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Abstract— In this paper, we present the construction of full
rate, fully diverse and totally real space-time (ST) codes for
ultra-wideband (UWB) transmissions. In particular, we construct
two families of codes adapted to real carrier-less UWB commu-
nications that employ Pulse Position Modulation (PPM), Pulse
Amplitude Modulation (PAM) or a combination of the two. The
first family encodes adjacent symbols and is constructed from
totally real cyclic division algebras. The second family encodes
the pulses used to convey one information symbol and permits
to achieve high performance levels with reduced complexity. The
first family of codes achieves only a fraction of the coding gain
of the second one. Moreover, these coding gains are independent
from the size of the transmitted constellation. For Time-Hopping
(TH) multiple access channels, the amplitude spreading code
associated with the second family of codes is taken to be user-
specific. In this case, a simple design criterion is proposed
and spreading matrices constructed according to this criterion
permit to reduce the level of multiple access interference (MAI).
Simulations performed over realistic indoor UWB channels verify
the theoretical claims and show high performance levels and
better immunity against MAI.

Index Terms— Space-Time coding, ultra-wideband (UWB),
multiple input multiple output (MIMO), pulse amplitude mod u-
lation (PAM), Rake, multiple access interference.

I. I NTRODUCTION

Recently Ultra-wideband (UWB) emerged as a strong can-
didate for a wide variety of indoor wireless applications.
One solution to the growing demand of such applications for
high-rate reliable communications is to combine UWB with
Multiple-Input-Multiple-Output (MIMO) techniques [1]–[4].
For a system equipped withP transmit antennas, [1], [2]
achieve a transmit diversity order ofP while transmitting at
a rate of one symbol per channel use (PCU) while [3], [4]
achieve a rate ofP symbols PCU without any transmit diver-
sity gain. In the literature many full rate (P symbols PCU) and
fully diverse codes were proposed [5]–[8]. However, unlike
conventional communications, UWB operates at the baseband
level rendering the application of these complex-valued coding
techniques impossible. Apart from this constraint, the time-
hopping (TH) UWB has an appealing feature that resides
in the transmission of a train of pulses for conveying one
information symbol. We will show later that taking advantage
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of this property results in the design of totally real UWB-
specific space-time (ST) codes.

In this paper, we propose the construction of two families
of UWB-specific ST codes. The first family is based on the
adaptation of the construction techniques presented in [7], [8]
to real valued situations. The second family encodes the pulses
used to convey one symbol and is specific to TH systems.
We then extend this scheme to multiple access scenarios. It
was noticed in [9] that using randomly polarized pulses can
ameliorate multiple access in TH-UWB even in asynchronous
environments. We further investigate this point and propose
the construction of well designed unitary matrices that result
in a better interference rejection at the receiver.

The rest of the paper is organized as follows. Section II
describes the system model of the MIMO TH-UWB systems.
The constructions of the different coding schemes are pre-
sented in section III. In section IV, we consider the problemof
multiple access interference and we propose a simple and ef-
ficient method for the construction of the amplitude spreading
matrices. An analysis of the performance of multiuser MIMO-
UWB systems is also presented in this section. Numerical
results are presented in section V while section VI concludes.

Notations: Im×n denotes the firstm columns of then×n
identity matrixIn. 1m×n and0m×n correspond to them×n
matrices whose elements are all equal to 1 and 0 respectively.
∗ stands for convolution,⊗ for the Kronecker product andQ
denotes the field of rational numbers. The functions NK/Q and
TrK/Q denote the norm and trace of an element in the field
extensionK/Q. diag(X1, . . . , Xn) corresponds to stacking
the corresponding matrices on the principal diagonal. vec(X)
stands for stacking the columns of the matrixX vertically.

II. SYSTEM MODEL

Constructed fromM -ary pulse position modulated (PPM)
signals, aM -PPM-M ′-PAM signal set is obtained by includ-
ing M ′ pulse amplitude modulated (PAM) signals at each
position. Each symbol in the constructed set is therefore
defined by its amplitude and position coordinates(a, d) ∈
{(2m′−1−M ′) ; m′ = 1, . . . , M ′}×{0, . . . , M−1} and can
be represented by theM -dimensional vector[a0, . . . , aM−1]

T

wheream = aδ(d − m) corresponds to the amplitude of the
signal transmitted at them-th position. The corresponding
transmitted pulse is given byaw(t − dδ) =

∑M−1
m=0 amw(t −

mδ) wherew(t) is the UWB transmitted pulse waveform of
durationTw and normalized in order to have unit energy.δ
is the modulation delay withδ ≥ Tw in order to avoid the
overlapping between consecutive positions at the transmitter
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Fig. 1. Schematic representation of the receiver structureduring thej-th symbol duration. The output of thel-th Rake finger consists ofM -decision variables
corresponding to theM modulation positions forl = 0, . . . , L − 1. The space-time decoder consists of despreading the received frames and performing
Maximum Likelihood detection.P ′

= P for uncoded systems and IPC (Section III-B) whileP ′
= P 2 for ISC (Section III-A).

side. However, these positions interfere with each other atthe
receiver side because of the multi-path propagation.

In TH-UWB systems, each information symbol is conveyed
by Nf pulses and the signal transmitted from thep-th antenna
of the k-th user can be expressed as:

s(k)
p (t) =

√

Ek

PNf

Nf−1
∑

n=0

M−1∑

m=0

a(k)
p,mb(k)

p,nw(t−nTf−ck(n)Tc−mδ)

(1)
whereEk is the relative transmit energy of thek-th user with
respect to the first user (E0 = 1) and it is normalized by
P to insure the same total transmitted energy as in single-
antenna systems. The frame durationTf includesNc slots of
durationTc with Tc ≥ Tw and NcTc ≤ Tf . All the transmit
antennas of thek-th user will share the same pseudo-random
time hopping codeck(n) ∈ {0, . . . , Nc − 1}. The P × Nf

matrix B(k), whose(p, n + 1)-th element is equal tob(k)
p,n for

p = 1, . . . , P andn = 0, . . . , Nf −1, stands for the amplitude
spreading code associated with thek-th user. These matrices
introduce an additional coding between the different usersand
between the data streams transmitted by different antennasof
the same user.

The received signal at theq-th antenna of a receiver
equipped withQ antennas is given by:

rq(t) =

K∑

k=0

P∑

p=1

s(k)
p (t) ∗ g(k)

q,p (t − τ (k) − ε(k)
q,p) + nq(t) (2)

=
1

√
PNf

∑

p,n,m

ap,mbp,nhq,p(t − nTf − c(n)Tc − mδ)

+
1

√
PNf

K∑

k=1

√

EkI
(k)
MAI

︸ ︷︷ ︸

MAI

+nq(t) (3)

where the superscript was skipped for the first user andMAI
stands for the multiple access interference. The interference
from thek-th user is given by:

I
(k)
MAI =

∑

p,n,m

a(k)
p,mb(k)

p,nh(k)
q,p(t − nTf − ck(n)Tc − mδ − τ (k))

(4)
In eq. (2),nq(t) is the noise at theq-th antenna assumed

to be real AWGN with varianceN0/2. τ (k) corresponds to

the propagation delay of thek-th user relative to the first
user.g(k)

q,p(t) stands for the impulse response of the frequency
selective channel between thep-th transmit antenna of thek-th
user and theq-th receive antenna.ε(k)

q,p corresponds to the time
delay of the first arriving multi-path component ofg

(k)
q,p(t). In

fact, given the very short duration of the transmitted pulses, the
spacing between the different antennas introduces propagation
delays that can be comparable withTw. These additional
delays are calculated with respect to the first arriving ray of the
first user. In other words,minq,p(ε

(0)
q,p) = 0. In what follows,

we fix h
(k)
q,p(t) = w(t)∗g

(k)
q,p (t−ε

(k)
q,p) implying that the receiver

is synchronized to the first multi-path component between the
transmit and the receive arrays. Inter Symbol Interference(ISI)
can be eliminated by choosingTf ≥ maxq,p,k(T

(k)
q,p ) + (M −

1)δ+NcTc+Tw, whereT
(k)
q,p is the maximum delay spread of

g
(k)
q,p(t).

In order to take advantage of the multi-path diversity with
moderate complexity, a simplifiedL-th order Rake receiver
[10] is adopted by choosing the finger delays as∆l = lMTw

for l = 0, . . . , L − 1. Moreover, at each arm of the Rake
receiver, a bank ofM correlators is needed to detect the
M -dimensional signals resulting in a total ofQML decision
variables collected during each time frame. Ignoring MAI for
the moment, these decision variables are given by:

xq,l,m,n =

∫ (n+1)Tf

nTf

rq(t)w̃l,m,n(t)dt (5)

wherew̃l,m,n(t) = w(t−nTf −c(n)Tc−∆l−mδ). Following
from the condition of no ISI, the decision variables in eq. (5)
take the following form:

xq,l,m,n =
1

√
PNf

∑

p′,m′

ap′,m′bp′,nrq,p′ ((m − m′)δ + ∆l)

+ nq,l,m,n (6)

whererq,p(τ) =
∫ Tf

0
hq,p(t)w(t − τ)dt. A schematic repre-

sentation of the multi-antenna Rake receiver is given in Fig.
1. The noise termnq,l,m,n =

∫ (n+1)Tf

nTf
nq(t)w̃l,m,n(t)dt is
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Gaussian. The correlation between the noise samples verifies:

E[nq,l,m,nnq′,l′,m′,n′ ] =
N0

2
γ ((m′ − m)δ + ∆l′ − ∆l) δ(q′ − q)δ(n′ − n) (7)

whereγ(t) is the autocorrelation function ofw(t). Choosing
δ ≥ Tw and ∆l = lMTw results in a white Gaussian noise
sinceγ(kTw) = 0 for all nonzero integer values ofk.

Equation (6) can be expressed in matrix form as:

Xq,l(j) =
1

√
PNf

Rq,lA(j)B + Nq,l(j) (8)

where B is the P × Nf amplitude spreading matrix. The
M ×Nf matricesXq,l(j) andNq,l(j) are composed from the
decision and noise terms respectively. The decision variables
are collected during thej-th symbol duration[(j−1) j]NfTf .
Denoting by ap(j) = [ap,0(j), . . . , ap,M−1(j)]

T the vector
representation of the symbol transmitted by thep-th antenna
during thej-th symbol duration, then theMP×P matrixA(j)
can be expressed asA(j) = diag(a1(j), . . . , aP (j)). Finally,
Rq,l = [Rq,l,1, . . . , Rq,l,P ] is the M × PM channel matrix.
Rq,l,p is a M ×M matrix whose(m, m′)-th element is equal
to rq,p(∆l +(m−m′)δ). In what follows, the factor1/

√
PNf

is disregarded since it can be included in the noise variance.
From eq. (8), and for space-time codewords that extend

over J symbol durations, stacking the decision matrices cor-
responding to the different receive antennas and Rake fingers
vertically and the matrices corresponding to different symbol
durations horizontally results in:

X(QLM×JNf ) = R(QLM×PM)A(PM×JP )(IJ ⊗ B(P×Nf ))

+ N(QLM×JNf ) (9)

whereA = [A(1) · · · A(J)] and the subscripts indicate the
corresponding matrices’ dimensions. The noise matrixN is
constructed in the same way as the decision matrixX .

III. CODES CONSTRUCTIONS

In what follows, we propose the ST codes constructions
in the case where no Channel State Information (CSI) is
available at the transmitter side. We propose ST codes for
mobile terminals having a maximum number of6 antennas.
For the construction ofP × J ST codes based on the above
model, we differentiate between two kinds of systems. The
first one encodes adjacent symbols without introducing any
particular coding between the pulses used to convey a given
symbol. The other one introduces inter-pulse coding. Formally
speaking, the first case corresponds to fixingB = 1P×Nf

while B is chosen to verifyBBT = NfIP in the second case.
In what follows, we limit ourselves to PAM. The extension to
hybrid PPM-PAM constellations is discussed later.

A. Inter-Symbol Coding (ISC)

From eq. (9), combining the decision variables correspond-
ing to the different pulses of the same symbol is equivalent to
calculating:

C1 = A(IJ ⊗B)(IJ ⊗B)T = NfA(IJ ⊗1P,P ) = NfC⊗11,P

(10)

where C is the P × J ST codeword. It is obvious thatC
and C1 have the same rank and the same coding gain (up
to a scaling factor). So the construction of ST-codes in this
situation is equivalent to the classical construction ofC (rank
and determinant criteria from [11]). An additional constraint
related to the nature of the carrier-less transmissions of TH-
UWB systems is imposed resulting in totally real codes.

In this subsection, we considern×n codewords constructed
from cyclic division algebras withn = P . First, we start by
reminding the basic principles of such constructions (interested
readers can refer to [6], [8] for more details). Consider the
totally real cyclic number field extensionK/Q with Galois
group Gal(K/Q) = 〈σ〉 with σn = 1. The cyclic algebra
A = (K/Q, σ, γ) can be decomposed asA = K⊕ zK⊕ · · ·⊕
zn−1K wherez ∈ A verifieskz = zσ(k) for all k ∈ K and
zn = γ ∈ Q∗.

Theorem 1 [6] : If γ is chosen such that there are no
elements inK∗ whose norms are equal toγt for t = 1, . . . , n−
1, thenA is a division algebra.

In other words, the ST code constructed from the matrix
representation of the elements ofA will be fully diverse since
all the non-zero elements ofA are invertible. Limiting the
construction in the ring of integersOK of K, the n × n
codewords can be expressed as:

C0 =










k0 k1 k2 · · · kn−1

γσ(kn−1) σ(k0) σ(k1) · · · σ(kn−2)
γσ2(kn−2) γσ2(kn−1) σ2(k0) · · · σ2(kn−3)

...
...

...
. . .

...
γσn−1(k1) γσn−1(k2) γσn−1(k3) · · · σn−1(k0)










(11)
whereki ∈ OK for i = 0, . . . , n − 1. As K can be viewed
as ann-dimensional vector space overQ, thenn information
symbols are contained in each value ofki resulting in a full
rate code. In other words,ki =

∑n−1
j=0 ani+j+1θ

j for i =
0, . . . , n−1 where{1, θ, . . . , θn−1} is an integral basis ofOK

anda1, . . . , an2 are the information symbols that belong to a
PAM constellation.

Proposition 1 [8] : If γ is chosen to be an integer, then
det(C0) is also an integer implying that the minimum of the
absolute value of the determinant of all nonzero codewordsC0

is equal to 1 independently from the size of the transmitted
constellation.

Consider then information symbolsain+1, . . . , a(i+1)n

for a given value ofi ∈ {0, . . . , n − 1}. From eq. (11),
these symbols are contained uniquely in the conjugates ofki

according to:
[
ki · · · σn−1(ki)

]T
= Γ(θ)

[
ain+1 · · · a(i+1)n

]T

(12)
whereΓ(θ) is then×n matrix whose(i, j)-th element is equal
to σi−1(θj−1) for i, j ∈ {1, . . . , n}.

Therefore, a modified version of the initialn-dimensional
extension of the PAM constellation is transmitted. In order
not to introduce any distortions on the PAM constellation, it is
interesting that the transmitted and the original signal sets keep
the same shape. This can be done by multiplyingΓ(θ) by a
diagonal matrixD such that the matrixD′ = DΓ(θ) is unitary.



4

In this case, the transmitted constellation is a rotated version
of the initial signal set and no shaping losses are introduced. If
D′ is unitary, then det(D) = 1√

dK
since det(Γ(θ)Γ(θ)T ) , dK

(the absolute discriminant ofK).
When dK is a perfect square, we takeD =

diag
(
α, . . . , σn−1(α)

)
where α ∈ K verifying det(D) =

NK/Q(α) = 1√
dK

. In this case, the codewords are given by:

C = diag(α, σ(α), . . . , σn−1(α))C0 (13)

WhendK is not a perfect square, we choose a totally positive
elementα ∈ K such that the diagonal matrixD is given by
D = diag

(√
α, . . . ,

√

σn−1(α)
)

and NK/Q(α) = 1
dK

. In this
case, the codewords take the form:

C = diag
(√

α,
√

σ(α), . . . ,
√

σn−1(α)
)

C0 (14)

The above cases correspond to choosing an elementα that
verifies the following relation:

vol (αOK) = 1 (15)

whereΛ(αOK) is the lattice generated by the principal ideal
αOK and vol(αOK) stands for the volume of the fundamental
parallelotope ofΛ(αOK).

If γ is chosen to verify theorem 1 and proposition 1, then:

d∞(C) , min
a∈Zn2 , a6=01×n2

|det(C)| =
1√
dK

(16)

Equations (13) and (14) can be also expressed as:

C =

n−1∑

i=0

diag
(
M[ain+1, . . . , a(i+1)n]T

)
Ωi (17)

where M is a n × n matrix. Let θi = σi(θ) for i =
0, . . . , n−1. WhendK is a perfect square, the(i, j)-th element
of M is given byσi−1(αθj−1) = σi−1(α)θj−1

i−1 . Otherwise,
M(i, j) =

√

σi−1(α)θj−1
i−1 . The matrix Ω has dimensions

n × n and it is given by:

Ω =

[
0(n−1)×1 In−1

γ 01×(n−1)

]

(18)

As a conclusion, ISC is based on eq. (17) and the design
problem is reduced to the correct choice of the extension field
K, of an integerγ verifying theorem 1 and ofα ∈ K verifying
eq. (15). ST codes constructed from eq. (17) will achieve
full rate and full diversity with a non-vanishing minimum
determinant and with no shaping losses.

As indicated in [12], [13], the choice|γ| = 1 results in
energy-efficient codes having high performance levels. For
totally-real codewords, transmitting a uniform average energy
per antenna can be realized uniquely byγ = ±1. This implies
that the constraint of having totally-real codewords results in
energy non-efficient codes forn ≥ 3 sinceγ2 = 1 is always a
norm in K (NK/Q(1) = 1). Therefore, energy-efficient codes
from cyclic division algebras are possible forn = 2 transmit
antennas uniquely. We will now present the construction of
the first family of totally-real ST codes forn = 2, . . . , 6.

1) 2 × 2 codes: Since there is no 2-dimensional field
extension having a perfect square discriminant, the code is
constructed from eq. (14). The matrixM from eq. (17) takes
the form:

M =

[√
α 0

0
√

σ(α)

] [
1 θ
1 σ(θ)

]

(19)

It is possible to have a rotated version of the initial signal
set if M is unitary resulting in:

{
α
(
1 + θ2

)
= σ(α)

(
1 + σ(θ)2

)
= 1

√

ασ(α) (1 + θσ(θ)) = 0
(20)

The second condition is verified if there exists an elementθ
such thatθσ(θ) = NK/Q(θ) = −1 and, consequently,K must
have an element whose norm is equal to−1. Therefore, for2×
2 codes from cyclic division algebras, energy efficiency comes
at the expense of shaping losses and vice versa. Therefore, a
compromise must be made for two transmit antennas.

a) Chooseγ = −1. In this caseK must be chosen to have no
element whose norm is equal to -1. It is shown in the appendix
that K = Q(

√
3) can be a good choice. The constructed

code is balanced since the same average energy is transmitted
from each antenna during the two symbol durations. The
disadvantage is that the transmitted constellation is not a
rotation of the initial signal set. The codewords are given by:

C2,eq =
1

2

[
a1 +

√
3a2 a3 +

√
3a4

−(a3 −
√

3a4) a1 −
√

3a2

]

(21)

Since this codeword can be written asC2,eq = 1
2C0, then

d∞(C2,eq) = 1
4 .

b) Construct a rotated constellation by choosing a field
having units whose norms are equal to−1. For example, we
can chooseK = Q(

√
5) whose ring of integers is given by

OK = Z(θ) whereθ = (1 +
√

5)/2. Using KANT software
[14], we find that the ideal2OK is prime. This proves that
there is no element inK having a norm equal to 2. Therefore,
choosingγ = 2 verifies theorem 1. In this case, the codewords
take the form:

C2,rot =

[ √
α(a1 + a2θ)

√
α(a3 + a4θ)

2
√

α1(a3 + a4θ1)
√

α1(a1 + a2θ1)

]

(22)

whereα1 = σ(α) and θ1 = σ(θ) = 1−
√

5
2 . The choiceα =

1
1+θ2 = 3−θ

5 results in a unitary matrixM in eq. (19). Since
α verifies eq. (15), thend∞(C2,rot) = 1√

dK
with dK = 5.

2) 3×3 code: The construction is performed inK = Q(θ)
with θ = 2 cos(2π

7 ) having a discriminant ofdK = 72. The
ideal2OK is prime. This proves that the first power of2 which
is a norm of some elements inK is 2n. Therefore, choosing
γ = 2 results in a division algebra. Choosingα = β/7 with
β = 1 − θ + 2θ2 verifies eq. (15) since NK/Q(β) = 72 and

so NK/Q(α) =
NK/Q(β)

73 = 1√
dK

. The basis{α, αθ, αθ2} is not
unitary. Applying the change of basis:

T =





−1 1 1
3 0 −1
2 −1 −1



 (23)

we obtain the new unitary basis7{v1, v2, v3} =
{u, σ(u), σ2(u)} with u = −2 + 2θ + 3θ2 and
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TrK/Q(vivj) = δi,j for i, j = 1, 2, 3. The 3 × 3 code can be
constructed from eq. (17) where the(i, j)-th element ofM is
given by σi−1(vj) = σi−1(σj−1(u)) = (−2 + 2θk + 3θ2

k)/7

with k = (i + j − 2) mod 3 and θi = 2 cos(2π(i+1)
7 ) for

i = 0, 1, 2.
3) 4 × 4 code: Let K = Q(2 cos(2π

15 )) which has a
discriminant ofdK = 3253. γ = 2 verifies theorem 1 since the
ideal2OK is prime. SincedK is not a perfect square, the code
is constructed from eq. (14). Using KANT software [14], we
find that the prime factorizations of the ideals3OK and5OK

are given by:

3OK = (β3OK)2 ; β3 = −2 + 3θ + θ2 − θ3

5OK = (β5OK)4 ; β5 = 1 + θ

Choosingβ = β3β5/15 verifies eq. (15) since NK/Q(β) = 1
dK

,
but a problem arises since the first and second conjugates of
β are negative. Using KANT, we find the unite = −1 +
4θ − θ3 whose conjugates have the same sign as those of
β and whose norm is equal to 1. Therefore, choosingα =
βe = (5 + 6θ − θ2 − 2θ3)/15 results in a totally positive
element verifying eq. (15). Once again, the rotation matrixM
whose(i, j)-th element is given by

√

σi−1(α)σi−1(θj−1) is
not unitary and a change of basis must be performed. Denote
by G = MMT the Gramm matrix ofM, it is easy to find
that the(i, j)-th element ofG is given by TrK/Q(αθi−1θj−1).
Now, an orthogonal basis can be obtained by applying the
Lenstra-Lenstra-Lovász (LLL) reduction algorithm [15] on G.
This basis is given by

√
α{vi}4

i=1 =
√

α{1,−1 − 3θ + θ2 +
θ3,−1− 2θ + θ2 + θ3,−1+ 3θ− θ3}. It is easy to verify that
the (i, j)-th element of the Gramm matrix associated with this
new basis is equal to TrK/Q(αvivj) = δi,j for i, j = 1, . . . , 4.
Finally, the codewords are constructed from eq. (17) where the
(i, j)-th element ofM is given by

√

σi−1(α)σi−1(vj) with
σi(θ) = 2 cos(2π(i+1)

15 ) for i = 1, 2, 3.
4) 5 × 5 code: This code is built fromK = Q(2 cos(2π

11 ))
whose integral basis and discriminant are given by{θi =

2 cos(2π(i+1)
11 )}4

i=0 anddK = 114 respectively. Once again we
can chooseγ = 2 since the ideal2OK is prime. So there are
no elements inK having norms equal toγt for t = 1, . . . , 4.
The code is constructed according to eq. (17) where the(i, j)-
th element of the5 × 5 matrix M is given by σi−1(vj)
with 11{vi}5

i=1 = {u, σ(u), σ4(u),−σ2(u),−σ3(u)} where
u = 4 + 2θ + 2θ2 − θ4 whose norm is equal to113 which
verifies eq. (15) since vol(Λ(uOK)) = 115.

5) 6 × 6 code: Let K = Q(2 cos(2π
13 )) which has a

discriminant ofdK = 135. Once again, we can chooseγ = 2
since the ideal2OK is prime. Using KANT, we find that:
13OK = (βOK)6 whereβ = 2 + θ − θ2. The conjugates of
the unite = [0, 2, 2,−3,−1, 1] have the same sign as those of
β; thereforeα = βe/13 is a totally positive element verifying
eq. (15) since NK/Q(α) =

NK/Q(β)NK/Q(e)

136 = 13×1
136 = 1

dK
. An

orthogonal basis is obtained from{θi}5
i=0 by using the matrix:

T =

2

6

6

6

6

6

4

−2 1 1 0 0 0
−1 6 1 −5 0 1
3 −5 −1 5 0 −1
1 −8 0 6 0 −1
0 6 −3 −5 1 1
−1 −3 3 4 −1 −1

3

7

7

7

7

7

5

(24)

The new basis is given by[v1, v2, . . . , v6]
T = T [1, θ, . . . , θ5]T .

The code is constructed from eq. (17) where the(i, j)-th
element ofM is given by

√

σi−1(α)σi−1(vj) with σi(θ) =

2 cos(2π(i+1)
13 ).

6) Balanced codes: The transmitted energy of eq. (11)
(and consequently that of eq. (17)) can be distributed in a
more balanced way among the different transmit antennas and
symbol durations resulting in a balanced versionC′

0 [16]. C′
0

is constructed in the same way as eq. (11) by removingγ from
the lower triangular part ofC0 and by replacing the constituent
elementski by γ

i
n ki for i = 0, . . . , n−1. This will be referred

to as “energy” balancing and the properties of eq. (11) and eq.
(17) are conserved sinceC0 andC′

0 have equal determinants.
Even when “energy” balancing is performed and since

|γ| > 1, the amplitudes attributed to each value ofki (and
its conjugates) are not the same and, consequently, then
symbols contained in the conjugates ofki for different values
of i are not equally protected against the error events. For
example the symbolsa1, . . . , an are the most vulnerable while
the biggest portion of the energy is used to transmit symbols
an(n−1), . . . , an2 . An additional kind of balancing (referred to
as “error” balancing hereafter) can be performed whenNf is
a multiple ofn according to:

C(j) =

n−1∑

i=0

diag
(
M[a[(i+(j−1))n+1]n2

, . . . , a[(i+j)n]n2
]T
)
Ωi

(25)

Cbal =
[
C(1) · · · C(n)

]
(26)

where [x]n = (x − 1) mod n + 1. In what follows, energy
balancing will be applied systematically to all the constructed
codes while the subscript “bal” will be reserved to “error”
balancing. For example, the error-balanced version of eq. (22)
is given by:

D

»

a1 + a2θ
√

2(a3 + a4θ) a3 + a4θ
√

2(a1 + a2θ)
√

2(a3 + a4θ1) a1 + a2θ1

√

2(a1 + a2θ1) a3 + a4θ1

–

(27)
whereD = diag(

√
α,

√
α1).

7) Remarks: For n 6= 4, the procedure used to choose
an elementα verifying eq. (15) coincides with that used to
construct the fully-diverse rotation matrices in [17]. These
matrices were used to construct the Threaded Algebraic Space-
Time (TAST) codes in [5]. Taking this fact as well as the
structure ofC′

0 into account, we conclude that the constructed
codes have the same structure as the TAST codes but now
real Diophantine numbers (in contrast to complex ones in
[5]) are used to render the different layers of each codeword
transparent to each other. The utility of following the design
procedure presented in this section resides in the fact that
we showed that{1, γ

1
n , . . . , γ

n−1
n ; γ = 2} is in fact the

best choice of the Diophantine numbers for allM -ary PAM
constellations since the minimum determinant of eq. (11) is
equal to1. For n = 4, the matrixM used for constructing
the ST code from eq. (17) is different from the rotation matrix
given in [17]. While usingM with γ = 2 results in a ST code
with non-vanishing determinant, full diversity is lost when
using the rotation matrix given in [17] withγ = 2.
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The coding gain of the code given in eq. (17) can be
expressed as [11]:

gmin(C) , min(det(CCT ))
1
n

= cn(γ)(d∞(C))
2
n = cn(γ)d

− 1
n

K (28)

where gmin stands for the coding gain andcn(γ) =
n/
∑n−1

i=0 γ
2i
n is a normalization factor insuring the same

transmitted energy as in the uncoded case. A good question
arises: what if there exists a TAST code associated with a
certain value ofγ not verifying proposition 1 and which, for
a particular PAM constellation, results in a coding gain that
exceeds the one given in eq. (28). Forn = 2 and n = 3
transmit antennas, we can show that this can never happen
since:

δM (γ) ≤ δ2(γ) ≤ δ2(2) = δM (2) (29)

whereδM (γ) stands for the coding gain (given in eq. (28)) of
the code constructed fromγ over aM -ary PAM signal set. The
first inequality follows from the fact that 2-PAM is a subset of
M -PAM for M ≥ 2 and the second inequality can be checked
out through computer simulations that are feasible forn = 2
andn = 3 (given the relatively small number of codewords).
The last equality holds sinceγ = 2 verifies proposition 1.
For n > 3, we are not sure if the last inequality can hold,
even though simulations over several million elements drawn
randomly among the set of3n2

elements validate such a trend.
In all cases,γ = 2 is the best possible choice since the validity
of another choice can not be verified. Finally, including the
repetitions used to transmit one symbol, the non-balanced
codes in eq. (17) and the balanced codes in eq. (26) can be
expressed as:Cn = C⊗11×Nf

andCn,bal = Cbal⊗11×Nf /n.

B. Inter-Pulse Coding (IPC)

In this case the matrixB/
√

Nf is chosen to be unitary.
From eq. (9), combining the decision variables of the pulses
used to convey one symbol is equivalent to calculating:

C1 = A(IJ ⊗ B)(IJ ⊗ B)T = NfAIJP = NfA (30)

From eq. (11), eq. (13) and eq. (14), the energy-balanced
version ofA takes the form:

A(γ) =
√

cn(γ)diag(α0, . . . , αn−1)F (γ) (31)

whereαi = σi(α) whenn is odd andαi = (σi(α))
1
2 whenn

is even.F (γ) is a n × n2 matrix given by:

F (γ)=
[
diag

(
f0
0 , f1

n−1, . . . , f
n−1
1

)
, diag

(
f0
1 , f1

0 , . . . , fn−1
2

)

· · · diag
(
f0

n−1, f
1
n−2, . . . , f

n−1
0

)]
(32)

wheref j
i = γ

i
n σj(ki) for i, j = 0, . . . , n − 1.

The matrixF (γ)F (γ)T admitsn eigenvalues. These eigen-
values are given byλi = σi(λ) for i = 0, . . . , n − 1 and
λ =

∑n−1
i=0 γ

2i
n k2

i . Therefore, whenα verifies eq. (15), the

coding gain ofA(γ) verifies:

gmin(γ) = d
− 1

n

K cn(γ)min

(

NK/Q

(
n−1∑

i=0

γ
2i
n k2

i

)) 1
n

≥ d
− 1

n

K cn(γ)min

(
n−1∑

i=0

γ2iNK/Q(ki)
2

) 1
n

(33)

Consider the caseγ ≥ 1. The minimum of the right hand
side of eq. (33) is obtained whenki = 0 for i = 1, . . . , n− 1
and NK/Q(k0) = ±1. The value ofγ that maximizes the
coding gain isγ = 1 since cn(γ) is a decreasing function
of γ for γ ≥ 1. For γ < 1, the minimum of the right hand
side of eq. (33) is obtained whenk0 = · · · = kn−2 = 0
and NK/Q(kn−1) = ±1. Maximizing overγ results inγ = 1

since nowcn(γ)γ
2(n−1)

n is an increasing function ofγ. The
optimal choiceγ = 1 shows that since the transmitted streams
are separated at the receiver side (by the use of orthogonal
spreading sequences), the best strategy consists of evenly
distributing the available energy among the different data
streams. In this case, the coding gain achieved by IPC is equal
to d

− 1
n

K .
Arranging the columns of eq. (31), we obtain:

A = diag(α0, . . . , αn−1)
[
diag

(
k0, . . . , σ

n−1(k0)
)

· · · diag
(
kn−1, . . . , σ

n−1(kn−1)
)]

(34)

Equation (34) shows that encoding adjacent symbols is
not needed sincek0, . . . , kn−1 are decoupled. Therefore, the
temporal length of the codewords (J) can be chosen to be
equal to one. In this case, the amplitudes of the pulses
transmitted from then antennas during each symbol duration
are given by then × Nf matrix:

Cn = diag
(
M[a1, . . . , an]T

)
B (35)

where B/
√

Nf is any unitaryn × Nf matrix and M is
calculated in the same way as in Subsection III-A. Since the
transmitted date streams are decoupled,M can be any one of
the rotation matrices constructed in [17] or [18].

IPC presents many advantages over ISC. From eq. (28), ISC
achieves a coding gain that iscn(2) times smaller than that
of IPC (cn(2) < 1 for all values ofn). Moreover, IPC has
a lower decoding complexity since each codeword containsn
rather thann2 symbols. Finally, IPC systems have lower peak-
to-average-power-ratios (PAPR) and lower decoding delays(1
symbol versusn symbol durations). However, unlike ISC that
can be applied with any TH-UWB system, IPC can be applied
only whenNf ≥ n.

For multi-dimensionalM -PPM-M ′-PAM constellations, the
codewordC with dimensionsP ×J (with J = P for ISC and
J = 1 for IPC) will now have the dimensionsPM×J and will
be noted byCM . CM can be calculated from eq. (17) and eq.
(35) by replacing the rotation matrixM with M ⊗ IM and
by replacing the scalarsai by aT

i where nowai is the M -
dimensional vector representation of thei-th symbol. Denote
by C′

M the P × J matrix whosep-th row is equal to the sum
of rows(p−1)M +1, . . . , pM of CM . Since the rank and the
determinant ofCT

MCM are greater or equal to those ofC′T
M C′

M
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and sinceC′
M is equal toC, we conclude that the same value

of γ will maximize the coding gain over allM -dimensional
extensions of the initialM ′-PAM constellation independently
from the value ofM .

IV. MULTIPLE ACCESS INTERFERENCE

For ISC, we fixB(k) = 1P×Nf
for all values ofk and MAI

is controlled uniquely by the TH codes. For IPC, the family of
unitary matrices{B(k)}K

k=0 can be properly designed in order
to obtain an additional reduction in the level of MAI.

A. Designing the amplitude spreading matrices

The adopted approach consists of designing the amplitude
spreading sequences and the time-hopping sequences indepen-
dently from each other. Without discussing neither the benefit
nor even the feasibility of jointly designed sequences, the
proposed approach results in a simple design criterion thatcan
be readily used for designing interference reducing sequences.
Therefore, the TH sequences are designed as if there was no
amplitude spreading and vice versa.

For synchronous systems, when no TH is used, eq. (9) can
be generalized to the multi-user scheme as follows:

X = RA(IJ ⊗B)+
K∑

k=1

√

EkR(k)A(k)(IJ ⊗B(k))+N (36)

whereR(k) stands for the channel matrix of thek-th user and
it is constructed in the same way asR.

From eq. (36), combining theNf decision variables cor-
responding to the same symbol duration is equivalent to
calculating the new decision variableX ′ given by:

X ′ = X(IJ ⊗ BT )

= RA +

K∑

k=1

√

EkR(k)A(k)(IJ ⊗ B(k)BT ) + N(IJ ⊗ BT )

(37)

Based on eq. (37) and inspired from [19], we propose to
construct the spreading matrices based on minimizing:

max
0≤k≤K+1

K+1∑

l=0 ; l 6=k

det
(

B(k)T

B(l)
)

(38)

This design criterion simply states that the spreading ma-
trices of the different users must be constructed to be as
orthogonal to each other as possible. Unlike the CDMA-like
systems (Nf >> 1) where all the matricesB(k) are chosen
to be orthogonal to each other, the limited value ofNf and
the potentially large number of users sharing the channel
render the totally orthogonal choice impossible. Equation
(38) is equivalent to choosing the set{B(0), . . . , B(K)} that
maximizes:

d = min
0≤k≤K+1

K+1∑

l=0 ; l 6=k

P∏

p=1

sin2 θ(k,l)
p (39)

where(θk,l
1 , . . . , θk,l

P ) are the principal angles between the two
subspaces generated from the rows ofB(k) andB(l).

From eq. (39), the construction of the spreading matrices
depends on the number of interfering users. For example, a
family of K+1 matrices is designed for a network withK+1
users. Now, if a user leaves the network, the matrices of the
remainingK users must be changed since the optimal set of
matrices forK users is not a subset of the set of optimal
matrices forK+1 users. In other words, all users must update
their spreading matrices whenever a user joins or leaves the
network. Taking this in consideration and observing thatd ≥
Kdmin, we propose to maximize:

dmin = min
0≤k 6=l≤K+1

P∏

p=1

sin2 θ(k,l)
p (40)

In this way, the inclusion property is maintained and the
family of matrices can be designed based on a single pa-
rameter that corresponds to the maximum number of users
whose interference must be rejected. Maximizing eq. (40) is
equivalent to reducing the interference between two particular
users without taking the other users in consideration. This
simplification is similar to the classical approach of calculating
the pairwise error probability in order to find a union bound
on the performance. Another interpretation of eq. (40) is that
it is the design under a worst-case scenario.

Equation (40) is nothing but the design criterion for the
construction of non-coherent ST codes [20]. In what follows
we fix Nf = 2P which, given the number of transmit
antennas, corresponds to low-dimensional spreading. Now,the
approach used in [21] for the construction of such codes can be
readily applied to the design of a family of matrices satisfying
eq. (40). The spreading matrices are calculated according to:

B = IP×2P exp

(
0P×P CT

−C 0P×P

)

(41)

whereC is anyP ×P coherent ST code satisfying the design
criteria of [11]. The codewords are scaled to insure that allthe
principal angles in eq. (40) are smaller thanπ/2. In particular,
C can be the code designed in eq. (17). In this way, ifC is
constructed from the vectorss = [s1, . . . , sP 2 ] whose elements
verify si ∈ {±1, . . . ,±nu}, then(2nu)P 2

users can share the
same channel. To each one of these users is given a spreading
matrix corresponding to a particular value of the vectors.
Moreover, since the coding gain of eq. (17) is independent
from the constellation size,nu can have large values without
limiting the capability of reducing the interference level.

When amplitude spreading is combined with TH, the result-
ing system is expected to suffer from less interference than
systems using TH exclusively. This can be compared with
[9] where it was observed that randomizing the polarity of
the transmitted pulses results in a better immunity against
MAI even in asynchronous environments. Instead of using
random sequences, we proposed here a reliable method for
the construction of these sequences.
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B. Performance Analysis

In order to include the effect of MAI, eq. (9) can be
expressed in a more convenient way as:

X(MNf QL×J) =R(MNf QL×PMNf )

(
B(PNf×P )⊗IM

)
C(PM×J)

+

K∑

k=1

R(k)
MAIC

(k)
MAI + N (42)

where C is the ST codeword whose((p − 1)M + m, j)-th
entry corresponds to the amplitude of the pulse transmitted
from thep-th antenna at them-th position of thej-th symbol
duration.R is obtained by stacking the constituent matrices
Rq,l vertically for l = 0, . . . , L − 1 and q = 1, . . . , Q
whereRq,l =

[
INf

⊗ Rq,l,1, . . . , INf
⊗ Rq,l,P

]
. Finally, B =

diag(BT
1 , . . . , BT

P ).
For synchronous users,C(k)

MAI = C(k) corresponds to the
codeword transmitted by thek-th user. In this case, the matrix
R(k)

MAI is given by:

R(k)
MAI =

√

EkR(k)
(

B(k) ⊗ IM

)

(43)

whereR(k) is obtained by stacking the matricesR(k)
q,l ver-

tically with R(k)
q,l = [R(k)

q,l,1 · · · R(k)
q,l,P ] and R(k)

q,l,p =

diag
(

R(k)
q,l,p,0, . . . ,R

(k)
q,l,p,Nf−1

)

. R(k)
q,l,p,n is a M ×M matrix

whose(m, m′)-th element is given by:

R(k)
q,l,p,n(m, m′) = r(k)

q,p (∆l + (m − m′)δ + (c(n) − ck(n)) Tc)
(44)

For asynchronous users, each time frame can interfere with
two consecutive time frames. Moreover, these frames do not
necessarily correspond to the same symbol duration. In this
case, the expression ofC(k)

MAI in eq. (42) during thej-th
symbol duration is given by:

C(k)
MAI =

[

(C(k)(j − 1))T , (C(k)(j))T , (C(k)(j + 1))T
]T

(45)
whereC(k)(j) , C(k) and C(k)(i) is obtained by delaying
(resp. advancing) the data stream by one symbol duration for
i = j − 1 (resp.i = j + 1).

For asynchronous users,R
(k)
MAI can be expressed as:

R(k)
MAI =

√

EkR(k)
Asyn

(

I3 ⊗
(

B(k) ⊗ IM

))

(46)

where R(k)
Asyn is obtained by stacking the matricesR(k)

q,l

vertically with R(k)
q,l = [R(k)

q,l (−1) , R(k)
q,l (0) , R(k)

q,l (1)] and

R(k)
q,l (i) =

[

R(k)
q,l,1(i) · · · R(k)

q,l,P (i)
]

. R(k)
q,l,p(i) is a MNf ×

MNf matrix whose (nM + m, n′M + m′)-th element is
given by (forn, n′ = 0, . . . , Nf − 1 andm, m′ = 1, . . . , M ):

r(k)
q,p (∆l + (m − m′)δ + (c(n) − ck(n′))Tc

+(n − n′ − iNf )Tf − τ (k)) (47)

Note that thek-th user delay can be expressed asτ (k) =

τ
(k)
1 Tf + τ

(k)
2 where τ

(k)
1 is uniformly distributed over[

−Nf

2
Nf

2

]

andτ
(k)
2 is uniformly distributed over

[

−Tf

2
Tf

2

]

.

For τ (k) ≥ 0 (resp.τ (k) ≤ 0 ), R(k)
q,l (i) is equal to the all zero

matrix for i = 1 (resp.i = −1).

In peer-to-peer scenarios, the receiver tracks the CSI of the
desired user without having any specific knowledge of the
channel realizations, hopping codes and spreading sequences
of the interfering users. In such situations, using linear inter-
ference suppression receivers can be a good tradeoff between
performance and complexity. In order to simplify the receiver
structure, we choose to combine the pulses associated with
each symbol prior to performing MMSE filtering.

For IPC, despreading is performed by multiplying eq. (42)
by the matrixD = IQL ⊗ B. After performing this multipli-
cation, we can easily verify that the noise term remains white.
Equation (42) becomes:

Y = DX = HS +
K∑

k=1

H(k)S(k)
MAI + N (48)

where H = DR (BM⊗ IM ) and H(k) = DR(k)
MAI(M ⊗

IM ). Y is the new decision vector whose length is equal to
MPQLJ with J = 1. M is any fully-diverse rotation matrix
(refer to subsection III-B). We designate byS(k) the MP -
dimensional vector representation of the information symbols
transmitted by thek-th user (withS , S(0)).

For ISC systems,D = IQL ⊗ B1 where B1 = 11×Nf
.

S(k) is now theMP 2 vector representation of theP 2 coded
symbols of thek-th user (withS , S(0)). The channel matrix
H in eq. (48) takes the following form:

H = diag(DR (B ⊗ IM ) , . . . ,DR (B ⊗ IM )
︸ ︷︷ ︸

J

)(Φ⊗IM ) (49)

where Φ is the matrix that describes the linear dependence
between the transmitted (coded) symbols and the information
symbols. In other words,Φ is theJP × P 2 matrix verifying
vec(C) = ΦS where J = P for unbalanced systems and
J = P 2 for balanced systems. The matrixH(k) in eq. (48) is
obtained by replacingR with R(k)

MAI in eq. (49).
For synchronous users,S(k)

MAI in eq. (48) is given by
S

(k)
MAI = S(k) and it has a length ofMNt whereNt = P for

IPC andNt = P 2 for ISC. For asynchronous users,S
(k)
MAI is

a 3MNt vector obtained by vertically concatenating a delayed
version ofS(k), S(k) and an advanced version ofS(k).

The filter based on the MMSE criterion is given by:

F = HT

(

HHT +

K∑

k=1

H(k)H(k)T +
N0

2
I

)−1

(50)

Since the receiver has no access to the CSI of the interfering
users,F can be determined fromF =E

(
SYT

)
E
(
YYT

)−1

where the average is calculated over a training sequence.
Let V = FH, V (k) = FH(k) and U = FFT . For 2-

PAM constellations, and conditioned on the channel realization
(denoted by(R)), the probability of detecting the symbols of
the p-th data stream erroneously is given by:

P
(p)
e/(R) =

1

2µKNt(Nt−1)

∑

Sp∈{±1}Nt−1

∑

[S
(1)
MAI ,...,S

(K)
MAI ]∈{±1}µKNt

Q

(

Vp,p + V pSp +
∑K

k=1 V
(k)
p S

(k)
MAI

√
N0Up,p/2

)

(51)
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whereQ(.) is the Gaussian tail function.Xi andXi,j corre-
spond to thei-th row and the(i, j)-th element of the matrixX
respectively.V p is obtained by removing thep-th element from
the p-th row of matrixV . In eq. (51),µ = 1 for synchronous
users andµ = 3 for asynchronous users.

Assuming that after applying the MMSE filter the co-
channel interference and MAI are zero-mean Gaussian random
variables, eq. (51) can be approximated by:

P
(p)
e/(R) ≈ Q




Vp,p

√

N0Up,p/2 + V pV
T

p +
∑K

k=1 V
(k)
p V

(k)T
p





(52)
When it is possible to calculate eq. (51), i.e. for small values

of K andNt, we realized that there is no significant difference
between the values given by eq. (51) and eq. (52). This can
be explained by the fact that the MMSE filter succeeds in
suppressing the co-channel interference and MAI [22].

Motivated by the fact that eq. (52) is a good indicator of
the error performance, we now adopt a similar approach that
permits to determine an upper bound on the performance of
M -PPM-2-PAM constellations. We keep the same notations
as above and we denote byV (p) the M ×M matrix obtained
from the elementsV(p−1)M+m,(p−1)M+m′ of matrix V for
p, p′ = 1, . . . , P and m, m′ = 1, . . . , M . Supposing that a
symbol s = ±1 is transmitted at them-th position of the
p-th data stream and considering that co-channel interference
and MAI are Gaussian, then the outputs of theM correlators
corresponding to this data stream are given by:

y
(p)
m′ = V

(p)
m′,ms + nm′ (53)

for m′ = 1, . . . , M . The termnm′ includes the effect of noise,
co-channel interference and MAI. It will be considered as a
zero-mean Gaussian random variable. In this case, its variance
takes the following value:

σ2
m′ =

N0

2
U

(p)
m′,m′ +

1

M
[V (p−1)M+m′V

T

(p−1)M+m′

+

K∑

k=1

V
(k)
(p−1)M+m′V

(k)T
(p−1)M+m′ ] (54)

whereU (p) is constructed in the same way asV (p) and V i

(for i = (p − 1)M + m′) stands for removing the elements
(p − 1)M + 1, . . . , pM from the i-th row of the matrixV .

By applying the union bound, the conditional probability of
detecting the pulse transmitted at them-th position of thep-th
data stream erroneously is bounded by:

P
(p,m)
e/(R) ≤

∑

s=±1

prob
{

V (p)
m,ms + nm ≥ −V (p)

m,ms + nm

}

prob(s)

+

M∑

m′=1 ; m′ 6=m

prob
{

|y(p)
m′ | ≥ |y(p)

m |
}

(55)

After some manipulations, eq. (55) can be written as:

P
(p,m)
e/(R) ≤ Q(0)

p,m+

M∑

m′=1 ; m′ 6=m

Q(1)
p,m,m′+Q(2)

p,m,m′−2Q(1)
p,m,m′Q(2)

p,m,m′

(56)

whereQ(i)
p,m,m′ = Q

(
V (p)

m,m+(−1)iV
(p)

m′,m√
σ2

m+σ2
m′

)

for i = 1, 2 and

Q(0)
p,m = Q

(
V (p)

m,m√
σ2

m

)

.

The conditional error probability can be calculated from

Pe/(R) =
1

M

P∑

p=1

M∑

m=1

P
(p,m)
e/(R) (57)

Since the performance is determined over the IEEE channel
model [23] that does not lend itself to analytical solutions, the
average error probability is evaluated by Monte Carlo simu-
lations. More precisely, the error probability is determined by
averagingPe/(R) over different realizations of the channel, the
interfering users’ channels, the amplitude spreading matrices
and the TH sequences.

V. SIMULATIONS AND RESULTS

The pulse waveformw(t) is chosen to be the second
derivative of the Gaussian pulse with a duration of 0.5 ns. The
PQ sub-channels of each user are generated independently ac-
cording to the IEEE 802.15.3a channel model recommendation
CM2 that corresponds to non-line-of-sight (NLOS) conditions
[23]. The channel is held constant over one transmission block
and is allowed to change independently from one block to
another. The modulation delay is chosen to verifyδ = Tw =
0.5 ns. In order to eliminate ISI, we fixTf = NcTc + 100
ns with Tc = δ. In single-user situations, the performance is
independent from the number of time framesNf . In this case,
we fix Nf = P in order to render IPC and the balancing of ISC
possible. In multi-user scenarios, all users are assumed tohave
the same transmission levels. The sphere decoder [24] is used
for detection. For simplicity, we assume that the relative time
delays between the signals received at the different antennas
(ε(k)

q,p in eq. (2)) are negligible. In this way, the simulations
highlight the diversity and multiplexing advantages of the
proposed schemes independently from the relative orientations
and positions of the transmit and receive arrays.

In Fig. 2, we show the performance of equilibrated, unbal-
anced and balanced ISCsCeq , C andCbal taken from eq. (21),
eq. (22) and eq. (27) respectively. We compare the results of
the above codes with those of IPCC2 given in eq. (35) and
with STC-scheme 1 from [1], [2]. The latter code achieves
full diversity with a rate of 1 symbol PCU for all values of
P . This code will be referred to as the orthogonal code (OC)
in what follows. The comparison is performed at the same
data rate of 2 and 4 bits PCU with signal sets having the
same dimensionality for the case of 2 transmit and 2 receive
antennas with a 6 fingers Rake. The difference between the
coding gains ofC andCeq results in a gain of about 0.75 dB at
high SNR. We can also notice the performance improvement
introduced by balancing the ISC. Note that at 2 bits PCU,OC
approaches the performance ofCbal at high SNR. At 4 bits
PCU, and for the same number of correlators (fixed by the
dimensionality of the constellation),OC must use 16-PAM
resulting in important performance losses with respect to ISC
and IPC. Similar results are obtained in Fig. 3 with 5 fingers
Rake and 2-dimensional constellations at the rate of 4 bits
PCU.



10

10 15 20 25 30

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR per bit (dB)

S
E

R

spatial mux. 2PAM
C 2PAM
C

eq
 2PAM

C
bal

 2PAM
C

2
 2PAM

OC 4PAM
spatial mux. 4PAM
C 4PAM
C

eq
 4PAM

C
bal

 4PAM
C

2
 4PAM

OC 16PAM

Fig. 2. Performance with 2 transmit antennas, 2 receive antennas and 6
fingers Rake.Ceq , C, Cbal andC2 are the codes from eq. (21), eq. (22), eq.
(27) and eq. (35) respectively.OC corresponds to the orthogonal code from
[1].

In Fig. 4 - Fig. 7, we fixL = 1, P = Q = n and a data
rate of n bits PCU forn = 3, . . . , 6. IPC (Cn) outperforms
ISC (C) in all cases. The performance ofCbal improves with
increasingn since the large number of permutations gives it
a better immunity against noise. In particular, forn > 4, Cbal

outperformsC for all SNRs. OC shows bad performance
even when associated with constellations that have higher
dimensionality than those associated withC, Cbal and Cn.

Fig. 8 shows the performance withP = Q = 2, Nf = 4,
Nc = 200, 2-PAM and L = 5 for K = 10 and K = 15
interfering users in a synchronous environment. The ISCCbal

is compared with the IPCC2 in the two following cases. In
the first case, each one of theK+1 users is attributed with a
random unitary matrix whose elements are taken from{±1}.
In the second case, to each user is given a matrix form the
family of 256 matrices constructed from eq. (41) using 4-
PAM symbols. Results show that appropriately choosing the
spreading matrices results in a gain of about 1 dB at10−4

for K = 15. The dotted lines associated with each curve
correspond to the Gaussian approximation which turns out to
be accurate for all number of users.

Fig. 9 compares simulation results with the upper bound in
eq. (56) for 4-PPM-2-PAM,P = Q = 2, Nc = 200, Nf = 4
andL = 5 with 6 and 11 asynchronous users. Three systems
are considered. Uncoded unspreaded systems that correspond
to spatial multiplexing with all of theNf pulses having the
same amplitude. Uncoded spreaded systems which is the same
as before but now the matrices associated with the different
users are determined from eq. (41). Coded spreaded systems
which correspond to the IPC. Results show the importance of
associating eq. (41) with eq. (35). On the other hand, Fig. 9
shows that the upper bound is tight for high SNRs.

Fig. 10 shows the degradation introduced by MAI when
using IPC given in eq. (35) withP = Q = 2, L = 7, Nc = 200
andNf = 4 in an asynchronous environment at a SNR of 25
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Fig. 3. Performance with P=Q=2 and 5 fingers Rake with 2-dimensional
constellations at 4 bits PCU.Ceq , C, Cbal and C2 are the codes from eq.
(21), eq. (22), eq. (27) and eq. (35) respectively whileOC corresponds to
the orthogonal code from [1].

dB. The random matrices whose elements are taken from{±1}
and the designed matrices from eq. (41) are attributed to the
different users in the same way as in the simulation setup of
Fig. 8. The simulation results show that the performance gains
become more significant with large number of users since in
this case interference becomes more critical on the system
performance.

VI. CONCLUSION

We discussed the construction of two families of full-rate
and fully diverse ST codes that are adapted to carrier-less
UWB transmissions. The first family of codes is constructed
from totally real cyclic division algebras. It was shown that
profiting from the repetitions used to convey one information
symbol, this family of codes can be further modified to balance
the energy inefficiency resulting from the use of non-unitary
integers in the codewords. We also profited from the presence
of these repetitions to introduce a new TH-UWB-specific
version of the first family of codes referred to as inter-pulse
coding schemes. Multiuser extensions were also discussed
and we showed that high performance levels can be obtained
when associating the ST coding schemes with the constructed
amplitude spreading matrices.

APPENDIX

In this appendix, we use thep-adic numbers to show that
−1 is not a norm inK = Q(

√
p) with p = 3. In other words,

there is nox ∈ K verifying NK/Q(x) = −1. Any element
x ∈ K can be written asx = a + b

√
3 wherea, b ∈ Q. We

will show that the equation:

NK/Q(x) = a2 − 3b2 = −1 (58)

has no solution in the field of3-adic numberQ3 and conse-
quently has no solution inK. Let Z3 = {x ∈ Q3, v3(x) ≥ 0}
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be the valuation ring ofQ3 [25]. Using the embedding ofQ
in Q3, eq. (58) can be written inQ3 as:

a2 − 3b2 = 2 + 3x ; a, b ∈ Q, x ∈ Z3 (59)

We take the valuations of both sides of eq. (59):

v3(a
2 − 3b2) = v3(2 + 3x) (60)

to show thata andb must be inZ3. Sincex ∈ Z3:

v3(2 + 3x) ≥ min{v3(2), v3(x) + 1} = 0 (61)

Since both valuations are distinct (v3(2) = 0 andv3(x) ≥
0), we have:

v3(a
2 − 3b2) ≥ min{2v3(a), 2v3(b) + 1} = 0 (62)
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Fig. 6. Performance with 5 transmit antennas, 5 receive antennas and 1
finger Rake.C, Cbal, andC5 are the codes from eq. (17), eq. (26) and eq.
(35) respectively whileOC corresponds to the orthogonal code from [2].
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(35) respectively whileOC corresponds to the orthogonal code from [2].

Moreover we have equality since both valuations are distinct.
Equation (62) holds ifv3(a) = 0 which impliesa ∈ Z3 and
consequentlyb ∈ Z3. Equation (59) can be now written as:

a2 − 3b2 = 2 + 3x ; a, b, x ∈ Z3 (63)

Reducing eq. (63) modulo3Z3, we find that2 should be a
square inGF(3) which is a contradiction and therefore there
are no elementsa, b ∈ Q that verify eq. (58).
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[25] F. Q. Gouvêa,P-Adic Numbers: An introduction, 2nd ed. Berlin,
Germany: Springer-Verlag, 1997.


