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A 2 × 2 Antennas Ultra-Wideband System with
Biorthogonal Pulse Position Modulation

Chadi Abou-Rjeily, Norbert Daniele and Jean-Claude Belfiore, Member IEEE

Abstract— The Golden code [1] is a2 × 2 space-time code
that achieves the best known performance with all constellations
carved from Z[i]. In this letter, we present the construction of
a new coding scheme for2M -ary biorthogonal pulse position
modulations (BPPM) with M ≥ 4. The proposed code satisfies
all of the construction constraints of the Golden code and ithas
the additional advantage of being totally real making it suitable
for low cost carrier-less ultra-wideband terminals. Namely, this
totally real construction achieves full rate and full diversity with
the best known coding gain and without any shaping losses for
2M -BPPM with M ≥ 4.

Index Terms— UWB, Space-Time, MIMO, BPPM, PPM.

I. I NTRODUCTION

RECENTLY UWB WPANs (IEEE 802.15.3) have drawn
considerable attention for short range radio links. For

these systems the BPPM signals achieve high data rates with
a good compromise between complexity and performance [2].
Combining UWB with multi-antenna techniques can increase
the spectral efficiency and reduce the error rate [3], [4].

All of the known space-time (ST) coding schemes were con-
structed over the hypercubes carved from the lattice of rational
integers [1], [5]. The reason is that this generic construction
keeps its properties when associated with the most popular
modulation schemes which are subsets of these hypercubes
(ex. QAM, PAM, PPM, ...). Instead of adopting this approach,
we exploited the structure of the BPPM constellations in order
to construct a BPPM-specific code. This code keeps the natural
advantages of carrier-less impulse radio BPPM-UWB (no need
for frequency synthesizers, low cost, ...) and achieves better
performance with higher spectral efficiency.

Notations: In is the n × n identity matrix. On and 1n

correspond to then-dimensional vectors whose elements are
equal to0 and1 respectively. vec(X) stacks the columns of the
matrix X vertically.⊗ corresponds to the Kronecker product.

II. SYSTEM MODEL

In hybrid M -PPM andM ′-PAM, the input data is mod-
ulated onto both the pulse amplitudes and pulse positions.
Each element of this constellation is represented by anM -
dimensional vector that belongs to the set:

C = {(2m′−1−M ′)em+1; m
′ = 1, ..., M ′; m = 0, ..., M−1}
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whereem is them-th column ofIM . 2M -BPPM is a special
case obtained by settingM ′ = 2. In single-user time hopping
UWB, the signal transmitted from thep-th antenna is:

sp(t) =

Nf−1
∑

n=0

M−1
∑

m=0

ap,mw(t − nTf − mδ) (1)

where w(t) is the monocycle pulse waveform of duration
Tw normalized to have unit energy.Nf pulses are used to
convey each information symbol. Each one of these pulses
is emitted during one time frame of durationTf . δ is the
modulation delay and is chosen to satisfyδ ≥ Tw. ap =
[ap,0, ..., ap,M−1]

T ∈ C is composed ofM −1 zero values and
one component that belongs to theM ′-ary PAM constellation.

The received signal at theq-th antenna is given by:

rq(t) =

P
∑

p=1

Nf−1
∑

n=0

M−1
∑

m=0

ap,mhq,p(t − nTf − mδ) + nq(t) (2)

wherenq(t) is the noise at theq-th antenna which is supposed
to be real AWGN with double sided spectral densityPN0/2.
hq,p(t) is the convolution ofw(t) and gq,p(t) which stands
for the impulse response of the frequency selective channel
between thep-th transmit and theq-th receive antenna.

In order to take advantage of the multi-path diversity, anL-
th order Rake receiver is used. The finger delays are chosen
as ∆l = lMTw for l = 0, ..., L − 1. This corresponds
to combining the first arriving multi-path components. In
the absence of inter symbol interference, theQLM decision
variables take the form:

zq,l,m =

∫ Nf Tf

0

rq(t)

Nf−1
∑

n=0

w(t − nTf − ∆l − mδ)dt

=
∑

p′,m′

ap′,m′rq,p′ ((m − m′)δ + ∆l) + nq,l,m (3)

where: rq,p(τ) =
∫ Tf

0
hq,p(t)w(t − τ)dt. nq,l,m is a white

Gaussian noise which follows fromδ ≥ Tw and∆l = lMTw.
The last equation can be expressed in matrix form as:

Z = RC + N (4)

Z andN are theQLM × T decision and noise matrices re-
spectively. For ST codes with temporal extension ofT , thet-th
column of thePM ×T matrix C is the vertical concatenation
of a1, ..., aP . R is the channel matrix of dimensionsQLM ×
PM : R = [RT

1 , . . . , RT
Q]T . Rq = [RT

q,0, . . . , R
T
q,L−1]

T is a
LM ×PM matrix corresponding to theq-th receive antenna.
TheM ×PM constituent matricesRq,l take the formRq,l =
[Rq,l,1 · · · Rq,l,P ]. Rq,l,p is aM×M matrix whose(m, m′)-
th element is given by:Rq,l,p(m, m′) = rq,p(∆l+(m−m′)δ).
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III. C ODE CONSTRUCTION

Consider the quadratic field extension given by:

K = Q(
√

5) = {a + b
√

5 | a, b ∈ Q} (5)

For 2 transmit antennas andM -dimensional constellations,
the coding scheme is constructed over the ring of integers of
K given byOK = Z(θ) = {a+bθ | a, b ∈ Z} with θ = 1+

√
5

2 .
Each codeword is given by the2M × 2 matrix:

C = diag(
√

α1T
M

√

σ(α)1T
M )

[

a1 + θa2 a3 + θa4

Ω(a3 + θ̄a4) a1 + θ̄a2

]

(6)
whereai ∈C are theM -dimensional vector representations of
the transmitted symbols fori = 1, ..., 4. θ̄ = σ(θ) =− 1

θ is the
conjugate ofθ. Ω is theM ×M permutation matrix given by:

Ω =

[

OT
M−1 1

IM−1 OM−1

]

(7)

The multiplication by the diagonal matrix in eq. (6) corre-
sponds to normalizing the transmitted energy.α = 3−θ

5 and
NK/Q(

√
α) =

√

ασ(α) = 1√
dK

wheredK = 5 is the discrimi-
nant ofK. This corresponds to limiting the construction in the
ideal I =

√
αOK whose volume is equal to 1 (please refer to

[4] for more details).
In what follows, we will show that this coding scheme is

fully diverse for combinedM -PPM-M ′-PAM constellations
with M > 2 and for all values ofM ′. 2M -BPPM andM -
PPM follow as special cases by settingM ′ = 2 and M ′ =
1 respectively. Ignoring the normalization matrix in eq. (6)
which is common to all codewords, let

∆C(X, Y ) = C − C′ =

[

X Y
Ωσ(Y ) σ(X)

]

(8)

We must show that the rank of∆C(X, Y ) is equal to2 for
all values of(X, Y ) 6= (OM , OM ) whereX, Y ∈ A:

A = {(a − a′) + (b − b′)θ | a, a′, b, b′ ∈ C} ⊂ OM
K (9)

Proposition 1: if ∃i |Xi = 0 then rank(∆C(X, Y )) = 2
unlessX = Y = OM .

Proof : Designate byπ the cyclic permutation given by:
π(i) = i mod M + 1 for i = 1, ..., M .

∆C =

[

X1 · · · XM σ(Yπ−1(1)) · · · σ(Yπ−1(M))
Y1 · · · YM σ(X1) · · · σ(XM )

]T

(10)
Suppose that rank(∆C) < 2 then its two columns have

the same direction. Therefore, considering the firstM rows
of ∆C, Xi = 0 ⇒ Yi = 0. Now we haveσ(Yi) = 0 (since
Yi = 0 and{1, θ} is an integral basis ofOK). Considering the
last M rows of ∆C, σ(Yi) = 0 ⇒ σ(Xπ(i)) = 0 ⇒ Xπ(i) =
0. Starting the same procedure again withπ(i) rather thani,
we can conclude by iteration thatXi = Xπ(i)... = XπM−1(i)

andYi = Yπ(i)... = YπM−1(i) ⇔ X = Y = OM sinceπ is a
bijection over{1, ..., M}. The same proof holds if∃i |Yi = 0.

Lemma 1: The code achieves full diversity forM > 4.
Proof : From the definition ofA in eq. (9), the vectorsX and

Y are linear combinations of any 4 columns ofIM . Therefore
for M > 4, X andY each have at least one zero component
resulting in full rank as shown in proposition 1.

We must now verify that∆C has a full rank when all of its
components are nonzero. When∆C has no zero components,
rank(∆C) < 2 implies that:

Y1

X1
= . . . =

YM

XM
=

σ(X1)

σ(Yπ−1(1))
= . . . =

σ(XM )

σ(Yπ−1(M))
= k

(11)
wherek ∈ K. After some manipulations, eq. (11) becomes:

X1 = (NK/Q(k))M+1−iXi ; i = M, M − 1, ...2 (12)

On the other hand,Xi, Yi ∈ O∗
K = Z∗ ⊕ θZ∗ ⊕O′

K for all
values ofi whereO′

K = {a+bθ | a, b ∈ Z∗ = Z−{0}}. Since
NK/Q(k) ∈ Q for k ∈ K, eq. (12) implies thatX1, ..., XM

(andY1, ..., YM in an equivalent manner) must belong to one
of the following setsZ∗, θZ∗ or O′

K simultaneously.
Following from the structure ofA, a maximum number of 2

components ofX can contain an integer or an integral multiple
of θ. Therefore the code is nut fully diverse withM = 2.
From eq. (9), both entries ofX can belong toZ∗ (resp.θZ∗)
when b = b′ (resp.a = a′) and (a, a′) = (x1ei, x2ej) (resp.
(b, b′) = (x1ei, x2ej)) for i, j = 1, 2 and i 6= j. In the same
way, X1 andX2 can both be inO′

K. In this case, the vector
X takes the formX = (x1 + θx2)ei + (x3 + θx4)ej where
x1, ..., x4 are symbols of theM ′-ary PAM andi 6= j.

For M = 3, whenXi 6= 0 for i = 1, ..., M , X belongs to
the set of all possible permutations of:

A′ = {[x1, x2, x3θ]
T , [x1, x2θ, x3θ]

T , [x1, x2θ, x3 + x4θ]
T }

wherex1, ..., x4 ∈ Z∗. Therefore, a maximum number of2
components ofX can be inZ∗ (or θZ∗) at the same time
while only one component can belong toO′

K. This is in
contradiction with eq. (12) which proves that the proposed
code is fully diverse.

For M = 4, eq. (12) is in contradiction with the structure
of A. When Xi 6= 0 for i = 1, ..., M , and in order to
occupy 4 positions,X must be a permutation of the vector
x1e1 + θx2e2 + x3e3 + θx4e4. This implies that there are two
valuesXi, Xj ∈ Z∗ while the other 2 valuesXk, Xl ∈ θZ∗.
Therefore, the components ofX can not belong simultane-
ously to Z∗, θZ∗ or O′

K. As a conclusion,C achieves full
diversity for M > 2 and for all values ofM ′.

Proposition 2: C is information lossless.
Proof : Equation (4) can be expressed as:

vec(Z) = (I2 ⊗ R)Φ[aT
1 aT

2 aT
3 aT

4 ]T + vec(N) (13)

where, from eq. (6), vec(C) = Φ[aT
1 aT

2 aT
3 aT

4 ]T and:

Φ =









√
αIM

√
αθIM ΘM ΘM

ΘM ΘM

√

σ(α)Ω
√

σ(α)θ̄Ω
ΘM ΘM

√
αIM

√
αθIM

√

σ(α)IM

√

σ(α)θ̄IM ΘM ΘM









(14)
where ΘM is the M × M all-zero matrix. We can prove
that ΦΦT = I4M which follows from the fact that the basis√

α{1, θ} is orthonormal andΩΩT = IM . The fact thatΦ is
unitary is sufficient forC to be information lossless [6].

When associated withM -dimensional constellations, the
Golden code (denoted asG) can be obtained from eq. (6)
by replacingΩ with i =

√
−1 and

√
α by α = 1 + i(1 − θ)
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Fig. 1. The proposed code vs. the best previously known totally-real code
(BPC) [4] with L = 1.

[1]. When associated with finite QAM or PAM constellations,
this code achieves the following coding gain [1]:

δmin(G) = min
X,Y ∈A,X 6=Y

|det∆G(X, Y )| =
4√
5

(15)

For M -dimensional constellations withM ≥ 2, by rear-
ranging the rows of∆G = G − G′, it can be written as:

∆G = [∆GT
1 , . . . , ∆GT

r , . . . , ∆GT
M ]T (16)

where∆Gm comprises them-th and the(M + m)-th rows
of ∆G for m = 1, ..., M and r designates the number
of such nonzero matrices.r = 1 implies that the anten-
nas are transmitting at the same position during consecu-
tive symbol durations and it follows that the coding gain
is the same as in eq. (15). Forr > 1: det(∆GT ∆G) ≥
r2 minm=1···r{det(∆GT

m∆Gm)}. For a given value ofr,
the minimum nonzero value of the above equation is
r2δmin(G)2/24 since the difference between 2 data symbols
now belongs to{m′}M rather than{2m′} as in the case of
PAM symbols form′ ∈ [−M ′ M ′]. So the minimal nonzero
value of the coding gain is obtained forr = 2:

δmin(GM−PPM−M ′−PAM) =
δmin(G)

2
=

2√
5

(17)

In other words, if the vectorb = [a1 − a′
1, ..., a4 − a′

4]
is one of the vectors that minimizesδmin(G) over the PAM
constellation, then the vectors(aiep ± a′

iep′) for i = 1, .., 4
and p 6= p′ will yield half this minimum over the extended
M -dimensional constellation forp, p′ = 1, ..., M .

By numerical evaluation, we find that the coding gain of the
proposed code when associated with2M -BPPM constellations
is δmin(C6−BPPM) =

√
1.553/

√
5 and δmin(C2M−BPPM) =

2/
√

5 for M = 4, ..., 8. Moreover, δmin(C2M ′−BPPM) ≥
δmin(C2M−BPPM) for M ′ ≥ M since2M ′-BPPM is obtained
by adding new dimensions to2M -BPPM forM ′ ≥ M . When
associated withM -PPM, the coding gain isδmin(CM−PPM) =
2/

√
5 for M ≥ 3. This shows that the proposed scheme

achieves the same coding gain as the Golden code for2M -
BPPM with M ≥ 4 and for M -PPM with M ≥ 3. Since
2M -BPPM has better performance and higher rate thanM -
PPM with the same complexity [2], it is more interesting to
use UWB transceivers merging the code proposed in eq. (6)
with 2M -BPPM.
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Fig. 2. The new code (NC) vs. the Golden Code (GC) [1].

IV. SIMULATIONS AND RESULTS

Simulations are performed over the IEEE 802.15.3a channel
model recommendation CM2 that corresponds to non line
of sight situations [7]. Fig. 1 compares the proposed code
with the best previously known totally-real code [4]. The
latter can be obtained from eq. (6) by settingΩ = 2. This
choice maximizes the coding gain over all constellations. The
receiver is equipped with 2 antennas and a 1 finger Rake. The
superiority of the proposed scheme is obvious in all situations.
In comparison with the single-antenna systems, the2 × 2
scheme doubles the data rate and enhances the performance.

In Fig. 2, the proposed code is compared with the Golden
code in the case where the UWB receivers are equipped with
IQ front ends. Results show that our totally real construction
shows exactly the same performance as [1]. Results with 4-
PPM-4-PAM are shown since the coding gain associated with
this constellation is equal to2/

√
5.

V. CONCLUSION

A 2 × 2 totally-real ST code suitable for low-cost UWB
terminals using multi-dimensional constellations is proposed.
The information lossless scheme achieves full rate and full
diversity with allM -PPM-M ′-PAM constellations forM > 2.
The proposed code achieves the optimal coding gain with2M -
BPPM for M ≥ 4 and withM -PPM for M ≥ 3.
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