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On the Optimality of the Selection Transmit
Diversity for MIMO-FSO Links with Feedback

Chadi Abou-Rjeily,Member IEEE

Abstract— We propose an optimal power allocation strategy
for Multiple-Input-Multiple-Output (MIMO) Free-Space Op tical
(FSO) links with Intensity Modulation (IM) and Direct Detec tion
(DD). The optimization is performed for shot noise limited
systems in the presence of complete feedback. The derived
analytical solution turns out to be the same as the selection
transmit diversity scheme proposed in [1] for MISO-FSO systems
corrupted by Gaussian noise. We also propose and analyze a
novel transmission strategy for the limited-feedback case.

Index Terms— Free-space optics, transmit diversity, power
allocation, atmospheric turbulence.

I. I NTRODUCTION AND PROBLEM FORMULATION

Free-Space Optical (FSO) links often suffer from fading
(or scintillation) that results from the variation of the index of
refraction due to inhomogeneities in temperature and pressure
changes. In this context, there is a growing interest in Multiple-
Input-Multiple-Output (MIMO) techniques as a means of
combating fading and leveraging the performance of FSO
links [1]–[5]. In addition to fading, FSO links suffer from
the following impairments: (i) shot noise that results from
the random nature of the photo-generation process at the
receiver and (ii) background noise, thermal noise and dark
currents whose contributions are often modeled by an additive
white Gaussian noise (AWGN). An accurate performance
analysis must take the above two factors into consideration;
however, this approach results in intractable results thatdo
not offer clear insights on the performance of FSO systems.
Consequently, simplifying assumptions are often made.

For example, in [2], AWGN was ignored and a “repetition
coding” (RC) scheme was proposed for systems that suffer
from shot noise (as well as background noise having Poisson
statistics). This scheme corresponds to transmitting the same
symbol from all optical sources with a uniform power allo-
cation. RC was also analyzed in [3] for systems corrupted
uniquely by AWGN. In [4], [5], non-negative totally-real
space-time codes (STC) were proposed for FSO systems cor-
rupted by Gaussian noise. In [1], a selection transmit diversity
(STD) scheme was proposed for Multiple-Input-Single-Output
(MISO) FSO links in the presence of AWGN while ignoring
the shot noise. In the presence of a complete feedback, STD
is based on the selection of the optical path having the
highest scintillation. It was shown that STD achieves higher
performance levels than RC and STC that do not require any
feedback from the receiver to the transmitter.
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In this paper, we tackle the problem of transmit diversity
for FSO links with feedback as a power allocation problem. In
this context, the main contribution of our work correspondsto
proving the optimality of the STD scheme as an optimal power
allocation strategy for shot noise limited MIMO-FSO systems.
In our work, AWGN is assumed to be negligible compared to
the shot noise. This assumption is justified by the fact that
transmit diversity schemes that are designed to combat fading
result in the highest performance gains at high signal-to-
noise ratios. Consequently, for these high performance systems
where the received signal strength is sufficiently large, the
signal-dependent shot noise and fading become the main
limiting factors [2]. Other minor contributions are as follows:
(i) we extend the STD scheme that was initially considered
with MISO links to MIMO links and (ii) we propose an
extension of the STD scheme to situations where a feedback
with limited number of bits is available. We also prove the
optimality of STD under the scenario considered in [1]; that
is, MISO systems with AWGN in the absence of shot noise.

II. OPTIMAL POWER ALLOCATION STRATEGY

Consider a MIMO-FSO link whereM laser sources illu-
minate simultaneously an array ofN distant photodetectors
(PDs). Denote byPm the fraction of the total transmit power
allocated to them-th laser form = 1, . . . , M . For Q-ary
PPM with RC, the conditional symbol error probability in the
absence of background radiation can be written as [2]:

Pe|A =
Q − 1

Q
e−ηs

P
N
n=1

P
M
m=1

Pma2

n,m (1)

wherean,m stands for the path gain between them-th laser and
n-th PD and the channel stateA is determined from theMN
values taken byan,m for n = 1, . . . , N andm = 1, . . . , M . In
this work, we adopt the lognormal turbulence-induced fading
channel model [2].ηs corresponds to the average number of
photoelectrons per PPM slot due to the incident light signal:

ηs = η
PrTs/Q

hf
= η

Es

hf
(2)

whereη is the detector’s quantum efficiency assumed to be
equal to 1 in what follows,h = 6.6 × 10−34 is Planck’s
constant andf is the optical center frequency taken to be
1.94× 1014 Hz (corresponding to a wavelength of 1550 nm).
Ts stands for the symbol duration andPr stands for the optical
power that is incident on the receiver. Finally,Es , PrTs/Q
corresponds to the received optical energy per symbol.

Proposition: The optimal values of{Pm}M
m=1 that minimize

Pe|A subject to the constraints
∑M

m=1 Pm = 1 and Pm ≥ 0
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for m = 1, . . . , M are given by:

Pm = δm,m̃ ; m̃ = arg max
m=1,...,M

{
N

∑

n=1

a2
n,m} (3)

whereδi,j = 1 for i = j andδi,j = 0 for i 6= j.
Proof : The proof is provided in the appendix.
Note that for the AWGN-limited MISO systems considered

in [1] (in the absence of shot noise), the conditional probability
of error can be written as:P ′

e|A = Q
(√

K(
∑M

m=1 Pma1,m)2
)

whereK is a constant proportional to the SNR. Given that the
solution proposed in (3) minimizes the error probability given
in (1), then it maximizes the term

∑M
m=1 Pma2

1,m. Since this
term is maximized forPm =δm,m̃ wherem̃ = arg max{a2

1,m}
and since this selection procedure is equivalent tom̃ =
arg max{a1,m}, then the choicePm = δm,m̃ also maximizes
the term

∑M
m=1 Pma1,m implying that it minimizesP ′

e|A.
Consequently, the proposed power allocation strategy is also
optimal under the scenario considered in [1].

III. F EEDBACK WITH LIMITED NUMBER OF BITS

The STD scheme considered in the previous section requires
⌈log2 M⌉ bits of feedback for indicating the laser from which
the total optical power must be transmitted (the function⌈x⌉
rounds the real numberx to the smallest integer that is greater
than or equal tox). Assume now that the transmitter acquires
a partial knowledge of the channel state information (CSI) via
bf < ⌈log2 M⌉ feedback bits. For this scenario, the strategy
that we propose consists of partitioning the set ofM lasers into
K , 2bf disjoint groups. Based on the value taken by thebf

feedback bits, the transmitter selects one of theK groups and
distributes the total optical power evenly among the elements
of this group. Based on this formulation, the RC scheme of [2]
is equivalent to the no-feedback case (K = 1 group havingM
elements) and the optical power is evenly distributed among
the M lasers. In the same way, the STD scheme of [1] is
equivalent to the complete-feedback case (K = M groups
having one element each) and only one laser is turned on
based on the specific channel realization.

Denote bynk the number of lasers in thek-th group for
k = 1, . . . , K. The proposed strategy corresponds to deciding
in favor of groupk̃ and transmitting a normalized power of
1

n
k̃

from each laser of this group if the integerk̃ is chosen as:

k̃ = arg max
k=1,...,K

Ak , arg max
k=1,...,K

1

nk

N
∑

n=1

nk
∑

j=1

a2
n,f(k,j) (4)

wheref(k, j) , [
∑k−1

i=1 ni] + j corresponds to the index of
the j-th laser in thek-th group.

In this work, we adopt the lognormal fading model [2]
where each path gain is modeled as a lognormal random
variable (r.v.) with parametersµ and σ. These parameters
satisfy the relationµ = −σ2 so that the mean path intensity
is normalized to unity. The degree of fading is measured by
the scintillation index defined as: S.I.= e4σ2 − 1 [2].

The r.v.Ak defined in (4) corresponds to the summation of
Nnk lognormal r.v.s. Even though this lognormal-sum distri-
bution is not known in closed-form, it is often approximated
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Fig. 1. Performance of 4-PPM over lognormal fading channels(S.I. = 0.6).
Dashed lines correspond to the semi-analytical results obtained from (5).

by another lognormal distribution by a number of methods
[6]. One of these methods that we will adopt in what follows
is the Wilkinson’s method [6]. In other words, forNnk 6= 1,
Ak will be approximated by a lognormal r.v. whose parameters
(that will be denoted byµNnk

andσNnk
) are determined from

Wilkinson’s method. Note that forN = 1 andnk = 1, Ak is
a lognormal r.v. with parametersµ1 = 2µ andσ1 = 2σ.

Denote byfi(.) and Fi(.) the probability density function
(pdf) and cumulative distribution function (cdf) of the log-
normal r.v. with parametersµi and σi, respectively. In this
case, the cdf of the maximum gainAk̃ can be written as:
Fmax(a) =

∏K
k=1 FNnk

(a) implying that the pdf ofAk̃ can be
written as:fmax(a) =

∑K
k′=1 fNnk′

(a)
∏K

k′ 6=k=1 FNnk
(a). For

example, assume thatM = 8, N = 1 and bf = 2 (resulting
in K = 4). If we partition the 8 lasers into 4 groups such that
n1 =1, n2 =2, n3 =2 andn4 =3, then in this case:Fmax(a) =
F1(a)F 2

2 (a)F3(a) resulting infmax(a) = f1(a)F 2
2 (a)F3(a) +

2f2(a)F1(a)F2(a)F3(a)+F1(a)F 2
2 (a)f3(a). Note that for the

MISO-STD scheme with complete feedback:N = 1 and
K = M implying that nk = 1 for k = 1, . . . , M resulting
in Fmax(a) = FM

1 (a) andfmax(a) = MFM−1
1 (a)f1(a) which

corresponds to the result obtained in [1].
Finally, the probability of error can be determined from:

Pe =
Q − 1

Q

∫ +∞

0

e−ηsa2

fmax(a)da (5)

Note that because of the complex expression taken by
fmax(a), the above integral can not be solved analytically.
Finally, since all path gains are identically distributed,then
the choice of the specific lasers to be placed within the same
group does not have any impact on the value taken byPe.

Evaluating (5) under different scenarios showed the follow-
ing main observation: for a given value ofbk, all possible
partitions resulted in approximately the same performance
level. In other words, there is no evident preference of one
value of (n1, . . . , nK) over another. For example, forM = 7
and bf = 1, the possible values of(n1, n2) are (1, 6), (2, 5)
and (3, 4). In this case, plotting the result in (5) showed that
the three corresponding error curves were extremely close to
each other. This might follow from the independence of the
path gains that add up coherently at the receiver side.
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IV. N UMERICAL RESULTS

Fig. 1 shows the performance of 4-PPM withM = 8 laser
sources over lognormal fading channels having a scintillation
index of 0.6. Results show the impact of the number of
feedback bits on the performance. The proposed strategy in the
limited-feedback case is capable of achieving different levels
of performance that fall within that of the STD scheme [1]
(complete feedback) and the RC scheme [2] (no feedback).
Results also show the close match between simulations and the
semi-analytical expression ofPe given in (5). Similar results
were obtained in the presence of background radiation but
were not presented here because of space limitations.

V. CONCLUSION

MIMO-FSO links with feedback do not require knowledge
of the exact values taken by the path gains. These systems
require solely the implementation of a certain sorting function
at the receiver while perfect CSI can be realized via a finite
number of feedback bits. While such a sorting function was
provided in [1] in the case of complete feedback, we proved its
optimality and extended it to systems with limited feedback.
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APPENDIX

From (1), minimizingPe|A is equivalent to minimizing:

e−ηs

P
M
m=1

Pm

P
N
n=1

a2

n,m = e−
P

M
m=1

kmPm (6)

where km , ηs

∑N
n=1 a2

n,m for m = 1, . . . , M . Now,
minimizing (6) is equivalent to minimizing the function:

f(P1, . . . , PM ) = −
M
∑

m=1

kmPm (7)

In order to take the equality constraint
∑M

m=1 Pm = 1 and
the M inequality constraints−Pm ≤ 0 (for m = 1, . . . , M )
into consideration, we construct the Lagrangian function:

Λ(P, λ, µ) = −
M
∑

m=1

kmPm + λ(
M
∑

m=1

Pm − 1) −
M
∑

m=1

µmPm

(8)
At the point(P1, . . . , PM ) minimizing f(P1, . . . , PM ), the

function Λ must satisfy the followingM equations:

∂Λ

∂Pm

= −km + λ − µm = 0 ; m = 1, . . . , M (9)

Moreover, the differentiation of the functionΛ with respect to
the Lagrange multiplierλ implies that:

∂Λ

∂λ
=

M
∑

m=1

Pm − 1 = 0 (10)

The Karush-Kuhn-Tucker (KKT) conditions that are neces-
sary for the optimality of the final solution can be summarized
in a set ofM equalities andM inequalities as follows:

µmPm = 0 ; m = 1, . . . , M (11)

µm ≥ 0 ; m = 1, . . . , M (12)

Assume thatPm̃ >0 for a certain value of̃m ∈ {1, . . . , M}.
Equation (11) implies thatµm̃ = 0 resulting in λ = km̃

following from applying (9) form = m̃. Replacing this value
of λ in (9) for m 6= m̃ results in:

µm = (km̃ − km) ; m 6= m̃ (13)

Note thatµm 6= 0 for m 6= m̃ since the equalitykm̃ = km

among the random variableskm and km̃ that depend on
the channel coefficients{an,m} does not hold in general.
Replacingµm 6= 0 in (11) results inPm = 0 for m 6= m̃
implying thatPm̃ = 1 following from (10). On the other hand,
theM−1 inequalities given in (12) hold if and only ifµm > 0
for m 6= m̃ resulting in:

km < km̃ ; m 6= m̃ (14)

following from (13).
Therefore, the2M + 1 equalities in equations (9)-(11) and

the M inequalities in (12) will all hold and the solution
(P1, . . . , PM ) = em̃ will be optimal if and only if (14) is
satisfied (whereem stands for them-th row of theM ×M
identity matrix). Consequently,̃m must be chosen as:

m̃ = arg max
m=1,...,M

{km} = arg max
m=1,...,M

{
N

∑

n=1

a2
n,m} (15)

resulting in the optimal solution proposed in (3).
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