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Abstract—In this paper, we analyze multi-hop Free-Space
Optical (FSO) communications in the context of decode-and-
forward serial relaying where the relays are equipped with fhite-
size buffers. Based on a Markov chain analysis, we derive ded-
form asymptotic expressions for the system outage probalify
(OP) and average packet delay (APD) for an arbitrary number
of relays N, and an arbitrary buffer size L. The closed-form
evaluation links the system performance to the various netark
parameters in a simple and intuitive manner and it is useful ér
offering clear insights on the impact of the relay placementand
the selection of the buffer size for practical FSO systems. &/
prove that buffer-aided multi-hop systems can reap a diverigy
gain that ranges from [£] +1 to N, +1 compared to multi-hop
buffer-free systems while the asymptotic APD values can raye
from N, to (L — 1)N, for L > 2. Our analysis also highlights
on the optimal solutions capable of concurrently minimizirg the
OP and APD.

Index Terms—Free space optics, multi-hop, relaying, buffer,
asymptotic analysis, relay placement, diversity gain.

I. INTRODUCTION

relaying solutions whether in the context of radio-frequen
(RF) systems [6]-[17] or FSO systems [18]-[21].

The problem of BA parallel relaying with RF systems was
considered in [6]-[13]. Thenax-linkrelay selection protocol
was proposed in [6] where, in a given time slot, a single
relay (R) is selected to either receive from the source (S)
or to transmit to the destination (D). In order to reduce the
outage probability (OP), the activated link is selected agno
all available S-R and R-D links based on the availability of
the channel state information (CSI). Thex-linkDF protocol
was later extended to AF relaying in [7]. Several improvetaen
on this protocol were proposed in [8]-[10] where in [8] the
average packet delay (APD) was reduced by giving higher
priority to the R-D links for the sake of emptying the relays’
buffers at a faster pace. While the relay selection proadur
in the max-link protocol is based on the CSI, buffer state
information (BSI) was also considered by the relay selectio
scheme in [9]. In this reference, the relays were partitione
into three priority classes based on whether their buffees a
full, empty or neither empty nor full. In addition to the CSlda

The high transmission capacity along with the cost-efecti g 110} included the delay state information (DSI) as well
deployment associated with Free-Space Optical (FSO) COfiere the packets delayed beyond a certain delay limit are

munication makes the FSO technology an attractive solutiapopped from the buffers. In addition, theax-link protocol
to the “last mile” problem. This is motivated by the inherenf a5 studied in [11] in the presence of source to destination
ability of the license-free FSO links to connect end users {fract connectivity, providing a framework encompassinghb

the ubiquitous wireline fiber optic infrastructure. Numeso

other applications are also envisaged for FSO systems EHH%

direct and relay-based source to destination data tranger
sibility of direct source to destination connectivitgsalso

they range from backhauling/fronthauling future 5G wissle -gnsidered in [12], where buffer-aided relaying was stddie

communication networks to disaster recovery [1]. The probl

of multi-hop communications, or serial relaying, has beetl w
explored in the context of FSO communications [2]-[5]. Bot
amplify-and-forward (AF) [2], [3] and decode-and-forwargs

under delay constraints that took the form of delay violatio

robability limitation. Finally, the authors in [13] proped a
lay selection algorithm that effectively deals with et
Sl.

(DF) [4], [5] relaying were considered whether in the gomtex BA-RF serial relaying was analyzed in [14]-[17]. Thé-
of non—cohgrent detection [3],.[4] or goherent de_tect|.oh [2relay DF relaying scheme in [14], [15] was based on the
[5]. The main advantage of serial relaying resides in extend {ransmission along the best hop in each time slot based on

the network coverage with a performance that is dominated

CSl. It was observed that BA multi-hop relaying provides

the weakest hop; i.e. the hop with the highest probability ofyersity gains without being able to quantify these gainses

failure (or outage probability). While the existing liténae on
FSO serial relaying revolves around buffer-free relays|],

the derived OP lower bound did not possess the same slope as
the exact OP. On the other hand, [16] tackled the problem of

numerous recent studies have shown that buffer-free SESI8Mf-duplex multi-hop BA-RF relaying where the transmissi
overlook substantial performance gains that can be reapgghs of the nodes are adapted over the different fadingloc
from equipping the relays with buffers (or data queues). iy the sake of maximizing the end-to-end average rate. Fi-
fact, there has been a growing interest in buffer-aided (B%”y, [17] considered the problem of throughput maximiat
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for two-hop BA-RF communications with a full-duplex relay.
Adaptive transmission-reception is implemented at thayrel
depending on the state of the S-R and R-D links as well as



on the level of self interference at the relay. calculation methodology adopted in this case is based on the
BA relaying with FSO and hybrid RF/FSO systems wasslentification of a closed-subset of states that tends attmp
considered in [18]-[21]. The scenario in [18] corresporws fcally to be an absorbing set. The concept of state lumping
a number of RF mobile users transmitting their information tis then used to determine the steady-state distributiomef t
a BA relay along the first hop while the relay multiplexes antecurrent states of the closed-subset by linking the Markov
retransmits the data to the destination along a hybrid RB/F€hain of ann-hop network to the Markov chain of the simpler
link in the second hop. For this scenario, the link allocatio(n — 1)-hop network. The asymptotic analysis shows that
problem was considered where the load can be split among the performance is predominantly governed by the weakest
RF and FSO links. This study was then refined in [19], whetep. Denoting the index of this hop by, we prove that the
an efficient mixed RF and hybrid FSO/RF network that makekversity gain with respect to buffer-free systems is edoal
the most of the high transmission rates of multiuser scesariN, + 1 — min{n — 1, N, + 1 — i} with an asymptotic APD
was introduced. On the other hand, the problem of BA relaglue of N, + (L — 2)(n — 1) for L > 2.

selection with multiple relays was considered in [20] in the while both BA parallel-relaying [21] and BA serial-relagin
case of hybrid RF/FSO links where, therein, it was assumggthniques are capable of boosting the reliability of th©FS
that the buffers at the relays have an infinite size. Fin#flg, network, serial-relaying presents the main advantage of ex
problem of BA-FSO parallel relaying was considered in [21bnding the network coverage enabling the communication
with multiple relays that are equipped with buffers having getween two very distant source and destination nodes. In
finite size. A number of relaying protocols were investigaterhis context, the superiority of one scheme over the other is
and compared in terms of the achievable OP and APD througighly dependent on the network setup (mainly the positafns
a Markov chain analysis. the relays) where in some scenarios parallel-relaying ieebe

In this paper, we consider the problem of BA-FSO seriglhile in other scenarios serial-relaying is superior. Efiere,
relaying with N, relays in tandemX,. + 1 hops). The partic- o solution is unconditionally better than the other and the
ularities of FSO transmissions render the BA serial relgyinsystem designer can opt to implement either one of these two
problem remarkably different from the corresponding peabl options depending on the network parameters. In general, if
pertaining to RF systems considered in [14]-{17]. In patdc  the S-D distance is excessively long, it would be better to
FSO transceivers operate naturally in the full-duplex moqlﬁhplement serial-relaying since, for a given relay, eittiez
where simultaneous reception and transmission can take pl&-R link or the R-D link will be long resulting in a marginal
at the photodetector and laser placed at each relay, resgect jmprovement in the diversity order. In parallel-relayin§®
Therefore, unlike the half-duplex RF schemes in [14]-{16§ystems [21], the source and destination are equipped with
all nodes can be simultaneously activated (i.e. transmit af; = transceivers each while each one of the relays is
receive) in the FSO network without any co-channel interfeéquipped with two transceivers. For the BA serial-relaying
ence. This alleviates the relay selection problem in [18$][ systems considered in this work, S and D need to be equipped

where only a single-hop (the strongest one) is activated Rgith only one transceiver each while each one of the relays is
time slot with only one node transmitting and another ongguipped with two transceivers.

receiving. In a similar manner, the half-duplexity constra
in [16] can be advantageously relaxed where this constraint
imposes that node must be in the silent mode if nodet1 is
in the transmission mode. ObViOUS'y, this kind of constedin 1. SYSTEM MODEL AND PRELIMINARIES
alteration between the different modes is not required i® FS
networks. Similarly, the adaptive transmission/recaptitode )
selection at the full-duplex BA RF relay is not required aé- Basic Parameters
in [17] since the self-interference, from which full-duple
RF relays suffer, is nonexistent at the FSO relays that arel) Outage Probability: Consider an intensity-modulated
equipped with two optical transceivers each. Finally, kenli With direct-detection (IM/DDYN,+1)-hop FSO system where
all existing BA serial relaying techniques in RF systemg thi1e source (S) communicates with the destination (D) thnoug
require acquiring full CSI [14]-[17], this type of relayirman Nr relays placed in series denoted by,R . Ry, . For sim-
be efficiently implemented in the absence of CSl in the canteXicity, S and D will be denoted by Rand Ry, 1, respectively,
of FSO communications. and the length of the-th hop between R ; and R, will be

The performance of the BA-FSO multi-hop system is evaflenoted byi, forn =1,..., N,+1. In this paper, we consider
uated analytically based on a Markov chain analysis wheiie scenario of DF relays each equipped with a buffer of size
we determine the state transition matrix and the steadg-st& Packets. The system model is depicted in Fig. 1.
distribution leading to the evaluation of the OP and APD We consider the widely adopted FSO channel model encom-
for any buffer sizeL. For dual-hop systems, we derive exagbassing the combined effects of gamma-gamma turbulence-
expressions for the OP and APD following from the possipilitinduced fading and pointing errors [22] in the case of back-
of solving for the steady-state distribution in this caser Fground noise limited receivers corrupted by white additive
(N, + 1)-hop systems (withV,. > 2), we derive asymptotic Gaussian noise. The outage probability along thth hop
expressions for the OP and APD since the complexity &f related to the probability that the channel capacity glon
the problem renders the exact evaluation out of reach. Tthes hop falls below a certain threshold [6]. This probabpili
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Fig. 1. Buffer-aided serial relaying FSO network.

can be determined from [23], [24h(=1,..., N, + 1): N,+1in (1) ensures that the average power transmitted by the
N,+1 nodes in the cooperative network is equal to the average

Dp = & % power transmitted by the single node in the noncooperative
" T(¢1,n)T (d2,n) scenario. Therefore, the achieved performance gains are no

¢1,n¢2,n
Gn(Pr/(Nr +1))

1,241 1 associated with any power penalty. Furthermore, redudieg t
i,¢1,n,¢2,n,0] > (D) amount of power transmitted by each node implies that the
) - ) _ peak power constraint will be respected as well since even
whereG ;" [] is the Meijer G-function and'(-) is the gamma yjthout this reduction (noncooperative case) the trartsohit
function. In (1), P, stands for the optical power marginpower is planned not exceed the values inflicted by the eye
that is normalized byV, + 1 following from evenly spthlng safety regulations.
the power among théV, + 1 hops where the considered 2) Diversity Gain: For Py, > 1, p,, scales asymptotically
multi-hop IM/DD FSO scheme can be implemented in
the absence of CSI. In this context, binary pulse positid'% Pn
modulation (PPM) can be implemented where the receivgt s — fi(‘ﬁlvn@vn)ﬁ"F(‘ﬁlvn‘ﬂ")bn whereb, = 1/(£2 —¢s.,)

decides in favor of the PPM slot with the maximumy ¢2 - 4, nr(gﬁa)gﬁz’;)%"(@n SV 2 < ¢y [24] .

number of detected photons without the need for estimatifgie asymptotic expression pf, reveals that the diversity and
the underlying channel irradiance [25]. This constitutegyging gains along the-th hop are equal t@, and %Cx
a major appealing feature for FSO communications thafspectively. Nt

can be implemented in a simple manner. “11(3?);11 = The BA serial relaying scheme will be benchmarked against

[exp (0.490—%(%)/(1 + 1.110}%2/5(%))7/6) - 1} and the corresponding buffer-free scheme [4] where the system
) 12/5 S -1 will not suffer from outage only when all links are not

P2n = {eXp (0-5103(dn)/(1+0'690R (dn))® ) - 1} in outage resulting inPoyy = 1 —[]=T'(1 = p,). This

n=1

stand for the parameters of the gamma-gamma distributigélation can be approximated by, =~ ZN7~+1 ~

n—1 n ~

along the n-th hop where the distance-dependent RYtOMax,— . n,+1{pn} 2 ps for asymptotically large values

variance is given byo(d) = 1.23C7k7/6d"/S with k of P, (resulting in small values ofp,}) showing that the

and C denoting the wave number and refractive indegerformance is dominated asymptotically by the weakest hop
structure parameter, respectively. In (1), the paramgteis

related to the pointing errors and can be determined from n= arg. ma]>\<[T+1{Pn}~ 3)

§n = Wsoyn/20s, Whereo,,, stands for the pointing error ] . o .

displacement standard deviation at the receiver of ahd Since the diversity gairs, has a more prominent effect on
W2 = w,f,nﬁerf(vn)/[%ne_”i] [22]. In this last relation, Pn compared to the coding gaif¢== (since 3, affects the

Zeg M

w.. stands for the beam waist along theth hop and slope of the OP curve), then forrasymptotically large values

v, = \/w_/Z(an/wz_n) wherea,, is the radius of the receiver Of P, the hig_hest_outag_e probability,, is associated with
at R, while erf(-) stands for the error function. Finallg,, the smallest diversity gair,. Consequently, from (3), the
is a gain factor that follows since theth hop is shorter than @symptotic OP of the buffer-free scheme can be written as:

the direct link S-D [24]:

3,1
G2,4

— (“NGT%) " where 8, = min{¢s.,, 2} and

B azGaPar\ " ,
Gy = e—oln i) An Sp+ 1 @ Rl )
n — 2 ) .
Asp  &sp B2 By =min{B,...,0n 41}, (4)

whereo is the attenuation coefficient antp stands for the
distance between S and D. Finally,, = eer(vn) while Asp

andé&sp are the pointing error parameters associated with the ) _ _
link S-D. B. Buffer-Aided FSO Serial Relaying

showing that the end-to-end diversity order is equabto

The cooperative FSO network respects the same average arithe FSO relays operate naturally in the full duplex mode
peak power constraints as in the conventional point-tadpoiwith no interference. Consequently, unlike multi-hop RB-sy
noncooperative scenario. In fact, the power normalizalipn tems, no relay selection protocol is required and any religty w



non-full buffer can receive packets from the previous relayhere, in this case, the relay is neither full nor empty. The
and any relay with non-empty buffer can transmit packets buffer size will decrease by 1 if the S-R link is in outage
the subsequent relay. We denotelhythe number of packets while the R-D link is not in outage and it will increase by 1 if
present in the buffer of the-th relay R, with 0 <[, < L. the S-R link is not in outage while the R-D link is in outage.
In this case, the link R_{-R,, is considered available if this The buffer will keep the same size either if both S-R and R-D
link is not in outage (with probability — p,,) with I,,_1 # 0 links are in outage (i.e. no packet is received and no pasket i
andl,, # L. Furthermore, no CSI acquisition is needed whetteansmitted) or if both links are not in outage (i.e. one péck
R, _1 transmits a packet to,Rand frees this packet from itsreceived while another packet is transmitted).

buffer if it receives an acknowledgement (ACK) from, Rnd Proposition1: The steady-state probability vectar =
keeps it in the buffer otherwise (negative-acknowledgememy ---77]7 is given by:

NACK). Finally, S is assumed to have an infinite supply of

o = T p2(T71) - ,
paCketS. ”(‘r —1)+(r—1)(p2+pirt—1) . p2(1 —pl)
. . 7Tl:p—27T0 ] l:l,...,L—l, ; Tzli'
C. Markov Chain Analysis it p1(1—pa2)

A Markov chain analysis will be adopted for studying the pz ©6)
BA system [6]. A state of the Markov chain is represented by  Proof: The proof is provided in Appendix A. m
the number§ of packets prAesent in the buffers _of egch afthe  When R is closer to Sy < p» ( > 1) and it can be proven
relays and is denoted by= (4, ...,Iy,) resulting in a total that maxi_o.p{m} = w1 implying that the buffer has

of (L +1)"~ states. The evolution between the states will bg— 1 packets most of the time at steady-state. Similarly, when
captured by théL + 1)~ x (L 4 1) state transition matrix R is closer to Dp; > p» (r < 1) and max;—o,... L{m} = m

A. In what follows, the functio(l) = 9((l1,...,In,)) = implying that the buffer has one packet most of the time. In
1+ 1, (L + 1)N=" will be used to number the statesfact, in the first (resp. second) case, the better qualityhef t
where this function defines a one-to-one relation between t8-R (resp. R-D) link will privilege filling (resp. emptyinghe

set of all possible statef), ..., L}~ and the set of integers puffer at a faster pace.

{1,...,(L+1)N"}. Denoting byt - the probability of moving
from_ Sta‘?l to statel’, the ((I'), N(1))-th element of the B. Outage Probability (OP) and Average Packet Delay (APD)
matrix A is equal tot; y.

The steady-state distribution of the states is capturethéy t 1) Outage Probability: Consistently with the definition
(L + 1)M x 1 dimensional vectorr. Forl = (Iy,...,Ix.), adopted in [6]-[11] and many of the references therein, a

the 91(1)-th element ofr will be denoted by, . ) system outage event occurs when no change in the status of
L1yeeostNp . . .

which stands for the steady-state probability of having any buffer is observed meaning that the system is not capable

packets in then-th buffer forn = 1,...,N,. The steady- of successfully transferring packets between any pair ef ad

state distribution can be obtained by solving the equatiéffent nodes. This outage of the system is clearly caused by
A7 = 7 under the condition that elements ofadd up to the unavailability of all of its constituent links, which tarn

. Ne L o
one: N S Ty = 1 [6]: prevents the relays and/or the destination from succegsful
receiving packets. When the buffer is empty, it will remain

I1l. PERFORMANCEANALYSIS WITH ONE RELAY in this state when the S-R link is in outage (with probability

A. State Transition Matrix and Steady-State Distribution ~ p1) Since no packets can be transmitted along the R-D link
In the case of one relay, th¥,-dimensional state vectdr When the buffer is empty. Similarly, a full buffer will renmai

will reduce to a scalat = /; that will be denoted by 2 1. full when the R-D link is in outage (with probability,) since

In this caseD({) = [ + 1 implying thatm; will correspond to a full buffer can not accept any packets from S. In the case

the (I + 1)-th element ofr. Finally, the single relay Rwill where the buffer is neither full nor empty, an outage evefit wi
be denoted by R for simplicity. occur when both hops are in outage with probabifity,.

For I = 0, no packets can be transmitted along Rr-prherefore, the system outage probability can be calculased
; follows:

Therefore, transitions to the statés= [ and!’ = [+1 are L1
possible withty o = p; andty; = 1—p1 where the buffer will Pout = p17o + Z[plpﬂl] + poL, (7)
remain empty if the S-R link is in outage while the buffer will =1

have one packet if this link is not in outage.

When! = L, transitions to the statds=1 and!’ =1 — 1 L1 L . .
are possible witht; ;, = p; andtz ;1 = 1 — po. In fact, in 70 |P1 tpidas, A resulting in Fou =
this case, no packets can be received from S implying that ther rton using the geometric series sum formula.

r—1

buffer size will remain the same if the R-D link is in outagdReplacingr, by its value from (6) results in:

that, from (6), simplifies to Pyt

and it will decrease by 1 otherwise. SLHL
If I £A£0andl # L, trqnsitiorjs to the statds=1—1,1'" =1 Pout :ppo( Dy Sy g oy s £ (8)
and!’ =1+ 1 are possible with: r r p2 +p1T

¢ —p(l—py) ;i — po(1 = p1) It can be proven that (8) is invariant under the transforomati
Li-1=p1 p2) 5 i1 = P2 b (p1,p2) — (p2,p1) implying that the OP remains unchanged
ti=pp2+ (1 =p)(L=p2) , I=1....,L =1, (5) jf the lengths of the two hops are interchanged.



2) Average Packet DelayThe buffering of the packets atimprovement in the diversity order with respect to buffer-
R will induce a delay in the delivery of these packets tree systems. In factP,: can be further approximated by
D. Following from Little’s law [26] and from the ana|ySiS%maX{p1,p2} and max{py,p2} for L = 1 and L = 0,

presented in [21]: respectively. This implies that, in both cases, the ditgrsi
L1 order is min{, 32} following from (3)-(4). On the other
APD = —— —1, (9) hand, (14) implies tha. — % andn — 3 resulting in

N APD = 2 from (9). From the above analysis, we conclude

where L stands for the average queue length whilstands that buffers with capacity exceeding one packet must be;used
for the input throughput at R. In fact, APD can be written astherwise, a delay of two packet durations will be induced
APD = APDs+ APDg where APDs and AP Dg stand for without any diversity gain.
the average delays at S and R, respectively. Now, it was prove 2) L > 2: In the cased; = dz, the values in (13) tend to
in [21] that APDs = =2 while APDg = £ following from the following asymptotic expressions:
Little’s law [26]. Combining the above relations results(9). 2
. . = L 1/2p
The average queue length is given By= > " jim = . ﬂpg _ tL— 1] G1 Py .
it + plLrL} o from (6). After straightforward eval- I R L+1 2a}/" ’

uation, the last expression simplifies to:

_ L L

- 0w T L
L:p—zm [(L—l + %(7’—1)2> rf— Lt 4 1j - wheref = 81 = B2, a1 = a» andG; = G- in this case.
10) Equation (15) shows that any buffer size> 2 is capable
When the buffer is full, no packets can be transmitted alofj achieving a diversity order o2 that is double that
S-R |mp|y|ng a zero input throughput at R. Otherwise, Wheaphieved by buffer-free systems. Moreover, the OP decsease

the buffer is not full, a packet is successfully delivered t¢ith L while APD — £ increases with implying that a
R only when S-R is not in outage. Consequently= (1 — Ccompromise must be made on the choicelof
p1)(1 — 7) which, from (6), results in: We assume thatl; # do in what follows. Forp; < 1
. andp, < 1,1 —p; = 1 and1 — ps ~ 1 implying that
n=(1—-p)|1- pi(r—=1r ] _ r= % — 2. The denominator of the probability, in
(rf =1+ (r = L(p2 +pirt = 1) 1) (6) can be written agl — py + py7)rt — (1 — p2)r — p2 —
_ L __ L _ .
3) Special casesl; = d, and L = 1: The expressions (I —py+p2)r —r =17 —r. Therefore:
derived in (6), (8) and (10)-(11) can be further simplifietbin ;;—f - 16
more tractable expressions in the special cakes d, and To = P2 o\ (16)
L=1. pT) o
The cased; = d implies thatp; = p, andr = 1. Similarly, the OP in (8) will tend to the following asymptoti
Consequently, (6) simplifies to: value:
P1 1 L+1 _ L+1
R s T T Po— 2B — max{pi, 2}, (A7)
1 1 (12) Y2 — P
implying that (8) and (10)-(11) will simplify to: since, ifp» > p1 (resp.ps < p1), then Poy — _ = b3
_ _ _ L+l
ot = 7 L+1 - L = (I-p)m +L 1). (resp. Poyt — —i%’l = p?).
2p1+L-1 2 2p1+L-1 (13y  Following from (3)-(4), equation (17) shows that the di-
If L = 1, (6) simplifies tory — —=22_ andm, — =21 versity order achieved by buffer-aided two—hqp ;ystgms is
resulting in'( ) P 07 2=pipe = 2 26 = 2min{ 3, B2} (for all values ofL. > 2) thus highlighting
' a two-fold increase in the diversity order with respect to
p PN +p2 —2p1p2 i 1—m _ buffer-free systems. Equation (17) also reveals the inaport
M T = pe T 2—pi—ps observation that the asymptotic OP does not depend am
(1—p1)(1 —p2) the casal; # ds.
s — (14)  While the asymptotic OP is the same for > p; andp, <

p1, the APD will vary between these two cases. When R is
_ D2 i ;

C. Asymptotic Analysis closer to S,r = oo > 1 implying, frogll(16), thatry —

We next provide an asymptotic analysis that holds fdt ;7;57=- From (6)mz—1 — - (f,f—f) mo — 1implying
Py >1(p1 < 1andpy < 1). that at equilibrium the buffer is in the state= L — 1 all of

1) L = 1: Equation (14) shows thay, — %, This OP the time. In this casel, = ZlL:O lm; — L —1. Moreover,y =
is comparable to that achieved by buffer-fréde=£ 0) two-hop (1 —p1)(1—7r) = (1 —=p1)(1—pirrp—1) = (1 —p1)(1—p2)
systemsPoyt = 1—(1—p1)(1—p2) = p1+p2—p1p2 — p1+p2 aswmr_1 — 1. Therefore, from (9):
[4]. This implies that, when R is equipped with a buffer of L
size one, the OP is reduced by a factorig without any APD — A=p)0=pa) = L-1 (18)



Similarly, when R is closer to Dp, < p; and r = since this buffer size fails in capturing any diversity achege.
g—j < 1 implying that the probability in (16) will tend to Next, we focus on the asymptotic cagg; >> 1 resulting in
To — P2 _p;}pl = p1. From (6),m = =my = %WO -1 pn<1 forn=1,...,N, + 1. We ref:all from (3) that the
implying that at equilibrium the buffer is in the state= 1 index of the worst (bottleneck) hop is denoted bywhere

all of the time. In this casel. = ZZL:O Im, — 1. Moreover, Pi =max{pi,...,DN,+1}-

n=01-p)1—-7) = (1-p)~— Z_;TLWO) - (1 - The asymptotic analysis revolves around the identification
L—1 of a closed-subset of stat§swvhere, at steady-state, the system
p1) (1 — D (z_f) ) — (1= p1). Therefore, from (9): is in the states of with a probability tending to 1. From [27,
Sec. 9.5], the sef is said to be closed if no state & leads
APD — —1-=1. (19) to any state outside. In other words,S defines a closed-
L=m subset ift;y =0V 1e S andl’ ¢ S. The identification of the

) o closed-subset is very useful since it dramatically simgsitihe
D. Analyzing the Results and Implications on the Systeffaiysis because the states in the closed-subset areemtcurr
Design [27, Sec. 9.4]. In other words, only the states in the closed-
Consider the two symmetrical locations (with respect to tteibsetS can be considered for the OP and APD calculations
midpoint of [S D]) (di,d2) and (ds,d1) with di < ds. The since the number of time slots in which the system is in one
following observations pertaining to the network desigm caof the transient states outside tends to zero. In fact, after

be made: a certain number of transitions among the transient states i
- The choicel. = 1 must be omitted since it does not resul, the Markov chain will eventually move to a certain state
in any diversity advantage. in S and remain in this closed-subset since the transition

- The OP is the same for both locations. The APD increaspegbabilities out of this subset tend to zero.
asL—1 in the first location while it is constant (and equal Following from the above observations, the asymptotic OP
to 1) in the second location. Therefore, it is better to plag@n be derived from:
R in the second location since the OP is the same while
the APD is smaller. Fou = Z

- However, from (17), the OP does not depend Iorfor 1=t lny ) €S
L > 2; therefore, there is no reason for increasihg whereP; stands for the probability of outage when the system
beyond 2. Now, for.=2, L—1=1 and the two locations is in the statd:
will yield not only the same OP but also the same APD. Not1

Now, comparing the scenariol = d, andd; # ds, the p, = H Pn ;P = . ,

following conclusions can be drawn: et Pn, Otherwise.

- The first scenario results in a smaller OP since I . . (21)
max{p1,ps} is minimized forp; — ps. However, this whereyp,, stands for the unavailability probability with which

choice is associated with a delay that increase4as ~ "° packet can be communicated along #h¢h hop R,_.-
- As highlighted beforef. — 2 constitutes the best choice inRn- This probability captures both the channel condition and

the second scenario. This scenario is characterized b)l/rg;\vailability of then-th hop following from the buffers’

smaller APD (of 1) and a higher OP compared to scenaﬁ&at,es' In fact, if the buffer at,R is empty or the buffer at
1. R, is full then no packet can be transmitted alongthth hop

resulting inp,, = 1 (unavailable link). Otherwise, a packet can
not be delivered only if the-hop is in outage with probability
pn- Finally, for the first (resp. last) hop, there is no need to
check for the conditiori,,_; = 0 (resp.l,, = L) sincel,, is

A. General Comments defined forn = 1,..., N, (i.e.n # 0 andn # N, + 1).

It is important to highlight that the theoretical condition Following from Little’ law [26], the APD can be calculated
di = do, that was treated separately in the case of ofi®m:
relay, is almost impossible to realize in realistic netwgork
In fact, d; and dy are in the order of few kilometers and
shifting the relay’s location by a fraction of a meter while n=1
deploying the network will favor lower outages along one akhereL,, andn, stand for the average queue length and input
the two hops compared to the other hop. Even though thtgoughput at R, respectively. In (22), the ternsl1r —1 stands
outage probabilities along the different hops can be mafig the average delay at S [6], [21] (wherg was denoted
approximately the same by an appropriate statistical powsy » in (9) and (11) in the case of one relay). A packet is
allocation strategy, however, this approach involves a ceuccessfully delivered to,Rif the buffer at R, is not full, the
atin level of CSI acquisition that adds to the complexity dfuffer at R,_; is not empty and the-th hop is not in outage
the system. In all circumstances, making these probasilitiresulting in:
identical is not appealing from a delay point of view as has
been highlighted in Section I1I-D in the context of one relay 7, = (1 — p,) (1 - W(Ln)) (1 - ﬂ—énil)) sn=1,...,Np,
Finally, we also exclude the cade = 1 from our analysis (23)

mP1, (20)

{ 1, lp_1=0 or l,=L;

IV. ASYMPTOTIC ANALYSIS WITH ANY NUMBER OF
RELAYS

N, 7

L, 1
APD:Zn—nJrH—L (22)



(n

where, ) stands for the steady-state probability of havingoccur along the second hop since either the first buffer isgmp

packets in the buffer of Rthat can be calculated from(”) — or/and the second buffer is full. Consequently, the occapan

ZzL—o' - o S o S 0 Tl it} of the first buffer will increase by one if the first hop is not
" ) N S 7T inoutage; otherwise, it will remain the same. Similarlye th

We assume that,”’ = 0 in (23) since S always has packets . i

to transmit occupancy of the second buffer will decrease by one if the

In this section, we will prove thaté") 50 andw(L") 50 third hop is not in outage; otherwise, it will remain the same

forn =1,..., N, implying thatr, — 1—p,, — 1. Therefore, Consequentli1 = p1ps, tuit-1.0) = (1=P1)Ps, hteo,-1) =

(22) will tend to the following asymptotic expression: pi(1=ps) andhrq —n = (1L =p1)(1 = ps).
Case 7:1 = (ly,l5) wherel; = 1,...,L — 1 andl, =

Ny . .
- 1,...,L —1.In this case, none of the buffers is full or empty
APD = 2_:1 L. (24) and transmissions can take place along all hops. Conséguent
In order to offer more insights on the calculation methodol-
ogy, we first present the asymptotic analysis in the speass ¢ t11 = p1peps + (1 —p1)(1 — p2)(1 — p3) ;
N, = 2 and then we carry out the extension to the general tias(-1.0) = pr (1 — pa)(1 — p3) ;
case.
tag(1,—1) = (1 = p1)p2(1 = p3) 5
t =(1-— 1-— ;
B. N, — 2 L1400, = (1 =p1)(1 — p2)ps

1) State Transition Matrix:The following cases arise when
evaluating the probabilities ;..

Case 1:1 = (0,0). Since both buffers are empty, then no t1(0,-1) = P1p2(l — p3), (25)
transmissions can occur along the second and third hops in

this case. Now, if the first hop is in outage, then the first . . . -
buffer will remain empty resulting i) .0) = p1. On the where, generally speaking, (i): the buffer size will insedy

other hand, if the first hop is not in outage, then the numb@P€ if the previous hop is not in outage while the subsequent

of packets in the first buffer will increase by one resulting ihop is ir_' outage,_(ii): the buffer gize will decrease by one i
t0.0).(1.0) = 1 — 1. the previous hop is in outage while the subsequent hop is not

Case 2:1 = (L,0). In this case, no transmissions cari1n outage and (iii): the buffer size will remain the same i th
occur along the first hop since the first buffer is full while ng"€vious and subsequent hops have the same status. It Is wort

. ) N+l g " .
transmissions can occur along the third hop since the sec&%ﬁ'ng iuat In case ” h Ill E 7 transitions are rt)o_ssmlt;:
buffer is empty. Now, the system will remain in the same stafg1€r€ the scenarios when all hops are or are not in outage
I = (L,0) if the second hop is in outage and it will move tgVill keep the system in the same state with probab#fy
the statel’ = (L — 1,1) if the second hop is not in outage. 2) Asymptotic Steady-State Distribution:
Consequgntlyt(L,o)7(L_70) =p2 andt(, o) (L-1,1) = 1 = p2. Proposition2: For asymptotically large values dfy,, the
Case 31 = (L, L) implying that no transrm;smns can takgpsed-subses is given by:
place along the first and second hops. Similar to case-1 and
case-2¢(r,1),(r,L) = p3 andt(r, 1) (,L—1) = 1 — ps.
Case 41 = (I;,0) wherel; = 1,..., L—1. In this case, no S—
transmissions can occur along the third hop. Consider new th

first two hops. When both hops are in outage, the occupancie {(0,0),(0,1), (1,0), (1, 1)}, n= L

of both buffer will remain unchanged ard, o) 1,0y = P1p2- {(£,0),(L=1,1)}, n= 2,
When both hops are not in outage, the occupancy of the firs (L, L), (L=1, L), (L, L=1),(L=1,L=1)}, 7=3.
buffer will remain the same (since one packet is receivechfro (26)
S and one packet is transmitted tg)Rvhile the number of

packets in the second buffer will increase by one singe R ) ) ) )

will successfully receive a packet from; Rvhile no packet Proof: The proof is provided in Appendix B. u

is transmitted to D. Consequently, in this ca&g, o),,,1) = Following from the asymptotic transition probabilities-de

(1 —=p1)(1 —p2). Similarly, t, o),i,+1,00 = (1 —p1)p2 (resp. rived in Appendix B, the transitions between the states ef th

ta,,0),(:—1,1) = p1(1 — p2)) where a successful transmissiortlosed-subset are depicted in Fig. 2. Capturing the steady-

takes place exclusively along the first (resp. second) hop. state distribution of the recurrent states (insifg by the
Case 5:1 = (L,l3) wherely = 1,...,L — 1. In this vector n/, elements ofr’ will add up to 1 asymptotically

case, no transmissions can occur along the first hop sirfoe the reasons stated in Section IV-A. The steady-state dis

the first buffer is full. Similar to case-4;,,),(.,.,) = p2p3, tribution of the recurrent states can be obtained by solving

(n)

tL o), (L—1,12) = (1=D2)(1=13), t(L1),(L1a—1) = P2(1=p3)  Aqm’ =’ (with the elements ofr’ adding up to 1) where
andt(r i), (L—1,,+1) = (1 — p2)ps. = [77(0,0)777(0,1),7T(1,0),7T(1,1)]T’ T = [W(L,O)vﬂ(L—l,l)]T
Case 6:1 = (0,l3) wherely, = 1,...,L orl = (;,L) andr’ = [W(L,L),W(L—LL),W(L,L—1),7T(L—1,L—1)]Tforﬁ: 1,

wherel; = 1,...,L — 1. In this case, no transmissions cam = 2 andn = 3, respectively.



Fig. 2. The closed-subsets and the corresponding tramsitiothe case of two relays.

The reduced state transition matrices are given by: slots (with probabilityp?) will incur the emptying of the two
buffers since, from Fig. 2, it can be observed that it takes at
Agg =1 P2 1 P2 ; most two transitions to reach the stdfe 0) from any other
BRI state. Once in the stat®, 0), no transmissions can take place
D Pr 0 0 along the second and third hops implying that an additional
A 0 0 Pii Di . 7 —1,3, outage event along the first hop (with probabiliy) will
L—pa 1-pa 0 0 result in a system outage. The same interpretation holds for
0 0 1-pa 1-pa the case? = 3 where the statéL, L) can be reached in two

(27)  transitions at most implying that two successive outages of

As a conclusion, the identification of the closed-subset(thhoP-3 (with probabilityp3) will result in filling both buffers.
is possible only for asymptotic values &f,) simplifies the NOW, an additional outage of hop-3 in a tr1|rd slot will result
solution for the steady-state distribution. In fact, imsteof N @ System outage with probabilitys. For 7 = 2, a single

solving Ar = = to find the (L + 1)2 elements ofr, we Outage of the bottleneck link hop-2 (with probabiljty) will
g bring the system to the staté, 0) from Fig. 2. Now, the first

buffer is full and the second buffer is empty implying that no
transmissions can take place along the first and third hops.
This implies that an additional outage of hop-2 is sufficient

solve the simpler equatioAf;‘d n' = 7’ involving 4, 2 and
4 unknowns forn = 1, n = 2 andn = 3, respectively. In
Appendix C, we prove that:

[7(0,0)> T(0,1)> T(1,0) w(l,l)]T, n =1, cause a system outage. This justifies why in this case the OP
7 = [W(L’O),ﬁ(L_l’l)]T7 7 =92 . isp3 (and notp3).
T ~ i ) = =
[W(L.,L)a7T(L71,L)77T(L,L71)77T(L71,L71)] =3 Regardlng_ the APD, fon = 1, (28) shows thatr( ;) _
) AT _ 1 — p1 — 1 implying that each one of the buffers contains
[p17p1(1—7g)1),p1(1—P1)7 (1-p)?, a=1; one packet most of the time at steady-state. Consequemgly, t
=9 [p2, 1—p2], n=2; . probability of having either empty or full buffers tends tera
[p§7p3(1_p3),p3(1_p3)7(1_p3)2]T7 n=3 andn, — 1in (23) forn = 1,2. In this case,l; — 1 and

(28) L2 — 1 resulting inAPD — 2 from (24). The same holds

. _ for the other values ofi where the results are summarized as
3) Asymptotic OP and APDFor i = 1, Po,0) = P1, follows following from (24) and (28):

P(o,1) = p1p3, P10y = pip2 and Py 1) = p1p2ps following

from (21). Replacing these values as well as (28) in (20 oy = 1=Li—»1, Ly—1

results in Pou = p} + pips(l — p1) + pipa(l — p1) + ~ APD — 2, A1
pipaps(L = p1)? = pi+ pips + pipe + pipops that tends [ 1S L) L1, Ly — 1

to p} sincemax{p1,p2,p3} = p1 in this case. Similarly, for ' — APD — L, =2

n =2 Puo = pzandPy_i1) = pipops which from {1 501, Ly— -1

(20) and (28) results Py = p% + p1ipaps(l — p2) — p%. ' = APD — 2(‘[/_1)7 =23
Finally, for n = 3, Py = p3, P—1,0y = pips, (30)
Ppr—1) = paps and P,_1 ;1) = pipaps resulting in - The interpretation of (30) is as follows. When the first hop

Pou= p3+p1p3(1—ps)+p2p3(1—ps)+pip2ps(1-p3)* = P35 s the bottleneck link, the relatively inferior quality dfis hop
sincemax{p1, p2,ps} = ps in this case. As a conclusion: || reduce the input throughput at;Rhus thinning out the
[max{p1, p2 pg}]3 =1 or i—3 occupancy not only of the buffer at,Pout also of the buffer
Fout — { e 2 . 5 ", (29) at R, since the flow of packets along;R+R; —D is almost
[max{pr, p2, ps}l”, =2, guaranteed given the relatively lower outage probabslitie
implying, from (3)-(4), a three-fold increase in the divigrs along the last two hops. These buffers tend to have one packet
order only if the bottleneck hop corresponds to the first haggach without being fully depleted since even the bottleneck
or last hop. link is assumed to have a low outage probability & 1)
The interpretation of (29) is as follows. Far = 1, the in the asymptotic regime. Now, when the third hop is the
outage of the bottleneck link S;Rover two consecutive time bottleneck link, the output throughput fromyRs minimal



(l»ﬁ_l, l»ﬁ), (lﬁ_g, lﬁ+1)7 ceey (ll, lQﬁ_Q) S {(L — 1, 1), (L, 0)},

lgﬁ_l,...JNTE{O,l}. ; é.:n_l' (33)
(lﬁflvlﬁ)a(lﬁ72alﬁ+l)7"'7(12737]\7,“713[]\/7«) S {(L—l,l),(L,O)}, . é-:N +1-7 ’
ll,...,lgﬁ,Nrfzé{L—l,L}, ’ " '

resulting in the congestion of the two buffers without havinwhere the probabilities of unavailabilil{;pn}f:’;f1 are defined

them full sinceps < 1. Finally, when the second hop is thein (21). The second case in (32) follows since the self-
bottleneck link, the flow of packets along-SR; and R —D transitionl — 1 is possible either when all links are available
occurs in a more efficient manner. In this case, the higher when all links are unavailable. Note that for this trainsit
outage probability along the bottleneck link will result inthe casesd = {1,...,N, + 1} and A = ¢ (the empty
filling up the preceding buffer of Rat a faster pace while set) need to be combined together. Each of the remaining
the input throughput at Rwill decrease thus reducing the2V~*1 — 2 transitionsl — 1’ # 1 can occur in one way (each
occupancy of its buffer. corresponding to a possible value dfother than the full or
4) Conclusions:Define the three sorted distancég) < empty sets) according to the first probability in (32).
dioy < dz and consider all possible values of the hops’ It is worth noting that, from (21)} —p,, = 0 if /,,_1 =0
distances (di, d2,d3). The scenarios(d(),ds),d()) and orl, = L implying that the corresponding probability in (32)
(d(2),d(3),d(1y) must be avoided since, from (29), thesavill be zero. In this case, the corresponding transition3)(
scenarios fail in exploiting the full underlying diversitycannot take place and the numkeY-* — 1 corresponds to
advantage. The scenaridg s, d(1),d()), (d(s).d),d1)), the maximum number of transitions that can occur when all of
(d(1y,d2),d(z)) and (d2),d(1),ds)) are all equivalent in the N, buffers are neither full nor empty (for example, refer
terms of outage behavior. In this context, the advantage tof case-7 in Section IV-B1 in the casé. = 2). Otherwise,
the first two scenarios resides in a smaller APD from (30)0e number of possible transitions will drop where in the
However, from (29), it can be observed that the asymptotic GRtreme casek = (0,...,0) andly = (L, ..., L), only two
does not depend oh (for L > 2) implying that a buffer size transitions are possibl; — 1;;1; — 13 +(1,0,...,0)} and
of two is sufficient for extracting full diversity. Setting =2 {l2 = l2;12 = 12+ (L,..., L, L — 1)} (for example, refer to
in (30) implies thatAPD — 2 for all values ofiz showing case-1 and case-3 in Section IV-B1 in the cage= 2).
that the four preceding scenarios will achieve the same OP2) Asymptotic Steady-State Distribution:
and APD values in this case. Proposition3: For Py, > 1, the subses = {(l1,...,In.)}
shown in (33) at the top of the page is closed with the
following asymptotic steady-state distribution:
C. N, >2 vo (1 \No—po o
” : . o {pﬁ (1=pa) ;o E=n—1
1) State Transition Matrix2™~+1 —1 transitions are possi- ™ = T(i1,...ln,) = Y pr (1 \Ne—pr _ =
n " (1—pa) , =N, +1-n.
ble from the staté = (i1, ..., ly, ) where these transitions and (34)
their corresponding probabilities can be determined dsvisl
Denote byA c {1,..., N, +1} the set containing the indices
of the links that are available wherd can be selected in

2N-+1 possible ways. The transitions are given by:

where¢ £ min{# — 1, N, + 1 — 2} while z; stands for the
number of components diy,...,Iy,) that are equal td.
Proof: The proof is provided in Appendix D. |
Equation (33) shows that the asymptotic analysis can be
simplified by considering th@V~—¢ states ofS rather than

I=(lh,....ln,) = V=(li,....In,) + (d1,---,0N,) ;  the entire(L+1)N" states. For = 1 andii = N, +1, £ = 0,
0, (n,n+1)eAor(nn+1)ec A% andS simplifies to{0, 1}V and {L — 1, L}"~, respectively.

Sp=2 1, (n+1)eAxUAU; : 3) Asymptotic OP and APDFrom (33),l,, € {L — 1, L}
-1, (n,n+1)eAx A for n < 7 andl, € {0,1} for n > 7. Consequently, since

n=1,...,N,, (31) n=0=ppp1 =1 andl, = L = p, = 1, then exactly
(0 + pr) terms inPy in (21) are equal to 1 (in particulam,,
where A denotes the complement of. For example, when termsyp,, for n < n and uo termsp,, for n > 7). Therefore,
(n,n+1) € Ax A, R, can receive a packet along theth hop P corresponds to the product of,. + 1 — (uo + pz) outage
(that is available) while it cannot transmit a packet along t probability terms of the fornp,,. Now, sincep,, < p; for
(n + 1)-th hop (that is not available) implying that its buffer» = 1,..., N, + 1, thenPy < pi~*'~#o = Approximating
occupancy will increase by. The probability of the transition 1—p5 by 1in (34), the probabilityr P in (20) can be bounded

in (31) can be calculated from: as follows:
pt e=q- 1
iy = = { pN IR S N 1 (35)
[Lcapnllica(l=pn),  (01,...,0n.) # (0,...,0); From the first equation in (33)) < u;, <7 — 1 implying,
L + L (1 —pn), (8 n,) = (0,...,0)." () _
n=1 Pn n=1 Pn)y (01, 0N, 1) from (35), thatmaxi{mP1} = p;" for € =n — 1.

Similarly, from the second equation in (33),< po < N, +
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0o (15),(18) for L=2 and (19)
+eeefessi (15) for L=5
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Fig. 3. Outage probability with one relay fav./a = 10. Solid and Fig. 4. Average packet delay with one relay for/a = 10. Solid and dotted
dotted lines correspond to the exact and asymptotic vahlespgectively. The lines correspond to the exact and asymptotic values, reégplgc
asymptotic OP values 04'%, (15) and (17) are plotted for scenarios 1-3
(L = 1), scenario 1 L > 2) and scenarios 2-3[(> 2), respectively.

4) Conclusions:The conclusions drawn in the casts =

1 and N,. = 2 can be generalized:

There is no interest in selecting values bfexceeding

2. While this result contradicts the previously reported

findings in the context of RF communications, this finding

is related mainly to the full-duplexity and absence of

interference in FSO systems where these two unique

1 — 7 implying thatmax, {m P} = p2 T =N FH177) for ¢ —

N, + 1 —n. The above two cases can be combined resulting”
in the following asymptotic expression of the OP in (20):

1
Pout — pj e

]NT+1—min{ﬁ—1,NT+1—ﬁ}’ (36)

= [max{py,...,pN, 41}

implying a (N, + 1 — £)-fold increase in the diversity order
compared to buffer-free systems.
Note thatn — 1 (resp. N, + 1 — f) captures how far the

bottleneck hop is from the first (resp. last) hop (in terms of
number of hops). The farther the bottleneck hop is from S and

D, the larger the value of and the smaller the diversity gain.

In this case, the maximum diversity gain is achieved when the

first or last hop is the bottleneck hop & 1 orn = N, + 1
implying thaté¢ = 0) with a diversity gain ofN, +1. The worst

cases arise when the central hops constitute the bottleneck

(7 = X2 for N, even andi € {85t X2} for NV, odd)
resulting in the smallest diversity gains &f +1 and 2=t 41
for even and odd values af, respectively.

From (34), the state having the highest probability can be -

obtained by settingiy = 0 for ¢ = n — 1 and ur, = 0 for

¢ = N, + 1 —n. This maximum probability is equal tol —
pi)Nr — 1 for Py; > 1. From the first equation in (33), the
condition g = 0 implies thatl,, = L — 1 for n < n and
l, = 1 for n > n. The same implication follows from the
second equation in (33) for the conditipnr, = 0 with £ =
N, +1—n. Therefore, for all values af, the system is in the
StatE(ll,...,lﬁ_l,lﬁ,...,lNT) = (L—l,...,L—l,l,...71)
with a steady-state probability tending to 1 for large valoé
Pys. In other words,L,, — L — 1 for n < 7 while L,, — 1
for n > n implying, from (24), that:

features clearly distinguish FSO systems from their RF
counterparts. In this context, unlike RF multi-hop systems
where a single hop is activated in a time slot in order to
avoid interference (i.e. one half-duplex node is transmit-
ting and another node is receiving per time slot), all hops
can be simultaneously activated in FSO systems where
the different highly-directive LOS optical links do not
interfere with each other. Consequently, the full-duplex
FSO nodes can all transmit, receive or transmit-and-
receive in the same time slot with the direct implication of
emptying the buffers at a faster pace. Finally, it is worth
highlighting that the lack of interest in selectidg> 2
holds only in the asymptotic regime since this conclusion
was reached following from an asymptotic analysis.

For L = 2, the position of the bottleneck link does not
affect the APD. The choiced =1 andn = N, + 1 are
both optimal since they minimize the OP for the same
APD value.

For L > 2, the scenarion = 1 is optimal since it
minimizes the OP and APD. The choice= N, + 1
achieves the same optimal OP with the maximum APD.
It is advisable not to have an intermediate link as the
longest hop since this will reduce the diversity advantage
of the system.

V. NUMERICAL RESULTS

APD — (n—1)(L-1)+(N,+1—n) = N, + (L—-2)(n—1), We next present some numerical results that support the
(37) theoretical findings reported in the previous sections. The

implying that the asymptotic APD increases linearly with relays are placed along the line joining S with D and their

and linearly withL for » # 1. The casen = 1 results in positions are determined by the vecibr= (di,...,dn,+1)

the minimum APD ofN, while the caser = N, + 1 results with dsp = Zﬁfjl d, (all distances will be expressed in

in the maximum APD of(L — 1)N,.. Note that, forL = 2, km). The corresponding hop distances are taken to range

APD — N, for all values off. from 1 km to 4 km in coherence with the previous works
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Fig. 5. Performance with 2 and 3 relays fbr= 5 andw. /a — oo. The dotted lines correspond to the OP and APD bounds in (&5)37), respectively. In
this figure,b = n indicates the index of the bottleneck hop. Solid lines ardusr the theoretical resultstifieor” ) while no lines are used for the simulation
results {sim.”).

on multi-hop FSO systems [2]-[5]. Regarding the channél (for L > 2) in scenario 1. However, for scenarios 2 and 3,
parameters, the refractive index structure constant amed thcreasingl above 2 does not affect the outage performance
attenuation constant are set @ = 1.7 x 10~ m~%/3 where the OP curves are practically the same for= 2
and o = 0.44 dB/km, respectively. The receiver radiug)( andL = 5 in coherence with (17). The corresponding APD
beam waist .) and pointing error displacement standargalues are reported in Fig. 4 where the results highlighthen t
deviation @) are assumed to be the same for all hops. kccuracy of the asymptotic APD expressions provided in,(15)
what follows, we setr,/a = 3 while the values ofw,/a (18) and (19) for scenarios 1, 2 and 3, respectively. These
will be varied in the simulations where large values of thisimple expressions are useful in predicting the APD values
ratio indicate less pointing errors. The theoretical OP arstlarting from a power margin of 10 dB.
APD are determined from the state transition matrix based onrig. 5 shows the performance fdgp = 6 km andL = 5
equations (20)-(23). In order to check for the validity oéthwith two and three relays in the absence of pointing errors
obtained results, the theoretical values are contrastiutiaeir (w./a — o0). For N, = 2, we consider the scenarios
numerical counterparts that are determined from a custog-— (3,2,1),d = (2,3,1) andd = (1,2, 3) corresponding
built discrete event simulator. Results show thatthe #igmal t0o » = 1, n» = 2 and 7 = 3, respectively. ForN, =
curves almost perfectly overlap with the numerical curves B, the following values ofd are simulated:(2,1.5,1.5,1)
all simulated scenarios thus highlighting on the accuracy @ = 1), (1.5,2,1.5,1) (7 = 2), (1.5,1.5,2,1) (2 = 3) and
the results. (1.5,1.5,1,2) (7 = 4). Results in Fig. 5 show the extremely
Fig. 3 and Fig. 4 show the performance with one rela§lose match between the theoretical and numerical results
for w./a = 10 under the three scenarias = (2.5,2.5), whether for the OP curves or for the APD curves. Results
d = (2,3) andd = (3,2) where, in all scenariosfsp—s in Fig. 5.a and Fig. 5.b highlight on the accuracy of the
km. As predicted by the OP expression in (14), the ca§¥P bound in (36) in predicting the asymptotic performance
L = 1 presents no diversity advantage where the OP cunere the achievable diversity order depends on the value of
is practically parallel to that of buffer-free systenfs4 0) in 7. Results in Fig. 5.c and Fig. 5.d highlight on the accuracy of
all scenarios. The diversity advantage starts manifedtong  the asymptotic APD expression provided in (37). In paracul
L = 2 where the increase in the steepness of the OP cur¥@e OP bounds are extremely close to the exact values over
is evident. As expected from (8), scenario 2 and scenatlte entire range of’,, while the APD bounds are close for
3 result in the same OP performance for all valuesPgf. the values ofP,, exceeding 10 dB and 5 dB fa¥, = 2 and
The asymptotic OP expressions are given in (15) for scenafie = 3, respectively.
1 and in (17) for scenarios 2 and 3. The results in Fig. 3 Fig. 6 shows the performance with four relays anda = 8
highlight on the accuracy of these expressions in predjctifior L = 2 and L = 5. The following scenarios are considered
the system performance starting from relatively small galud = [4,2,2,2.5,3],d = [2,4,2.5,2,3] andd = [2, 3,4, 2,2.5]
of Pys. As highlighted in (15), the coding gain enhances withesulting inn = 1, 7 = 2 andn = 3, respectively. Results
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APPENDIXA

We will solve for the vectorr satisfyingAn = « subject to
ZIL:O m = 1. The relationA7 = 7« corresponds to a system
of L 4+ 1 equations inL + 1 unknowns that will be solved
recursively.

The first equation (resulting from the first row &) can
be written aSt0707T0 + t170ﬂ'1 = p17o + pl(l — p2)ﬂ'1 = o
resulting in Tt = U — 7 yjth - & 220-p1),

0 p1(l=p2) ~— p2 p1(1—p2)

The second equation is given iy mo +t1, 171 +t2,17m2 =
1. Replacing the transition probabilities by their valuesnir
Section IlI-A results in:

10—15

2 4 6 8 10 12 14 16 18 20
Power Margin, P, (dB) (1 —pl)ﬂ'o + [p1p2 + (1 _pl)(l —p2)]7‘f’1 +p1(1 _p2)7T2 =T,
(38)
Fig. 6. Performance with 4 relays ang, /a = 8 for L = 2 and L = 5. where dividing both sides by; while taking into considera-
In this fcijg]yreirl]) :thﬁ in(:_icaltes thltte ir&deﬁ( c(i)fl'the ?otttlggec;thogPS_oIizjsg)nestion that;—‘]’ — Pr_z results in:_? = r.
are used for the theoretical results, dotted lines for asotic in . . . .
while no lines are used for the simulation results. .\Ne will neXt prove by induction that equatiogs. . ., L —1
will result in —*— =7 for [ = 2,..., L — 1. From (38), the

induction holdéffod = 2. Assume that it holds fot, we need

validate the theoretical evaluation that matches the nigaier t0 Prove that it holds fod + 1. The (I + 1)-th equation of
analysis and they highlight on the tightness of the OP boud¥ = 7 is given by:

in (36). As highlighted analytically, the asymptotic OP wed
are practically the same fof = 2 and L = 5. Results in ~ Z 21— py) Moy + [prp2 + (1~ py)(A = p2)]m

Fig. 6 also highlight on the remarkable performance gains  t-1. tu

that can be reaped from equipping the relays with buffers +p1(1—p2) w1 =m, (39)
where the gains with respect to buffer-free systems exceed .

25 dB at an OP ofl0—* for the optimal casei = 1. The .

position of the bottleneck link is also critical on the syste where the transition probabilities are replaced by theiiem
P . inTi+1

performance where, for the same value of the total distanfégm (7T51)7.1D|V|§i|ng both sides of (39) by, results in m T

dsp, performance gains in the order of 5.5 dB are observed®t°® 7~ =& - _
an OP of10~5 when comparing the casés= 1 and# = 3. he L-th equation can be written a1 172 +
These gains increase for decreasing values of the OP folgpwfZ—1.L—17L—1 + L1171 = 72-1. Replacingtz —»,r—1 and
from the enhanced diversity gain that is obtained in the cae-1..-1 by their values from (5) and ;. by (1 — p2)
7 = 1 compared to the case= 3. results in:

tiy1,

p2(1=p1) T2+ [p1p2+(1—p1)(1=p2) |1+ (1p2)7L = 711,

(40)
N B s 1
VI. CONCLUSION resulting in =74 = pir since o=l = 5
The relations™ = = T2 —p  TLol —p L — iy
o p2’ T TL—2 L§%71
For serial relaying FSO communications, equipping th@sult inmy = =mo, ma = =70, ..., TL—1 = =70, TL =
relays with buffers constitutes a simple and cost-effectivi’—r, which correspond to the second and third relations
solution capable of realizing phenomenal gains in the autag, (6). Now, the equationZlL,O 7 = 1 can be written as
performance. Compared to buffer-free systems(&p+ 1)- 14 ZL_l Ly pigL - | whose solution results in
fold increase in the diversity order can be achieved by buffe'° pa =1 " T T =

aided N, -relay systems with small buffer sizes not exceedintﬁ'e first relation in (6) following from the geometric series

two. Reaping this maximum diversity advantage inflictsaiert sum formula.

conditions on the relay placement where these conditioas ar

clearly delineated through a closed-form asymptotic asigly APPENDIXB

that relates the system performance to the network parasnete Consider first the casé = 1; i.e., max{p1,p2,p3} = p1.

in a simple and intuitive manner. The downside of the buffeBincep; <« 1, po < 1 andpz < 1, terms of the form
aided solution resides in the fact that the packets willverrip,, for n = 2,3, p,p. for n,n’ = 1,2,3 and pypaps will

at the destination with a delay. However, the delay can ladl be neglected compared {g. Moreover, the probabilities
optimized to reach the minimum possible value éf time 1 — p, and1 — ps will be approximated by 1. Consider the
slots where it is judged that this delay falls within accéfga subset of statesS = {(0,0),(0,1),(1,0),(1,1)}. (i): For
practical limits. While this work targeted an outage anlys1 = (0,0), from case-1 in Section IV-B1i( 0),0,0) = P1
future works should address the consequent appealinggamobband o o), (1,00 = 1 — p1 and, consequently, transitions from
of evaluating the end-to-end ergodic capacity of seriklyiag the state(0,0) are all limited towards elements . (ii):
buffer-aided FSO systems. Consider now the state = (0,1). From case-6 in Section
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IV-B1, t(0,1),00,1) = P1P3 = 0, t(0,1),1,1) = (1 = p1)ps — 0,
t©,1),00 = pi(l —p3) — p1 and te1),a,0 = (1 —
p1)(1 — p3) — 1 — py. Consequently, from the stai@®, 1),
the possible transitions are limited towards the stdte®)
and (1,0) that are both inS. (iii): For 1 = (1,0), from case-
4 in Section |V'Bl,t(170)_’(170) = pip2 — 0, t(l,O),(l,l) =
(I =p1)(L =p2) = 1 —p1, taoyeo = (1 —p1)p2 = 0
andt (i y,0,1) = p1(1 — p2) — p1 implying that the possible
transitions are limited towards the elemefts1) and (0, 1)
of S. (iv): For1 = (1,1), seven possible transitions can take
place according to the probabilities provided in (25). All o
the transition probabilities will tend to zero except foe thwo
valuest)) — 1—p; andty 4 (—1,0) — p1 Where the transitions
(1,1) —» (1,1) and(1,1) — (0, 1) are confined inS.

The proof forn = 3 is similar to the caser = 1 and,
hence, it will be omitted. Consider the case= 2 and the Fig. 7. Lumping of states forN, — 3 and @ — 1. The states
subsetS = {(L,0), (L—1,1)}. From case-2 in Section IV-B1, connected by a dashed line will be lumped together. The ldmgfain
t(L.0)(L.0) = D2 and L0y (L-11) = 1 — po. Similarly, for {[0, Q],_[O,l}, [1,0],[1,1]} is equivalent to the chain in Fig. 2 withy, = 2
1= (L-1,1), all probabilities in (25) will tend to zero except
fortn_11),(0-1,1) = 1 —p2 andt(;_1 1),(,0) — p2 proving

thatS is a closed-subset. Consider first the casg = 1.
Proposition4: The transition probabilities of the elements
APPENDIXC of S ={0,1}" are given by:
For n = 2, the equationAfch}[W(L,o),7T(L71.,1)]T = 0,1 I ) .
(7.0 T(z—1,0))" (where A is given in (27)) results in (s ln,) —>{ (1’11’:::71?:1)’ 1171’_p1 , (43)
T(L,0) = P2(T(r,0) + T(r-1,1)) = P2 andrp_11) = (1 - Uy
p2)(m(r,0) + T(-1,1)) = 1 — p2 since elements of’ add Up implying thatS is a closed-subset sin¢®, /1, ..., Iy, _1) and
to 1. (1,11,...,Iln,—1) belong toS whenever(ly, ..., ly,) belongs

Forn =1 andn = 3, from (27), the equatiom(ﬁ)w’ =7 oS,

red
can be easily solved by mu2It|pIy|ng both sides of the equatio  pygof: Neglecting the outage events along the non-

by Al resulting in {A(ﬁ)} = Afjd)w’ = 7’ where (for bottleneck hops, the unavailability probabiliti@sn}fy;?;1 in

red red

fi=1,3) (21) will be equal to either O or 1 whepg, = 0 (resp.p,, = 1)
implies that then-th hop is available (resp. unavailable).

{Aggd)r _ Consider the transition(ly,...,In,) — (If,...,0} )

5 ) ) ) and an element,, for n = 1,...,N. — 1. The pos-

7 7 7i 7 sible values of (i,,1,+1) are {(0,0),(0,1),(1,0),(1,1)}
pa(l—pa) pa(l—pa) pa(l—pa) pa(l—pa) implying that the corresponding unavailability probaie
palt=pa) pa(l—=pa) pa(l—=pa) pa(l=pa) | " (p, 1,p..2) along the hops preceding and following, R
(1-pa)* (=pa)* (=pa)> (1—pa) are {(1,1), (1,0), (0,1), (0,0)} sincel, = 0 = ppq = 1

(41) andl, =1 = p,4+1 = 0. This implies that the corresponding
resulting in the solution given in (28) since elementsrbadd  Values ofl;, . arel;, ;= ly1 +{0,~1,1,0} = {0,0,1,1}.
up to 1 asymptotically. In fact, in the first and fourth cases the + 1)-th buffer
state will remain unchanged since both hops are unavailable
and available respectively. In the second (resp. thirdgcas
the preceding link is unavailable (resp. available) white t
Solving for the steady-state distribution will be based toa t subsequent hop is available (resp. unavailable) implyirag t
Igmpability method that is applied for the sake of reducing t \he puffer occupancy will decrease (resp. increase) by 1.
size of the state space. N It can be observed that in all casd§, , = 1, implying
Definition 1: Con5|der_a_part|F|or{V1,VQ, ...} of thg state that (15, .. ) = (li,...,ln,—1). Regarding the first hop,
space. The_ .Mar_kov chain is said to be lumpable with respg¢t— () implies that no packets can be forwarded along the
to this partition if [28, 6.3.2]: second hop resulting iff = 0 with probabilityp, andl} = 1
. _ S with probability 1 — p;. Now, [; = 1 implies that the second
Vil €Vis thy, =ty Vi, 42 1lop is available while the unavailability (resp. availity)
wheret; y £ > vey tir stands for the transition probabilityof the first hop with probabilityp; (resp.1 — p;) will incur
from the statd to the setV. Theorem [28, 6.3.2] also suggestslecreasing the buffer size by one (resp. keeping it unclthnge
that the common probability values in (42) constitute theesulting inlj = 0 (resp.l} = 1). Combining the above cases
transition probabilities in the lumped chain. results in (43). |

APPENDIXD
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Observationl: The Markov chain with2"~ states defined  Propositiors: The setS in (49) is closed since the following
overS is lumpable with respect to the partition 2~ —! sets transitions are possible:
enumerated a§Vy, . iy .15 ls-- -, In.—1 € {0,1}} where:
(lgﬁ_% ceey l;, l»ﬁ, A ,lgﬁ_27 lgﬁ_l, ey lNT) —
V[l1,...,lNT71] £ {(lla'"7lNr*130)7(llv'"lerflvl)}' (44) (l;ﬁig...l%,L;O,lﬁ...12ﬁ73,12ﬁ72...l]\]7‘71) R Diis

(lgﬁ_?) ce l;“ L—l; 17 l»ﬁ. .. lgﬁ_3, lgﬁ_g ce ZN,‘—I) s 1_pﬁ.

Proof: The proof follows directly from (43) where the (50)
transitions and their corresponding probabilities areghme ) ) _ ) )
whetherly, = 0 or Ly, = 1. More precisely: where all states in this equation have the structure given in

(49) and, hence, they belong &
t Loy 1) Vit o] Proof: Consider the transition (I4,...,In.) —
R SN2 (I4,...,1% ) and an elemerif,. Case 17 < n < N, —1: The
= vy 1), Gl oI,y 1) possible values ofl,,,l,+1) are {(0,0),(0,1),(1,0),(1,1)}
+ t(h »»»»» INg—1,8),(Gil1se sl Np—2 N —1) (45) implying  that Z;H-l = I, and (Z%Jrlv R l?VT) =
~ (la,...,In,—1) following from the proof of proposition
0, j=o; . 4. Case 2,1 < n < n —2: The possible values c(limlnﬂ)
= { l—py, j=1 1 =01, (46) are {(L,L),(L,L — 1),(L — 1,L),(L — 1,L — 1)} which
’ results inl!, = l,.1 and (If,...,015 5) = (I2,...,l7-1)

implying that the transition probabilities are the sametfoth Where the proof is very similar to that of proposition 4. For

elements oy, ;). In(45),1=0if I=1andl =1if example, for(l,,l.1) = (L —1,L), the link R,-R,, ;1 is not

I1=0. m available while the link BR_;-R,, is available implying that
Observation2: The transition probabilities in the lumped’» Will increase by 17, = I, +1 = L = ln+1. Now consider

N, -relay Markov chain are the same as those in(tNg — 1)- the values(l,,, ln+1~) and their image values with respect to

relay chain. In other words, the s, . ;. ] is equivalent the bottleneck hom* (b lm41) Where*n +m+1=2n-1.

to the statg(ly,...,ly, 1) in the (N, — 1)-relay chain. From (49) .0, = I, andlyiq = I;,. Now, from case 1,

: f I =l, =15, = (II)* where the last equality follows
Proof: The proof follows from (46) since: m+1 m n+1 n
P (46) from case 2. Therefore, the structure of the states deskciibe

. (49) is respected byly, ..., Iy ) at this level (i.e. excluding
[ PISRIVA _*{ 5{22?:732 Z1)1’_ P (47) 17 | andl}). Case 3,n = 7 — 1: The possible values of
A (l#_1,17) are(L,0) and(L —1,1). Now, (L,0) — (L,0) and
which is equivalent to (43) ifV, is replaced byV, — 1 in this (L — 1,1) — (L, 0) with probability p; where then-th hop
latter equation. m is unavailable. In the first case, the haps- 1, 7 andn + 1
The lumping of states is better clarified in Fig. 7 fo@re unavailable implying that the buffer sizes will remain
N, = 3. In what follows, the steady-state distribution will beinchanged. In the second case, the hopsl andn + 1 are
denoted bwl(Nmﬁ) for an V,-relay system with the bottleneck@vailable while the hop: is unavailable implying that the

hop 7. Equation (43) can be written a8,,...,ly, i) — buffer size at R_; will increase by 1 while the buffer size
(0,15,...,1y,) with probability p; and (Is,... Iy i) — @&t Rs will decrease by 1. Similarly(L,0) — (L —1,1) and
(1,1, ...,1x.) with probability 1 — p; resulting in: (L —1,1) = (L — 1,1) with probability 1 — p; completing
the proof. [ |
7 Ve1) =73, |xPrD + e It can be observed that the transition probabilities assedi
(holz,elny) PGzl 0) Tzl 1) with (I1,...,1y,) in (50) are the same as the transition proba-
= o, (48) bilities associated withls, . . ., [y, ) in (43) in an(N, —7i+1)-

relay system. In fact, the firsk — 1 values of the state
whereJ; 2 pp if I = 0andd, 2 1 —p; if 1 = 1 (l,....In,) in (49) are redundant in the sense that they

and where the second equality follows from observation 9an be determined from the — 1 buffer sizes following the

Applying the relation in (48) recursivelyrgl]ffl’l) — Dbottleneck link. Therefore, the valués ..., l;_; just affect

2,0lN,) . . .
(2,1) . . . the naming of the state without affecting the values of the
iy - T, M1y i) and using the result obtained in (28)|ncoming and outgoing probabilities to and from this state
in the case of two relays results in (34).

: g o implying that the corresponding Markov chains are equiviale
Consider now the case — 1 < N, + 1 — n with 7 # 1. (N,,7) (N.—7i+1,1)

i , _ Consequently;r o) = Tl which, following
The setS in (33) can be written as: from (48), results in the expression given in (34) since only
the valuedy, ..., Iy, can be zero.
S={(3a—2 - i las o b2, loa1,. - IN,) On the other hand, the proof in the case =
i la, .. In,. €{0,1}}, (49) N, + 1 is very similar to the casen = 1 where
it can be proven thatt, iy ).(s,..in,.L) = Pa and
wherel* = Lif I =0 andl* = L —1if [ = 1 while the t;, 1y ). (.....1x,,L—1) = 1 —pa With the direct consequence
semicolon is used to indicate the position of the bottlenetkat the state$L,ls,...,Iy,.) and(L—1,ls,...,Ix,.) can be

link. lumped together. In this case, an inverse recursion sirtolar
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the direct recursion provided in (48) will show that the siga [19] Y. F. Al-Eryani, A. M. Salhab, S. A. Zummo, and M.-S. Aloi
state distribution in the case= N, +1 is similar to that in the
casen = 1 by considering the components bthat are equal
to L rather tharD. Finally, the caseV, +1—n <n — 1 with

n # N,+1 can be handled by ignoring thé.—n+1 elements

[20]

[22]

liy ..., N, (that can be computed from;—n,—1,...,li—1)
in a way similar to the analysis presented in proposition 5:[21]
(Npi)  _ _(A—LA) o~ (A-27a-1)
Tr(lly»»»-,lN,,‘) - ﬂ-(llva-,lﬁ—l) =Jn-1 Iy la—2) — ’ ( )
whered; £ ps if I=L andd; 21 —p; if =L — 1.
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