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Orthogonal Space-Time Block Codes for Binary
Pulse Position Modulation

Chadi Abou-Rjeily,Member IEEE

Abstract— In this paper, we propose orthogonal Space-Time
(ST) codes for binary Pulse Position Modulations (PPM). Unlike
the well known orthogonal ST codes, the proposed schemes
verify the additional constraint of achieving a full transmit
diversity order without introducing any phase rotations. This
renders the proposed codes suitable for Free-Space Optical(FSO)
communications with direct detection and for Ultra-WideBand
(UWB) communications. At the receiver side, optimal detection
can be achieved with linear operations and the proposed codes
can be also applied with On-Off Keying (OOK).

Index Terms— Free-Space Optical (FSO) communication,
Ultra-WideBand (UWB), Space-Time (ST) coding, PPM.

I. I NTRODUCTION

Initially designed for Radio Frequency (RF) communi-
cations, Space-Time (ST) block codes are becoming more
popular for Free-Space Optical (FSO) communications. Recent
studies showed that ST coding can be a possible solution
for solving the ‘last mile’ problem since spatial diversity
can combat the atmospheric turbulence that degrades the
performance of FSO links [1]–[3].

The literature of ST-RF coding is huge [4]–[6]. However,
these codes are based on polarity inversions or amplitude
amplifications and are, consequently, not adapted to FSO
communications with direct detection using unipolar Pulse
Position Modulations (PPM) or On-Off Keying (OOK). Con-
sider for example the orthogonal codes [5]. The entries of the
codewords are equal to±si or ±s∗i wheres1, . . . , sn are the
information symbols andn is the number of transmit antennas.
While these codes are shape-preserving with QAM, they
introduce a constellation extension when associated with PPM
since−s ands can not be both PPM symbols simultaneously.

A first attempt in the FSO ST code design was made in
[1] where the Alamouti code was tailored to binary PPM. It
was shown in [7] that the extension of this scheme toM -ary
PPM breaks down the orthogonality between the transmitted
data streams. Shape-preserving ST codes for binary PPM with
2k transmit antennas were proposed in [8] in the context of
Time-Hopping Ultra-Wideband (TH-UWB) communications.
However, this family of codes is not orthogonal.

On the other hand, despite the intensive research in de-
signing more sophisticated families of ST block codes [6],
the orthogonal ST codes [4], [5] remain appealing because
of their simple decoding strategy. In this paper, we propose
the construction of orthogonal ST codes that are shape-
preserving with binary PPM. We show that for orthogonal
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constellations and in the absence of Inter-Position-Interference
(IPI), maximum-likelihood detection of the proposed schemes
can be achieved with linear operations. IPI breaks down the
structure of the code necessitating the implementation of more
sophisticated non-linear multi-dimensional 2-PPM decoders
[8] at the receiver. The proposed schemes can be directly
extended to OOK. The possibility of achieving a full transmit
diversity order while transmitting unipolar pulses renders the
proposed schemes appealing not only for FSO links but also
for TH-UWB communications where it is difficult to control
the phase (and the amplitude) of the very low duty cycle
sub-nanosecond pulses. Following from this additional phase
constraint that must be verified by both FSO and TH-UWB
systems, we consider only the real orthogonal designs in what
follows.

Notations: 0n and 1n correspond to then-dimensional
vectors whose components are equal to0 and1 respectively.
vec(X) stacks the columns of the matrixX vertically. ⊗
stands for the Kronecker product.IM and 0M stand for the
M × M identity matrix and the all-zero matrix respectively.
||X ||2 stands for the Frobenius norm of the matrixX .

II. SYSTEM MODEL

Consider a FSO system where the transmitter and the re-
ceiver are equipped withP laser sources andQ photodetectors
respectively. 2-PPM is a 2-dimensional constellation given by:

C = {[1 0]T ; [0 1]T } (1)

where the scalar 1 indicates the presence of a light waveform.
In the high signal-to-noise ratio (SNR) regime, the sys-

tem performance is limited by the shot noise whose impact
increases with the optical power of the signal incident on
the receiver. Given that in this regime the Poisson photon
arrivals can be approximated by Gaussian noise, then the linear
dependence between the input and output of the Multiple-
Input-Multiple-Output (MIMO) FSO channel can be expressed
as:

X = HC + N (2)

whereC is thePM×T codeword (M = 2) whose((p−1)M+
m, t)-th entry corresponds to the amplitude of the pulse (if
any) transmitted at them-th position of thep-th source during
the t-th symbol duration forp = 1, . . . , P , m = 1, . . . , M and
t = 1, . . . , T . The matricesX andN areQLM ×T matrices
corresponding to the decision variables and the noise terms
respectively.

H is theQM×PM channel matrix whose(q, p)-th M×M

constituent sub-matrix is denoted byHq,p for p = 1, . . . , P
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and q = 1, . . . , Q. The (m, m′)-th element ofHq,p corre-
sponds to the contribution of the signal transmitted by the
p-th source during them′-th position that results when the
waveform received at theq-th detector is projected onto the
m-th basis vector form, m′ = 1, . . . , M . In the absence of
IPI, Hq,p = hq,p⊗IM wherehq,p stands for the scintillation at
the optical path between thep-th source and theq-th detector.

The relation given in eq. (2) also holds with TH-UWB
systems. In this case, the highly frequency selective channels
can be generated according to the IEEE 802.15.3a channel
model recommendation [9] (interested readers are referredto
[8] for more details on the system model of MIMO-TH-UWB
systems). The only difference between FSO and TH-UWB is
in the structure of the channel matrixH . Since the coding
and decoding strategies are related to the modulation scheme
(and not the channel matrix), the following results are valid
for both FSO and TH-UWB.

III. C ODE CONSTRUCTION

For M -PPM constellations withn = P sources (andM =
2), we propose to construct thenM ×n′ codewords (n′ = T )
from then×n′ codewords based on the orthogonal design [5]
by replacing the entries of these codewords that are equal to
−si by Ωsi for i = 1, . . . , n′. Ω is the2×2 cyclic permutation
matrix given by:

Ω =

[

0 1
1 0

]

(3)

For example, forn = 2, 4, we propose the following
structure for the minimal-delaynM × n codewords:

C(s1, s2) =

[

s1 s2

Ωs2 s1

]

;

C(s1, s2, s3, s4) =









s1 s2 s3 s4

Ωs2 s1 Ωs4 s3

Ωs3 s4 s1 Ωs2

Ωs4 Ωs3 s2 s1









(4)

wheres1, . . . , sn′ ∈ C given in eq. (1) are the2-dimensional
vector representations of the2-PPM information symbols.
Evidently, Ωs ∈ C given in eq. (1) whenevers ∈ C and the
proposed code is shape-preserving with binary PPM.

Proposition: The proposed codes permit to achieve a full
transmit diversity order with binary PPM. In particular, for
n = 2, 4, 8 light sources (or transmit antennas), the codes are
minimal delay, fully diverse and rate-1 codes.

Proof : The 2-PPM symbols verify the following relation:

Ωs = −s + 12 ∀ s ∈ C (5)

The last equation shows that the pulse permutations intro-
duced in eq. (3) and eq. (4) are directly related to the signal
compliment when binary PPM constellations are used. This
shows the similarity with [1] where the Alamouti code was
adapted to FSO systems. On the other hand, expressing the
PPM symbols in a 2-dimensional form as shown in eq. (1)
and associating these symbols with the matrix representation
given in eq. (4) allowed the generalization of the idea proposed
in [1] to the more general family of orthogonal codes.

Following from eq. (5), the codewords in eq. (4) can be
written as:

C(s1, . . . , sn′) = C′(s1, . . . , sn′) + C0 (6)

where, for a given value of(n, n′), the2n×n′ matrix C′ can
be obtained by replacingΩ by −1 in eq. (4). The matrixC0

does not depend on the information symbols. For example,
with n = n′ = 2 and n = n′ = 4, C0 takes the following
forms respectively:

C0 =

[

02 02

12 02

]

; C0 =









02 02 02 02

12 02 12 02

12 02 02 12

12 12 02 02









(7)

Based on the design criteria given in [10], the proposed code
is fully diverse if the matrixC(s1, . . . , sn′) − C(s′1, . . . , s

′
n′)

has a full rank for(s1, . . . , sn′) 6= (s′1, . . . , s
′
n′). Following

from eq. (6) and from the linearity of the proposed code, it
follows that full transmit diversity is achieved if the2n ×
n′ matrix C′(a1, . . . , an′) has a full rank for(a1, . . . , an′) ∈
An′

\{(02, . . . , 02)} whereA denotes the set of all possible
differences between two information vectors:

A = {s− s′ ; s, s′ ∈ C} = {[0 0]T , [1 − 1]T , [−1 1]T}
(8)

Given that the rank of a matrix does not change when
permuting its rows, thenC′(a1, . . . , an′) has the same rank
as the matrix:

C′′(a1, . . . , an′) =
[

(C′
1(a1, . . . , an′))T (C′

2(a1, . . . , an′))T
]T

whereC′
i(a1, . . . , an′) is the n × n′ matrix composed from

the rows ofC′(a1, . . . , an′) having odd (resp. even) indices
for i = 1 (resp. i = 2). From eq. (8), an elementai ∈ A
can be written asai = a′

i[1 − 1]T with a′
i ∈ {0,±1} for

i = 1, . . . , n′. Consequently:

C′
i(a1, . . . , an′) = (−1)i−1Corth(a

′
1, . . . , a

′
n′) (9)

where Corth(a
′
1, . . . , a

′
n′) corresponds to then × n′ code-

word constructed from the real orthogonal design [5]
and associated with the scalarsa′

1, . . . , a
′
n′ . Consequently,

rank(Corth(a
′
1, . . . , a

′
n′)) = n unless whena′

i = 0 for i =
1, . . . , n′. Therefore,C′′(a1, . . . , an′) will have a full row rank
unless whenai = 02 for i = 1, . . . , n′. As a conclusion, all the
non-zero2-dimensional vectors that result in a rank-deficient
matrix C(a1, . . . , an′) do not belong to the setA given in eq.
(8) and the proposed code permits to achieve a full transmit
diversity order.

The proposed codes can be readily modified in order to
be applied with the 1-dimensional OOK constellation given
by C = {0, 1}. In this case, from eq. (4),s1, . . . , sn′ ∈ C
are scalars whileΩsi must now be replaced by−si + 1 (the
compliment ofsi) for i = 1, . . . , n′.

Note that both the proposed scheme and the codes proposed
in [8] are suitable for FSO and TH-UWB systems. In fact, both
families of codes can be applied with 2, 4 and 8 transmitters
without introducing any extension to the 2-PPM or OOK con-
stellations. On the other hand, the proposed scheme presents
the additional advantage of a symbol-by-symbol decodability
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Fig. 1. Performance of the proposed orthogonal codes with binary PPM and
MIMO FSO systems.

as will be shown in the next section. Note that the symbol-by-
symbol decodability can be achieved even though the design
is not orthogonal [11].

IV. M AXIMUM -L IKELIHOOD DECODING

Equation (2) can be written as:

X = (In′ ⊗ H)Φ(Ω)S + N (10)

whereX andN aren′QM -dimensional vectors given by:X =
vec(X) andN =vec(N) respectively (M =2). S is then′M -
dimensional vector obtained from the vertical concatenation of
s1 . . . sn′ . Φ(Ω) is thenn′M×n′M matrix verifying: vec(C) =
Φ(Ω)S. For example, withn= n′=2:

Φ(Ω) =

[

IM 0M 0M IM

0M ΩT IM 0M

]T

(11)

From eq. (10), the information vectorS can be determined
based on the Maximum-Likelihood (ML) criterion:̂S =
argminS∈Cn′ ||X − (In′ ⊗ H)Φ(Ω)S||2. When Q ≥ P , the
decoding algorithm proposed in [8] can be applied in order
to assure a ML detection ofS. On the other hand, we will
show in what follows that in the absence of IPI a simpler
decoding technique based on linear processing can assure a
ML detection.

Since vec(C) = Φ(Ω)S = Φ(Ω)[sT
1 · · · sT

n′ ]T and since the
matrix C′ given in eq. (6) verifies vec(C′) = Φ(−IM )S, then
eq. (6) implies that:

Φ(Ω)S = Φ(−IM )S + I0 = (φ ⊗ IM )S + I0 (12)

where I0 is the nn′M -dimensional vector given byI0 =
vec(C0) where C0 is given in eq. (7).φ is the nn′ × n′

matrix that verifies the relation: vec(Corth(x1, . . . , xn′)) =
φ[x1 · · ·xn′ ]T where x1, . . . , xn′ are scalars.φ depends
uniquely on the structure of the orthogonal codes [5] with
φT φ = nIn′ .
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Fig. 2. Performance of the proposed orthogonal codes with binary PPM and
TH-UWB over CM2 with a 1-finger Rake in the absence of IPI.

In the absence of IPI, theQM × PM matrix H in eq.
(2) can be written as:H = H ′ ⊗ IM whereH ′ is a Q × P

matrix whose(q, p)-th element is equal tohq,p (the path gain
between sourcep and detectorq). Consequently, combining
eq. (10) and eq. (12) results in:

X = [In′ ⊗ (H ′ ⊗ IM )] [(φ ⊗ IM ) S + I0] + N (13)

Following from the properties of the Kronecker product, the
last equation implies that:

Y , X − [(In′ ⊗ H ′) ⊗ IM ] I0 (14)

= [(In′ ⊗ H ′)φ ⊗ IM ] S + N (15)

, [H⊗ IM ] S + N (16)

From [5], the orthogonal code design corresponds to
designing the matrixφ in such a way that the ma-
trix H = (In′ ⊗ H ′)φ verifies the relation:HTH =
(

∑Q

q=1

∑P

p=1 h2
q,p

)

In′ . Consequently, the constituent sub-
vectorss1, . . . , sn′ of S can be decoded independently ac-
cording to:

pi = arg max
m=1,2

(

Y ′

2(i−1)+m

)

; si = epi
; i = 1, . . . , n′

(17)
where ej is the j-th column of IM and Y ′

j is the j-th
component of the vectorY ′ given by:

Y ′ =
[

HT ⊗ IM

]

Y (18)

As a conclusion, eq. (14), eq. (17) and eq. (18) describe the
detection procedures that must be performed in the absence
of IPI. Note that in the presence of IPI, the relationH =
H ′ ⊗ IM does not hold and the above decoding procedures
can not be applied. Moreover, following from the shape-
preserving constraint and the constraint of symbol-by-symbol
decodability, the rate of the proposed schemes can not exceed
1 symbol per channel use.
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Fig. 3. The impact of IPI on ST-coded TH-UWB systems over CM2 with
a 5-finger Rake and binary PPM. In the absence of IPI, the linear decoding
strategy proposed in section IV is applied while the non-linear algorithm
proposed in [8] is applied in the presence of IPI.

V. SIMULATIONS AND RESULTS

Fig. 1 shows the performance of SISO FSO systems and
n × 1 FSO systems using the minimal-delayn × n codes
for n = 2, 4, 8. Flat fading channels are considered (no IPI)
and, as in [2], the channel irradiances are drawn from an
exponential distribution whose mean is equal to 1. Simulations
of TH-UWB systems over the IEEE 802.15.3a channel model
recommendation CM2 [9] are shown in Fig. 2 in the absence
of IPI. High performance gains are evident in both cases.

The impact of IPI on TH-UWB is shown in Fig. 3. In this
case, the modulation delay is chosen to be equal to 0.5 ns
which is much smaller than the channel delay spread of the
CM2 channels. In this case, the decoder proposed in [8] is
applied. Results show the utility of the proposed schemes in
reducing the error floors induced by IPI. Similar results are
obtained in Fig. 4 with FSO systems. In this case, the MIMO
channel is supposed to be flat while the separation between
the PPM positions is taken to be smaller than the width of the
light pulses.

VI. CONCLUSION

By replacing the phase rotations with pulse permutations,
the orthogonal ST codes were extended to binary PPM. MIMO
FSO and MIMO TH-UWB systems can now take advantage
from the unique properties of the orthogonal codes without
introducing any additional constellation extension. In other
words, full transmit diversity can be achieved while conveying
the information only through the time delays of the modulated
light pulses transmitted from the different light sources in
MIMO FSO systems. In the same way, the extension of
the existing single-antenna TH-UWB systems to the MIMO
scenarios will not necessitate additional constraints on the RF
circuitry to control the phase or the amplitude of the very low
duty cycle UWB pulses. A similar argument holds for MIMO
FSO and MIMO TH-UWB systems with OOK.
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Fig. 4. The impact of IPI on ST-coded MIMO-FSO systems. Nonorthogonal
PPM constellations are used and the scalarr stands for the autocorrelation, of
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