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Distributed Information-Lossless Space-Time Codes
for Amplify-and-Forward TH-UWB Systems
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Abstract— In this paper, we extend the non-orthogonal
amplify-and-forward (NAF) cooperative scheme [1] to the context
of impulse radio ultra-wideband (UWB) systems. In particu-
lar, we consider the problem of distributed Space-Time (ST)
coding with 2-dimensional Pulse Position Modulations (PPM)
and Joint Pulse Position and Amplitude Modulations (PPAM)
and we propose the first known family of full-rate codes that
are information-lossless with these constellations. Being totally-
real, these codes are adapted to the carrier-less nature of the
UWB transmissions and they outperform all previously known
totally-real constructions with any number of relays. With binary
PPM, they satisfy all the construction constraints of the optimal
complex-valued codes proposed in [2] as well as the additional
constraint of being real-valued.

Index Terms— UWB, Space-Time, AF, PAM, PPM.

I. I NTRODUCTION

RECENTLY Time-Hopping (TH) UWB WPANs (IEEE
802.15.3) have drawn considerable attention for short

range radio links. On the other hand, cooperation diversity
techniques [1]–[3] can boost the performance of such systems
on which stringent transmission levels were imposed. In this
context, the AF techniques can be appealing for UWB because
of their simplicity (compared to other cooperation techniques).

In particular, the non-orthogonal AF strategy is known to
achieve high performance levels with any number of relays
[1]. Explicit codes that are optimal for the NAF scheme were
proposed in [2]. However, being complex-valued, these codes
are not suitable for low-cost carrier-less UWB transmissions.
The construction techniques of [2] were adapted in [3] for the
construction of totally-real codes for UWB systems based on
cyclic division algebras (CDA). However, CDA-based codes
can not be information-lossless when the construction must
satisfy the additional constraint of being real-valued [3].

In this paper, we take advantage from the particular structure
of the 2-dimensional2-PPM and2-PPM-M ′-PAM constella-
tions to construct totally-real information-lossless distributed
ST codes for TH-UWB systems. These full-rate codes can
achieve a full diversity order with any number of relays.
Note that a similar approach was adopted in [3], however,
the constructed codes were specific to constellations having
higher dimensions and are, consequently, not adapted to the
most popular UWB systems that use two modulation positions.

Notations: In is then×n identity matrix.0m×n corresponds
to them × n matrix whose elements are equal to0. vec(X)
stacks the columns of the matrixX vertically.⊗ corresponds
to the Kronecker product.
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II. SYSTEM MODEL

Consider the NAF protocol proposed in [1] withK relays.
As in [2], [3], we consider the construction of minimal-delay
codes. In this case, thek-th relay cooperates with the source
during thek-th cooperation period that extends over4 symbol
durations. During the first half of this period, 2 encoded
symbols are transmitted by the source. During the second
half of this cooperation period, the source and thek-th relay
transmit simultaneously. The source transmits 2 new encoded
symbols while thek-th relay transmits amplified versions of
the symbols that it received during the first half of thek-th
cooperation period.

For TH-UWB systems where the information is modulated
overM positions andM ′ amplitude levels, the decision matrix
at the destination, when the NAF protocol is applied, can be
written as:

Y(2LM×2K) = H(2LM×2KM)C(2KM×2K)+N(2LM×2K) (1)

where the subscripts indicate the corresponding matrices’di-
mensions andL is the number of fingers of the Rake receivers
used at the relays and the destination.C is the distributed ST
codeword.

The [(i − 1)LM + (l − 1)M + m, 2(k − 1) + j]-th entry
of the decision matrixY corresponds to the decision variable
collected at them-th modulation position of thel-th Rake
finger during the symbol duration[4(k − 1) + 2(i − 1) + j]
for i = 1, 2, j = 1, 2, m = 1, . . . , M , l = 1, . . . , L and k =
1, . . . , K. N is the noise matrix that has the same structure as
Y . It has a double-sided spectral density ofN0/2.

The channel matrixH is written as:H = [H1 · · · HK ]
whereHk is a2LM×2M matrix given by (fork = 1, . . . , K):

Hk =

[ √
β1H0 0LM×M√

β1β2ρkλkΣkGkΨkHT
k Hk

√
β2ΣkH0

]

(2)

where βi determines the transmission level during thei-th
half of each cooperation period fori = 1, 2. Normalizing the
transmitted energy is obtained by fixingβ1 + 2β2 = 2. ρk is
a path-loss term corresponding to the quality of the channel
between the source and thek-th relay whileλk corresponds
to the channel between thek-th relay and the destination.Hk

is aLM ×M matrix that corresponds to the channel between
the source and thek-th relay for k = 1, . . . , K. The ((l −
1)M +m, m′)-th element ofHk corresponds to the impact of
the signal transmitted during them′-th position on them-th
correlator placed after thel-th Rake finger forl = 1, . . . , L
and m, m′ = 1, . . . , M . H0 is the channel matrix between
the source and the destination whileGk is the channel matrix
between thek-th relay and the destination.
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In order to avoid excessive channel delay spreads caused
by the UWB channels, maximum ratio combining is applied
at the relays before amplification and retransmission (this
corresponds to the multiplication byHT

k in eq. (2)). Ψk

and Σk are the amplification and noise-whitening matrices
respectively. They are given by:

Ψk =
[

HT
k Hk

(

β1ρkHT
k Hk + (N0/2)IM

)]− 1

2 (3)

Σk =
[

ILM + β2λkGkΨkHT
k HkΨT

k GT
k

]− 1

2 (4)

III. C ODE CONSTRUCTION

Each element of the hybridM -PPM-M ′-PAM constellation
can be represented by aM -dimensional vector that belongs to
the set:

C={(2m′−1−M ′)em ; m′ = 1 . . .M ′ ; m = 1 . . .M} (5)

whereem is them-th column ofIM .
In what follows, we consider 2-dimensional constellations

(M = 2). The most popular modulation schemes for TH-UWB
are binary PPM and bi-orthogonal PPM and they follow as
special cases by settingM ′ = 1 andM ′ = 2 respectively.

From eq. (1), the distributed ST coding scheme is deter-
mined by the codewordC given by:

C = diag(C1 · · · CK) (6)

where the cooperation between the source and thek-th relay
is described by the2M × 2 matrix Ck. The (m, i)-th (resp.
(M + m, i)-th) entry of Ck corresponds to the amplitude of
the pulse (if any) transmitted by the source (resp.k-th relay)
at them-th position of the[4(k−1)+2+i]-th symbol duration
for m = 1, . . . , M = 2 and i = 1, 2. Note that the symbols
transmitted by the relay during the above symbol durations
correspond to amplified versions of the symbols transmittedby
the source during the symbol durations4(k−1)+1 and4(k−
1)+2. The codewordC has a block diagonal structure because,
in the NAF protocol, the relays do not transmit simultaneously.

We propose the following structure for the constituent sub-
matrices:

Ck = σk−1 (C0) (7)

C0 =

[

l1 l2
Ωτ(l2) τ(l1)

]

=

[

k1 + φk2 k3 + φk4

Ω(k3 + φ1k4) k1 + φ1k2

]

(8)

whereΩ is the2 × 2 matrix given by:

Ω =

[

0 1
−1 0

]

(9)

Let K = Q(θ) be a K-dimensional real cyclic field
extension ofQ and denote its Galois group byGal(K/Q) =
〈σ〉 (with σK = 1). Then, from eq. (7), the codewordCk

transmitted by the source and thek-th relay during the second
half of thek-th cooperation period corresponds to the(k−1)-
th conjugate ofC0. In eq. (8),k1, . . . , k4 areM -dimensional
vectors given by (M = 2):

ki =

K−1
∑

j=0

a(i−1)K+j+1θ
j ∈ KM ; i = 1, . . . , 4 (10)

wherea1, . . . , a4K are 2-dimensional vectors that belong to
the 2-PPM-M ′-PAM constellation given in eq. (5).

From eq. (7) and eq. (8), the entries of the codewords belong
to the fieldL that is a 2-dimensional extension ofK: L = K(φ)

where φ = 1+
√

5
2 is the golden number andφ1 = τ(φ) =

1−
√

5
2 . The Galois group ofL is 〈τ〉 with τ2 = 1.
Since li ∈ LM = QM (θ, φ) for i = 1, 2, then 2K

information symbols can be included in each value ofl1 or
l2. In other words, each codeword contains4K information
symbols resulting in no data rate reductions with respect to
non-cooperative systems since the NAF scheme extends over
4K symbol durations.

Proposition 1: For a cooperative system withK relays,
combining equations (6)-(9) permits to achieve a spatial di-
versity order ofK + 1 with 2-PPM-M ′-PAM constellations
for all values ofK andM ′.

Proof: Designate by∆C(X, Y ) the difference between two
codewordsC and C′ that are associated with the informa-
tion symbolsa1, . . . , a4K and a′

1, . . . , a
′
4K respectively. This

matrix can be calculated from:

∆C(X, Y )=diag
[

∆C0(X, Y ) · · · σk−1(∆C0(X, Y ))
]

(11)

where:

∆C0(X, Y ) = C0 − C′
0 =

[

X Y
Ωτ(Y ) τ(X)

]

(12)

where X and Y correspond to the difference between two
elements ofLM . They belong to the set:

A =

{

2K
∑

i=1

(ci − c′i)ti ; c1, c
′
1, . . . , c2K , c′2K ∈ C

}

⊂ LM

(13)
where {ti}2K

i=1 = {1, θ, . . . , θK−1, φ, φθ, . . . , φθK−1} and it
forms a basis overQ2K by construction. Consequently,X =
Y = 02×1 if and only if ai = a′

i for i = 1, . . . , 4K. Therefore,
the proposed code is fully diverse if∆C(X, Y ) has a full rank
for (X, Y ) ∈ A2\{(02×1, 02×1)}. Following from eq. (11),
this can happen only when∆C0(X, Y ) is rank deficient since
rank[σk−1(∆C0(X, Y ))] = rank[∆C0(X, Y )].

From eq. (12), rank[∆C0(X, Y )] < 2 implies that there
exists a non-zero constantl ∈ L such that:Y = lX and
τ(X) = lΩτ(Y ). Solving these equations, we obtain thatX
andY must verify the equation:

ΩX =
1

NL/K(l)
X (14)

showing thatX and Y are eigenvectors ofΩ. NL/K(l) ,

lτ(l) ∈ K is the algebraic norm ofl.
The eigenvalues of the matrixΩ are equal to±

√
−1.

Therefore, being real-valued, the non-zero vectorsX and Y
can not verify eq. (14). This shows that non-zero vectorsX
andY that result in a rank deficient matrix∆C0(X, Y ) do not
belong toA given in eq. (13). Since the proof is independent
from M ′, we conclude that the code achieves full diversity for
all values ofM ′.

Proposition 2: For binary PPM, combining equations (6)-
(9) permits to achieve the same coding gain as the optimal
complex-valued codes proposed in [2].
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Proof: For binary PPM,C = {[1 0]T , [0 1]T } and the
difference between two elements ofC belongs to the set
{c[1 −1]T ; c = 0,±1}. Therefore,X andY can be written
asX = [x −x]T andY = [y − y]T wherex, y ∈ L. In this
case, eq. (12) takes the following form:

∆C0(X, Y ) =

[

x −x −τ(y) −τ(y)
y −y τ(x) −τ(x)

]T

(15)

This results in the following relation:

det
(

(∆C0)
T ∆C0

)

=

4
∑

i=1

4
∑

j=i+1

(

det
(

[

(∆C0,i)
T (∆C0,j)

T
]T

))2

≥
2

∑

i=1

4
∑

j=3

(

det
(

[

(∆C0,i)
T (∆C0,j)

T
]T

))2

= 4
(

(

NL/K(x)
)2

+
(

NL/K(y)
)2

)

(16)

where∆C0,i is thei-th row of ∆C0. Following from eq. (11):

det
(

(∆C)T ∆C
)

≥ 4K
(

(

NL/Q(x)
)2

+
(

NL/Q(y)
)2

)

(17)

Therefore, the minimum non-zero value of eq. (17) is equal
to 4K since NL/Q(x) ∈ Z and NL/Q(y) ∈ Z given thatx and
y are constrained to belong to the ring of integers ofL.

Proposition 3: The proposed code is information-lossless.
Proof: According to the definition given in [4], the code

is information-lossless if the transmitted encoded multi-
dimensional constellation is a rotated version of the informa-
tion constellation.

Designate byΦ the 4KM × 4KM matrix that verifies the
following relation (M = 2):

vec(C′) , vec
(

[

CT
1 · · · CT

K

]T
)

= Φ[aT
1 · · · aT

4K ]T (18)

In other words,C′ is the vertical concatenation of the
2 × 2 matricesC1, . . . , CK given in eq. (7). In this case,
Φ determines the linear dependence between the encoded
symbols and the information symbolsa1, . . . , a4K .

From eq. (7) and eq. (8), it is straight-forward to verify that
the matrixΦ is given by:

Φ =
[

ΦT
1 ΦT

2

]T
(19)

Φi =
[

ΦT
i,0 · · · σK−1(ΦT

i,0)
]T

; i = 1, 2 (20)

Φ1,0 =

[

M φM 0M×KM 0M×KM

0M×KM 0M×KM ΩM φ1ΩM

]

(21)

Φ2,0 =

[

0M×KM 0M×KM M φM
M φ1M 0M×KM 0M×KM

]

(22)

whereM is theM × KM matrix given by:

M , M0 ⊗ IM =
[

1 θ · · · θK−1
]

⊗ IM

From [4], the code is information-lossless ifΦ is unitary.
SinceΩ is unitary, thenΦ can be made unitary when the two
basis{θi}K−1

i=0 and {φi}1
i=0 are replaced by new totally-real

orthonormal basis{σi(v)}K−1
i=0 and{τ i(u)}1

i=0. u is given by
u = (3−φ

5 )1/2 while v depends on the number of relays. For

example, withK = 2 relays,v can be chosen asv =
√

3−θ
2

whereθ = 1 +
√

2. More details on the construction of these
basis can be found in [3].
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Fig. 1. The proposed modulation-specific code (MSC) vs. the best previously
known totally-real code (BPC) [3] with one relay and2-PPM-M ′-PAM.

IV. SIMULATIONS AND RESULTS

Simulations are performed over the IEEE 802.15.3a channel
model recommendation CM1 [5]. Fig. 1 compares the pro-
posed modulation-specific code (MSC) with the best previ-
ously known totally-real code (BPC) [3] with one relay and a
5-finger Rake. We fixβ1 =β2 andρ1 =λ1 =1 in eq. (2). While
both families of codes achieve full rate and full diversity,BPC
presents the advantage of having a non-vanishing coding gain
while MSC is information-lossless. For the latter codes, there
is no explicit expression of the coding gain given that the
determinants of the codewords are not integers. We might
imagine that BPC will outperform MSC for large values ofM ′

since the coding gain of the former remains constant. However,
the results in Fig. 1 show the superiority of the modulation-
specific codes even at very high spectral efficiencies. Similar
results are obtained for larger numbers of relays.

V. CONCLUSION

We investigated the problem of constructing distributed ST
codes suitable for the NAF strategy with 2-PPM-M ′-PAM
constellations. We presented new totally-real constructions that
are suitable for carrier-less cooperative UWB systems with
any number of relays. These constructions solve the problem
of the nonexistence of information-lossless and totally-real
constructions. They outperform the best known totally-real
distributed ST codes based on cyclic division algebras.
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