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Abstract— In this paper, we investigate the cooperative diver-
sity technique as a candidate solution for combating turbulence-
induced fading over Free-Space Optical (FSO) links. In particu-
lar, we propose a novel cooperation strategy that is suitable for
quantum-limited FSO systems with any number of relays and we
derive closed-form expressions for the error performance of this
strategy. In scenarios where the Channel-State-Information (CSI)
is available at the different nodes, we propose an optimal power
allocation strategy that satisfies the Karush-Kuhn-Tucker(KKT)
conditions and that further boosts the performance of FSO
networks. It turned out that this closed-form optimal solution
corresponds to transmitting the entire optical power alongthe
“strongest link” between the source and the destination nodes.
A simple procedure is proposed for selecting this link and for
distributing the power among its different hops.

Index Terms— Free-space optics, spatial diversity, cooperative
diversity, atmospheric turbulence, power allocation.

I. I NTRODUCTION

Recently, Free-Space Optical (FSO) communications at-
tracted significant attention as a promising solution for the
“last mile” problem [1]. A major impairment that severely
degrades the link performance is fading (or scintillation)that
results from the variations of the index of refraction due to
inhomogeneities in temperature and pressure changes [2]. In
order to combat fading, the Multiple-Input-Multiple-Output
(MIMO) techniques, that were extensively studied in the
context of RF communications, were recently extended and
tailored to FSO systems [3]–[5]. In this context, it is well
known that MIMO systems achieve the highest performance
gains in the case of spatially uncorrelated channels. For RF
systems, the assumption of uncorrelated channels is often
justified since the wide beamwidth of the antennas and the
rich scattering environment that is often present between the
transmitter and the receiver both ensure that the signal reaches
the receiver via a large number of independent paths. On
the other hand, FSO links are much more directive and,
for example, the presence of a small cloud might induce
large fades on all source-detector sub-channels simultaneously
[3]. Consequently, the high performance gains promised by
MIMO-FSO systems might not be achieved in practice and
“alternative means of operation in such environments must be
considered” [3].

On the other hand, cooperative communication is emerging
as a new communication paradigm where multiple nodes in
a wireless network can cooperate with each other to form a
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virtual antenna array and profit from the underlying spatial
diversity in a distributed manner [6]. Cooperative diversity
is based on the broadcast nature of RF transmissions where
a message transmitted from a source node can be overheard
by neighboring nodes and then can be processed and relayed
to the destination node. Consequently, questions arise on the
utility of cooperation for the directive LOS FSO networks.

While the literature on cooperation in RF networks is huge
and dates back to about a decade [6], it was only recently that
some contributions considered this transmission strategyin the
context of FSO communications [7], [8]. In [7], a cooperation
strategy based on the implementation of convolutional codes
was proposed and analyzed and in [8] a cooperation strategy
that can be implemented independently from the structure of
the channel code was considered. Both contributions showed
the utility of cooperation for FSO systems despite the non-
broadcast nature of FSO transmissions.

While [7] and [8] were limited to the case of one relay, we
propose a novel cooperation strategy that can be applied with
any number of relays. We further analyze the performance of
the proposed scheme in the presence of shot noise under the as-
sumption that background noise is negligible. This assumption
is justified by the fact that diversity techniques are designed
to combat fading (and not noise) and they result in the highest
performance gains at high signal-to-noise ratios (SNR) [7], [8].
Note that, for low SNRs, it is better not to cooperate since the
relays will be forwarding noisy replicas of the informationthey
received [8]. Consequently, for cooperative systems that are
designed to operate at high SNRs, the received signal strength
is sufficiently large so that the signal-dependent shot noise
and fading become the main limiting factors [3]. While [7]
and [8] are both limited to the case where the Channel-State-
Information (CSI) is not available neither at the transmitter
nor at the receiver sides, another contribution of this work
resides in investigating the impact of CSI on the performance
of cooperative FSO networks. In this context, we propose an
optimal power allocation strategy that is based on minimizing
a tight upper-bound on the error probability.

II. COOPERATIONSTRATEGY AND SYSTEM MODEL

A. Cooperation Strategy

Consider the example of a FSO Metropolitan Area Network
with two buildings A and C having several FSO units placed
on their top. Each unit consists of an optical transmitter and
receiver and is deployed to establish a full-duplex FSO link
with a neighboring building. Given the high directivity of FSO
transmissions, one separate transceiver is entirely dedicated



for the communication with a certain neighboring building.
Consider also a certain number of neighboring buildings B1,
B2, . . . and assume that two separate FSO links are set up
between each one of these buildings and buildings A and C.

For the above scenario, a cooperation protocol can be
implemented to achieve spatial diversity if the transceivers
on buildings B1, B2, . . . are willing to cooperate in order
to enhance the communication reliability between buildings
A and C. This cooperation can be realized by temporarily
dedicating the links (A-B1), (A-B2), . . . and (B1-C), (B2-C),
. . . for relaying the information that A has to communicate
with C (or vice vera). By abuse of notation, buildings A and
C will be denoted by source S and destination D, respectively,
while buildings B1, B2, . . . will be denoted as relays R1,
R2, . . .. In what follows, we denote byNr the number of
relays cooperating with S and D. It is worth noting that
the transceivers at R1, . . ., RNr

are not deployed with the
objective of relaying the data of S. In fact, these transceivers
are deployed for R1, . . ., RNr

to communicate with S and
D. Now, if R1, . . ., RNr

are willing to share their existing
resources (and they have no information to transmit), then they
can act as relays for assisting S in its communication with D.
Note that in a different communication session, S and D can
act as relays for the communication between Ri and Rj .

The cooperation strategy that we propose applies to systems
that suffer from shot noise in the absence of background
radiation. The transmitted symbols are assumed to be carved
from a Q-ary pulse position modulated are implemented at
the destination and the relays. In the absence of background
radiation, the only source of photons is the information-
carrying light signal itself. Consequently, only two scenarios
are possible at each receiver: either (i) exactly one slot contains
a nonzero count implying that a correct decision can be made
or (ii) all slots have a zero count; in this case, deciding
randomly in favor of one of the slots will result in a correct
decision with probability1/Q.

The cooperation strategy that we propose is as follows: at
a first time, a sequence of symbols is transmitted from S to
D and to theNr relays. At a second time, each relay decodes
its received symbols. If at a certain relay, a nonzero photon
count was observed in one slot, then this relay has detected
the information symbol correctly and it participates in the
cooperation effort by retransmitting this symbol to D. On the
other hand, if all counts are equal to zero, then most probably
the corresponding relay will make an erroneous decision (with
probability Q−1

Q ). In order to avoid confusing D by forwarding
a wrong estimate of the symbol, the relay backs off and stops
its retransmission during the corresponding symbol duration.
Note that the retransmissions from all cooperating relays
occur simultaneously. Given the non-broadcast nature of FSO
transmissions, there is no interference between the different
FSO units involved in each cooperation cycle. Consequently,
no particular coding is required for separating the data streams
that are transmitted simultaneously from the relays to D. This
justifies the adaptability of the above simple strategy thatis
based on spatial repetitions for FSO networks. Finally, note
that the proposed strategy does not require any kind of CSI
and it can be implemented without feedback.

B. System Model

Denote bya0, as,1, . . . , as,Nr
and a1,d, . . . , aNr,d the path

gains of the links S-D, S-R1, . . . , S-RNr
and R1-D, . . .,

RNr
-D, respectively. In this work, we adopt the lognormal

and Rayleigh turbulence-induced fading channel models [3].
In the lognormal model, the probability density function
(pdf) of the path gain (a > 0) is given by: fA(a) =

1√
2πσa

exp
(

− (ln a−µ)2

2σ2

)

where the parametersµ andσ satisfy

the relationµ = −σ2 so that the mean path intensity is unity:
E[I] = E[A2] = 1. The degree of fading is measured by the
scintillation index defined by: S.I.= e4σ2 − 1. Typical values
of S.I. range between 0.4 and 1. In the Rayleigh model, the
pdf of the path gain (a > 0) is: fA(a) = 2ae−a2

.
Denote byP0 the fraction of the total power that is dedicated

to the direct link S-D. In the same way, denote byP
(n)
1

and P
(n)
2 the fractions of the total power dedicated to links

S-Rn and Rn-D, respectively. In order to ensure the same
transmission level as in non-cooperative systems, the following
equality must be satisfied:P0 +

∑Nr

n=1[P
(n)
1 + P

(n)
2 ] = 1.

We considerQ-ary PPM with intensity modulation and
direct detection (IM/DD) where each receiver corresponds to
a simple photoelectrons counter. Denote byλs the average
number of photoelectrons per slot resulting from the incident
light signal.λs is given by [3]:

λs = η
PrTs/Q

hf
= η

Es

hf
(1)

whereη is the detector’s quantum efficiency assumed to be
equal to 1 in what follows,h = 6.6 × 10−34 is Planck’s
constant andf is the optical center frequency taken to be
1.94 × 1014 Hz (corresponding to a wavelength of 1550
nm). Ts stands for the symbol duration whilePr stands for
the optical power that is incident on the receiver. Finally,
Es = PrTs/Q corresponds to the received optical energy per
symbol corresponding to the direct link S-D.

Consider first the link S-D and denote byZ0 =
[Z0,1, . . . , Z0,Q] theQ-dimensional vector whoseq-th compo-
nent corresponds to the number of photoelectrons in theq-th
slot. In the absence of background radiation, if the transmitted
symbol is s ∈ {1, . . . , Q}, then the decision variableZ0,s

can be modeled as a Poisson random variable (r.v.) with
parameterP0a

2
0λs while the remainingQ − 1 slots will be

empty:Z0,q = 0 for q 6= s.
In the same way, we denote the decision vector observed

at then-th relay byZ
(n)
1

= [Z
(n)
1,1 , . . . , Z

(n)
1,Q]. Given that the

symbol s was transmitted simultaneously to the destination
and to the relays, then:Z(n)

1,q = 0 for q 6= s while Z
(n)
1,s is a

Poisson r.v. whose parameter is given by:

E
[

Z
(n)
1,s

]

= β
(n)
1 P

(n)
1 a2

s,nλs ; n = 1, . . . , Nr (2)

whereβ
(n)
1 is a gain factor associated with then-th relay and

resulting from the fact that S might be closer to Rn than it is
to D. Performing a typical link budget analysis [3] shows that

β
(n)
1 =

(

dSD

dSRn

)2

wheredSD anddSRn
stand for the distances

from S to D and from S to Rn, respectively, forn = 1, . . . , Nr.



Fig. 1. The cooperation scheme with two relays.

By inspecting the decision vectorZ(n)
1

, the n-th relay
decides in favor of symbol̂s(n) where (forn = 1, . . . , Nr):

ŝ(n) = arg max
q=1,...,Q

Z
(n)
1,q ≡ argq=1,...,Q

[

Z
(n)
1,q 6= 0

]

(3)

where the above decision rules are equivalent since, in the
absence of background radiation, at leastQ − 1 slots ofZ(n)

1

have a zero photon count.
Denote the decision vector at the destination corresponding

to the link Rn-D by Z
(n)
2

= [Z
(n)
2,1 , . . . , Z

(n)
2,Q]. Based on the

proposed cooperation strategy, the statistics of the components
of Z

(n)
2

depend on the decision taken at then-th relay.
If at least one component ofZ(n)

1
is different from zero,

then a correct decision was made at then-th relay since
in the absence of background radiation the only source of
this nonzero count is the presence of a light signal in the
corresponding slot. In this case, then-th relay retransmits the
symbolŝ(n) = s along the link Rn-D. Consequently,Z(n)

2,q = 0

for q 6= s while Z
(n)
2,s is a Poisson r.v. with parameter:

E
[

Z
(n)
2,s

]

= β
(n)
2 P

(n)
2 a2

n,dλs ; n = 1, . . . , Nr (4)

where β
(n)
2 =

(

dSD

dRnD

)2

with dRnD corresponding to the
distance between Rn and D.

On the other hand, if all components ofZ
(n)
1

are equal to
zero, then a correct decision can not be guaranteed at then-th
relay. In this case, then-th relay stops its transmission (for
one symbol duration corresponding tos) implying that Z(n)

2

will be equal to the all-zero vector. The cooperation strategy
and the different parameters are depicted in Fig. 1 forNr = 2.

III. PERFORMANCEANALYSIS

A. Optical Detection

The decision taken at D will be based on the vectors
Z0, Z

(1)
2

, . . . ,Z
(Nr)
2

. The proposed strategy ensures that the
nonzero counts in the above vectors (if present) will be all in
the same PPM slot. Note that all-zero counts inZ

(n)
2

follow
from either (i) all-zero counts inZ(n)

1
(implying that then-

th relay will not cooperate with S) or (ii) then-th relay
retransmitted the correct symbol but because of fading and
shot noise along the link Rn-D, zero photons were observed
in the corresponding slot.

Defining the vectorZ asZ , Z0+
∑Nr

n=1 Z
(n)
2

, the decision
rule at D is given by:

s̃ =

{

argq[Zq 6= 0], Z 6= 0Q;
rand(1, . . . , Q), Z = 0Q.

(5)

where0Q corresponds to theQ-dimensional all-zero vector
while the function rand(1, . . . , Q) corresponds to choosing
randomly one integer in the set{1, . . . , Q}.

B. Conditional error probability with one relay

The channel state is defined by the vectorA ,

[a0, as,1, . . . , as,Nr
, a1,d, . . . , aNr,d]. For Nr = 1 relay, the

conditional symbol-error probability (SEP) assuming thatthe
symbols was transmitted can be written as:

Pe|A =Pr(Z0,s >0)p1 + Pr(Z0,s =0)Pr(Z(1)
1,s =0)p2+

Pr(Z0,s =0)Pr(Z(1)
1,s >0)

[

Pr(Z(1)
2,s >0)p3 + Pr(Z(1)

2,s =0)p4

]

(6)

wherep1 = 0 since a nonzero count in slots along the link
S-D implies certainly that the symbol was transmitted in this
slot. On the other hand,p2 = Q−1

Q since when all-zero counts
are observed along the link S-R1, the relay does not participate
in the retransmission; moreover, when all-zero counts are also
observed along the link S-D, thenZ = 0Q and a random
decision is made at D. Nowp3 = 0 sinceZ

(1)
2,s >0 will imply

that Zs > 0 resulting in no error. Finally,p4 = Q−1
Q since

(Z0,s, Z
(1)
2,s ) = (0, 0) will imply that Zs = 0 resulting in a

random decision at D. Therefore, eq. (6) can be written as:

Pe|A =
Q−1

Q
Pr(Z0,s=0)

[

Pr(Z(1)
1,s =0)+Pr(Z(1)

1,s >0)Pr(Z(1)
2,s =0)

]

(7)
Note that because of the symmetry of the PPM constellation,
Pe|A does not depend on the value taken by the symbols.
On the other hand, Pr(Z0,s = 0) = e−P0a2

0λs . From eq. (2),

Pr(Z(1)
1,s = 0) = 1 − Pr(Z(1)

1,s > 0) = e−β
(1)
1 P

(1)
1 a2

s,1λs and from

eq. (4): Pr(Z(1)
2,s =0) = e−β

(1)
2 P

(1)
2 a2

1,dλs . Replacing these terms
in eq. (7) results in:

Pe|A =
Q−1

Q
e−k0P0

[

e−k
(1)
1 P

(1)
1 +e−k

(1)
2 P

(1)
2 −e−k

(1)
1 P

(1)
1 e−k

(1)
2 P

(1)
2

]

(8)
where the constantsk0 and {k(n)

1 , k
(n)
2 }Nr

n=1 are positive real
numbers defined as:

k0 , a2
0λs ; k

(n)
1 , β

(n)
1 a2

s,nλs ; k
(n)
2 , β

(n)
2 a2

n,dλs (9)

Equation (8) shows that there is a two fold increase in the
diversity. In fact,Pe|A is large when eithera0 and as,1 are
both small (the links S-D and S-R1 are both in deep fades) or
whena0 anda1,d are both small (the links S-D and R1-D are
both in deep fades).

C. Conditional error probability with more than one relay

Proposition: In the presence ofNr relays, the conditional
SEP can be expressed as the product ofNr +1 terms corre-



sponding to the links S-D, S-R1-D, . . ., S-RNr
-D as follows:

Pe|A(Nr) =
Q − 1

Q
e−k0P0 .

Nr
∏

n=1

[

e−k
(n)
1 P

(n)
1 + e−k

(n)
2 P

(n)
2 − e−k

(n)
1 P

(n)
1 e−k

(n)
2 P

(n)
2

]

(10)

Proof : We will prove the above relation by induction. Eq.
(10) reduces to eq. (8) forNr = 1. Assume that the above
relation holds forNr − 1 and prove that it holds forNr.

We define the probabilityP ′
e|A(Nr) as: P ′

e|A(Nr) =

Pe|A(Nr)
Q

Q−1 . For Nr relays,Pe|A(Nr) can be written as:

Pe|A(Nr) =
[

1 − P ′
e|A(Nr − 1)

]

p1 + P ′
e|A(Nr − 1)p2 (11)

wherep1 = 0 since with probability1−P ′
e|A(Nr−1) the sys-

tem formed from the firstNr − 1 relays and corresponding to
the set ofNr links S-D, S-R1-D, . . ., S-RNr−1-D is providing
the destination with at least one decision vector containing
a non-zero count. Since the proposed cooperation strategy
ensures retransmissions only in the correct slot, then no error
is made in this case. On the other hand, with probability
P ′

e|A(Nr − 1) the above system ofNr − 1 relays is providing
the destination withNr all-zero decision vectors. In this case,
the reliability of the transmission will be determined by the
link S-RNr

-D provided by theNr-th relay. Consequently,p2

can be written as:

p2 =
Q−1

Q

[

Pr(Z(Nr)
1,s = 0) + Pr(Z(Nr)

1,s > 0)Pr(Z(Nr)
2,s = 0)

]

=
Q−1

Q

[

e−k
(Nr)
1 P

(Nr)
1 +

(

1−e−k
(Nr)
1 P

(Nr)
1

)

e−k
(Nr)
2 P

(Nr)
2

]

(12)

Now substitutingp1 andp2 by their values in eq. (11) results
in eq. (10).

The conditional SEP given in eq. (10) can be bounded by:

Pe|A(Nr)≤
Q−1

Q
e−k0P0

Nr
∏

n=1

[

e−k
(n)
1 P

(n)
1 +e−k

(n)
2 P

(n)
2

]

(13)

where this upper-bound becomes tighter for large values of
Es. In fact, asymptotically, the terme−k

(n)
1 P

(n)
1 e−k

(n)
2 P

(n)
2 is

two orders of magnitude smaller than the termse−k
(n)
1 P

(n)
1 and

e−k
(n)
2 P

(n)
2 .

D. Error probability and diversity order

Averaging the conditional SEP given in eq. (10) over the
distributions ofa0, as,1, . . . , as,Nr

, a1,d, . . . , aNr,d shows that
the SEP can be written under the following form:

Pe =
Q−1

Q
Pe,0

Nr
∏

n=1

[

P
(n)
e,1 + P

(n)
e,2 − P

(n)
e,1 P

(n)
e,2

]

(14)

In the case of Rayleigh fading,Pe,0 = (1 + P0λs)
−1 and

P
(n)
e,i = (1 + β

(n)
i P

(n)
i λs)

−1 for i = 1, 2 and n = 1, . . . , Nr.

This shows thatPe scales asymptotically asλ−(Nr+1)
s (rather

thanλ−1
s as in1×1 non-cooperative FSO links). This implies

that the proposed cooperation strategy permits to achieve a
diversity order ofNr + 1 in the presence ofNr relays.

For lognormal fading, the integrals involved in the calcu-
lation of the SEP do not admit a closed-form solution. In
this case, the different terms in eq. (14) can be written as:
Pe,0 = Fr(P0λs, 0, σ) and P

(n)
e,i = Fr(β(n)

i P
(n)
i λs, 0, σ) for

i = 1, 2 andn = 1, . . . , Nr where Fr(a, 0, b) is the lognormal
density frustration function defined in [9] as:

Fr(a, 0, b)=

∫ +∞

0

1√
2πb2x

e−ax2

exp

[

− (ln(x) + b2)2

2b2

]

dx (15)

IV. POWER ALLOCATION IN THE PRESENCE OFCSI

In the absence of CSI, no preference can be made among
the available links. In this case, the transmit power must be
equally distributed among the2Nr + 1 links S-D, S-R1, . . .,
S-RNr

and R1-D, . . ., RNr
-D by setting:

P0 =P
(1)
1 = · · ·=P

(Nr)
1 =P

(1)
2 = · · ·=P

(Nr)
2 =

1

2Nr + 1
(16)

On the other hand, when the path gains are known
for a given channel realization, the values ofP0 and
{P (n)

1 , P
(n)
2 }Nr

n=1 can be optimized in order to minimize the
conditional error probability.

The power allocation strategy that we propose is based on
minimizing the upper-bound given in eq. (13) rather than the
exact expression ofPe|A given in eq. (10) for the following
reasons: (i) The minimization ofPe|A given in eq. (10) turns
out to be tedious and does not result in simple closed-form
solutions that lend themselves to feasible implementationin
realistic systems. (ii) Diversity techniques achieve their highest
performance gains in the high SNR regime and it is in this
region that the bound given in eq. (13) becomes extremely
close to the exact expression ofPe|A.

A. Power allocation with one relay

Proposition: The optimal values of{P0, P
(1)
1 , P

(1)
2 } that

minimize the bound in eq. (13) subject to the constraints
P0 + P

(1)
1 + P

(1)
2 = 1 and P0 ≥ 0, P

(1)
1 ≥ 0 and P

(1)
2 ≥ 0

are given by:

(P0, P
(1)
1 , P

(1)
2 )=






0,

k
(1)
2 +log

k
(1)
1

k
(1)
2

k
(1)
1 +k

(1)
2

,
k

(1)
1 +log

k
(1)
2

k
(1)
1

k
(1)
1 +k

(1)
2






(17)

if 1
k0

≥ 1

k
(1)
1

+ 1

k
(1)
2

and max(k
(1)
1 , k

(1)
2 ) ≥ log

max(k
(1)
1 ,k

(1)
2 )

min(k
(1)
1 ,k

(1)
2 )

and by:
(P0, P

(1)
1 , P

(1)
2 ) = (1, 0, 0) (18)

otherwise.
Proof : The constrained minimization is based on the method

of Lagrange multipliers with the solution satisfying the KKT
conditions in order to ensure non-negative powers. A detailed
proof is provided in Appendix I.

The general solution given in eq. (17)-(18) shows that the
optimal power allocation strategy corresponds to transmitting
the entire optical power either along the direct link S-D or
along the indirect link S-R1-D depending on which link is
“stronger”. The condition 1

k0
≥ 1

k
(1)
1

+ 1

k
(1)
2

shows that the

strength of the direct link can be measured byk0 while the



strength of the indirect link can be measured by( 1

k
(1)
1

+ 1

k
(1)
2

)−1.

Note that this result is consistent with the findings related
to non-cooperative MIMO-FSO systems where the optimal
strategy corresponds to transmitting the entire optical power
along the strongest path [4]. Note also that the condition

max(k
(1)
1 , k

(1)
2 ) ≥ log

max(k
(1)
1 ,k

(1)
2 )

min(k
(1)
1 ,k

(1)
2 )

is more easily satisfied

for large values ofλs implying that the indirect link S-R1-D
becomes more preferable over the direct link S-D at higher
SNRs. At low signal levels, instead of dedicating a certain
amount of power to communicate with the relay that will most
probably observe all-zero counts and hence will not cooperate,
it is better to transmit the entire power along the direct link.

B. Power allocation with more than one relay

In this section, we determine the solutionP =
(P0, P

(1)
1 , P

(1)
2 , · · · , P

(Nr)
1 , P

(Nr

2 ) that minimizes eq. (13) for
any number of relays.

Define the powers{P̃ (n)
1 , P̃

(n)
2 }Nr

n=1 as:

P̃
(n)
1 =

k
(n)
2 + log(k

(n)
1 /k

(n)
2 )

k
(n)
1 + k

(n)
2

; P̃
(n)
2 =

k
(n)
1 + log(k

(n)
2 /k

(n)
1 )

k
(n)
1 + k

(n)
2

(19)
whereP̃

(n)
1 and P̃

(n)
2 fall in the interval[0 1] if:

max(k
(n)
1 , k

(n)
2 ) ≥ log

max(k
(n)
1 , k

(n)
2 )

min(k
(n)
1 , k

(n)
2 )

(20)

Denote byNf ⊂ {1, . . . , Nr} the set of values ofn for
which eq. (20) holds and denote its cardinality byNf . In this
case,Nf possible candidate solutions to the power allocation
problem are given by:

Pn =
(

0, (0, 0), · · · , (P̃
(n)
1 , P̃

(n)
2 ), · · · , (0, 0)

)

; n ∈ Nf

(21)
and they correspond to transmitting the total power along one
of the paths S-Rn-D for n ∈ Nf . From eq. (13), the error
probability corresponding toPn is given by:

fn =
Q − 1

Q

[

e−k
(n)
1 P̃

(n)
1 + e−k

(n)
2 P̃

(n)
2

]

; n ∈ Nf (22)

Another candidate solution corresponding to the direct link
S-D and its corresponding error probability are given by:

P 0 = (1, (0, 0), · · · , (0, 0)) ; f0 =
Q − 1

Q
e−k0 (23)

Proposition: Among the set of all feasible candidate solu-
tions, the solution that minimizes eq. (13) is given byP = P ñ

where the integer̃n is chosen as follows:

ñ = argmin

{

{f0} ∪
{

fn | 1

k0
≥ 1

k
(n)
1

+
1

k
(n)
2

; n ∈ Nf

}}

(24)
Once again, a path selection algorithm must be implemented

according to eq. (24) in order to transmit the total optical
power either along the direct path S-D or along one of the
indirect paths S-Rn-D for n ∈ Nf . For FSO cooperative
systems, this path selection approach turns out to be optimal.

Proof : We will prove the above proposition by induction.
The above strategy reduces to that given in section IV-A for

Nr = 1. Assume that it holds for a network with less thanNr

relays and prove its optimality for a network withNr relays.
Assume that in the optimal solution there is at least one

value of n for which P
(n)
1 = P

(n)
2 = 0. In this case, at

least one relay is turned off (not cooperating) and the system
reduces to a system having less thanNr relays. In this case,
the optimal solution is as given in eq. (24) following from the
assumption made on the optimality with less thanNr relays.
The remaining possibilities are either (i) all components of P
are different from zero (the power is distributed among the
links S-D, S-R1-D, . . ., S-RNr

-D) or (ii) the first component
of P is equal to zero while the remaining components are
different from zero (the power is distributed among the links
S-R1-D, . . ., S-RNr

-D). In Appendix II we prove that such
solutions are not optimal implying that the optimal power
allocation strategy is as given in eq. (24).

V. NUMERICAL RESULTS

We next present some numerical results that support the the-
oretical claims made in the previous sections. For simulation
purposes, we assume thatβ

(n)
1 (resp.β(n)

2 ) is the same for all
values ofn implying that all relays are at the same distance
from the source (resp. destination). These values will be
denoted byβ1 andβ2, respectively. For small number of relays
where numerical optimization is possible, results showed that
the proposed power allocation strategy is extremely close to
the optimal strategy where the power ratios are determined
numerically from minimizing the exact value of the conditional
error probability (rather than minimizing the upper-bound).

Fig. 2 shows the performance of 4-PPM over Rayleigh
fading channels in the absence of CSI. Results show the
high performance levels and the enhanced diversity orders
achieved by the proposed scheme. Even in the worst case
of β1 = β2 = 1 (dSRn

= dRnD = dSD for all values of
n), cooperation with one relay results in a performance gain
of about 8 dB at a SEP of10−3. In this case, cooperation
is useful for values ofEs exceeding -175 dBJ. As(β1, β2)
increases from(1, 1) to (4, 4), the value ofEs above which
cooperation is useful drops to about -185 dBJ. This figure also
shows the excellent match between simulations and the exact
SEP expression in eq. (14). Similar results are obtained in Fig.
3 in the presence of CSI. In this case, performance gains are
achieved over the entire range ofEs. For one relay at a SEP
of 10−3, the availability of CSI results in additional gain of
about 3 dB compared to the no-CSI case.

Fig. 4 shows the variation of the SEP as a function of the
number of relays forEs = −170 dBJ in the case of lognormal
fading with S.I.= 0.6. The presence of only one relay that is
relatively close to S and D (in particular,β1 = β2 = 4) and
the selection of the best link among S-D and S-R-D can ensure
an extremely small error probability in the order of10−8.

VI. CONCLUSION

We investigated the utility of user cooperation as a fading-
mitigation technique for FSO networks. In the absence of
CSI, the optical power can be evenly distributed among the
different links and high performance gains can be achieved at
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Fig. 2. Performance of 4-PPM in the absence of CSI over Rayleigh fading
channels. The dashed lines correspond to the exact SEP givenin eq. (14).

−190 −185 −180 −175 −170 −165
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
(dBJ)

P
e

No cooperation
1 relay, β

1
=β

2
=1, numerical results

2 relays, β
1
=β

2
=1, numerical results

3 relays, β
1
=β

2
=1, numerical results

4 relays, β
1
=β

2
=1, numerical results

1 relay, β
1
=β

2
=4, numerical results

2 relays, β
1
=β

2
=4, numerical results

3 relays, β
1
=β

2
=4, numerical results

4 relays, β
1
=β

2
=4, numerical results

Fig. 3. Performance of 4-PPM in the presence of CSI over Rayleigh fading
channels.

signal energies that are not very large. In the presence of CSI,
the analytical minimization of an upper-bound on the error
probability showed that the best performance can be achieved
by transmitting the entire power along the strongest link.

APPENDIX I

In this appendix, we drop the superscripts ofk
(1)
1 , k

(1)
2 ,

P
(1)
1 and P

(1)
2 for notational simplicity. Minimizing eq. (13)

is equivalent to minimizing the functionf(P0, P1, P2) =
e−k0P0

[

e−k1P1 + e−k2P2
]

. In order to take the equality con-
straint

∑2
m=0 Pm = 1 and the inequality constraints−Pm ≤

0 (for m = 0, 1, 2) into consideration, we construct the
Lagrangian function:

L(P , λ, µ) = e−k0P0
[

e−k1P1 + e−k2P2
]

+ λ(

2
∑

m=0

Pm − 1) −
2

∑

m=0

µmPm (25)

At the point(P0, P1, P2) minimizing f(P0, P1, P2), L must
satisfy the following equations:

∂L
∂P0

= −k0e
−k0P0

[

e−k1P1 + e−k2P2
]

+ λ − µ0 = 0 (26)

∂L
∂P1

= −k1e
−k0P0e−k1P1 + λ − µ1 = 0 (27)

∂L
∂P2

= −k2e
−k0P0e−k2P2 + λ − µ2 = 0 (28)
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Fig. 4. Performance of 4-PPM forEs = −170 dBJ over lognormal fading
channels with S.I.= 0.6.

Moreover, the differentiation ofL with respect to the
Lagrange multiplierλ implies that:

∂L
∂λ

=

2
∑

m=0

Pm − 1 = 0 (29)

The final solution must satisfy the KKT conditions that can
be summarized as a set of 3 equalities and 3 inequalities as
follows:

µmPm = 0 ; m = 0, . . . , 2 (30)

µm ≥ 0 ; m = 0, . . . , 2 (31)

Note that whenP1 = 0 thenP2 must be equal to zero and
vice versa. Consequently, the general solution can take oneof
the three following forms.

Case 1: Assume thatP0 6= 0 andP1 = P2 = 0. In this case,
eq. (29) implies thatP0 = 1 resulting inµ0 = 0 following
from eq. (30). ReplacingP0, P1, P2 andµ0 by their values in
eq. (26) results inλ = 2k0e

−k0 . Substituting this value ofλ
in eq. (27) and eq. (28) results inµ1 = (2k0 − k1)e

−k0 and
µ2 = (2k0 − k2)e

−k0 . Consequently, the inequalitiesµ1 ≥ 0
and µ2 ≥ 0 following from eq. (31) will hold if and only
if 2k0 ≥ k1 and 2k0 ≥ k2. These two inequalities can be
combined into the following inequality:1k0

≤ 1
k1

+ 1
k2

.
Consequently, the optimal solution takes the form

(P0, P1, P2) = (1, 0, 0) when 1
k0

≤ 1
k1

+ 1
k2

.
Case 2: Assume thatP0 = 0 while P1 6= 0 and P2 6= 0.

In this case, eq. (30) implies thatµ1 = µ2 = 0 resulting in
λ = k1e

−k1P1 = k2e
−k2P2 following from eq. (27) and eq.

(28). Combining this equation with the equalityP1 + P2 = 1
that follows from eq. (29) and solving forP1 andP2 results
in:

P1 =
k2 + log(k1/k2)

k1 + k2
; P2 =

k1 + log(k2/k1)

k1 + k2
(32)

we observe that the solution given in the previous equation is
feasible whenk1 ≥ log k1

k2
andk2 ≥ log k2

k1
. It is then straight

forward to prove that these inequalities are equivalent to the
inequalitymax(k1, k2) ≥ log max(k1,k2)

min(k1,k2) . Now solving eq. (26)
for µ0 results in:

µ0 = λ − k0e
−k1P1 − k0e

−k2P2 (33)

= λ − k0
λ

k1
− k0

λ

k2
= k0λ

(

1

k0
− 1

k1
− 1

k2

)

(34)



given thatk0 ≥ 0 and λ ≥ 0 (since λ = k1e
−k1P1 with

k1 ≥ 0), then the inequalityµ0 ≥ 0 that follows from eq. (31)
can be satisfied if and only if1k0

≥ 1
k1

+ 1
k2

.
Consequently, the optimal solution takes the form given

in eq. (32) along withP0 = 0 when 1
k0

≥ 1
k1

+ 1
k2

and

max(k1, k2) ≥ log max(k1,k2)
min(k1,k2)

.
Case 3: Assume thatP0 6= 0, P1 6= 0 andP2 6= 0. In this

case, eq. (30) implies thatµ0 = µ1 = µ2 = 0. Replacing
these values in eq. (26)-(28) results inλk0

= e−k0P0e−k1P1 +

e−k0P0e−k2P2 , λ
k1

= e−k0P0e−k1P1 and λ
k2

= e−k0P0e−k2P2 ,
respectively. These three equalities imply that1

k0
= 1

k1
+ 1

k2

(note thatλ 6= 0 sincek0, . . . , k2 andP0, . . . , P2 are all finite).
Since the equality 1

k0
= 1

k1
+ 1

k2
among the parameters

k0, . . . , k2 that depend on the random path gains does not
hold in general, then the optimal solution can not take the form
considered under case 3. As a conclusion, only case 1 and case
2 are feasible. Note that even when1k0

≥ 1
k1

+ 1
k2

, the inequality

max(k1, k2) ≥ log max(k1,k2)
min(k1,k2)

might not be satisfied implying
that one term amongP1 and P2 given in eq. (32) will be
negative while the second term will be greater than one. If this
is the case, then the solution taking the form considered under
case 2 can not be optimal and the only remaining feasible
solution will be that considered under case 1.

APPENDIX II

For notational simplicity define the parameters
P1, . . . , P2Nr

by: Pi = P
(⌈i/2⌉)
1 if i is odd and

Pi =P
(⌈i/2⌉)
2 if i is even so that vectorP can be written as:

P = (P0, P1, . . . , P2Nr
). Define the scalarsk1, . . . , k2Nr in

the same way so that the bound in eq. (13) is proportional
to the functionF , e−k0P0

∏2Nr−1
i=1 ; i odd[e

−kiPi +e−ki+1Pi+1 ].
Construct the Lagrangian:

L(P , λ, µ) = e−k0P0

2Nr−1
∏

i=1 ; i odd

[

e−kiPi + e−ki+1Pi+1
]

+ λ(

2Nr
∑

m=0

Pm − 1) −
2Nr
∑

m=0

µmPm (35)

L must satisfy the following equation:

∂L
∂P0

= −k0e
−k0P0

2Nr−1
∏

i=1 ; i odd

[

e−kiPi + e−ki+1Pi+1
]

+λ−µ0 = 0

(36)
as well as the following2Nr equations (forj = 1, . . . , 2Nr):

∂L
∂Pj

=−kje
−k0P0e−kjPj

2Nr−1
∏

j 6=i=1;i odd

[

e−kiPi +e−ki+1Pi+1
]

+λ−µj =0

(37)
The KKT conditions can be summarized as a set of2Nr +1

equalities and inequalities as follows:

µmPm = 0 ; m = 0, . . . , 2Nr (38)

µm ≥ 0 ; m = 0, . . . , 2Nr (39)

We need to consider the following two cases:
Case 1: Assume that P0 = 0 and Pm 6= 0 for

m = 1, . . . , 2Nr. In this case, eq. (38) implies that

µm = 0 for m = 1, . . . , 2Nr. Substituting P0 and µ1

by their values in eq. (37) forj = 1 results in λ =
k1e

−k1P1
∏2Nr−1

i=3

[

e−kiPi +e−ki+1Pi+1
]

. This implies thatλ
is positive and different from zero sincek1, . . . , k2Nr

and
P1, . . . , P2Nr

are all finite (note that, being a continuous
random variable,k1 is different from 0).

Let m be an odd integer in the set{1, . . . , 2Nr − 1}.
Replacingµm = 0 in eq. (37) forj = m and µm+1 = 0 in
eq. (37) forj = m + 1 and adding up the obtained equations
results in:

λ

(

1

km
+

1

km+1

)

=F ; m ∈ {1, . . . , 2Nr−1} ; m odd (40)

Since this equality holds for any value ofm and sinceλ 6= 0,
then eq. (40) implies that1k1

+ 1
k2

= · · · = 1
k2Nr−1

+ 1
k2Nr

.
Since there is no guarantee that theseNr equalities will hold
(sincek1, . . . , k2Nr

depend on the random path gains), then
the solution can not take the form considered under this case.

Case 2: Assume thatP 6= (0, . . . , 0). In this case, eq. (38)
implies that µm = 0 for m = 0, . . . , 2Nr. Since eq. (40)
follows from µ1, . . . , µ2Nr being all equal to zero, then this
equation will hold in this second case as well. On the other
hand, replacingµ0 =0 in eq. (36) and solving forλ results in:

λ

k0
= F (41)

Combining eq. (40) and eq. (41) results in the following
Nr + 1 equalities: 1

k0
= 1

k1
+ 1

k2
= · · · = 1

k2Nr−1
+ 1

k2Nr
. Since

the above equalities among the random variablesk0, . . . , k2Nr

do not hold in general, then the optimal solution can not take
the formP 6= (0, . . . , 0).
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