . . . , P},

(10)
then

{

log
(

1 + λs

Pλb

∑P
p=1 δsp,mIq,p

)}

s∈{1,...,M}P

m=1,...,M

=
{

α
(q)
P

}

P⊂{1,...,P}
with α

(q)
φ = 0 (φ is the empty set)

where both sets in the last equality have a cardinality of2P .
The 2P − 1 quantities

{

α
(q)
P

}

P6=φ
do not depend on the

transmitted information vector and, hence, they can be prede-
termined in an initialization phase of the decoding algorithm.
In other words, these quantities need to be determined only
once for each block-fading duration (rather than being calcu-
lated for each tested vectors). Given the very large coherence
times of the FSO channels compared to the symbol duration,

the complexity arising from the evaluation of these terms can
be adequately neglected. In fact, for the outdoor FSO channels,
the coherence time is in the order of 1 ms [21]. Given that
the data rates of FSO systems range between 100 Mbits/s
and 1 Gbits/s, this implies that a block of symbols comprises
between105 and106 symbols (with 2-PPM). These numbers
are very large when compared to RF systems where the fading
blocks extend typically over a number of symbols that ranges
between102 and103.

Defineu(s) as the number of unique elements of the vector
s indicating the number of slots in which all transmissions
from theP transmit apertures take place. We next calculate
the number of vectorss for which u(s) = n where, evidently,
n ≤ M and n ≤ P . First, the n distinct slots can be
selected from the total number ofM slots in

(

M
n

)

different
ways. For each one of these selections, denote byli the
number of apertures transmitting in thei-th unique slot for
i = 1, . . . , n where l1 + · · · + ln = P . The number of
ways theP transmit apertures can be divided inton groups
containing l1, l2, . . . , ln elements each is given by P !

l1!···ln! .
Therefore, there are

(

M
n

)
∑

l1,...,ln∈{1,...,P}
l1+···+ln=P

P !
l1!···ln! vectors s

satisfying u(s) = n. On the other hand, the evaluation of
∑Q

q=1 χ
(q)(s) in (9) for u(s) = n involvesnQ multiplications

since the photoelectrons counts in the positions not included in
s will be multiplied by zero. Therefore, the implementation of
the ML decoder in (8) necessitates carrying out the following
number of multiplications:

N (ML)
mul = Q

min{M,P}
∑

n=1

n×







(

M

n

)

∑

l1,l2,··· ,ln∈{1,...,P}
l1+l2+···+ln=P

P !

l1!l2! · · · ln!






.

(11)

B. Simplified ML MISO Decoder (Simp-ML)

The optimal ML decoding procedure in (8)-(9) can be
further simplified in the case of MISO systems. This will
be referred to as the simplified optimal ML (Simp-ML)
receiver that results in a significant reduction in the number
of multiplications as will be explained later.

1) Decoder Implementation:Setting Q = 1 in (8)-(9)
results in:

ŝ = arg max
s∈{1,...,M}P

{

M
∑

m=1

r1,m log

(

1+
λs

Pλb

P
∑

p=1

δsp,mI1,p

)}

= arg max
s∈{1,...,M}P

{

χ(1)(s)
}

. (12)

Define i1, . . . , iM as the integers obtained by sorting the
decision variables{r1,m}Mm=1 in a decreasing orderr1,i1 ≥
r1,i2 ≥ · · · ≥ r1,iM . The following cases arise.

(i): Assume that the tested vectors satisfiesu(s) = 1
implying that all transmit apertures are transmitting in the
same PPM slot. In this case, determining the metric coef-
ficient for the vectors = [m′ · · ·m′] results in the value

χ(1)(s) = r1,m′ log
(

1 + λs

Pλb

∑P
p=1 I1,p

)

. Evidently, this

value ofχ(1)(s) is maximized form′ = i1 implying that the
vectors satisfyingu(s) = 1 while having the maximum value
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of χ(1)(s) is s = [i1 · · · i1]. In other words, all of the remaining
vectors[i2 · · · i2], . . ., [iM · · · iM ] will have a smaller value of
χ(1)(s) and, hence, there is no need to find their corresponding
metrics since the ML algorithm searches for the vectors that
maximizesχ(1)(s). As a conclusion, foru(s) = 1, the most
probable candidate solution iss = [i1 · · · i1] with a weight of

r1,i1 log
(

1 + λs

Pλb

∑P
p=1 I1,p

)

= r1,i1α
(1)
{1,...,P} based on the

definition in (10).
(ii ): Assume thatu(s) = 2 implying that the apertures

are transmitting in two PPM positions denoted bym′ and
m′′. Denote by P1 (resp. P2) the subset of{1, . . . , P}
indicating the apertures transmitting in slotm′ (resp.m′′).
In this case, the corresponding weight would beχ(1)(s) =

r1,m′α
(1)
P1

+ r1,m′′α
(1)
P2

. Evidently, this weight is maximized

for (m′,m′′) = (i1, i2) if α
(1)
P1

≥ α
(1)
P2

and (m′,m′′) =

(i2, i1) if α
(1)
P2

≥ α
(1)
P1

. Therefore, the surviving solutions
will be obtained as follows. The set{1, . . . , P} needs to
be partitioned as{1, . . . , P} = P1 ∪ P2. Now, for each
possible partition, sort the valuesα(1)

P1
and α

(1)
P2

such that

α
(1)
Pj1

≥ α
(1)
Pj2

. The resulting candidate solution can be written
ass = i1

∑

p1∈Pj1
ep1 + i2

∑

p2∈Pj2
ep2 with a corresponding

weight ofχ(1)(s) = r1,i1α
(1)
Pj1

+r1,i2α
(1)
Pj2

whereep stands for
the p-th row of theP × P identity matrix.

(iii ): The above procedure can be generalized for any value
of n ∈ {1, . . . ,min{M,P}} such thatu(s) = n.

As such, the flowchart of the proposed Simp-ML decoder
can be summarized as follows:

Data: {r1,m}Mm=1 and{α(1)
P }P⊂{1,...,P} from (10);

Result: The ML decoded vector̂s from (12);
initialization: counter=0;
sort {r1,m}Mm=1 in descending order:r1,i1 ≥ · · · ≥ r1,iM ;
for n = 1, . . . ,min{M,P} do

Partition the set{1, . . . , P} into n subsets:
{1, . . . , P} = P1 ∪ · · · ∪ Pn ;

for each candidate partitiondo
counter=counter+1;
Sort the values{α(1)

P1
, . . . , α

(1)
Pn

} in descending

order:α(1)
Pj1

≥ · · · ≥ α
(1)
Pjn

;
Evaluate the candidate solution:s(counter) =
i1
∑

p1∈Pj1
ep1 + · · ·+ in

∑
pn∈Pjn

epn ;
Evaluate the corresponding weightw(counter) =

χ(1)(s(counter)) = r1,i1α
(1)
Pj1

+ · · ·+ r1,inα
(1)
Pjn

;
end
c = argmaxcounter{w(counter)};
ŝ = s(c);

end
Algorithm 1: The Simp-ML MISO Decoder

2) Decoder Complexity: The partitioning of the set
{1, . . . , P} into n subsetsP1, . . . ,Pn must take into con-
sideration the fact that this partitioning is to be followedby
the sorting ofα(1)

P1
, . . . , α

(1)
Pn

. Consequently, the order of the
subsets in the partition is not important. Therefore, in order
to avoid evaluating equivalent partitions, the following rules
must be respected.

- Rule 1: The cardinalities of the subsetsP1, . . . ,Pn

must be arranged in increasing order. For example,

for P = 3 and n = 2, the partitions{2} ∪ {1, 3}
and {1, 3} ∪ {2} are equivalent since in both cases
the ML decoder will base its decision on the val-
ues
{

min{α(1)
{2}, α

(1)
{1,3}},max{α(1)

{2}, α
(1)
{1,3}}

}

that do not
change when permuting the subsets.

- Rule 2: Even when rule 1 is respected, the cardinalities of
some consecutive subsetsPi,Pi+1, · · · might still be the
same. In such cases, the permutations among the subsets
having the same cardinalities must not be considered. For
example, forP = 5 and n = 3, the partitions{1} ∪
{2, 3} ∪ {4, 5} and{1} ∪ {4, 5} ∪ {2, 3} are equivalent.

Therefore, the partitioning of{1, . . . , P} into n subsets,
while respecting the above rules, can be carried out in the
following number of ways:

P !

l1!l2! · · · ln!
× 1

[(
∑n

i=1 δli,1)!] · · · [(
∑n

i=1 δli,P )!]

;

{

1 ≤ l1 ≤ l2 ≤ · · · ≤ ln ≤ P
l1 + l2 + · · ·+ ln = P

, (13)

whereli , |Pi| for i = 1, . . . , n. The relationl1 ≤ · · · ≤ ln is
introduced to satisfy rule 1. The summation

∑n
i=1 δli,p yields

the number of elements among{l1, . . . , ln} that have the same
value ofp in {1, . . . , P}. The division by(

∑n
i=1 δli,p)! takes

into consideration the fact that the permutations among the
∑n

i=1 δli,p corresponding subsets are equivalent satisfying rule
2.

In order to better highlight on the partitioning rules that
directly impact the complexity of the Simp-ML decoder, a
number of examples will be provided in the caseM ≥ P .

- For n = 1, l1 = P andP1 = {1, . . . , P} constitutes the
only partitioning option.

- For n = P , (l1, . . . , lP ) = (1, . . . , 1) and {1, . . . , P} is
partitioned as{1} ∪ {2} ∪ · · · ∪ {P} which, from (13),
can be carried out in P !

1!···1! × 1
P !0!···0! = 1 way.

- For P = 3 and n = 2, the only possible solution for
(l1, l2) (satisfying1 ≤ l1 ≤ l2 ≤ 3 and l1 + l2 = 3) is
(l1, l2) = (1, 2). This results in 3!

1!2!× 1
1!1!0! = 3 partition-

ing options{1} ∪ {2, 3}, {2} ∪ {1, 3} and{3} ∪ {1, 2}.
- Consider the caseP = 4. For n = 2, (l1, l2) ∈
{(1, 3), (2, 2)} where the 4!

1!3! × 1
1!0!1!0! = 4 and 4!

2!2! ×
1

0!2!0!0! = 3 corresponding partitions are{1} ∪ {2, 3, 4},
{2}∪{1, 3, 4}, {3}∪{1, 2, 4} and{4}∪{1, 2, 3} as well
as {1, 2} ∪ {3, 4}, {1, 3} ∪ {2, 4} and {1, 4} ∪ {2, 3},
respectively. In the last case, the partitions{2, 3}∪{1, 4},
{2, 4}∪{1, 3} and{3, 4}∪{1, 2} are redundant (the two
corresponding sets are flipped) and, hence, must not be
considered.

Since the number of transmit aperturesP is fixed, then the
candidate partitions of{1, . . . , P} can be stored in lookup
tables in order to simplify the search process. A key point
in the proposed Simp-ML algorithm is that the ordering
of {r1,1, . . . , r1,M} renders the number of visited candidate
information vectorss independent fromM for M ≥ P
implying that signal constellations with large cardinalities can
be advantageously used. Given that the evaluation ofχ(1)(s)
requiresn multiplications foru(s) = n, then from (13), the
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Fig. 1. Number of multiplications needed for the implementation of the ML
and Simp-ML algorithms forQ = 1.

number of multiplications needed to implement the Simp-ML
decoding algorithm takes the following value:

N (Simp-ML)
mul =

min{M,P}
∑

n=1

n×







∑

1≤l1≤l2≤···≤ln≤P

l1+l2+···+ln=P

P !

l1!l2! · · · ln!
×

1

[(
∑n

i=1 δli,1)!] · · · [(
∑n

i=1 δli,P )!]

]

. (14)

Fig. 1 shows the variations of the numbers of multiplica-
tions of the ML and Simp-ML algorithms in (11) and (14),
respectively, as a function ofM for different values ofP
and for Q = 1. It is worth noting that (11) is proportional
to the number of receive aperturesQ. This figure highlights
the significant reduction in the number of multiplications that
results from implementing the Simp-ML decoding algorithm.
For example, forM = 8 and P = 3, the simplified MISO
detection procedure reduces the number of multiplications
from 1352 to 10.

C. The First Simplified Suboptimal MIMO Decoder (Simp-
Sub1)

In this section, we propose a simplified suboptimal decoder
(denoted by Simp-Sub1) that can be associated with MIMO
systems. In the case of MISO systems, the Simp-Sub1 decoder
is capable of achieving optimal detection and it simplifies to
the Simp-ML decoder presented in Section III-B. The main
challenge behind MIMO detection under Poisson statistics
resides in the fact that the weighing coefficientsα

(q)
P in (10)

depend jointly on the transmitted symbols and the channel
coefficients in a nonlinear manner. This is remarkably different
from the MIMO-AWGN systems where the ML rule is given
by argmins ‖y − Hs‖2 where the channel matrixH and
the symbol vectors appear separately in this equation (y is
the received vector). In Section III-B, the challenging ML
problem, that is equivalent to determining which apertures
are pulsed in each of the slots, was simplified by associating
ordered decision variables to ordered weighing coefficients

related to the tested partition of the set of transmit apertures.
While this association is feasible in the caseQ = 1, it
will evidently fail in the caseQ > 1 since the involved
decision variables and weighing coefficients might be ordered
in different ways for each of the receive apertures and the
ordering might even revolve around different slots for eachof
these apertures. In other words, the sorting of{rq,m}Mm=1 and
of {α(q)

P }P⊂{1,...,P} (in algorithm-1) might not be the same
for different values ofq. Moreover, forM > P , the PPM
positions of theP largest elements of{rq,m}Mm=1 might vary
from one receive aperture to another.

Instead of basing its decision on theQM random variables
Rq,m for q = 1, . . . , Q andm = 1, . . . ,M , the Simp-Sub1
decoder bases its decision on the summation of the numbers
of photoelectrons detected by the different receiver apertures in
each of theM PPM slots. In this case, theM resulting decision
variables can be sorted in a unique way and algorithm-1 can
be readily applied. Defining the random variableR′

m asR′
m =

∑Q
q=1 Rq,m, then from (4),R′

m is a Poisson random variable

with parameter E[R′
m] = λs

P

∑P
p=1 δsp,m

(

∑Q
q=1 Iq,p

)

+Qλb.
Now, algorithm-1 that was built around the Poisson random
variables{R1,m}Mm=1 can be readily applied with the Poisson
random variables{R′

m}Mm=1. In this case, the Simp-Sub1
decoder corresponds to applying algorithm-1 while replacing
the data inputs{r1,m}Mm=1 and {α(1)

P }P⊂{1,...,P} with the
inputs {r′m}Mm=1 and {α′

P}P⊂{1,...,P}, respectively, where
r′m =

∑Q
q=1 rq,m and from (10):

α′
P = log



1 +
λs

QPλb

∑

p∈P
δsp,m

(

Q
∑

q=1

Iq,p

)





for P ⊂ {1, . . . , P}. (15)

The relationR′
m =

∑Q
q=1 Rq,m suggests that the Simp-

Sub1 decoder is performing equal gain combining (EGC)
prior to applying algorithm-1. In this context, other combining
schemes (including MRC) of the formR′

m =
∑Q

q=1 aqRq,m

(for some arbitrary weightsa1, . . . , aQ) are not adapted to
the noise model and decoding algorithms under consideration
since the resulting random variableR′

m will not follow the
Poisson distribution. Finally, since the evaluation of thenew
inputs{r′m}Mm=1 and{α′

P}P⊂{1,...,P} involves only additions,
then the number of multiplications required for implementing
the Simp-Sub1 algorithm is as provided in (14).

D. The Second Simplified Suboptimal MIMO Decoder (Simp-
Sub2)

The second simplified suboptimal decoder (Simp-Sub2) is
based on limiting the ML search toMr positions out of
the totalM positions whereMr < M . In other words, the
candidate vectors tested by the ML algorithm (in Section
III-A) will be limited to a subset of cardinalityMP

r carved
from the set{1, . . . ,M}P of cardinality MP . Since theP
transmitted light pulses can occupyP positions at most, then
Mr must also be chosen to satisfyMr ≥ P since the choice
Mr < P will inevitably result in an error (even for large values
of Es) when the transmitted pulses occupy betweenMr + 1



7

andP positions. Therefore,Mr must satisfyP ≤ Mr < M .
While the Simp-Sub2 decoder limits the ML search toMr

positions withP ≤ Mr < M in the caseP < M , the Simp-
Sub1 decoder limits this search tomin{M,P} = P positions
in this case. In other words, both suboptimal algorithms apply
the concept of limiting the search to a subset of positions
with the Simp-Sub1 decoder examining a smaller number of
positions. Further limiting the number of positions toM ′

r < P
with Simp-Sub1 will result in error floors where errors will
always occur when theP transmit apertures transmit in more
thanM ′

r positions.
Since the presence of a light signal in a certain PPM slot

increases the number of detected photoelectrons (on average),
then theMr slots with maximum photoelectron counts should
be selected. Given that the ordering of{rq,m}Mm=1 varies
from one receive aperture to another, then the sorting must
be based on a set ofM decision variables that comprises
the contributions from all receive apertures. The decision
variables{r′m =

∑Q
q=1 rq,m}Mm=1 constitute a feasible option

for selecting theMr slots. In other words, ordering{r′m}Mm=1

in descending order asr′i1 ≥ r′i2 ≥ · · · ≥ r′iM , then the
candidate PPM slots would bei1, . . . , iMr

implying that the
simplified ML search will be limited to the set{i1, . . . , iMr

}P :

ŝ = arg max
s∈{i1,...,iMr}P

{

Q
∑

q=1

χ(q)(s)

}

. (16)

Given that the selection of theMr candidate positions
does not involve any multiplications (since it is based on
sorting), then the number of multiplications required for the
implementation of the Simp-Sub2 decoder can be obtained by
replacingM with Mr in (11).

Comparing the complexities of the two suboptimal MIMO
decoders, it can be observed from (11) and (14) that the
complexity of Simp-Sub2 increases linearly withQ while the
complexity of Simp-Sub1 is independent ofQ (because of
EGC). Denoting the numbers of multiplications in (11) and
(14) by N (ML)

mul (Q,P,M) andN
(Simp-ML)
mul (P,M), respectively,

then:

N (Simp-ML)
mul (P,M) ≤ N (Simp-ML)

mul (P,∞) ≤ N (ML)
mul (1, P, P )

≤ N (ML)
mul (Q,P, P ) ≤ N (ML)

mul (Q,P,Mr) ≤ N (ML)
mul (Q,P,M),

(17)

where the last two inequalities follow since the complexityof
the ML decoder increases with the number of tested positions
(whereP ≤ Mr < M ) while the third inequality follows
since this complexity increases withQ. Similarly, the first
inequality follows fromN

(Simp-ML)
mul (P,M) being an increasing

function of M . Finally, the second key inequality follows
from Fig. 1. As a conclusion, given that the complexities
of the Simp-Sub1 and Simp-Sub2 decoders are given by
N (Simp-ML)

mul (P,M) andN (ML)
mul (Q,P,Mr), respectively, then the

Simp-Sub2 decoder requires a larger number of multiplications
for all values of Mr. This additional complexity will be
associated with improved near-optimal performance levelsas
will be highlighted later.

While the decoders’ complexities have been evaluated in
terms of the number of multiplications, sorting procedures

need to be implemented by these decoders. In particular, the
Simp-ML and Simp-Sub1 decoders require carrying out two
types of sorting; namely, the sorting of{α′

P}P⊂{1,...,P} and

{r′m}Mm=1 where these quantities simplify to{α(1)
P }P⊂{1,...,P}

and{r1,m}Mm=1 for the Simp-ML decoder. On the other hand,
the Simp-Sub2 decoder necessitates the sorting of theM
decision variables{r′m}Mm=1. The weightsα′

P do not depend
on the values of the transmitted symbols and, consequently,the
sorting of these elements can be carried out at the beginning
of each fading block that extends over thousands of symbol
durations in the case of FSO systems that have large coherence
times. Therefore, the involved computational complexity can
be ignored. Consequently, the main additional complexity
arises from the sorting of{r′m}Mm=1 that needs to be carried
out on a symbol-by-symbol basis with Simp-Sub1 and Simp-
Sub2.

However, the sorting algorithms are based on comparisons
and do not involve any complicated processing-demanding
multiplication operations. In this context, many powerfulsort-
ing algorithms have been proposed in the literature and any of
these algorithms can be readily used to perform the required
sorting with a marginal impact on the decoders’ complexities.
While the sorting algorithms have their challenges, typical
algorithms have a good running time complexity and space
complexity ofO(n log(n)) andO(1), respectively, wheren is
the size of the list to be sorted. For the applications considered
in this paper, the required sorting ofM elements is judged
to be unchallenging given that the number of positionsM
does not assume excessively large values. In fact, the sorting
algorithms, that are designed to sort thousands of data entries,
can easily handle the sorting ofM elements where the values
of M do not exceed 16 in practice. With such small number of
elements to be sorted, the running time and memory usage are
usually not critical. This is especially true since the number
of elements to be sorted, and hence the number of required
addition-based comparisons, is much smaller than the number
of multiplications in (11) and (14). For example, forP = 5
and M = 4, N (ML)

mul = 3124 and N (Simp-ML)
mul = 146 that are

both large compared to 4.

Finally, it is worth highlighting that the sorting requirements
can be further relaxed where effectively only theP largest
elements among{r′m}Mm=1 need to be sorted with Simp-Sub1
for P < M while theMr largest elements among{r′m}Mm=1

need to be sorted with Simp-Sub2.

The proposed algorithms possess appealing parallelism ca-
pabilities where the search can be evenly split amongNproc

processors thus reducing the processing time and latency bya
factor of Nproc. This can be readily realized by partitioning
the sets{1, . . . ,M}P and {i1, . . . , iMr

}P in (9) and (16)
into Nproc subsets each spanned by one of the available
processors. The latency constraints further justify the need
for suboptimal decoders with low processing requirements.
There requirements are particularly met by the Simp-Sub1
decoder that entails a very small number of multiplications
as highlighted in Fig. 1.
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IV. PERFORMANCEANALYSIS AND CONSTELLATION

CONFINEMENT

In this section, we derive the symbol error probability
(SEP) of the considered SMux scheme. The conditional SEP
(conditioned on the channel irradiances) can be expressed as:

Pe =
1

MP

∑

s∈{1,...,M}P

∑

s
′∈{1,...,M}P

s
′ 6=s

Pr(s → s′), (18)

where Pr(s → s′) is the pairwise error probability of transmit-
ting the information vectors and deciding in favor ofs′ 6= s.
The SEP calculations will be based on the ML decision rule
given in (8) where we assume that ties are always broken in
favor of the erroneous symbols with the consequence that the
derived SEP expression corresponds to an upper-bound.

A. Mathematical Preliminaries

The probabilities in this section can be written under the
general form Pr(

∑

i aiXi ≥ 0) for some constantsa1, a2, . . .
whereX1, X2, . . . are Poisson random variables (r.v.s) with
parametersλ1, λ2, . . .. This probability will be upper-bounded
using the Chernoff bound Pr(X ≥ b) ≤ e−btMX(t) for every
t > 0 whereMX(t) = E[etX ] stands for the moment generat-
ing function of the r.v.X . Consequently, Pr(

∑

i aiXi ≥ 0) ≤
M∑

i aiXi
(t) =

∏

iMXi
(ait) resulting in:

Pr

(

∑

i

aiXi ≥ 0

)

≤ exp

(

∑

i

λi(e
ait − 1)

)

; ∀ t > 0,

(19)
since MX(t) = exp (λ (et − 1)) for a Poisson r.v. with
parameterλ.

While the expression in (19) will be used for bounding
the SEP, a consequent simpler expression will be used for
the sake of confining the transmitted constellation based on
an asymptotic analysis. This target can be achieved by first
observing that, based on (4), the parameters of the concerned
r.v.sXi can be written under the general formλi = E[Xi] =
kiλs+λb where the constantki can be either zero or positive.
For asymptotically large values ofλs, the r.v.s withki = 0
(whose parameters are equal toλb) will generate a number of
photoelectrons that is considerably smaller than that generated
by the Poisson r.v.s for whichki 6= 0. Therefore,

∑

i aiXi can
be approximated by

∑

i | ki 6=0 aiXi ,
∑

j ajXj for λs ≫ 1.

Now, the parametersλi of the Poisson r.v.s havingki 6= 0
are very large implying that they can be approximated by the
Gaussian distribution. Using the Gaussian approximation,the
r.v.

∑

j ajXj can be approximated with a Gaussian r.v. with
meanµ =

∑

j ajλj and varianceσ2 =
∑

j a
2
jλj . Conse-

quently, for large values ofλs, (19) can be further approxi-
mated by 1

2erfc
(

− µ√
2σ

)

where erfc(x) = 2√
π

∫∞
x

e−t2dt is
the complementary error function. Replacingµ andσ by their

values, (19) can be further approximated by the following
asymptotic expression:

Pr

(

∑

i

aiXi ≥ 0

)

≈

1

2
erfc



−
∑

i | λi 6=λb
(ai(λi − λb))

√

2
∑

i | λi 6=λb
(a2i (λi − λb))



 , (20)

where the last approximation follows sinceλi = kiλs + λb

tends tokiλs (i.e. λi − λb) for λs ≫ 1.

B. P = 2 Transmit Apertures

In order to offer more insights on the calculation procedures,
we first consider the special case ofP = 2. We denote the
transmitted vector bys = (s1, s2) and the output of the
ML decoder bys′ = (s′1, s

′
2). The two following cases arise

depending on whethers1 = s2 or s1 6= s2.
1) Case I: s1 = s2 , s implying from (4) thatRq,s is a

Poisson r.v. with parameter(Iq,1 + Iq,2)
λs

2 + λb while Rq,m

has a parameterλb for m′ 6= s. The following cases arise1.
Case 1.1: In this cases′1 = s′2 , s′ 6= s. Based on

the ML decision rule in (8), the error probability can be
written as Pr

(

∑Q
q=1 α

(q)
{1,2}Rq,s′ ≥

∑Q
q=1 α

(q)
{1,2}Rq,s

)

where

the constantα(q)
P is defined in (10). Based on (19), this

probability can be bounded as:

p1,1 ≤ exp

(

Q
∑

q=1

[(

(Iq,1 + Iq,2)
λs

2
+ λb

)

(

e
−α

(q)

{1,2}
t − 1

)

+λb

(

e
α

(q)

{1,2}
t − 1

)])

. (21)

Following from (20):

p1,1 ≈
1

2
erfc





∑Q
q=1 α

(q)
{1,2}(Iq,1 + Iq,2)

λs

2
√

2
∑Q

q=1[α
(q)
{1,2}]

2(Iq,1 + Iq,2)
λs

2





7→ erfc

(

√

max
q

{Iq,1 + Iq,2}λs

)

, (22)

wheref(λs) 7→ f ′(λs) means that the functionf(λs) behaves
asymptotically like the functionf ′(λs) as λs → ∞. The
asymptotic value in (22) follows sinceα(q)

P 7→ log(λs) which
is much smaller thanλs asλs → ∞.

Finally, p1,1 appearsM(M−1) times in the SEP expression
in (18) corresponding to the number of ways of selecting the
two distinct positionss ands′ from the totalM positions.

Case 1.2: In this cases′1 6= s′2 which results in the three
following possibilities.

− Case 1.2.1: s′1 = s implying, from
(8), that the corresponding error probability is

1The cases will be named as “Casen.n′” wheren andn′ are the numbers
of distinct PPM slots ins ands′, respectively.
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Pr
(

∑Q
q=1

[

α
(q)
{1}Rq,s + α

(q)
{2}Rq,s′2

]

≥∑Q
q=1 α

(q)
{1,2}Rq,s

)

.
Based on (19), this probability can be bounded as:

p1,2,1 ≤ exp

(

Q
∑

q=1

[(

(Iq,1 + Iq,2)
λs

2
+ λb

)

(

e
(α

(q)

{1}
−α

(q)

{1,2}
)t − 1

)

+ λb

(

e
α

(q)

{2}
t − 1

)])

. (23)

− Case 1.2.2: s′2 = s implying that the error probability
can be obtained by interchanging the subscripts 1 and 2 in
(23):

p1,2,2 ≤ exp

(

Q
∑

q=1

[(

(Iq,1 + Iq,2)
λs

2
+ λb

)

(

e
(α

(q)

{2}
−α

(q)

{1,2}
)t − 1

)

+ λb

(

e
α

(q)

{1}
t − 1

)])

. (24)

− Case 1.2.3: s′1 6= s and s′2 6= s.
In this case, the error probability can be written as
Pr
(

∑Q
q=1

[

α
(q)
{1}Rq,s′1

+ α
(q)
{2}Rq,s′2

]

≥∑Q
q=1 α

(q)
{1,2}Rq,s

)

re-
sulting in:

p1,2,3 ≤exp

(

Q
∑

q=1

[(

(Iq,1+Iq,2)
λs

2
+λb

)

(

e
−α

(q)

{1,2}
t−1

)

+λb

(

e
α

(q)

{1}
t−1

)

+ λb

(

e
α

(q)

{2}
t−1

)])

. (25)

The asymptotic expressions ofp1,2,1, p1,2,2 andp1,2,3 can
be obtained by replacingα(q)

{1,2} in (22) with α
(q)
{1,2} − α

(q)
{1},

α
(q)
{1,2} − α

(q)
{2} and α

(q)
{1,2}, respectively. Consequently, the

asymptotic variations of these three probabilities withλs is
captured by the expression given in (22).

On the other hand, the expression in (23) appearsM(M−1)
times in Pe which corresponds to the number of ways of
selecting the symbolss and s′1. The same holds for (24).
Finally, the probability in (25) appearsM(M − 1)(M − 2)
times which corresponds to the number of ways of selecting
the three distinct positionss, s′1 and s′2 from the total ofM
positions.

2) Case II: In this case,s occupies two distinct positions
s2 6= s1. For this scenario,Rq,s1 andRq,s2 follow the Poisson
distributions with parametersIq,1 λs

2 + λb and Iq,2
λs

2 + λb,
respectively, while the parameters of the remainingM−2 r.v.s
will be equal toλb. The two following cases arise depending
on whethers′ extends over one or two PPM positions.

Case 2.1: In this cases′2 = s′1 , s′ resulting in one of the
following situations:

− Case 2.1.1: s′ = s1. From (8), the error probability
can be derived from
Pr
(

∑Q
q=1 α

(q)
{1,2}Rq,s1 ≥∑Q

q=1

[

α
(q)
{1}Rq,s1 + α

(q)
{2}Rq,s2

])

which, from (19), results in:

p2,1,1 ≤ exp

(

Q
∑

q=1

[(

Iq,1
λs

2
+ λb

)

(

e
(α

(q)

{1,2}
−α

(q)

{1}
)t − 1

)

+

(

Iq,2
λs

2
+ λb

)

(

e
−α

(q)

{2}
t − 1

)

])

. (26)

From (20):

p2,1,1 ≈
1

2
erfc













∑Q
q=1

[(

α
(q)
{1}−α

(q)
{1,2}

)

Iq,1
λs

2 +α
(q)
{2}Iq,2

λs

2

]

√

2
∑Q

q=1

[

(

α
(q)
{1}−α

(q)
{1,2}

)2

Iq,1
λs

2 +
(

α
(q)
{2}

)2

Iq,2
λs

2

]













.

(27)

Sinceα(q)
{1} −α

(q)
{1,2} 7→ k (constant) whileα(q)

{2} 7→ log(λs),

thenp2,1,1 7→ erfc
(

√

maxq{Iq,2}λs

)

.

− Case 2.1.2: s′ = s2. The corresponding error
probability can be obtained by interchanging the subscripts
1 and 2 in (26):

p2,1,2 ≤ exp

(

Q
∑

q=1

[(

Iq,2
λs

2
+ λb

)

(

e(α
(q)

{1,2}
−α

(q)

{2}
)t − 1

)

+

(

Iq,1
λs

2
+ λb

)

(

e−α
(q)

{1}
t − 1

)

])

, (28)

with p2,1,2 7→ erfc
(

√

maxq{Iq,1}λs

)

.

− Case 2.1.3: s′ 6= s1 and s′ 6= s2.
In this case, the error probability is given by:
Pr
(

∑Q
q=1 α

(q)
{1,2}Rq,s′ ≥

∑Q
q=1

[

α
(q)
{1}Rq,s1 + α

(q)
{2}Rq,s2

])

which, from (19), results in:

p2,1,3 ≤ exp

(

Q
∑

q=1

[(

Iq,1
λs

2
+ λb

)

(

e
−α

(q)

{1}
t − 1

)

+

(

Iq,2
λs

2
+ λb

)

(

e
−α

(q)

{2}
t − 1

)

+ λb

(

e
α

(q)

{1,2}
t − 1

)

])

7→ erfc

(

√

max
q

{max{Iq,1, Iq,2}}λs

)

. (29)

While the symbolss1 ands2 can be selected inM(M − 1)
ways,s′ can be selected in 1, 1 andM − 2 ways according to
cases 2.1.1, 2.1.2 and 2.1.3, respectively. Therefore, in (18),
there areM(M − 1), M(M − 1) and M(M − 1)(M − 2)
vectorss and s′ whose pairwise error probabilities are equal
to p2,1,1, p2,1,2 andp2,1,3, respectively.

Case 2.2: In this cases′2 6= s′1 resulting in one of the six
following scenarios:

− Case 2.2.1: s′1 = s1 and s′2 6= s2.
In this case, the error probability can be cal-
culated from Pr

(

∑Q
q=1

[

α
(q)
{1}Rq,s1 + α

(q)
{2}Rq,s′2

]

≥∑Q
q=1

[

α
(q)
{1}Rq,s1 + α

(q)
{2}Rq,s2

])

that simplifies to

Pr
(

∑Q
q=1

[

α
(q)
{2}
(

−Rq,s2 +Rq,s′2

)

]

≥ 0
)

that results in the
following bound following from (19):

p2,2,1 ≤ exp

(

Q
∑

q=1

[(

Iq,2
λs

2
+ λb

)

(

e
−α

(q)

{2}
t−1

)

+λb

(

e
α

(q)

{2}
t−1

)])

7→ erfc

(

√

max
q

{Iq,2}λs

)

. (30)
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− Case 2.2.2: s′1 6= s1 ands′2 = s2. The error probability
can be obtained by replacing the subscript 2 with 1 in (30)
resulting in:

p2,2,2 ≤ exp

(

Q
∑

q=1

[(

Iq,1
λs

2
+ λb

)

(

e
−α

(q)

{1}
t−1

)

+λb

(

e
α

(q)

{1}
t−1

)])

7→ erfc

(

√

max
q

{Iq,1}λs

)

. (31)

− Case 2.2.3: s′1 = s2 and s′2 6= s1. Following the
same calculation procedures as in the previous cases, the error
probability can be bounded as:

p2,2,3 ≤ exp

(

Q
∑

q=1

[(

Iq,1
λs

2
+ λb

)

(

e−α
(q)

{1}
t − 1

)

+

(

Iq,2
λs

2
+λb

)

(

e
(α

(q)

{1}
−α(q)

{2}
)t − 1

)

+λb

(

e
α

(q)

{2}
t−1

)

])

,

(32)

with p2,2,3 7→ erfc
(

√

maxq{Iq,1}λs

)

following a reasoning
similar to the one provided in (27).

− Case 2.2.4: s′1 6= s2 and s′2 = s1. By interchanging
the roles of the two transmit apertures, the error probability
follows from (32):

p2,2,4 ≤ exp

(

Q
∑

q=1

[(

Iq,1
λs

2
+ λb

)

(

e(α
(q)

{2}
−α

(q)

{1}
)t − 1

)

+

(

Iq,2
λs

2
+ λb

)

(

e
−α

(q)

{2}
t − 1

)

+ λb

(

e
α

(q)

{1}
t − 1

)

])

7→ erfc

(

√

max
q

{Iq,2}λs

)

. (33)

Each one of the probabilities in (30), (31), (32) and (33)
appearsM(M − 1)(M − 2) times in (18) which corresponds
to the number of ways of selecting three distinctM -PPM
symbols (s1, s2 and one of the symbolss′1 or s′2).

− Case 2.2.5: s′1 6= s1, s′1 6= s2, s′2 6= s1 and s′2 6= s2
resulting in:

p2,2,5 ≤ exp

(

Q
∑

q=1

[(

Iq,1
λs

2
+ λb

)

(

e
−α

(q)

{1}
t − 1

)

+

(

Iq,2
λs

2
+ λb

)

(

e
−α

(q)

{2}
t − 1

)

+λb

(

e
α

(q)

{1}
t − 1

)

+ λb

(

e
α

(q)

{2}
t − 1

)])

7→ erfc

(

√

max
q

{max{Iq,1, Iq,2}}λs

)

. (34)

The probabilityp2,2,5 appearsM(M − 1)(M − 2)(M − 3)
times in (18) which corresponds to the number of ways of
selecting four distinct symbols.

− Case 2.2.6: s′1 = s2 ands′2 = s1. In this case, the error

probability follows from Pr
(

∑Q
q=1

[

α
(q)
{1}Rq,s2 + α

(q)
{2}Rq,s1

]

≥
∑Q

q=1

[

α
(q)
{1}Rq,s1 + α

(q)
{2}Rq,s2

])

that can be written as:

Pr
(

∑Q
q=1

[

(α
(q)
{2} − α

(q)
{1})(Rq,s1 −Rq,s2)

]

≥ 0
)

implying
that:

p2,2,6 ≤ exp

(

Q
∑

q=1

[(

Iq,1
λs

2
+ λb

)

(

e
(α

(q)

{2}
−α

(q)

{1}
)t − 1

)

+

(

Iq,2
λs

2
+ λb

)

(

e
(α

(q)

{1}
−α

(q)

{2}
)t − 1

)

])

, (35)

with p2,2,6 7→ erfc

(

maxq

{

|Iq,1−Iq,2|√
Iq,1+Iq,2

}√
λs

)

where this

terms appearsM(M − 1) times in (18).

Combining the above results, the conditional SEP in (18)
can be upper-bounded as follows:

Pe ≤
1

M2
M(M − 1) [p1,1 + p1,2,1 + p1,2,2 + p2,1,1+

p2,1,2 + p2,2,6 + (M − 2) [p1,2,3 + p2,1,3 + p2,2,1+

p2,2,2 + p2,2,3 + p2,2,4 + (M − 3)p2,2,5]] . (36)

Finally, it is worth noting that while the inequalities in (21),
(23)-(25), (26), (28), (29) and (30)-(35) hold for all positive
values oft, the value oft can be further optimized to achieve
the tightest possible bound. Independent optimizations need
to be carried out for each one of these equations rather than
optimizing (36) directly. This approach not only results in
simpler optimization procedures, but also it minimizes the
upper-bound since each one of the 13 constituent terms in (36)
will be optimized separately. The value oft that minimizes
an expression that takes the general form in (19) can be
obtained by solving the equation

∑

i aiλie
ait = 0. While it is

hard to solve this equation analytically (with more than two
summands), it can be easily solved numerically using any of
the widely available mathematical softwares.

3) Constellation Confinement:The interest of the presented
upper-bounding technique resides in the fact that the derived
expressions are tractable and, hence, they can be further
exploited for the sake of confining the transmitted constellation
as a means of enhancing the error performance. We start by
defining the following constants that depend on the channel
irradiances:

β1 = max
q

{Iq,1} ; β2 = max
q

{Iq,2}

β1⊕2 = max
q

{Iq,1 + Iq,2} ; β1⊗2 = max
q

{max{Iq,1, Iq,2}}

β1⊖2 = max
q

{

|Iq,1 − Iq,2|
√

Iq,1 + Iq,2

}

, (37)

whereβ1, β2 andβ1⊖2 are all smaller thanβ1⊗2 that, in turn,
is smaller thanβ1⊕2.

We define c(s, s′) as the number of elements that are
common to the vectorss ands′. Based on this definition and
on the notations in (37), the probabilities that were derived in
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the previous subsection can be categorized as follows:

c(s, s′) = 0 : {p1,1, p1,2,3} 7→ erfc(
√

β1⊕2λs) ;

{p2,1,3, p2,2,5} 7→ erfc(
√

β1⊗2λs) (38)

c(s, s′) = 1 : {p1,2,1, p1,2,2} 7→ erfc(
√

β1⊕2λs) ;

{p2,1,2, p2,2,2, p2,2,3} 7→ erfc(
√

β1λs) ;

{p2,1,1, p2,2,1, p2,2,4} 7→ erfc(
√

β2λs) (39)

c(s, s′) = 2 : p2,2,6 7→ erfc(
√

β1⊖2λs). (40)

Regarding (39), it is worth noting that whenever the term
p1,2,1 appears in Pr(s → s′), then the probabilityp2,1,1 will
appear in Pr(s′ → s). Similarly, the termsp1,2,2 and p2,1,2

will always appear together when the roles ofs and s′ are
interchanged. On the other hand, the channel state information
is not available to the transmitter; hence, the transmittercan
not adapt the transmitted constellation to the variablesβ1

and β2. Consequently, whenever the constellation contains
vectors satisfyingc(s, s′) = 1, the corresponding probability
Pr(s → s′) + Pr(s′ → s) will behave asymptotically as
erfc(

√

min{β1, β2}λs). Regarding (38), the termsp1,1 and
p2,2,5 can appear alone (depending on the specific constellation
confinement) unlike the probabilitiesp1,2,3 and p2,1,3 that
always appear together. Therefore, forc(s, s′) = 0, the
corresponding error probability can behave asymptotically as
either erfc(

√

β1⊕2λs) or erfc(
√

β1⊗2λs).
Based on the above analysis, the subsets of{1, . . . ,M}P

can be classified in terms of the number of admissible com-
mon elements between the different information vectors. The
following notation will be used:

CU , {s | {c(s, s′) ∀ s′ 6= s} = U}, (41)

resulting in different possible constellation confinements with
the following options (i):C{0} wherePe 7→ erfc(

√

β1⊕2λs)

or Pe 7→ erfc(
√

β1⊗2λs), (ii): C{1} or C{0,1} where
Pe 7→ erfc(

√

min{β1, β2}λs), (iii): C{2} or C{0,2} where
Pe 7→ erfc(

√

β1⊖2λs), (iv): C{1,2} or C{0,1,2} wherePe 7→
erfc(

√

min{β1, β2, β1⊖2}λs). Evidently, the optionsC{1},
C{2} andC{1,2} are to be excluded since the alternativesC{0,1},
C{0,2} and C{0,1,2}, respectively, result in larger numbers of
elements while achieving the same asymptotic performance.

− The set C{0,1,2} with maximum cardinality is the
set {1, . . . ,M}P corresponding to the SMux case with no
constellation confinement.

− Sets of the formC{0} with maximum cardinality can
be constructed as follows. Select an even integerM ′ ≤ M .
Divide the M ′ positions among uniqueM ′/2 pairs and
allocate each to a vector of the form(s1, s2) with s1 <
s2 and allocate the remainingM − M ′ positions among
vectors of the form(s1, s1). For example, forM = 3,
the sets{(1, 1), (2, 2), (3, 3)} (M ′ = 0) and {(1, 2), (3, 3)},
{(1, 3), (2, 2)}, {(2, 3), (1, 1)} (M ′ = 2) are valid options.
The cardinality in this case isM −M ′+M ′/2 = M −M ′/2
which is maximized forM ′ = 0. This corresponds to the RC
solution [3]–[9] where all apertures transmit in the same PPM
position:s = (s, s) with s ∈ {1, . . . ,M}. While this scheme
results in the smallest possible value ofPe 7→ erfc(

√

β1⊕2λs)
(sinceβ1⊕2 is the largest among the constants defined in (37)),

it suffers from the smallest cardinality that is equal toM
(which is the same as in single-aperture systems).

− Sets of the formC{0,2} can be constructed as follows.
Select an even integerM ′ ≤ M . Divide the M ′ positions
among uniqueM ′/2 pairs and allocate each to two vectors
of the form (s1, s2) and (s2, s1) with s2 6= s1 and allocate
the remainingM −M ′ positions among vectors of the form
(s1, s1). This results in the maximum cardinality ofM im-
plying that RC is better since it achieves the same cardinality
with a smaller error erfc(

√

β1⊕2λs) ≤ erfc(
√

β1⊖2λs).
− Sets of the formC{0,1} correspond to the constellation

confinement that we propose. This can be achieved by avoiding
having vectors of the form(s1, s2) and (s2, s1) together in
the signal set (fors2 6= s1). The maximum cardinality can be
obtained by adding

(

M
1

)

(number of ways of selecting vectors
of the form (s1, s1)) and

(

M
2

)

(number of ways of selecting
two distinct positions from theM positions). In other words,
the proposed confined constellation in the case ofP = 2
apertures is given byS = {(s1, s2) | s1 ≤ s2} having a
cardinality of M(M+1)

2 with an error probability that scales as
Pe 7→ erfc(

√

min{β1, β2}λs).
Comparing the RC, SMux-confined and SMux-unconfined

solutions, the constellation cardinalities increase fromM
to M(M+1)

2 to M2 while the error probabilities in-
crease from erfc(

√

β1⊕2λs) to erfc(
√

min{β1, β2}λs) to
erfc(

√

min{β1, β2, β1⊖2}λs), respectively. The conditional
SEP for the Simp-Sub1 decoder can be obtained from
the conditional SEP of the ML decoder by (i): replac-
ing Iq,p by

∑Q
q=1 Iq,p for p = 1, 2 in (37), (ii): remov-

ing the maximization overq in (37) and (iii): replacing
λs by λs/Q to account for the noise accumulation result-
ing from the EGC implemented by Simp-Sub1. Perform-
ing the above modifications results in the error probabil-

ities of erfc(
√

β+
1⊕2λs/Q), erfc(

√

min{β+
1 , β

+
2 }λs/Q) and

erfc(
√

min{β+
1 , β

+
2 , β+

1⊖2}λs/Q) for RC, SMux-confined and

SMux-unconfined, respectively. In these equations,β+
p =

∑Q
q=1 Iq,p for p = 1, 2, β+

1⊕2 =
∑Q

q=1(Iq,1 + Iq,2) and

β+
1⊖2 =

|∑Q
q=1(Iq,1−Iq,2)|

√

∑Q
q=1(Iq,1+Iq,2)

following from (37). Sinceβ1, β2,

β1⊕2 and β1⊖2 all increase withQ, then the ML decoder
profits from the underlying receive diversity with the RC,
SMux-confined and SMux-unconfined schemes. On the other
hand, onlyβ+

1 , β+
2 and β+

1⊕2 are increasing functions ofQ
while β+

1⊖2 might decrease withQ. Consequently, the EGC-
based Simp-Sub1 decoder keeps the same receive diversity
advantage as the ML decoder only with the RC and SMux-
confined schemes.

C. Any Number of Transmit Apertures

Denote byI theQ×P channel matrix whose(q, p)-th ele-
ment is equal toIq,p. For the vectors = (s1, . . . , sP ), define
theQ×M matrixS asS = I×[es1 ; · · · ; esP ] whereem stands
for them-th row of theM ×M identity matrix. Similarly, let
S′ = I × [es′1 ; · · · ; es′P ] for s′ = (s′1, . . . , s

′
P ). Based on this

notation, theQ × M matrix A = log
(

1 + λs

Pλb
S
)

contains
the weighing coefficients associated with the vectors (i.e. the
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weights defined in (10)). Similarly,A′ = log
(

1 + λs

Pλb
S′
)

contains the weighing coefficients ofs′. Finally, define the
Q ×M matrix Λ as the matrix containing the parameters of
the Poisson random variables in (4) withΛq,m = E[Rq,m]
whereXi,j stands for the(i, j)-th element of the matrixX.

Based on the above notations, the pairwise error
probability Pr(s → s′) can be calculated from

Pr
[

∑

q,m A′
q,mRq,m ≥

∑

q,m Aq,mRq,m

]

which, from
(19), can be bounded as:

Pr(s → s′) ≤ exp

(

Q
∑

q=1

M
∑

m=1

Λq,m

(

eΠq,mt − 1
)

)

, (42)

whereΠ , A′ −A.
An analysis similar to that presented in subsection IV-B

shows that the dominant terms among the different pairwise
error probabilities in (42) behave asymptotically as either
erfc(

√

βpλs) or erfc(
√

βp′⊖pλs) where extending the notation
in (37): βp = maxq{Iq,p} for p = 1, . . . , P and βp′⊖p =

maxq

{

|Iq,p′−Iq,p|√
Iq,p′+Iq,p

}

for p′ 6= p. In fact, the first term will

appear whenever the components ofs ands′ satisfy s′p 6= sp
while s′p0

= sp0 for p0 6= p (so that the corresponding terms
Πq,m in (42) will be equal to zero). On the other hand, prob-
abilities that can be written under the second form will appear
when (sp, sp′) = (s′p′ , s′p) while s′p0

= sp0 for p0 6= p, p′. On
the other hand, the remaining probability terms will behave
as erfc(

√
kλs) where the constantk takes the general form

k = maxq{min{βp1 , βp2 , · · · , βp′
n⊖pn

, βp′
n+1⊖pn+1

, · · · }} or
k = maxq{min{∑p∈P Iq,p,maxp∈P′{Iq,p}}} with |P| > 1
and |P ′| > 1. In fact, the first expression ofk will follow
whenever a pair(sp0 , s

′
p0
) of initially equal components (to

yield βp for p0 6= p) now have different components and
whenever two initially equal pairs(sp0 , sp′

0
) = (s′p0

, s′p′
0
)

(to yield βp′⊖p for p0, p
′
0 6= p, p′) satisfy the new relation

(sp0 , sp′
0
) = (s′p′

0
, s′p0

). Moreover, the second value ofk will
follow whenever the apertures inP or P ′ transmit in the same
PPM slot.

Therefore, it follows that the conditional SEP of SMux with
no constellation confinement behaves asymptotically as:

Pe 7→ erfc





√

√

√

√min

{

min
p=1,...,P

{βp}, min
p,p′=1,...,P

p′ 6=p

{βp′⊖p}
}

λs



 .

(43)
The objective of the proposed constellation confinement

is to decrease the value of the above probability to
erfc

(

√

minp{βp}λs

)

by eliminating the information-vector

pairs that will make the term erfc(
√

βp′⊖pλs) appear in
the SEP expression. Based on the above analysis, this term
will emerge whenevers and s′ have P − 2 elements that
are the same while the remaining two elements are flipped.
Consequently, the elimination of the terms having the form
erfc(

√

βp′⊖pλs) can be realized in a simple way by sorting
the components of the information vectors in ascending (or
descending) order. In this case, the flipping of any two com-
ponents will result in a vector that falls outside the confined
constellation.

As a conclusion, the confined constellation will be designed
as follows:

Sconf = {s = (s1, . . . , sP ) | 1 ≤ s1 ≤ s2 ≤ · · · ≤ sP ≤ M} ,
(44)

resulting in the following cardinality:

|Sconf| =
min{M,P}
∑

n=1

(

M

n

)(

P − 1

n− 1

)

, (45)

wheren stands for the number of non-empty PPM slots with
(

M
n

)

capturing the number of ways in which these slots can be
selected from the total ofM PPM slots. Once the nonempty
slots are determined, the information vector can be directly
deduced in a unique way by finding the number of apertures
transmitting in each of thesen slots since an aperture with a
higher index (compared to another aperture) can not transmit
in a prior PPM position following from the symbol sorting
in (44). For example, forP = 5 and n = 2 with 3 (resp.
2) apertures transmitting in the first (resp. second) slot, then
apertures 1, 2 and 3 must transmit in the first slot while
apertures 4 and 5 must transmit in the second slot resulting
in s = [s1, s1, s1, s2, s2] where s1 and s2 stand for the
indices of the nonempty slots (withs1 < s2). This justifies
the term

(

P−1
n−1

)

appearing in (45) where this number stands
for the number of ways of writingP as the sum ofn non-
zero integers (i.e. number of compositions ofP into exactly
n parts). Finally, it can be easily proven that|Sconf| > M
implying an increased cardinality compared to RC.

It is worth noting that the confinement targeted the elim-
ination of the terms erfc(

√

βp′⊖pλs) rather than the terms
erfc

(√

βpλs

)

for the following main reason. In the second
case, the inclusion of the vectors = (s1, . . . , sP ) in the con-
fined set will incur the exclusion of at leastP (M−1) informa-
tion vectors of the form(s′, s2, . . . , sP ), (s1, s′, s3, . . . , sP ),
. . . (s1, . . . , sP−1, s

′) wheres′ can takeM − 1 values (that
are different from the replaced value ins). On the other
hand, in the first case, this will incur the exclusion of

(

P
2

)

vectors of the form(s2, s1, s3, . . . , sP ), (s3, s2, s1, . . . , sP ),
(s4, s2, s3, s1, s5, . . . , sP ), . . .. Consequently, the first option
that we adopt has a higher potential of increasing the cardi-
nality of the confined constellation. This observation is more
clearly reflected in the case ofP = 2 where, from (36)
and (39)-(40), each one of the probabilities erfc

(√
β1λs

)

and
erfc

(√
β2λs

)

appearsM(M − 1)(2M − 3) times while the
probability erfc(

√

β1⊖2λs) appearsM(M − 1) times.
Finally, from (45), since evaluating the ML metric for an

information vector extending overn non-empty slots (i.e.
with n unique elements) is equal ton, then the number of
multiplications required by the ML algorithm when associated
with the confined constellation is:

N (ML)
mul = Q

min{M,P}
∑

n=1

n×
[(

M

n

)(

P − 1

n− 1

)]

, (46)

which can also be obtained by replacing P !
l1!l2!···ln! with 1 in

(11) (the corresponding summation in (11) will simplify to
the number of compositions ofP into n summands given by
(

P−1
n−1

)

).
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Regarding the Simp-ML decoder, algorithm-1 can be read-
ily applied with the sole modification that the partitioning
{1, . . . , P} = P1 ∪ · · · ∪ Pn must take into consideration
the fact that the elements ofs are sorted in ascending order:
∀ (x, y) ∈ Pi ×Pj , x < y for i < j. The number of required
multiplications with the confined constellation is:

N
(Simp-ML)
mul =

min{M,P}
∑

n=1

n×
(

P − 1

n− 1

)

, (47)

following from (45) since, for a particular value ofn, the
knowledge of the composition ofP into n summands yields
one candidate solution to be tested (withn required multipli-
cations). Moreover, then slots with maximum EGC counts
are selected in a unique way.

While an explicit expression for the diversity order is
difficult to obtain in the case of nonzero boresight [20],
the diversity order is given byζ , min{ξ2, ϕ2} for a
single-aperture FSO link with zero boresight. In this scenario,
it can be easily proven that the error probabilities in the
cases of RC and SMux-confined with the ML decoder scale
asymptotically asλ−PQζ

s and λ−Qζ
s , respectively. However,

for SMux-unconfined, it is very challenging to derive the
diversity order since it is hard to study the random quantity

βp′⊖p = maxq

{

|Iq,p′−Iq,p|√
Iq,p′+Iq,p

}

.

V. NUMERICAL RESULTS

In this section, we present some numerical results for the
sake of comparing the different decoders and showing the
impact of constellation confinement. The presented figures
show the variation of the SEP as a function of the signal energy
Es per information bit for different values of the background-
noise powerPb. The former quantity is equal to Es

P log2(M)

for SMux with unconfined constellation andEs

|Sconf| for SMux
with confined constellation where|Sconf| is given in (45). The
quantum efficiency, attenuation constant and refractive index
structure constant are set toη = 0.5, σ = 0.44 dB/km and
C2

n = 1.7×10−14 m−2/3, respectively. We also setσs/a = 3
while the impact of pointing errors will be captured by varying
the values ofωz/a ands/a.

It is worth highlighting that the comparison between the
different transmission schemes will be carried out for the same
value ofM for the following reason. While increasingM in-
creases the number of bits per symbol, it increases the symbol
durationTs as well. In fact, for a given transmitter/receiver
bandwidth, the symbol duration is fixed toTs = Mδ where
the pulse durationδ (that is equal to the duration of one PPM
slot) fixes the optical bandwidth. Consequently, the bit rates
of the SMux and RC schemes areP log2(M)

Mδ and log2(M)
Mδ ,

respectively, where both of these quantities decrease withM
as in the case of single-aperture systems. In this context, the bit
rate of theM -PPM SMux scheme isP times larger than that
of the M -PPM RC scheme. Finally, it is worth highlighting
that whileM -PPM SMux systems andMP -PPM RC systems
transmit the same number of bits per symbol (P log2(M) bits),
the symbol duration of the corresponding RC scheme isMP−1

times larger than that of the SMux scheme thus incurring the

reduction of the bit rate by a factor ofMP−1. This highlights
on the interest of the considered SMux scheme (whether with
or without the constellation confinement) where the bit ratecan
be increased without altering the number of PPM positions.

Fig. 2 shows the performance of2×1 and2×2 systems with
4-PPM for d = 3 km, ωz/a = 25 and s/a = 3. The level of
background noise is determined fromPbTs/M = −185 dBJ
and the unconfined constellation is considered. For the2 × 1
system, results show that the Simp-ML decoder is achieving
exactly the same performance level as the ML decoder thus
stressing on the optimality of the former simplified decoder
for MISO systems. Among the suboptimal decoders, decoder
Simp-Sub1 manifests the worst performance that still outper-
forms2×1 systems by about2.5 dB while decoder Simp-Sub2
is capable of achieving advantageous performance levels that
are very close to those achieved by the optimal ML decoder.
In particular, forMr = 3, the SEPs of the Simp-Sub2 and
ML decoders are practically the same for all values ofEs

while, for Mr = 2, the Simp-Sub2 decoder results in limited
performance losses for the values of Es

P log2(M) exceeding -163
dBJ. In terms of complexity, the Simp-Sub1 decoder is the
most appealing with3 multiplications per information vector
while the implementation of the ML decoder is the most
demanding with56 multiplications per information vector.
For the Simp-Sub2 decoder, the number of multiplications
increases from12 to 30 as Mr increases from2 to 3. The
proposed optimal and suboptimal decoders can also be applied
in the scenario where the CSI is available at the transmitter
resulting in the implementation of a power allocation (PA)
strategy. In this case, the power normalisation factor1/P in
the weighing coefficients in (10) needs to be replaced by the
parameterφp that stands for the fraction of the power allocated
to thep-th transmit aperture with

∑P
p=1 φp = 1. Evidently, this

extension does not entail any additional complexity given that
it only affects the block terms. In such scenarios, the backup
RF link might be useful for providing feedback from the re-
ceiver to the transmitter. While the resulting performancegains
are highly dependent on the adopted PA strategy, developing
the optimal PA scheme falls beyond the scope of this work.
Nevertheless, in order to provide some insights on the realized
performance gains, we show the performance with the simple

PA strategyφp =
∑Q

q=1 Iq,p
∑

P
p′=1

∑Q
q=1 Iq,p′

that allocates more power

to the stronger links in a linear fashion. Results in Fig. 2 show
that a performance gain in the order of4 dB can be achieved
by this simple PA with the Simp-Sub1 decoder thus motivating
the importance of examining the PA strategies in future works.

The simulation setup of Fig. 2 is reproduced in Fig. 3
for 4 × 1 and 4 × 4 systems with 8-PPM. The numbers of
multiplications required by the Simp-ML, Simp-Sub1, Simp-
Sub2 with Mr = 4, Simp-Sub2 withMr = 5 and ML
decoders are37, 37, 2800, 7380 and 54240, respectively.
This highlights on the advantageous simplicity of the MIMO
Simp-Sub1 decoder that, evidently, comes at the expense of
performance losses. This renders this type of decoding suitable
for low-complexity MIMO systems. On the other hand, for
systems possessing higher processing capabilities, the Simp-
Sub2 decoder withMr = 4 constitutes an appealing option
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Fig. 2. Performance with 2 transmit apertures and4-PPM for d = 3 km,
ωz/a = 25, s/a = 3 andPbTs/M = −185 dBJ.

where the achieved performance levels are extremely close to
those achieved by the optimal ML decoder while performing
19.37 times less multiplications. Compared to the2×2 systems
considered in Fig. 2, the performance gap between the Simp-
Sub1 decoder and the ML decoder increases in the case of4×4
systems. This is justified by the sharp reduction in the number
of multiplications required by the Simp-Sub1 decoder when
(P,Q,M) increases from(2, 2, 4) to (4, 4, 8). In fact, while
the Simp-Sub1 decoder requires18.6 times less multiplications
compared to the ML decoder with2 × 2 systems, this ratio
increases to1466 with 4 × 4 systems. Fig. 3 shows that
implementing the PA strategy results in a gain of4.2 dB with
the Simp-Sub1 decoder.

Fig. 4 compares the performance of the confined and
unconfined constellations for3 × 3 MIMO systems with 8-
PPM for PbTs/M = −180 dBJ with d = 4 km in the
absence of pointing errors (ωz/a → ∞ ands/a = 0). Results
in Fig. 4 highlight on the enhanced performance levels that
can be achieved by confining the transmitted constellation
according to (44). Evidently, this SEP enhancement is achieved
through compromising the data rate where the cardinalities
of the confined and unconfined constellations are equal to
120 and512, respectively. In this case, the performance gains
are higher for larger values ofEs where the constellation
confinement results in a performance gain of5.7 dB at a
SEP of 10−4 with the ML decoding. Fig. 4 also highlights
the important observation that the gap between the Simp-
Sub1 and ML decoders is significantly reduced when confining
the transmitted constellation. While the performance gap is
particularly pronounced with the unconfined constellationwith
values exceeding 15 dB at10−2, the Simp-Sub1 decoder is
capable of achieving appealing performance levels that are
comparable to those achieved by the ML decoder with a
much reduced complexity in the case where the constellation
confinement is applied. In fact, the Simp-Sub1 decoder per-
forms only 1.7 dB worse than the optimal ML decoder at a
SEP of10−4 when the confinement is applied. The confined
constellation with the Simp-Sub1 decoder even outperforms
the unconfined constellation with the ML decoder where the
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Fig. 3. Performance with4 transmit apertures and8-PPM for d = 3 km,
ωz/a = 25, s/a = 3 andPbTs/M = −185 dBJ.

performance gains are in the order of4 dB. The results also
highlight on the accuracy of the derived approximate SEP
expressions in predicting the performance for average-to-large
values ofEs. In fact, the approximate SEP expressions vary
with Es in a manner that is comparable with the variations
of the exact SEPs. Fig. 4 also shows the performance of
RC that achieves the best SEP performance [3]. However,
this performance superiority comes at the expense of a sharp
drop in the data rate where the transmitted constellation has a
cardinality of 8 (3 bits) while the cardinalities of SMux with
the confined and unconfined constellations are120 (6.9 bits)
and512 (9 bits), respectively. Finally, applying SMux with the
proposed constellation confinement constitutes a worthwhile
compromise between the two extremes of conventional SMux
(highest rate and worst SEP) and RC (lowest rate and best
SEP).

Fig. 5 shows the performance of5 × 5 MIMO systems
with 4-PPM,d = 3 km, PbTs/M = −185 dBJ, ωz/a = 12
and s/a = 0. The obtained results re-emphasize on the
findings drawn from Fig. 4 whether in terms of the enhanced
performance levels that result from confining the transmitted
constellation or in terms of the improved decoding potential
of the Simp-Sub1 decoder when associated with the confined
constellation. It is worth noting that the SMux solutions trans-
mit at the rates of 5.8 bits per channel use (pcu) and 10 bits
pcu with and without applying the constellation confinement,
respectively. These rates are much higher than those achieved
by the SISO systems (and MIMO RC systems) that transmit
at the rate of 2 bits pcu. As in Fig. 4, the variations of the SEP
curves are accurately predicted by the presented approximate
expressions.

VI. CONCLUSION

We investigated MIMO-FSO IM/DD communication sys-
tems with photon-counting receivers. Our analysis revolved
around SMux and a proposed novel scheme with constellation
confinement that can be perceived as a compromise between
SMux (best rate) and RC (best performance). We proposed
an optimal decoder as well as two suboptimal decoders for
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Fig. 4. Performance of3×3 MIMO systems with8-PPM for a link distance
of 4 km with PbTs/M = −180 dBJ,ωz/a → ∞ and s/a = 0. The solid
and dashed lines correspond to the exact and approximate SEPs, respectively.

accomplishing the challenging objective of separating the
interfering channels. While the Simp-Sub1 decoder is the
simplest, it suffers from the most pronounced performance
degradations with a dramatic reduction in such degradations
when this decoder is associated with the confined constellation.
The Simp-Sub2 decoder has higher complexity but exhibits
near-optimal performance.
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analysis of the hybrid free-space optical and radio-frequency channel,”
IEEE J. Select. Areas Commun., vol. 27, no. 9, pp. 1709–1719, Dec.
2009.


