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Abstract—In this paper, we propose a novel cooperation
strategy for coherent Impulse-Radio Ultra-Wideband (IR-UWB)
communication systems with one relay. While non-orthogonal
cooperation in narrow-band wireless networks often requires
deploying distributed space-time codes with joint encoding of sev-
eral symbols at the source and relays and joint decoding of these
symbols at the destination, the proposed non-orthogonal cooper-
ation scheme constitutes the first known symbol-by-symbol-based
scheme where cooperation is entirely realized within one symbol
duration. This follows from the fact that the proposed strategy is
adapted to the structure of the Pulse Position Modulation (PPM)
that constitutes the most popular modulation scheme associated
with UWB transmissions. We also propose a simple and efficient
power allocation strategy that further boosts the performance
of the proposed cooperation strategy. The error performance of
the proposed scheme is evaluated analytically while simulations
performed over the IEEE 802.15.3a UWB channel model are
provided to support the theoretical results.

Index Terms—Ultra-wideband, UWB, PPM, cooperation, re-
lay, diversity, power allocation, decode-and-forward, DF, perfor-
mance analysis, cooperative diversity, correlated noise.

I. I NTRODUCTION

Impulse-Radio Ultra-Wideband (IR-UWB) communications
attracted significant attention as a strong candidate solution
for short-range high data-rate applications. The low toler-
ated transmission levels and the propagation properties of
the UWB signals quickly become limiting factors on the
system coverage. In this context, spatial diversity constitutes
an additional degree of freedom capable of leveraging the
performance and extending the coverage of UWB networks.
The spatial diversity techniques include localized diversity
techniques where multiple antennas are deployed at the trans-
mitter and/or receiver. These techniques were considered in
[1], [2] in the context of IR-UWB communications where high
diversity and multiplexing gains were demonstrated over the
multi-path UWB channels. On the other hand, in cooperative
systems, neighboring nodes in a wireless network cooperate
with each other to profit from the underlying spatial diversity
in a distributed manner. In this case, a signal transmitted from
a source to a destination can be overheard by neighboring
relays that can further assist in enhancing the quality of signal
reception at the destination.

While the literature on cooperation in the narrow-band
context is huge and dates back to about a decade [3]–[5], it was
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only recently that cooperative UWB systems started attracting
a growing attention. In [6], [7], the amplify-and-forward (AF)
cooperation protocol was extended to the context of IR-UWB
transmissions. In particular, different algebraic space-time (ST)
code constructions that are suitable for real-valued UWB trans-
missions were proposed and analyzed. A cooperation strategy
that is based on the orthogonal ST codes was proposed in [8]
for dual-hop multi-antenna IR-UWB transmissions. An outage
probability analysis and a bit-error-rate (BER) analysis showed
that the proposed relaying scheme is capable of achieving
better coverage over the multi-path UWB channels. A similar
strategy that is based on the orthogonal ST codes was consid-
ered in [9] in the context of multi-band orthogonal frequency
division multiplexing (MB-OFDM) UWB systems. On the
other hand, various cooperation strategies that are based on
the decode-and-forward (DF) relaying protocol were provided
in [10]–[12]. In [10], the pulse repetitions in time-hopping
(TH) UWB systems were exploited for decoupling the data
streams received at the destination in a simple and efficient
way. In [11], the DF protocol was extended to coherent UWB
systems with selective-Rake reception and to non-coherent
UWB systems that are based on the differential transmitted
reference transmissions. In [12], an accurate BER analysisthat
is based on the characteristic function evaluation was provided
over the realistic IEEE 802.15.4a channel model. Finally,
addressing DF relaying with MB-OFDM-UWB systems, the
error performance and power allocation were provided in [13]
while an upper-bound on the capacity was derived in [14].

The existing UWB cooperation techniques can be classified
into two broad categories. (i): Orthogonal techniques where
cooperation is performed over two distinct time slots where
in the first slot the message is transmitted from the source to
the relays (and in some cases to the destination) and in the
second slot the message is retransmitted from the relays to the
destination [11]–[13]. Despite their good error performance
and simplicity, such schemes are characterized by a data-
rate reduction where cooperative systems transmit at half the
rate of their equivalent non-cooperative systems [11]–[13]. For
example, in [11] the symbol duration is doubled (compared to
non-cooperative systems) where the first half of this duration
is completely dedicated to the communication between the
source and the relay while the second half is dedicated
to the relay-destination link. This non-efficient use of the
system resources is highly penalizing and constitutes a major
drawback that renders these simplistic orthogonal schemesnot
suitable for real-life applications. (ii): The second category
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corresponds to non-orthogonal cooperation strategies [6], [7],
[9], [10] where appropriate encoding schemes render these
cooperative systems capable of transmitting at the same data
rate as non-cooperative systems. In particular, all transmissions
(whether from the source or the relays) occur in the same
TDMA time slot. In such systems, the TDMA slots allocated
to the relays are not used for transmitting the information of
the source, thus the relays can assist the source even if they
have their own data to communicate.

In this paper, we propose a novel cooperation strategy that
is suitable for IR-UWB communications with Pulse Posi-
tion Modulation (PPM). Unlike the existing non-orthogonal
schemes that extend over several symbol durations, the pro-
posed scheme takes the structure of the multidimensional
PPM constellation into consideration to realize symbol-by-
symbol cooperation that is completely limited to one symbol
duration. The distinction of the proposed scheme compared
to the AF and DF protocols is highlighted in what follows.
In AF-relaying, the signals received within all PPM slots
are amplified and forwarded to the receiver [6], [7]. In a
similar manner, in DF-relaying, the relay makes a decision
at the end of each symbol duration after inspecting all the
received PPM slots [11], [12]. On the other hand, the proposed
scheme inspects the signals received within the PPM slots in
a sequential manner where the signal retransmitted by the
relay during a certain PPM slot depends only on what was
received by this relay during the previous slot. This strategy
avoids the joint coding/decoding [6], [7] as well as the half-rate
transmissions [11], [12] while maintaining high performance
levels and diversity orders at the destination. Moreover, unlike
[10], the proposed scheme can be implemented independently
from the number of time-hopped UWB pulses used to convey
one information symbol; in particular, it can be deployed even
in the absence of pulse repetitions. As in [6], [7], [9], [10], the
proposed non-orthogonal scheme is limited to one TDMA slot
(that is allocated to the source). The above attractive features
of the proposed scheme come at the expense of a data-rate
reduction by a factor of M

M+1 compared to non-cooperative
M -PPM systems. However, this ratio is much better than the
1/2 ratio resulting from the orthogonal schemes; moreover,
this data-rate reduction decreases withM and approaches one
(i.e. no date-rate reduction) for large values ofM . An exact
performance analysis of the proposed scheme is provided for
2-PPM while an upper-bound is derived forM -PPM with
M > 2. Based on the obtained error probability expressions,
we propose a suboptimal, yet simple, power allocation strategy
that turned out to be very close to the optimal strategy. An
attractive feature of the proposed power allocation strategy
resides in its capability of achieving the same diversity order
as the optimal strategy.

II. SYSTEM MODEL AND COOPERATIONSTRATEGY

ConsiderM -ary PPM where the information is modulated
by transmitting an UWB pulse in one of theM available time
slots. The cooperation strategy that we propose extends over
only one symbol duration that will be denoted byTs. Denote
by a ∈ {1, . . . , M} the PPM symbol to be communicated. In

this case, the signal transmitted by the source (S) during the
corresponding symbol duration can be written as:

ss(t) =
√

αEsw(t − (a − 1)δ) (1)

whereδ stands for duration of each PPM slot andEs stands
for the signal energy.w(t) is the UWB pulse waveform having
a durationTw and which is normalized to have a unit energy.
α stands for the fraction of the energy that is transmitted by
S with 0 < α < 1. In this case, the fraction of the energy
transmitted by the relay R will be equal to1−α resulting in a
cooperative scheme that transmits the same amount of energy
as non-cooperative systems. As will be shown later, the choice
of α has a major impact on the achievable performance level.
An efficient power allocation strategy that adapts the value
of α to the specific channel realization will be discussed in
Section IV. Finally, no reference to the TH sequence was made
in (1) since the proposed cooperation strategy does not depend
on the number of time-hopped pulses used to transmit one
information symbol. Equation (1) can be written as:

ss(t) =
√

αEs

M
∑

m=1

amw(t − (m − 1)δ) (2)

wheream = 1 for m = a and am = 0 otherwise. In other
words, the transmitted symbol can be represented by theM -
dimensional vector[a1, . . . , aM ] where only one component of
this vector (corresponding to the non-empty slot) is different
from zero (and equal to one).

Denote byTc the maximum delay spread of the UWB
channel (Tc ≫ Tw). We assume that the modulation delayδ
satisfies the relationδ ≥ Tc+Tw resulting in no interference
(at the receiver side) between the different PPM time slots.In
other words, we consider the case of orthogonal PPM where all
the multi-path components of the frequency-selective channel
arrive within a duration that does not exceedδ. With the
above constraint onδ being respected, the symbol duration for
non-cooperative systems can be chosen asTs =Mδ resulting
in no inter-symbol-interference. For the proposed cooperative
system, and in order to be able to realize cooperation over only
one symbol duration, we fixTs =(M +1)δ resulting in a data-
rate reduction of M

M+1 compared to non-cooperative systems.
This data-rate reduction is transformed into an additional
power penalty imposed on the cooperative scheme in all the
results that we present in this paper. This choice ofTs will be
justified later.

In what follows, we denote bygsd(t), gsr(t) andgrd(t) the
convolutions ofw(t) with the impulse responses of the chan-
nels between S-D, S-R and R-D, respectively. We also assume
the presence of a perfect channel estimator that provides R
(resp. D) with the value ofgsr(t) (resp.gsd(t) andgrd(t)) over
an integration durationTi. Evidently, the complexity of these
estimators increases withTi.

When the signal given in (2) is transmitted by S, the signal
received at R can be written as:

rr(t) =
√

αβsrEs

M
∑

m=1

amgsr(t − (m − 1)δ) + nr(t) (3)

where nr(t) stands for the noise that is assumed to be an
additive white Gaussian noise (AWGN) with varianceN0

2
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whereN0 stands for the noise power spectral density. Denote
by dsd and dsr the distances from S to D and S to R,
respectively. The termβsr in (3) follows from the fact thatdsr

might be different fromdsd. In other words, a signal-to-noise
ratio (SNR) of Es

N0
at D will be equivalent to a SNR ofβsr

Es

N0

at R. Performing a typical link power budget analysis shows

that βsr=
(

dsd
dsr

)2

assuming that the received power decreases
with the square of the distance.

The role of R will be based on the following decision
variables that will be evaluated in a sequential manner starting
from m = 1 and ending bym = M :

y(m)
r =

∫ Ti

0

rr(t)gsr(t − (m − 1)δ)dt (4)

whereTi stands for the integration time. In the above equation,
it is assumed that R has acquired the value of the function
gsr(t) over a durationTi via a channel estimation process
that is assumed to be perfect in what follows. Evidently, the
complexity of this estimator increases withTi. Following from
the orthogonality of the PPM signal set, (4) reduces to:

y(m)
r =

√

αβsrEshsram + n(m)
r (5)

where hsr ,
∫ Ti

0
g2

sr(t)dt stands for the channel energy
captured along the link S-R over a durationTi. In the same
way,n(m)

r =
∫ Ti

0 nr(t)gsr(t−(m−1)δ)dt is a Gaussian random
variable with variancehsrN0/2. Note that the noise terms
n

(1)
r , . . . , n

(M)
r are uncorrelated.

The cooperation strategy at R is as follows. First, R observes
the received signal over the interval[0 δ] to evaluate the
decision variabley(1)

r . R then comparesy(1)
r with a ceratin

threshold levelIth. If y
(1)
r ≥ Ith, then R will retransmit

an UWB pulse in the next PPM slot (which is the second
slot) and it will wait for the next symbol; otherwise, the relay
will not retransmit any pulse and it will start inspecting the
received signal over the next interval[δ 2δ]. This operation
will be repeated in a sequential manner starting from the first
PPM slot and ending with theM -th slot. In other words, for
the m-th slot, R evaluatesy(m)

r and compares it withIth.
If y

(m)
r ≥ Ith, then R retransmits a pulse in slotm + 1;

otherwise it restarts the same operation withm + 1. Note
that whenever the relationy(m)

r ≥ Ith is satisfied for a ceratin
value ofm, the remaining decision variablesy

(m+1)
r , . . . , y

(M)
r

will not be evaluated. Note thatm is incremented sequentially
from 1 to M and that this sequential analysis ensures the
causality at R. Consider the case wherey

(1)
r , . . . , y

(M−1)
r are

all smaller thanIth while y
(M)
r ≥ Ith. This case necessitates

the retransmission of a pulse in the(M + 1)-th slot implying
that the symbol duration has to be increased fromTs = Mδ
(for non-cooperative systems) toTs = (M + 1)δ. Note that
the relay is left with a duration ofδ − Ti to further process
the decision variabley(m)

r that was collected over a duration
Ti. Given thatTi is often chosen to take small values in order
to reduce the receiver complexity whileδ takes large values
in order to eliminate interference, this duration is sufficient
to encompass all processing delays. In what follows,Ith is
chosen as:Ith =

√
αβsrEshsr/2. In other words, the threshold

level is fixed midway between the maximum noiseless signal

Fig. 1. Parameters of the cooperative system.

level (max[y
(m)
r ] =

√
αβsrEshsr) and the minimum noiseless

signal level (min[y
(m)
r ] = 0). Note that since the noise is

AWGN, this value ofIth minimizes the error probability along
the S-R link.

Denote bym̂ the smallest integer in the set{1, . . . , M} for
which y

(m̂)
r ≥ Ith and construct the vector[â1, . . . , âM ] such

that âm = 1 for m = m̂ and âm = 0 otherwise. In this case,
the signal transmitted by R can be written as:

sr(t) =
√

(1 − α)Es

M
∑

m=1

âmw(t − mδ) (6)

where unlike (2) in whichw(t) was shifted by(m−1)δ, w(t)
is now shifted bymδ.

Now, the signal received at D can be written as:

rd(t) =
√

αEs

M
∑

m=1

amgsd(t − (m − 1)δ)

+
√

(1 − α)βrdEs

M
∑

m=1

âmgrd(t − mδ) + nd(t) (7)

where, as in (3),βrd =
(

dsd
drd

)2

andnd(t) is the white Gaussian

noise with varianceN0/2.
A bank of correlators is deployed at D in order to collect

the following M decision variables (form = 1, . . . , M ):

y
(m)
d =

∫ Ti

0

rd(t) [gsd(t − (m − 1)δ) + grd(t − mδ)] dt (8)

Following from (7), equation (8) simplifies to:

y
(m)
d =

√

αEshsdam +
√

(1 − α)βrdEshrdâm

+
[

√

αEsam+1 +
√

(1 − α)βrdEsâm−1

]

hin + n
(m)
d (9)

where hsd ,
∫ Ti

0 g2
sd(t)dt, hrd ,

∫ Ti

0 g2
rd(t)dt and

hin ,
∫ Ti

0
gsd(t)grd(t)dt. We also set: aM+1 ,

0 and â0 , 0. The noise terms are given by:
n

(m)
d =

∫ Ti

0 nd(t) [gsd(t − (m − 1)δ) + grd(t − mδ)] dt. It can
be proven that:

E
[

n
(m)
d n

(m′)
d

]

=
N0

2







hsd + hrd, m = m′;√
hsdhrd, |m − m′| = 1;

0, otherwise.
(10)

where E[.] stands for the averaging operator. Equation (10)
shows that the noise terms corresponding to two consecutive
PPM slots are correlated. The different parameters of the
system under consideration are depicted in Fig. 1.
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III. PERFORMANCEANALYSIS

In this section, we will evaluate the performance of the
proposed scheme in terms of the achievable conditional sym-
bol error probability. At a first time, we consider the case of
M = 2 and then extend the results to the case ofM > 2.

A numerical analysis performed over the IEEE 802.15.3a
channel model [15] showed that the interference termhin

takes very small values and, hence, can be neglected. This
can be justified by the randomness of the polarity of the
multi-path components corresponding togsd(t) and grd(t).
Consequently, in this section we evaluate the performance
assuming thathin = 0. This assumption will be further
supported by the numerical results in Section V. For the sake
of simplicity, we seth1 =

√
αβsrEshsr, h2 =

√
αEshsd and

h3 =
√

(1 − α)βrdEshrd in what follows. The channel state
is defined by:H = [hsr, hsd, hrd].

Consider the caseM = 2. Given that the noise termsn(1)
d

andn
(2)
d are correlated Gaussian random variables (r.v.s), we

first apply the following transformation that will simplifythe
error analysis:

[

u
v

]

=
1√
2

[

1 1
1 −1

]

[

n
(1)
d

n
(2)
d

]

(11)

This transformation results in the zero-mean independent
Gaussian r.v.su andv whose variances are given by:

σ2
u =

(

hsd + hrd +
√

hsdhrd

)

N0/2 (12)

σ2
v =

(

hsd + hrd −
√

hsdhrd

)

N0/2 (13)

Assume first that the PPM symbolm = 1 was transmitted.
In this case, the decision variables at the relay are given
by: y

(1)
r = h1 + n

(1)
r and y

(2)
r = n

(2)
r . Three cases are

possible at R. Case (i.1):y(1)
r ≥ Ith implying that the symbol

m̂ = 1 will be retransmitted (in the second slot). Case (i.2):
y
(1)
r < Ith and y

(2)
r ≥ Ith implying that the symbol̂m = 2

will be retransmitted (in the third added slot). Case (i.3):
y
(1)
r < Ith and y

(2)
r < Ith implying that no symbol will be

retransmitted by R. Given thatIth = h1/2 and(n
(1)
r , n

(2)
r ) are

uncorrelated Gaussian r.v.s with varianceshsrN0/2, then it is
straightforward to prove that:

Pr(h1 + n(1)
r < Ith) = 1 − Pr(h1 + n(1)

r ≥ Ith) = p (14)

Pr(n(2)
r ≥ Ith) = 1 − Pr(n(2)

r < Ith) = p (15)

where the probabilityp is given by:

p = Q

(

h1/2
√

hsrN0/2

)

= Q

(

√

αβsrhsrEs

2N0

)

(16)

where the function Q(x) is defined as: Q(x) =
1√
2π

∫∞
x

e−t2/2dt.
Case (i.1) occurs with probability1−p following from (14).

Given that m̂ = 1, then ignoringhin in (9) results in the
following decision variables at D:y(1)

d = h2 + h3 + n
(1)
d and

y
(2)
d = n

(2)
d . Given that the symbolm = 1 was transmitted,

Fig. 2. The bivariate Gaussian vector(n
(1)
d , n

(2)
d ), the r.v.su andv and the

integration area corresponding to equations (18) and (20).

then the error probability at D can be written as:

P1 , Pr(h2 + h3 + n
(1)
d < n

(2)
d ) (17)

=

∫ +∞

−∞

∫ n
(2)
d −h2−h3

−∞
p(n

(1)
d , n

(2)
d )dn

(1)
d dn

(2)
d (18)

where p(n
(1)
d , n

(2)
d ) stands for the joint probability density

function of the correlated Gaussian r.v.sn
(1)
d andn

(2)
d :

p(x, y) =
1

2πσ2
n

√

1 − ρ2
exp

(−x2 + 2ρxy − y2

2σ2
n(1 − ρ2)

)

(19)

where, from (10),σ2
n = N0

2 (hsd + hrd) andρ =
√

hsdhrd
hsd+hrd

.
Applying the transformation given in (11), the integral in

(18) simplifies to:

P1 =

∫ +∞

−∞
p(u)du

∫ −h2+h3√
2

−∞
p(v)dv (20)

=1×Q

(

h2 + h3
√

2σ2
v

)

= Q

(√
αhsd +

√

(1−α)βrdhrd
√

hsd + hrd −
√

hsdhrd

√

Es

N0

)

(21)

wherep(u) andp(v) stand for the probability density functions
of the r.v.su andv defined in (11). The equivalence between
the integrals in (18) and (20) is better illustrated in Fig. 2.

Case (i.2) occurs with probabilityp2 following from (14)
and (15). In this case,̂m=2 resulting in the following decision
variables:y(1)

d = h2+n
(1)
d andy

(2)
d = h3+n

(2)
d . Following an

analysis similar to that presented in equations (17)-(21) where
h2 + h3 is now replaced byh2 − h3, we obtain the following
expression of the probability of error in case (i.2):

P2 = Q

(√
αhsd−

√

(1−α)βrdhrd
√

hsd + hrd −
√

hsdhrd

√

Es

N0

)

(22)

Case (i.3) occurs with probabilityp(1 − p). In this case,
no symbol is retransmitted by R resulting in the following
decision variables at D:y(1)

d = h2 + n
(1)
d and y

(2)
d = n

(2)
d .

Replacingh2 + h3 by h2 in (21) results in the following
expression of the probability of error in case (i.3):

P3 = Q

( √
αhsd

√

hsd + hrd −
√

hsdhrd

√

Es

N0

)

(23)
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Evaluating the weighted sum of the probabilities in equa-
tions (21)-(23) results in:

P
(1)
e|H = (1 − p)P1 + p2P2 + p(1 − p)P3 (24)

whereP
(1)
e|H stands for the conditional error probability when

the symbolm = 1 is transmitted.
Assume now that the symbolm = 2 is transmitted. In this

case, the decision variables at R are given by:y
(1)
r = n

(1)
r and

y
(2)
r = h1 + n

(2)
r . Three cases are possible at D as follows.

Case (ii.1):y(1)
r ≥ Ith occurring with probabilityp. In this

case,m̂=1 and the decision variables at D are:y
(1)
d = h3 +

n
(1)
d andy

(2)
d = h2 + n

(2)
d . Given the analogy between cases

(ii.1) and (i.2), then the conditional error probability inthis
case is equal toP2 given in (22).

Case (ii.2):y(1)
r < Ith andy

(2)
r ≥ Ith occurring with prob-

ability (1 − p)2. In this case,m̂ = 2 resulting iny
(1)
d = n

(1)
d

andy
(2)
d = h2 + h3 + n

(2)
d . Given the analogy between cases

(ii.2) and (i.1), then the conditional error probability inthis
case is equal toP1 given in (21).

Case (ii.3):y(1)
r < Ith andy

(2)
r < Ith occurring with prob-

ability (1−p)p. In this case:y(1)
d = n

(1)
d andy

(2)
d = h2 +n

(2)
d

resulting in an error probability that is equal toP3 given in
(23). Finally, combining the above cases results in:

P
(2)
e|H = pP2 + (1 − p)2P1 + p(1 − p)P3 (25)

whereP
(2)
e|H stands for the conditional error probability when

the symbolm = 2 is transmitted.
Finally, combining equations (24) and (25) results in the fol-

lowing expression of the conditional symbol error probability
(SEP):

Pe|H =
1

2

[

P
(1)
e|H + P

(2)
e|H

]

(26)

Equations (24) and (25) show a rather surprising result
where the error probabilities on the two symbols of the binary
PPM constellation are not the same. In other words, despite
the symmetry of the PPM signal set, the probability of making
an error depends on which symbol was transmitted showing
that this symmetry is broken by the structure of the proposed
cooperation strategy. In a more precise manner, subtracting
(24) from (25) shows that:P (2)

e|H−P
(1)
e|H = p(1−p)[P2−P1]. On

the other hand, given that
√

αhsd+
√

(1−α)βrdhrd ≥ √
αhsd−

√

(1−α)βrdhrd (since all involved quantities are positive), then
P1≤P2 following from (21)-(22). This results inP (2)

e|H ≥P
(1)
e|H

showing that it is more probable to make errors on the
second PPM symbolm = 2. This follows from the proposed
cooperation strategy where, whenever one decision variable at
R exceeds threshold, the subsequent decision variables will be
ignored (i.e. not compared with the threshold). In fact, forthe
symbolm=1 the first slot contains a signal energy, then with
high probability the second slot (containing only noise) will
not be considered. On the other hand, for the symbolm = 2
the first slot contains only noise, then with high probability the
second slot (containing a signal energy) will be considered. In
other words, the retransmission of the correct symbol by R
for m=1 is based on one noisy slot (containing also a signal)
while this correct retransmission form = 2 is based on two

noisy slots (where only one of them contains a signal). This
justifies the fact that the symbolm=1 will be reconstructed
with a higher fidelity.

Note that the integrals in (18) and (20) must be per-
formed over integration regions in aM -dimensional space.
Consequently, forM > 2, these integrals are difficult to
solve rendering an exact expression of the conditional SEP
difficult to obtain in this case. Therefore, we resort to bounding
techniques that allow us to obtain the following result.

Proposition: For M -ary PPM constellations withM > 2,
the conditional SEP of the proposed cooperation scheme can
be upper-bounded by:

Pe|H =
1

M

M
∑

m=1

P
(m)
e|H =

1

M

M
∑

m=1

M+1
∑

i=1

p
(m)
i P

(m)
i (27)

≤ 1

M

M
∑

m=1

M+1
∑

i=1

p
(m)
i

M
∑

j=1 ; j 6=m

P
(m)
i,j (28)

where the probabilityP (m)
i,j is given by:

P
(m)
i,j = Q





√
αhsd + (δm,i − δj,i)

√

(1−α)βrdhrd
√

hsd + hrd − (δj,m−1 + δj,m+1)
√

hsdhrd

√

Es

N0





(29)
where δi,j = 1 for i = j and δi,j = 0 for i 6= j. The
probabilityp

(m)
i can be written as:

p
(m)
i =















(1 − p)i−1p, i < m;
(1 − p)i, i = m;
(1 − p)i−2p2, m < i ≤ M ;
(1 − p)i−2p, i = M + 1.

(30)

where the probabilityp is given in (16).
Proof : The proof is provided in the appendix.
Note that, as in the case ofM = 2, the error probability is

not the same for allM -PPM symbols in the case ofM > 2.
As shown in the appendix, the upper-bound in (28) follows
from the union bound. Consequently, (28) becomes close to
the exact value ofPe|H for large values of the SNR; i.e. in
the range of SNRs where cooperative diversity is useful.

Finally, since the conditional error probabilities in equations
(24),(25) and (28) do not lend themselves to a simple analytical
integration over the IEEE 802.15.3a channel model, then we
evaluate the SEP according to:

Pe =
1

M

M
∑

m=1

P (m)
e (31)

where the average probabilities{P (m)
e }M

m=1 are obtained by
numerically integrating{P (m)

e|H }M
m=1.

IV. POWER ALLOCATION

It is desirable to derive the optimal value ofα that mini-
mizes the conditional symbol error probability given in (26)
and (28) forM = 2 and M > 2, respectively. However, a
closed-form solution is not possible and, instead, we adopta
suboptimal approach based on minimizing two upper-bounds
on the asymptotic values of (26) and (28). As a first step, we
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will perform the derivation withM = 2 and then consider the
case ofM > 2. The corresponding value ofα is found to be
dependent on the SNR and channel state.

For M = 2, from (24), (25) and (26), the conditional SEP
can be approximated by the following expression for large
values of the SNR:

Pe|H ≈ 1

2
[2P1 + pP2 + 2pP3] (32)

where this equation follows from approximating (24) and (25)
for p ≪ 1.

From (22) and (23), we observe thatP3 ≤ P2 implying that
(32) can be upper-bounded by:

Pe|H ≤ 1

2
[2P1 + 3pP2] ≤

3

2
[P1 + pP2] ≤ 3 max{P1, pP2}

(33)
The suboptimal approach that we adopt corresponds to

determining the value ofα that minimizesmax{P1, pP2}. For
simplicity, from (16), (21) and (22), we writeP1 andpP2 as:

f1(α) , P1 = Q
(

k(
√

αhsd +
√

(1−α)βrdhrd)
)

(34)

f2(α) , pP2 = Q
(

k1

√
α
)

Q
(

k(
√

αhsd−
√

(1−α)βrdhrd)
)

(35)

wherek andk1 are two constants that do not depend onα:

k ,

√

Es

N0(hsd + hrd −
√

hsdhrd)
; k1 ,

√

βsrhsrEs

2N0
(36)

Note that the termpP2 can not be neglected compared
to P1. In fact, k(

√
αhsd +

√

(1−α)βrdhrd) and k1
√

α are
always positive implying, from (34) and (35), thatP1 and
p decrease rapidly with the SNR. On the other hand, the term
k(
√

αhsd−
√

(1−α)βrdhrd) is small in absolute value (since it
corresponds to the difference between two comparable positive
numbers) and it can be positive or negative implying, from
(35), thatP2 can take large values even for large SNRs. As a
conclusion,P2 is several orders of magnitudes larger thanp
andP1 implying thatP1 andpP2 have comparable values.

We defineα1 as the value ofα that minimizes the function
f1(α) given in (34). It can be easily proven thatα1 takes the
following value:

α1 =
h2

sd

h2
sd + βrdh2

rd
(37)

where the last equation shows that0 ≤ α1 ≤ 1.
Over the interval[0 α1], the function f1(α) decreases

from f1(0) = Q(k
√

βrdhrd) to f1(α1) = Q(k
√

h2
sd + βrdh2

rd)
and over the interval[α1 1] f1(α) increases fromf1(α1) to
f1(1) = Q(khsd). On the other hand, the functionf2(α) is
strictly decreasing forα ∈ [0 1] where it decreases from
f2(0) = 1

2Q(−k
√

βrdhrd) = 1
2 [1 − Q(k

√
βrdhrd)] to f2(1) =

Q(k1)Q(khsd). Note thatf2(α) varies faster thanf1(α) and
that Q(k1)Q(khsd) ≤ Q(khsd) implying that f2(1) ≤ f1(1).
Consequently, two cases are possible.

Case 1: 1
2Q(−k

√
βrdhrd) ≤ Q(k

√
βrdhrd) implying that

Q(k
√

βrdhrd) ≥ 1
3 or k

√
βrdhrd ≤ Q−1

(

1
3

)

. In this case,
f2(0) ≤ f1(0). Moreover, sincef2(1) ≤ f1(1) and f2(α)
varies faster thanf1(α), then f2(α) is always belowf1(α)
implying thatmax{P1, pP2} = f1(α). In this case, the value

of α that minimizesmax{P1, pP2} is α = α1 that minimizes
f1(α).

Case 2:k
√

βrdhrd > Q−1
(

1
3

)

. In this casef2(0) > f1(0).
Moreover, sincef2(1) ≤ f1(1), then the functionsf1(α)
andf2(α) intersect in one point implying thatmax{P1, pP2}
is minimized at this point. In fact, for any other point, we
have eitherf1(α) > f2(α) or f2(α) > f1(α) implying that
max{f1(α), f2(α)} will increase. In other words, the upper-
bound in (33) is minimized for the value ofα that is the
solution of the equation:f1(α) = f2(α).

As a conclusion, the suboptimal power allocation strategy
that we propose is given by:

α =

{

h2
sd

h2
sd+βrdh2

rd
, k

√
βrdhrd ≤ Q−1

(

1
3

)

;

α | f1(α) = f2(α), k
√

βrdhrd > Q−1
(

1
3

)

.
(38)

where the equationf1(α) = f2(α) has to be solved numeri-
cally.

Note that sincek increases with the SNR, then case 1 is
more easily satisfied for small SNRs while case 2 holds for
large values of the SNR. In this case, the solution off1(α) =
f2(α) can be obtained analytically by approximatingQ(x) by
e−x2/2 where this approximation becomes more accurate for
larger values of the SNR. It is straight-forward to prove that
this solution (that is always in the interval[0 1]) is given by:

α =
16k4βrdh

2
sdh

2
rd

16k4βrdh2
sdh

2
rd + k4

1

(39)

We next consider the caseM > 2. We first derive an upper-
bound on the conditional SEP assuming that the transmitted
symbols are reconstructed at the relay with a sufficiently high
fidelity (p ≪ 1).

We next separate the four cases given in (30). (i):
For i < m, p

(m)
i ≈ p from (30). On the other hand,

in (29), δm,i = 0 while δj,i and (δj,m−1 + δj,m+1)
can be either 0 or 1. Consequently, the summation
in (28) contains terms of the formpQ (k

√
αhsd),

pQ (k′√αhsd), pQ
(

k(
√

αhsd−
√

(1 − α)βrdhrd)
)

and

pQ
(

k′(
√

αhsd−
√

(1 − α)βrdhrd)
)

where the constantk is

defined in (36) while the constantk′ (that does not depend
on α) is given by:

k′ ,

√

Es

N0(hsd + hrd)
(40)

(ii): For i = m, p
(m)
i ≈ 1 from (30). In this case,δm,i =

1, δj,i = 0 (since j 6= m = i) while (δj,m−1 + δj,m+1)
can be either 0 or 1. Consequently, the summation in (28)
contains terms of the formQ

(

k(
√

αhsd +
√

(1 − α)βrdhrd)
)

and Q
(

k′(
√

αhsd +
√

(1 − α)βrdhrd)
)

. (iii): For m < i ≤
M , p

(m)
i ≈ 0 from (30) implying that the corresponding terms

can be neglected in (28). (iv): Fori = M + 1, p
(m)
i ≈ p from

(30). In this case,δm,i = 0 (since m ∈ {1, . . . , M} while
i = M +1), δj,i = 0 (sincej ∈ {1, . . . , m−1, m+1, . . . , M})
while (δj,m−1+δj,m+1) can be either 0 or 1. Consequently, the
summation in (28) contains terms of the formpQ (k

√
αhsd)

andpQ (k′√αhsd).
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Consequently, forp ≪ 1, (28) can be approximated by:

Pe|H ≈ 1

M

[

n1pQ
(

k
√

αhsd
)

+ n2pQ
(

k′√αhsd
)

+n3pQ
(

k(
√

αhsd−
√

(1 − α)βrdhrd)
)

+n4pQ
(

k′(
√

αhsd−
√

(1 − α)βrdhrd)
)

+n5Q
(

k(
√

αhsd +
√

(1 − α)βrdhrd)
)

+n6Q
(

k′(
√

αhsd +
√

(1 − α)βrdhrd)
)]

(41)

wheren1, . . . , n6 correspond to the number of times that the
corresponding probability terms appear inPe|H .

From (36) and (40), we observe thatk ≥ k′ implying that
(41) can be upper-bounded by:

Pe|H ≤ 1

M

[

(n1 + n2)pQ
(

k′√αhsd
)

+(n3 + n4)pQ
(

k′(
√

αhsd−
√

(1 − α)βrdhrd)
)

+(n5 + n6)Q
(

k′(
√

αhsd +
√

(1 − α)βrdhrd)
)]

(42)

Sincek′√αhsd ≥ k′(
√

αhsd−
√

(1 − α)βrdhrd), then:

Pe|H ≤ 1

M

[

(n5+n6)Q
(

k′(
√

αhsd +
√

(1−α)βrdhrd)
)

+(n1+n2+n3+n4)pQ
(

k′(
√

αhsd−
√

(1−α)βrdhrd)
)]

(43)

Defining N as N , max{(n1+n2+n3+n4), (n5 +n6)},
then (43) can be upper-bounded by:

Pe|H ≤ 2N

M
max

{

Q
(

k′(
√

αhsd+
√

(1−α)βrdhrd)
)

,

pQ
(

k′(
√

αhsd−
√

(1−α)βrdhrd)
)}

(44)

The approach that we adopt in the caseM > 2 corresponds
to choosingα as the value that minimizesmax{f ′

1(α), f ′
2(α)}

where:

f ′
1(α) = Q

(

k′(
√

αhsd +
√

(1 − α)βrdhrd)
)

(45)

f ′
2(α) = pQ

(

k′(
√

αhsd−
√

(1−α)βrdhrd)
)

= Q
(

k1

√
α
)

Q
(

k′(
√

αhsd−
√

(1−α)βrdhrd)
)

(46)

where the constantk1 is given in (36). We observe that the
functionsf ′

1(α) andf ′
2(α) are the same as the functionsf1(α)

and f2(α) given in (34) and (35) except for the fact thatk
is now replaced byk′. Therefore, the solution to the power
allocation strategy forM -PPM with M > 2 can be obtained
from (38) wherek, f1(α) andf2(α) need to be replaced by
k′, f ′

1(α) andf ′
2(α), respectively. For high SNRs, (39) can be

applied wherek must be replaced byk′.
Note that the proposed cooperative system can be coupled

with two possible power allocation schemes. In the first one,
α is held constant independently from the specific channel
realization while the second scheme is based on adapting the
value ofα to the channel realization according to the strategy
proposed previously in this section. The advantage of the first

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR per bit (dB)

P
e

P
e
(1), T

i
=5 ns

P
e
(2), T

i
=5 ns

P
e
, T

i
=5 ns

P
e
(1), T

i
=20 ns

P
e
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i
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P
e
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i
=20 ns

Fig. 3. The different error probabilities with 2-PPM and(βsr, βrd) = (4, 1).
PAS-1 is applied withα = 0.5. The marked points are obtained by simulations
while the dashed curves correspond to the analytical results in (24) and (25).

scheme resides in its simplicity while the second scheme has
the capability of achieving higher performance levels as shown
later. A possible implementation of the second scheme can be
based on evaluatingα at D (based on (38)) and providing
this value to S and R via two feedback links. In this case,
the noise variance as well as the S-R, S-D and R-D channels
need to be known at D. For scheme 1,α is held constant
and no feedback is required. In this case, R needs to estimate
only the S-R channel while the detection at D requires only
the knowledge of the R-D and S-D channels. These power
allocation strategies (PAS) will be referred to as PAS-1 and
PAS-2 in what follows.

V. NUMERICAL RESULTS

Simulations are performed over the IEEE 802.15.3a channel
model recommendation CM2 [15]. A Gaussian pulse with a
duration of Tw = 0.5 ns is used. The modulation delay is
chosen to verifyδ=100 ns which is larger than the maximum
delay spread of the UWB channel. The presented results show
the variation of the error probability as a function of the SNR
per bit which is equal to Es

N0 log2 M for non-cooperative systems

and to Es

N0 log2 M
M+1

M for the proposed cooperation scheme.

Fig. 3 shows the variations ofP (1)
e , P

(2)
e andPe given in

(31) for 2-PPM with (βsr, βrd) = (4, 1). PAS-1 is applied
with α = 0.5. This figure shows the close match between
simulations and the theoretical analysis presented in Section
III despite the fact that the interference termhin was neglected
in the theoretical study. This shows that this term can be
safely neglected without resulting in significant modifications
of the results. Fig. 3 also shows that the performance is limited
mainly by P

(2)
e which is significantly larger thanP (1)

e .
Fig. 4 compares the performance of the proposed scheme

with that of non-cooperative systems forM =2 andβsr=βrd=
4 in the case where PAS-1 is applied withα = 0.8. This figure
shows the high performance levels and the enhanced diversity
orders achieved by the proposed cooperation strategy for
different integration times. The obtained numerical results sup-
port the theoretical analysis presented in Section III showing
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Fig. 4. Performance of the proposed scheme with 2-PPM andβsr = βrd = 4.
PAS-1 is applied withα = 0.8. The marked points are obtained by simulations
while the dashed curves correspond to the analytical results in (26) and (31).

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR per bit (dB)

P
e

No cooperation, T
i
=2 ns

Coop., numerical, T
i
=2 ns

Coop., bound, T
i
=2 ns

No cooperation, T
i
=5 ns

Coop., numerical, T
i
=5 ns

Coop., bound, T
i
=5 ns

No cooperation, T
i
=20 ns

Coop., numerical, T
i
=20 ns

Coop., bound, T
i
=20 ns

Fig. 5. Performance of the proposed scheme with 4-PPM andβsr = βrd = 4.
PAS-1 is applied withα = 0.8.

that the performance of the proposed scheme with 2-PPM can
be correctly obtained from combining (24), (25), (26) and (31).
Note that forM = 2, the data rate reduction of the proposed
scheme is maximum since the functionM+1

M decreases with
M . Fig. 4 shows that even in this extreme case, the proposed
cooperation strategy outperforms non-cooperative systems for
practically all values of the SNR.

Fig. 5 shows the performance withM =4 andβsr=βrd=4.
PAS-1 is applied withα = 0.8. This figure shows that
the upper-bound given in (28) can be accurately used for
estimating the performance of the proposed scheme withM -
PPM (for M > 2) especially for large values of the SNR
since this bound is very close to the exact error probability
for large SNRs. Note that even for the large integration time
of Ti = 20 ns where the number of multi-path components
captured at the receiver side is large, the proposed scheme
results in a performance gain of about 1.7 dB atPe = 10−3.

Fig. 6 compares the power allocation strategies PAS-1
and PAS-2 with 2-PPM andTi = 5 ns. In this figure, we
consider the extreme case where the relay is as far from
the source and destination as the destination is from the
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Fig. 6. Impact of power allocation on the performance of the proposed
cooperation scheme. PAS-1 and PAS-2 are compared with 2-PPMfor βsr =
βrd = 1 andTi = 5 ns.
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Fig. 7. Impact of power allocation on the performance of the proposed
cooperation scheme with 2-PPM forβsr = βrd = 4 andTi = 5 ns.

source, i.e.βsr = βrd = 1. This figure shows that in this
case where there is no power gain in the system, applying
the proposed cooperation strategy with PAS-1 might not be
useful. In fact, for practical values of the SNR not exceeding
30 dB, the proposed cooperative scheme (associated with PAS-
1) degrades the performance forα = 0.5, . . . , 0.8 while small
performance gains are observed for SNRs exceeding 26 dB
for α = 0.9. This figure shows the importance of adapting the
transmitted power to the specific channel state based on PAS-
2. This allows the proposed cooperative scheme to outperform
non-cooperative systems for SNRs exceeding 18.5 dB. This
figure also shows the efficiency of the proposed suboptimal,
yet simple, power allocation strategy described in (38). Infact,
the gap between the optimal and suboptimal strategies does not
exceed 0.8 dB for any value of the SNR. The obtained results
also highlight the important fact that the proposed power
allocation strategy PAS-2 does not penalize the diversity order
that can be achieved by the proposed cooperative scheme. In
fact, the error curves pertaining to the optimal and suboptimal
strategies have the same slope as well as similar variations
except for a small bias in the SNR.
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Fig. 8. Impact of power allocation on the performance of the proposed
cooperation scheme with 4-PPM forβsr = βrd = 4 andTi = 5 ns.

The same simulation setup is reproduced in Fig. 7 with
βsr = βrd = 4. In this case, applying PAS-1 results in
significant performance gains that are highly dependent on
the specific value ofα. For example, settingα=0.5 results in
a performance gain of about 1.1 dB atPe = 10−4 while this
performance gain increases to 4 dB forα=0.9. As in Fig. 6,
the superiority of the proposed power allocation strategy (that
is very close to the optimal strategy) is confirmed in Fig. 7.

Fig. 8 compares the power allocation strategies PAS-1 and
PAS-2 with 4-PPM,Ti = 5 ns andβsr = βrd = 4. This figure
shows that the performance levels that can be achieved by
PAS-1 are highly dependent on the specific value ofα. At
SNR=24 dB, the best performance that can be obtained from
associating the proposed cooperation scheme with PAS-1 is
Pe = 4 × 10−5 for α = 0.95. On the other hand, PAS-2 is
capable of drastically reducing this value to about2 × 10−7.
Finally, the obtained results show that the proposed power
allocation strategy PAS-2 can achieve error probabilitiesthat
are very close to those achieved by the optimal strategy.

Fig. 9 compares the proposed cooperation strategy with the
nonorthogonal-AF and orthogonal-DF schemes in [6] and [10].
8-PPM is deployed withβsr = βrd = 4 and Ti = 3 ns.
The performance of the proposed cooperation scheme, that
is associated with PAS-2, is determined from the upper-bound
in (28). Results show the superiority of the proposed scheme
especially for large SNRs. In fact, this scheme avoids the joint
decoding and noise amplification of [6] as well as the1/2
data-rate reduction of [10].

VI. CONCLUSION

Compared to the classical QAM and PAM modulations
deployed in narrow-band and UWB systems, the structure
of the PPM constellations constitutes an additional degreeof
freedom that can be exploited in the construction of novel co-
operation protocols. In this work, we have taken the structure
of these constellations into consideration and constructed a
simple and powerful symbol-by-symbol cooperative diversity
scheme that drastically simplifies the structure of the relay
and the destination compared to the conventional AF and DF
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Fig. 9. PAS-2 versus the nonorthogonal-AF and orthogonal-DF schemes in
[6] and [10]. 8-PPM is deployed withβsr = βrd = 4 andTi = 3 ns.

protocols. Our work also highlighted the importance of power
allocation in such UWB cooperative systems; this constituted
an important design parameter that turned out to be critical
in determining the system performance. Finally, we hope that
this work will motivate more research effort in this direction.

APPENDIX

The conditional SEP can be written as:Pe|H =
1
M

∑M
m=1 P

(m)
e|H whereP

(m)
e|H stands for the conditional SEP

given that the PPM symbolm ∈ {1, . . . , M} was transmitted.
This probability can be written as:P (m)

e|H =
∑M+1

i=1 p
(m)
i P

(m)
i

whereP
(m)
i stands for error probability given that the symbol

m was transmitted while the relay is forwarding the symbol
i ∈ {1, . . . , M} (in slot i+1); the casei = M +1 corresponds
to the case where the relay is backing off. Finally,p

(m)
i stands

for the probability of the relay forwarding the symbolm̂ = i
while the source is transmitting the symbolm.

For i 6= M + 1, the probabilityp
(m)
i is given by:p(m)

i =
∏i−1

k=1 Pr(y(k)
r < Ith)Pr(y(i)

r ≥ Ith). Given thaty(m)
r = h1 +

n
(m)
r while y

(m′)
r = n

(m′)
r for m′ 6= m, then fori < m:

p
(m)
i =

i−1
∏

k=1

Pr(n(k)
r <Ith)Pr(n(i)

r ≥Ith) = (1 − p)i−1p (47)

following from (15).
For i = m, following from (14) and (15):

p
(m)
i =

i−1
∏

k=1

Pr(n(k)
r < Ith)Pr(h1 + n(m)

r ≥ Ith)

= (1 − p)i−1(1 − p) = (1 − p)i (48)

In the same way, form < i ≤ M :

p
(m)
i =

m−1
∏

k=1

Pr(n(k)
r < Ith)Pr(h1 + n(m)

r < Ith)

×
i−1
∏

k=m+1

Pr(n(k)
r < Ith)Pr(n(i)

r ≥ Ith)

= (1 − p)m−1p(1 − p)i−m−1p = (1 − p)i−2p2 (49)
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For i = M + 1, p
(m)
i =

∏M
k=1 Pr(y(k)

r < Ith) resulting in:

p
(m)
i =

m−1
∏

k=1

Pr(n(k)
r <Ith)Pr(h1+n(m)

r <Ith)

M
∏

k=m+1

Pr(n(k)
r <Ith)

= (1−p)m−1p(1−p)M−m = (1−p)M−1p = (1−p)i−2p
(50)

Now combining (47)-(50) results in (30).
Given that symbolm is transmitted by the source and

symbol i is transmitted by the relay, then (neglecting the
interference) the decision variables at the destination can be
written as:

y
(j)
d = δj,mh2 + δj,ih3 + n

(j)
d ; j = 1, . . . , M (51)

In this case, the error probabilityP (m)
i can be written as:

P
(m)
i = Pr





M
⋃

j=1 ; j 6=m

(y
(j)
d ≥ y

(m)
d )





≤
M
∑

j=1 ; j 6=m

Pr(y(j)
d > y

(m)
d ) ,

M
∑

j=1 ; j 6=m

P
(m)
i,j (52)

where the union bound was invoked. From (51), forj 6= m:

P
(m)
i,j = Pr

(

δj,ih3 + n
(j)
d > h2 + δm,ih3 + n

(m)
d

)

= Pr
(

n
(j)
d − n

(m)
d > h2 + (δm,i − δj,i)h3

)

(53)

For j 6= m − 1 and j 6= m + 1, the noise termsn(j)
d and

n
(m)
d are uncorrelated following from (10). In this case, (53)

can be written as:

P
(m)
i,j = Q





h2 + (δm,i − δj,i)h3
√

2N0

2 (hsd + hrd)



 ; j 6= m ± 1 (54)

For j = m − 1 or j = m + 1, E[n
(j)
d n

(m)
d ] = N0

2

√
hsdhrd

following from (10). Following an analysis similar to the one
given in (17)-(21) shows that (53) can be written in this case
as:

P
(m)
i,j = Q





h2 + (δm,i − δj,i)h3
√

2N0

2 (hsd + hrd −
√

hsdhrd)



 ; j = m ± 1

(55)
Finally, combining (54) and (55) and replacingh2 and h3

by their values results in (29).
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