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Abstract. As the Web continues to grow and evolve, more and more information is 
being placed in structurally rich documents, XML documents in particular, so as to 
improve the efficiency of similarity clustering, information retrieval and data 
management applications. Various algorithms for comparing hierarchically 
structured data, e.g., XML documents, have been proposed in the literature. Most of 
them make use of techniques for finding the edit distance between tree structures, 
XML documents being modeled as ordered labeled trees. Nevertheless, a thorough 
investigation of current approaches led us to identify several structural similarity 
aspects, i.e. sub-tree related similarities, which are not sufficiently addressed while 
comparing XML documents. In this paper, we provide an improved comparison 
method to deal with fine-grained sub-trees and leaf node repetitions, without 
increasing overall complexity with respect to current XML comparison methods. 
Our approach consists of two main algorithms for discovering the structural 
commonality between sub-trees and computing tree-based edit operations costs. A 
prototype has been developed to evaluate the optimality and performance of our 
method. Experimental results, on both real and synthetic XML data, demonstrate 
better performance with respect to alternative XML comparison methods. 
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1   Introduction 
W3C’s XML (eXtensible Mark-up Language) has recently gained unparalleled 
importance as a fundamental standard for efficient data management and exchange. 
Information destined to be broadcasted over the web is henceforth represented using 
XML, in order to guarantee its interoperability. The use of XML covers data 
representation and storage (e.g., complex multimedia objects), database information 
interchange, data filtering, as well as web services interaction. Owing to the 
unprecedented web exploitation of XML, XML-based comparison, especially for 
heterogeneous1 documents, becomes a central issue in the information retrieval and 
database communities. The applications of XML comparison are numerous and range 
over: version control, change management and data warehousing (finding, scoring 
and browsing changes between different versions of a document, support of temporal 
queries and index maintenance) [4, 5, 6], XML retrieval (finding and ranking results 
according to their similarity in order to retrieve the best results possible) [16, 22] as 
well as the classification/clustering of XML documents gathered from the web against 
a set of DTDs declared in an XML database (just as schemas are necessary in 

                                                            
1  We denote by heterogeneous XML document one that does not conform to a given grammar 

(DTD/XML Schema), which is the case of a lot of XML documents found on the web [13]. 



traditional DBMS for the provision of efficient storage, retrieval, protection and 
indexing facilities, the same is true for DTDs and XML repositories) [2, 6, 13]. 

A range of algorithms for comparing semi-structured data, e.g., XML-based 
documents, have been proposed in the literature. Most of them make use of 
techniques for finding the edit distance between tree structures, XML documents 
being treated as Ordered Labeled Trees (OLT). Nonetheless, a thorough investigation 
of the most recent and efficient XML structural similarity approaches [4, 6, 13] led us 
to pinpoint certain cases where the edit distance outcome is inaccurate. These 
inaccuracies correspond to undetected sub-tree structural resemblances, as we will see 
in the motivating examples. The goal of our study here is to provide a fine-grained 
XML comparison method able to efficiently detect XML structural similarity without 
decreasing system performance. In short, we aim to build on existing approaches, 
mainly those provided in [4, 13], in order to consider the various sub-tree structural 
commonalities while comparing XML trees.  

The remainder of this paper is organized as follows. Section 2 presents some 
motivating examples. In Section 3, we review background and related work in XML 
structural similarity. Section 4 develops our XML structural similarity approach. 
Section 5 is devoted to present our prototype and experimental tests. Conclusions and 
ongoing work are covered in Section 6. 

2   Motivation 
XML documents tend to have many optional and repeated elements. Such elements 
induce recurring sub-trees of similar or identical structures. As a result, algorithms for 
comparing XML document trees should be aware of such repetitions/resemblances so 
as to efficiently assess structural similarity. 

2.1   Undetected Sub-tree Similarities 

Consider, for example, dummy XML trees A, B and C in Fig. 1. One can realize that 
tree A is structurally more similar to B, than to C, the sub-tree A1, made up of nodes b, 
c and d, appearing twice in B (B1 and B2) and only once in C (C1). Nonetheless, such 
(sub-tree) structural similarities are left unaddressed by most existing approaches. For 
instance, Chawathe’s1 edit distance process [4] permits applying changes to only one 
node at a time (using node insert, delete and update operations, with unit costs), thus 
yielding the same structural similarity value while comparing trees A/B and A/C. 
− Dist(A, B) = Dist(A, C) = 3, which is the cost of three consecutive insert 

operations introducing nodes b, c and d (e, f and g) in tree A transforming it into 
B (C). 

− Therefore, Sim(A, B) = Sim(A, C) = 0.25 where  Sim = 1 / (1+Dist). 
 

In theory, structural resemblances such as those between trees A/B and A/C could 
be taken into consideration by applying generalizations of Chawathe’s approach [4], 
developed by Nierman and Jagadish [13] and Dalamagas et al. [6] (introducing edit 
operations allowing the insertion and deletion of whole sub-trees). Yet, our 

                                                            
1 considered as a reference point for the latest tree edit distance algorithms [6, 13]. 



examination of the approaches provided in [6, 13] led us to identify certain cases 
where sub-tree structural similarities are disregarded: 
− Similarity between trees A/D (sub-trees A1 and D2) in comparison with A/E. 
− Similarity between trees F/G (sub-trees F1 and G2) relatively to F/H. 
− Similarity between trees F/I (sub-tree F1 and tree I) in comparison with F/J. 
 

In essence, the authors in [13] make use of the contained in relation between trees 
(cf. Definition 2) so as to capture sub-tree similarities. Following [13], a tree A may 
be inserted in T only if A is already contained in the source tree T. Similarly, a tree A 
may be deleted only if A is already contained in the destination tree T. Therefore, the 
approach in [13] captures the sub-tree structural similarities between XML trees A/B 
in Fig. 1, transforming A to B in a single edit operation: (inserting sub-tree B2 in A, B2 
occurring in A as A1), whereas transforming A to C would always need three 
consecutive insert operations (inserting nodes e, f and g).  

  

   

   
 

 
 

   
 

 

Fig. 1. Sample XML trees. 
 

Nonetheless, when the containment relation is not fulfilled, certain structural 
similarities are ignored. Consider, for instance, trees A and D in Fig. 1. Since D2 is not 
contained in A, it is inserted via four edit operations instead of one (insert tree), while 
transforming A to D, ignoring the fact that part of D2 (sub-tree of nodes b, c, d) is 
identical to A1. Therefore, equal distances are obtained when comparing trees A/D and 
A/E, disregarding A/D’s structural resemblances: 
− Dist(A, D) = CostIns(h) + CostIns(b) + CostIns(c) + CostIns(d) + CostIns(h) = 1+4 = 5 
− Dist(A, E) = CostIns(h) + CostIns(e) + CostIns(f) + CostIns(g) + CostIns(h) = 1+4 = 5 

 

Likewise for the D to A transformation (tree D2 will not be deleted via a single 
delete tree operation since it is not contained in the destination tree A), achieving 
Dist(D, A) = Dist(E, A) = 5. Other types of sub-tree structural similarities that are 
missed by [13]’s approach (and likewise missed by [4, 6]) can be identified when 
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comparing trees F/G and F/H, as well as F/I and F/J. The F, G, H case is different 
than its predecessor (the A, D, F case) in that the sub-trees sharing structural 
similarities (F1 and G2) occur at different depths (whereas with A/D, A1 and D2 are at 
the same depth). On the other hand, the F, I, J case differs from the previous ones 
since structural similarities occur, not only among sub-trees, but also at the sub-
tree/tree level (e.g., between sub-tree F1 and tree I). 

 

Note that in [6], the authors complement their edit distance algorithm (which can 
be viewed as a specialized version of [13]’s algorithm) with a repetition/nesting 
reduction process, summarizing the XML documents prior to the comparison phase. 
Such a reduction pre-processing transforms, for instance, tree B to A, thus yielding 
Dist(A, B) = 0 which is not accurate (tree A is obviously different than B). While it 
might be useful for structural clustering tasks, the reduction process yields inaccurate 
comparison results in the general case, which is why it is disregarded in our 
discussion. Therefore, we only consider [6]’s edit distance algorithm in our analysis.    

2.2   The Special Case of Single Leaf Node Sub-trees 

In addition, none of the approaches mentioned above is able to effectively compare 
documents made of repeating leaf node sub-trees. For example, following [4, 6, 13], 
the same structural similarity value is obtained when comparing document K, of Fig. 
2, to documents L and M, Sim(K, L) = Sim(K, M) = 0.5, having Dist(K, L) = Dist(K, 
M) = 1.  
− Dist(K, L) = CostIns(b) = 1  
− Dist(K, M) = CostIns(c) = 1 
 

However, one can realize that document trees K and L are more similar than K and 
M, node b of tree K appearing twice in tree L, and only once in XML tree M. Likewise 
for K/N with respect to K/O and K/P. Identical distances are attained when comparing 
document trees K/N, K/O and K/P, Dist(K, N)=Dist(K, O)= Dist(K, P)=2, despite the 
fact that the node b is repeated three times in tree N, twice in tree O and only appears 
once in P. 
− Dist(K, N) = CostIns(b) + CostIns(b) = 2 
− Dist(K, O) = CostIns(b) + CostIns(c) = 2 
− Dist(K, P) = CostIns(c) + CostIns(d)  = 2 
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Fig. 2. XML documents consisting of leaf node sub-trees. 
 
In this paper, we explicitly mention the case of leaf node repetitions since: 
 

− Leaf nodes are a special kind of sub-trees: single node sub-trees. Therefore, 
the study of sub-tree resemblances and repetitions should logically cover leaf 
nodes, so as to attain a more complete XML similarity approach. 

− Leaf node repetitions are usually as frequent as substructure repetitions (i.e. 
non-leaf node sub-tree repetitions) in XML documents. 
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− Detecting leaf node repetitions is spontaneous in the XML context, and would 
help increase the discriminative power of XML comparison methods, as shown 
in the examples of Fig. 2 (which will be subsequently conferred in detail). 

3   Related Work and Background 
3.1   XML Data Model 

XML documents represent hierarchically structured information and can be modeled 
as Ordered Labeled Trees (OLTs)1 [20]. Nodes in a traditional DOM (Document 
Object Model) ordered labeled tree represent XML elements and are labeled with 
corresponding element tag names. Attributes mark the nodes of their containing 
elements. However, to incorporate attributes in their similarity computations, some 
approaches [13, 22] have considered OLTs with distinct attribute nodes, labeled with 
corresponding attribute names. Attribute nodes appear as children of their 
encompassing element nodes, sorted by attribute name, and appearing before all sub-
element siblings [13]. The authors in [7, 13] agree on disregarding element/attribute 
values while studying the structural properties of heterogeneous XML documents. 

3.2   Sate of the Art 

Various methods, for determining structural similarities between hierarchically 
structured data, particularly XML documents, have been proposed. Most of them 
derive, in one way or another, the dynamic programming techniques for finding edit 
distance between strings [11, 18, 19]. In essence, all these approaches aim at finding 
the cheapest sequence of edit operations that can transform one tree into another. 
Nevertheless, tree edit distance algorithms can be distinguished by the set of edit 
operations that are allowed as well as overall complexity and performance levels. 
Early approaches in [17, 21] allow insertion, deletion and relabeling of nodes 
anywhere in the tree. Yet, they are relatively complex. For instance, the approach in 
[17] has a time complexity O(|A||B| depth(A) depth(B)) (where |A| and |B| denote tree  
cardinalities while depth(A) and depth(B) are the depths of the trees). The authors in 
[3, 5] restrict insertion and deletion operations to leaf nodes and add a move operator 
that can relocate a sub-tree, as a single edit operation, from one parent to another. 
However, corresponding algorithms do not guarantee optimal results. Recent work by 
Chawathe [4] restricts insertion and deletion operations to leaf nodes, and allows the 
relabeling of nodes anywhere in the tree, while disregarding the move operation. The 
overall complexity of [4]’s algorithm is of O(N2). Nierman and Jagadish [13] extend 
the approach of [4] by adding two new operations: insert tree and delete tree to allow 
insertion and deletion of whole sub-trees within in an OLT. This approach’s overall 
complexity simplifies to O(N2) despite being conceptually more complex than its 
predecessor. A specialized version of [13]’s algorithm is provided in [6]. Following 
[6], tree insertion/deletion operations costs are computed as the sum of the costs of 
inserting/deleting all individual nodes in the considered sub-trees, whereas in [13], 
certain sub-tree similarities are considered (via the containment relation, cf. 
Definition 2) while assigning operations costs. On the other hand, an original 
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structural similarity approach is presented in [7]. It disregards OLTs and utilizes the 
Fast Fourier Transform to compute similarity between XML documents. Yet, the 
authors did not compare their algorithm’s optimality to existing edit distance 
approaches. Another approach, disregarding edit distance computations was 
introduced by Sanz et al. in [15]. It utilizes specific indexing structures rather than 
tree edit distance. Experimental results in [15] confirm that the approach is of linear 
complexity. Nonetheless, the authors in [15] do not compare their algorithm’s 
optimality to existing approaches. 

4   Proposal 
Our XML structural similarity approach consists of two algorithms: i) an algorithm 
for identifying the Commonality Between two Sub-trees (CBS)1, ii) and an algorithm 
for computing the Tree edit distance Operations Costs (TOC). The TOC algorithm 
makes use of CBS, its results being exploited via [13]’s main edit distance algorithm 
(cf. Appendix), so as to identify the structural similarity between two XML 
documents (cf. Fig. 3). In the following, we start by presenting some basic definitions 
required to develop each of our algorithms. 
 

 
 

Fig. 3. Simplified activity diagram of our XML structural similarity approach. 
 

4.1 Preliminary Definitions 
 

Def. 1 - Ordered Labeled Tree: it is a rooted tree in which the nodes are ordered and 
labeled. We denote by λ(T) the label of the root node of tree T. In the rest of this 
paper, the term tree means rooted ordered labeled tree.  
 

Def. 2 – Tree “Contained in” relationship: a tree A is said to be contained in a tree T 
if all nodes of A occur in T, with the same parent/child edge relationship and node 
order. Additional nodes may occur in T between nodes in the embedding of A (e.g., 
tree K in Fig. 2 is contained in tree A of Fig. 1).  
 

Def. 3 - Sub-tree: given two trees T and T’, T’ is a sub-tree of T if all nodes of T’ 
occur in T, with the same parent/child edge relationship and node order, such as no 
additional nodes occur in the embedding of T’ (e.g., A1 in Fig. 1 is a sub-tree of A, 
whereas tree K does not qualify as a sub-tree of A since nodes c and d occur in its 
embedding in A).   
 

Def. 4 - First level sub-tree: given a tree T with root p of degree k, the first level sub-
trees, T1, …, Tk of T are the sub-trees rooted at the children nodes of p: p1, …, pk. 
 

Def. 5 - Ld-pair representation of a node: it is defined as the pair (l, d) where l and 
d are respectively the node’s label and depth in the tree. We use p.l and p.d to refer to 
the label and the depth of an ld-pair node p respectively.  
 

                                                            
1  CBS can be applied to whole trees. However, in our study, its use is coupled with sub-trees. 
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Def. 6 - Ld-pair representation of a tree: it is the list, in preorder, of the ld-pairs of 
its nodes (cf. Fig. 4). Given a tree in ld-pair representation T = (t1, t2, …, tn), T[i] 
refers to the ith node ti of T. Consequently, T[i].l and T[i].d denote, respectively, the 
label and the depth of the ith node of T, i designating the preorder traversal rank of 
node T[i] in T. 
 

Def. 7 – Structural commonality between sub-trees: given two sub-trees A = (a1, 
…, am) and B = (b1, …, bn), the structural commonality between A and B, designated 
by ComSubTree(A, B), is a set of nodes N = {n1, …, np} such that ∀ ni ∈ N, ni occurs 
in A and B with the same label, depth and relative node order (in preorder traversal 
ranking) as in A and B. For  1 ≤ i ≤  p  ;  1 ≤ r ≤ m  ;  1 ≤ u ≤ n: 

(1) ni.l  = ar.l = bu.l  
(2) ni.d  = ar.d = bu.d 
(3) For any nj ∈ N / i ≤ j, ∃  as ∈ A and bv ∈ B such as: 

• nj.l = as.l = bv.l 
• nj.d = as.d = bv.d 
• r ≤ s, u ≤ v 

(4) There is no set of nodes N’ that satisfies conditions 1, 2 and 3 and is of larger 
cardinality than N.    

 

In other words, ComSubTree(A, B)1 identifies the set of matching nodes between 
sub-trees A and B, node matching being undertaken with respect to the node label, 
depth and relative preorder ranking. Please note that in the rest of the paper, the term 
commonality always designates the structural commonality. 
 

 

A1 = ((b, 0), (c, 1), (d, 1)) 
 A11 = (c, 0) 
 A12 = (d, 1) 

B1 = ((b, 0), (c, 1), (d, 1)) 
 B11 = (c, 0) 
 B12 = (d, 0) 

B2 = ((b, 0), (c, 1), (d, 1)) 
 B21 = (c, 0) 
 B22 = (d, 0) 

C1 = ((b, 0), (c, 1), (d, 1)) 
 C11 = (c, 0) 
 C12 = (d, 0) 

C2 = ((e, 0), (f, 1), (g, 1)) 
 C21 = (f, 0) 
 C22 = (g, 0) 
 

D1 = ((b, 0), (c, 1), (d, 1), (h, 1)) 
 D11 = (c, 0) 
 D12 = (d, 0) 
 D13 = (h, 0) 

D2 = ((b, 0), (c, 1), (d, 1), (h, 1)) 
 D21 = (c, 0) 
 D22 = (d, 0) 
 D23 = (h, 0) 

E1 = ((b, 0), (c, 1), (d, 1), (h, 1)) 
 E11 = (c , 0) 
 E12 = (d, 0) 
 E13 = (h, 0) 

E2 = ((e, 0), (f, 1), (g, 1), (h, 1))  
 E21 = (f, 0) 
 E22 = (g, 0) 
 E23 = (h, 0) 

  

F1 = ((b, 0), (c, 1), (d, 1), (e, 1)) 
 F11 = (c, 0) 
 F12 = (d, 0) 
 F13 = (e, 0) 

G1 = ((m, 0), (b, 1), (c, 2), (d, 2), (e, 2)) 
G2 = ((b, 0), (c, 1), (d, 1), (e, 1)) 

 G21 = (c, 0) 
 G22 = (d, 0) 
 G23 = (e, 0) 

H1 = ((m, 0), (g, 1), (h, 2), (i, 2), (j, 2)) 
H2 = ((g, 0), (h, 1), (i, 1), (j, 1)) 

 H21 = (h, 0) 
 H22 = (i, 0) 
 H23 = (j, 0) 

I1 = (c, 0)      I2 = (d, 0) 
J1 = (i, 0)      J2 = (j, 0) 

Fig. 4. Ld-pair representations of all sub-trees in Fig. 1, including single leaf node sub-trees. 
 
Def. 8 – Insert node: given a node x of degree 0 (leaf node) and a tree T with root 
node p having first level sub-trees T1, …, Tm, Ins(x, i, p, l) is a node insertion applied 
to T, inserting x as the ith child of p, thus yielding T’ with first level sub-trees T1, … , 
Ti-1, x, Ti+1, … , Tm+1, where l is the label of x. 
 

Def. 9 – Delete node: given a leaf node x and a tree T with root node p, x being the ith 
child of p, Del(x, p) is a node deletion operation applied to T that yields T’ with first 
level sub-trees T1, … , Ti-1, Ti+1, … , Tm. 

                                                            
1   Our sub-tree structural commonality definition can be equally applied to whole trees (a sub-tree 

being basically a tree). However, in this study, it is mostly utilized with sub-trees.  



Def. 10 – Update node: given a node x in tree T, and a label l, Upd(x, l) is a node 
update operation applied to x resulting in T’ which is identical to T except that in T’, x 
bears l as its label. The update operation could be also formulated as follows: Upd(x, 
y) where y.l denotes the new label to be assumed by x. 
 

Def. 11 - Insert tree: given a tree A and a tree T with root node p having first level 
sub-trees T1, …, Tm , InsTree(A, i, p) is a tree insertion applied to T, inserting A as the 
ith sub-tree of p, thus yielding T’ with first level sub-trees T1, …, Ti-1, A, Ti+1, …, Tm+1. 
 

Def. 12 - Delete tree: given a tree A and a tree T with root node p, A being the ith sub-
tree of p, DelTree(A, p) is a tree deletion operation applied to T that yields T’ with 
first level sub-trees T1, … , Ti-1, Ti+1, … , Tm. 

4.2   Commonality between Sub-trees (CBS) 
In order to capture the sub-tree structural similarities not well addressed by current 
approaches, we identify the need to replace the tree contained in relation making up a 
necessary condition for executing tree insertion and deletion operations in [13], by 
introducing the notion of commonality between two sub-trees. Following Definition 7, 
the problem of finding the structural commonality between two sub-trees SbTi and 
SbTj is equivalent to finding the maximum number of matching nodes in SbTi and 
SbTj (|ComSubTree(SbTi, SbTj)|). However, the problem of finding the shortest edit 
distance between SbTi and SbTj comes down to identifying the minimal number of 
edit operations that can transform SbTi to SbTj. Those are dual problems since 
identifying the shortest edit distance between two sub-trees (trees) underscores, in a 
roundabout way, their maximum number of matching nodes. 

Therefore, we introduce in Fig. 5 our CBS algorithm, based on the edit distance 
concept, to identify the structural commonality between sub-trees (similarly to the 
approach provided in [12] in which Myers develops an edit distance based approach 
for computing the longest common sub-sequence between two strings). Note that in 
CBS, sub-trees are treated in their ld-pair representations (cf. Fig. 4). Using the ld-
pair tree representations, sub-trees are transformed into modified sequences (ld-pairs), 
making them suitable for standard edit distance computations.  

Afterward, the maximum number of matching nodes between SbTi and SbTj, 
|ComSubTree(SbTi, SbTj)|, is identified with respect to the minimum edit distance: 
− Total number of deletions - we delete all nodes of SbTi except those having 

matching nodes in SbTj: 
Deletions
∑ = |SbTi| - |ComSubTree(SbTi , SbTj)|  

− Total number of insertions - we insert into SbTi all nodes of SbTj except those 
having matching nodes in SbTi: 

Insertions
∑ = |SbTj| - |ComSubTree(SbTi , SbTj)| 

− Following CBS, using constant unit costs (=1) for node insertion and deletion 
operations, the edit distance between sub-trees SbTi and SbTj becomes as 
follows: Dist[|SbTi|][|SbTj|] =  

Deletions
∑  1 + 

Insertions
∑   1 = |SbTi| + |SbTj| - 2 

|ComSubTree(SbTi , SbTj)| 

− Therefore, 
| |+| | - [| |][| |]

| ( , )| =
2

i j i j

i j

SbT SbT Dist SbT SbT
ComSubTree SbT SbT  



For instance, |ComSubTree(A1,D1)| = 3  (nodes b, c, d), |ComSubTree(E2,G2)|= 1 (node 
f). Note that applying CBS to leaf node sub-trees comes down to comparing two 
labels: those of the leaf nodes at hand. For example: 
 

− |ComSubTree(A11, B11)|  = 1, A11 and B11 consisting of leaf node c,  
− |ComSubTree(A11, B12)| = 0, A11 and B12 having different labels (λ(A11) = 

A11[0].l = c   whereas   λ(B12) = B12[0].l = d). 
 

Similarly, when computing the commonality between a leaf node sub-tree (e.g., A11) 
and a non-leaf node sub-tree (e.g., B1), CBS comes down to comparing the label of the 
former (e.g., λ(A11)) to the label of the root node of the latter (e.g., λ(B1)). For 
example, |ComSubTree(A11, B1)|  = 0, A11 and the root of B11 having different labels 
(λ(A11) = A11[0].l = c   whereas   λ(B1) = B1 [0].l = b). 

4.3   Tree Edition Operations Costs (TOC) 

Our CBS algorithm, for the identification of the commonality between sub-trees, is to 
be utilized in TOC: an algorithm dedicated to computing the tree edit distance 
operations costs (insert tree and delete tree, cf. definitions 11 and 12). Consequently, 
those costs will be exploited via [13]’s main edit distance approach (cf. Fig. 5) 
providing an improved and more accurate XML structural similarity measure. TOC is 
developed in Fig. 5 and consists of three main steps: 
− Step 1 (lines 2-15) identifies the structural commonalities between each pair of 

sub-trees in the source and destination trees respectively (T1 and T2), assigning 
tree insert/delete operation costs accordingly. 

− Step 2 (lines 16-20) identifies the structural commonalities between each sub-
tree in the source tree (T1) and the destination tree (T2) as a whole, updating 
delete tree operation costs correspondingly. 

− Step 3 (lines 21-25) identifies the structural commonalities between each sub-
tree in the destination tree (T2) and the source tree (T1) as a whole, modifying 
insert tree operation costs accordingly. 

 

Steps 2 and 3 are introduced to capture, not only the structural similarities between 
sub-trees, but also the similarities between the sub-trees and the overall structures of 
the trees being compared. The relevance of steps 2 and 3 becomes obvious when one 
of the trees involved in the comparison process shares structural similarities with one 
(or more) of the sub-trees encompassed in the other XML document tree (e.g., the F, 
I, J case in Fig. 1, where tree I is structurally similar to sub-tree F1 of tree F).  

Using CBS, TOC identifies the structural commonality between each and every 
pair of sub-trees (SbTi, SbTj) in the two trees A and B being compared (step 1), as well 
as their commonalities with the whole trees A and B, respectively (steps 2 and 3). 
Consequently, those values are normalized via corresponding tree/sub-tree 
cardinalities Max(|SbTi| , |SbTj|) to be comprised between 0 and 1:  

− i j

i j

(SbT , SbT )

Max(|SbT | , |SbT |)

CBS
= 0 When there is no structural commonality 

between SbTi and SbTj : CBS(SbTi, SbTj) = 0 

− i j

i j

(SbT , SbT )

Max(|SbT | , |SbT |)

CBS
= 1 When the sub-trees are identical: 

CBS(SbTi, SbTj) = |SbTi| = |SbTj| 



 

Algorithm CBS() 
 

Input: Sub-trees SbTi and SbTj (in ld-pair) 
Output: |ComSubTree(SbTi, SbTj)|                  

 

Begin                                                              1 
 

Dist [][] = new [0...|SbTi|][0…|SbTj|]               
Dist[0][0] = 0 

                                                                                            
For (n = 1 ; n ≤ |SbTi| ; n++)                         5 

   {Dist[n][0] = Dist[n-1][0] + CostDel(SbTi[n])}     
For (m = 1 ; m ≤ |SbTj| ; m++)  

   {Dist[0][m] = Dist[0][m-1] + CostIns(SbTj[m])}   
  

For (n = 1 ; n ≤ |SbTi| ; n++)                       10 
  {                                                                      

 For (m = 1 ; m ≤ |SbTj| ; m++)                    
 { 

Dist[n][m] = min{                                      
If (SbTi[n].d = SbTj[m].d   &                 
    SbTi[n].l = SbTj[m].l)                           15 

{ Dist[n-1][m-1]  }, 
Dist[n-1][m] + CostDel(SbTi[n]),             
Dist[n][m-1] + CostIns(SbTj[m])  }       

  }                                                            
    }                                                                      20 

Return 
| |+| | - [| |][| |]i j i jSbT SbT Dist SbT SbT

2
   

End                                      // |CBS(SbTi, SbTj)| 

 

Algorithm TOC() 
 

Input: Trees T1 and T2 
Output: Insert tree and delete tree operations costs 

 
Begin                                                                              1
                                                                                                                         

For each sub-tree SbTi in T1            //Going through 
{                                                        //all sub-trees in T1  

CostDelTree(SbTi) = 
i

 
x

x∑ Del
All  nodes  of SbT

Cost ( )   //sub-trees in T1.    5

 

For each sub-tree SbTj in T2          //Going through         
{                                                      //all sub-trees in T2  

CostInsTree(SbTj) = 
j

 
x

x∑ Ins
All  nodes  of SbT

Cost ( )   

                                                                                                      

CostDelTree(SbTi) = Min{ CostDelTree(SbTi),            10

            
i ji

 i  j

 
( , )

(| | , | |)

x

x ×∑ Del
All  nodes  of SbT

1
Cost ( )   

SbT SbT  
1 + 

Max SbT SbT

CBS
 }

 

CostInsTree(SbTj) = Min{ CostInsTree(SbTj),                 

                 
i jj

 i  j

 
( , )

(| | , | |)

x ×∑ Ins
All  nodes of SbT

1
Cost ( )   

SbT SbT  
1 + 

Max SbT SbT

x CBS
}  

}                                                                             
}                                                                                 15 

 
For each sub-tree SbTi in T1  // Comparing sub-trees in T1     
{                                              // to whole tree T2. 

CostDelTree(SbTi) = Min{ CostDelTree(SbTi),  

                 
ii

 i

 
( , )

(| | , | |)

x 

x ×∑ Del
All  nodes of SbT 2

2

1
Cost ( )   

SbT T   
1 + 

Max SbT T

CBS
} 

}                                                                                  20

 
For each sub-tree SbTj in T2   // Comparing sub-trees in T2    
{                                               // to whole tree T1.               

CostInsTree(SbTj) = Min{ CostInsTree(SbTj),  
 

    
jj

 j

 
( , )

(| | , | |)

x

x ×∑ Ins
All  nodes  of SbT 1

1

1
Cost ( )   

T SbT   
1 + 

Max T SbT

CBS
} 

}                                                                                  25
                                                                                                                        

End                                                                                   

 

Algorithm EditDistance() 
 

Input: Trees A and B 
Output: Edit distance between A and B 

 

Begin                                                               1 
 

M = Degree(A) //Number of 1st level sub-trees in A  
N = Degree(B) //Number of 1st level sub-trees in B 
 

Dist [][] = new [0...M][0…N]                          5 
Dist[0][0] = CostUpd(λ(A), λ(B))                      
 

For (i = 1 ; i ≤ M ; i++)  
{ Dist[i][0] = Dist[i-1][0] + CostDelTree(Ai) }       
 

For (j = 1 ; j ≤ N ; j++)  
{ Dist[0][j] = Dist[0][j-1] + CostInsTree(Bj) }     10 
 

For (i = 1 ; i ≤ M ; i++) 
{                                                                   

For (j = 1 ; j ≤ N ; j++)                            
{                                                                

Dist[i][j] = min{                                      15 
Dist[i-1][j-1] + EditDistance(Ai, Bj),     
Dist[i-1][j] + CostDelTree(Ai),                  
Dist[i][j-1] + CostInsTree(Bj)    }          

         }                                                               
}                                                                   20 
                                                                                                                                                                                                                                                

Return Dist[M][N]                                          
 

End                           

Fig. 5. Our TOC and CBS algorithms, along with [13]’s Edit Distance algorithm. 
 

For instance, 1 1

1 1

(A , D ) 3
0.75

Max(|A | , |D |) 4

CBS
= = , 2 2

2 2

(E , G ) 1
0.25

Max(|E | , |G |) 4

CBS
= =  (cf. Fig. 1). 

 

Thus, using the normalized commonality, tree operations costs would vary as follows: 
 



Maximum insert/delete tree cost for sub-tree Sbi:  Minimum insert/delete tree cost for sub-tree Sbi: 
 

 CostInsTree/DelTree(Sbi) = Ins/Del
All  nodes  of  SbTi

 Cost ( )     1
x

x ×∑      CostInsTree/DelTree(Sbi) = Ins/Del
All  nodes of  SbTi

1

2
Cost ( )   

x 
x ×∑   

 

Lemma 1. Following TOC, the maximal insert/delete tree operation cost for a 
given sub-tree SbTi (attained when no sub-tree structural similarities with SbTi are 
identified in the source/destination tree respectively) is the sum of the costs (unit 
costs, =1)1 of inserting/deleting every individual node of SbTi (the proof is evident). 

 

Lemma 2. Following TOC, the minimal insert/delete tree operation cost for SbTi 
(attained when a sub-tree structurally identical to SbTi is identified in the 
source/destination tree respectively) is equal to half its corresponding insert/delete 
tree maximum cost.  

 

Proof: The smallest non-leaf node sub-tree that can be treated via a tree operation 
is a sub-tree consisting of two nodes. For such a tree, the minimum insert/delete tree 
operation cost would be equal to 1 (its maximum cost being equal to 2), equivalent to 
the cost of inserting/deleting a single node. That is the lowest tree operation cost 
attainable, for a non-leaf node sub-tree,  following TOC. 

 

The minimal tree operation cost is defined in such a way in order to guarantee that 
the cost of inserting/deleting a non-leaf node sub-tree will never be less than the cost 
of inserting/deleting a single node (single node operations having unit costs). In fact, 
TOC is based on the intuition that tree operations are more costly than node 
operations. Consequently, for leaf node sub-trees, the maximum insert/delete tree 
operation cost is equal to 1, the cost of inserting/deleting the single node at hand: 

− CostInsTree/DelTree(SbTi) = CostIns/Del(x) × 1 = 1 , that is when SbTi is made of single node x 
 

Likewise, the minimum cost for inserting/deleting a single node sub-tree is equal 
to 0.5, half its insert/delete maximum cost: 

− CostInsTree/DelTree(SbTi) = CostIns/Del(x) × 1/2 = 0.5 , SbTi consisting of single node x 
 

Note that in our approach, single node insertions/deletions are undertaken via tree 
insert/delete operations (cf. definitions 11 and 12) applied on leaf node sub-trees. On 
the other hand, insert/delete node operations (cf. definitions 8 and 9, which are 
assigned unit costs as with traditional edit distance approaches) are only utilized to 
compute tree insertion/deletion operations costs (cf. CBS and TOC in Fig. 5). They do 
not however contribute to the dynamic programming procedure adopted in our edit 
distance approach (similarly to [6, 13], cf. Edit Distance algorithm in Fig. 5).  

Using TOC, we compute the costs of tree insertion and deletion operations based 
on their corresponding trees’ maximum normalized commonality values (a maximum 
commonality value inducing a minimum tree operation cost).  

Therefore, instead of utilizing the contained in relation introduced in [13] (cf. 
Definition 2) in order to permit or deny tree insertion/deletion operations (thus 
disregarding certain sub-tree structural similarities while comparing two XML trees 
as shown in Section 3), we permit the insertion and deletion of any/all sub-trees by 
varying their corresponding tree insertion/deletion operation costs with respect to 

                                                            
1  An intuitive and natural way has been usually used to assign single node operation costs and 

consists of considering identical unit costs for insertion and deletion operations [4, 15].  



their structural similarities with the source/destination trees/sub-trees respectively (cf. 
similarity results in Tab. 3). Note that inserting/deleting the whole destination/source 
trees is not allowed in our approach. In fact, by rejecting such operations, one could 
not delete the entire source tree in one step and insert the entire destination tree in a 
second step, completely ignoring the purpose of the insert/delete tree operations. 

 
Tab. 1. Distance/similarity values attained using our comparison approach for the various 

XML comparison examples treated throughout the paper. 
 Our Approach 
 Distance Similarity 

N. & J. [13] Dalamagas et al. 
[6] Chawathe [4] 

A/B 1.5 0.4 
A/C 3 0.25 Detected Not detected Not detected 

A/D 3.2856 0.2333 
A/E 5 0.1667 

Not detected Not detected Not detected 

F/G 5 0.1666 
F/H 7 0.125 

Not detected Not detected Not detected 

F/I 4.2857 0.1892 
F/J 6 0.1429 

Not detected Not detected Not detected 

K/L 0.5 0.6667 
K/M 1 0.5 Not detected Not detected Not detected 

K/N 1 0.5 
K/O 1.5 0.4 
K/P 2 0.3333 

Not detected Not detected Not detected 

 

4.4   Efficiency w.r.t. Existing Approaches 

In the previous paragraphs, the comparison of our method with existing tree XML 
structural similarity approaches is done via examples. Here, we formalize the 
comparison and show that existing methods are lower bounds of our approach. 

Theorem. Let T1 and T2 be XML trees, and Sim(T1, T2) = 1 / 1 + Dist(T1, T2), then: 
− SimChawathe(T1, T2) ≤ SimOur Approach(T1, T2) 
− SimDalamagas et al.(T1, T2)  ≤ SimOur Approach(T1, T2) 
− SimN.&J(T1, T2). ≤ SimOur Approach(T1, T2) 
 

Proof:  
− Proving that Chawathe’s algorithm [4] is a lower bound of our XML 

comparison method is straight forward. When computing the distance between 
two trees using Chawathe’s approach [4], all sub-trees are inserted/deleted via 
single node insertion/deletion operations regardless of the sub-tree similarities 
at hand. The costs of these insertions/deletions are equivalent to the maximum 
tree insertion/deletion operations’ costs following our TOC algorithm (cf. 
Section 4.3), which yield a maximum edit distance, thus a minimum similarity 
value between the trees being compared. In other words, Chawathe’s 
algorithm [4] always yields similarity values lesser or equal to those computed 
via our approach. 

− Proving that Dalamagas et al.’s algorithm [6] is a lower bound of our XML 
comparison method is also trivial. Indeed, the costs of tree insertion/deletion 
operations in [6] are computed as the sum of the costs of inserting/deleting all 
individual nodes in the considered sub-trees. These costs come down to the 
maximum tree operations costs computed following our method. Consequently, 
Dalamagas et al.’s algorithm [6] always yields similarity values that are lesser 



or equal to those computed via our method. Recall that we do not consider 
[6]’s repetition/nesting reduction process in our analysis (cf. Section 2.1). 

− As for Nierman and Jagadish [13], tree insertion/deletion operations costs are 
affected by the tree containment relation (cf. Definition 2). Maximum costs (i.e. 
the costs of inserting/deleting all single nodes in the considered sub-trees) are 
attained when the containment relation is not verified. Otherwise, tree 
operations costs are minimal (the minimum tree operation cost is not formally 
defined in [13]. Thus, for a given sub-tree, we consider that it is equal to half 
its maximum tree operation cost so as to respect the intuition that tree 
operations costs are always higher or equal than single node operations costs). 
In other words, Nierman and Jagadish’s algorithm [13] only considers the 
containment relation between sub-trees while varying tree operations costs. 
However, our algorithm detects fined-grained structural similarities (i.e. sub-
tree commonalities) between sub-trees, among which the containment relation, 
and varies tree operations accordingly. Thus, our approach is able to detect a 
wider set or structural similarities and consequently yields higher similarity 
values. In other words, when comparing two XML trees, Nierman and 
Jagadish’s algorithm [13] yields similarity values that are lesser or equal to 
those obtained via our XML structural comparison method. 

 
 4.5   Complexity Analysis 

The overall complexity of our approach simplifies to O(|T1||T2|), where |T1| and |T2| 
denote the cardinalities of the compared trees, and is computed as follows: 
 

− CBS algorithm for the identification of the commonality between two sub-trees 
is of complexity: O(|SbTi||SbTj|) where |SbTi| and |SbTj| denote the 
cardinalities of the compared sub-trees. 

 

− TOC algorithm for computing the costs of tree insert/delete operations, which 
makes use of CBS, is time complexity: 

1 2 1 2| | | | | | | |

1 1 1 1

(| | | |)  + (| | | |) + (| | | |)
T T T T

i j i 2 j 1
i j i j

 O SbT SbT O SbT T O SbT T
= = = =
∑ ∑ ∑ ∑  

 

Lemma 3. Let T1 and T2 be two ordered labeled trees, where 
1Tn  and 

2Tn represent 
the number of leafs in T1 and T2, SbTi and SbTj the sub-trees of T1 and T2 respectively. 

Then TOC’s complexity:
1 2 1 2| | | | | | | |

1 1 1 1

(| | | |)  + (| | | |) + (| | | |)
T T T T

i j i 2 j 1
i j i j

O SbT SbT O SbT T O SbT T
= = = =
∑ ∑ ∑ ∑ , 

simplifies to O(|T1||T2|).  
 

Proof:  
• Step 1 of TOC – Identifying the structural commonalities between each pair 

of sub-trees in the source and destination trees: 
1 2| | | |

1 1

 (| | | |)  (| || |)    
T T

i j 1 2
i j

(demonstrated in [9])O SbT SbT O T T
= =

≤∑ ∑  

• Step 2 of TOC – Identifying the structural commonalities between each sub-
tree in the source tree (T1) and the whole destination tree (T2): 



1 1| | | |

1 1

(| | | |) = | | (| |)  <  (| || |)
T T

i 2 2 i 1 2
i i

O SbT T T O SbT O T T
= =
∑ ∑    

• Step 3 of TOC – Identifying the structural commonalities between the source 
tree as a whole (T1) and each sub-tree in the destination tree (T2): 

2 2| | | |

1 1

(| | | |) = | | (| |)  <  (| || |)   
T T

j 1 1 j 1 2
j j

O SbT T T O SbT O T T
= =
∑ ∑   

 

Note that the edit distance algorithm adopted from [13], which utilizes the results 
attained by TOC (tree operations costs), is of complexity O(|T1||T2|). 

5   Experimental Evaluation 

In order to validate our structural similarity approach and compare its optimality with 
alternative methods, we make use of structural clustering. In our experiments, we 
adopt the well known single link hierarchical clustering techniques [8, 10] although 
any form of clustering could be utilized. In order to evaluate clustering quality, we 
make use of precision and recall metrics commonly used in information retrieval. 
Having an a priori knowledge of which documents should be members of the 
appropriate cluster (mapping between original DTD clusters and the extracted 
clusters), Dalamagas et al. [6] define precision PR and recall R as: 

1

1 1
 + 

n

ii
n n

i ii i

a
PR

a b
=

= =

∑
=
∑ ∑

 and 1

1 1
 + 

n

ii
n n

i ii i

a
R

a c
=

= =

∑
=
∑ ∑

     where: 

− n is the total number of clusters in the clustering set considered, 
− ai is the number of XML documents in Ci that indeed correspond to DTDi 
− bi is the number of documents in Ci that do not correspond to DTDi (mis-clustered) 
− ci is the number of XML documents not in Ci, although they correspond to DTDi 

(documents that should have been clustered in Ci). 
 

Nonetheless, in addition to comparing one approach’s precision improvement to 
another’s recall improvement, it is a common practice to compare F-values, F-value = 
2 PR R/(PR+R). Therefore, as in traditional information retrieval evaluation, high 
precision and recall, and thus high F-value (indicating in our case excellent clustering 
quality) characterize a good similarity method.  

5.1   Experimental Results 
We conducted a battery of experiments on real and synthetic XML documents. Two 
sets of 600 documents were generated from 20 real-case1 and synthetic DTDs, using 
an adaptation of the IBM XML documents generator2. We varied the MaxRepeats 
parameter to determine the number of times a node will appear as a child of its parent 
node. For a real dataset, we considered the online version of the ACM SIGMOD 
Record3. Overall precision, recall and F-value results are reported in Tab 4.  

                                                            
1 From http://www.xmlfiles.com and  http://www.w3schools.com. 
2 http://www.alphaworks.ibm.com. 
3 Available at http://www.acm.org/sigmod/xml. 



Tab. 4. Average PR, R and F-values obtained by varying the clustering level between [0, 1]. 
 

 SIGMOD Set 1 (MaxRepeats=5) Set 2 (MaxRepeats =10) 
 PR R F-value PR R F-value PR R F-value 

Chawathe [4] 0.8782 0.3910 0.6346 0.2502 0.4737 0.3619 0.2602 0.3809 0.3205 
DCWS [6] 0.8782 0.3931 0.6356 0.2581 0.4838 0.3709 0.2779 0.3821 0.3300 
N & J [13] 0.8637 0.4615 0.6626 0.2334 0.6162 0.4248 0.2234 0.4177 0.3205 

Our approach 0.9086 0.4866 0.6706 0.2341 0.6262 0.4302 0.2203 0.4656 0.3430 
 
Results, with respect to all three data sets, indicate that our approach yields 

improved clustering quality (i.e. structural comparison quality) vis-à-vis current 
alternative approaches. Note that the complete precision vs. recall curves, describing 
the detailed behavior of each comparison method while varying the clustering level 
(and which clearly reveal that our method achieves better combinations of precision 
and recall, and thus higher clustering quality) are disregarded due to lack of space. 

5.2   Timing Results 

Following the complexity analysis developed in Section 4.4, our XML structural 
similarity method is linear in the number of nodes of each tree, and polynomial 
(quadratic) in the size of the two trees being compared: O(|T1||T2|) (which can be 
simplified to O(N2), N being the maximum number of nodes in trees T1 and T2). This 
linear dependency on the size of each tree is experimentally verified, timing results 
being presented in Fig. 6. Timing experiments were carried out on a PC with an Intel 
Xeon 2.66 GHz processor (1GB RAM), running at 533 MHz. Fig. 6 shows that the 
time to identify the structural similarity between two XML trees of various sizes 
grows in an almost perfect linear fashion with tree size. Therefore, despite appearing 
theoretically more complex, timing results demonstrate that our method’s complexity 
is the same as the approaches by Nierman & Jagadish [13], Dalamagas et al. [6] as 
well as Chawathe [4]. 
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Fig. 6. Timing results obtained using our comparison method. 

6   Conclusion 

In this paper, we proposed a structure-based similarity approach for comparing 
XML documents. Based on a tree edit distance technique, our approach captures fine-
grained structural similarities while comparing XML documents not fully addressed 
in current approaches. Our theoretical study as well as our experimental evaluation 
showed that the proposed method yields improved structural similarity results with 
respect to existing alternatives, while having the same time complexity (O(N2)).  

Number of nodes
in tree T2 



As continuing work, we are exploring the use of our approach in order to compare, 
not only the structure of XML documents (element/attribute labels) but also their 
information content (element/attribute values). In such a framework, XML schemas 
might have to be integrated in the comparison process, schemas underlining 
element/attribute data types which are required to compare corresponding 
element/attribute values. We are also working on extending our approach to 
encompass semantic similarity assessment between element/attribute node labels 
while comparing XML documents (taking into account synonyms, antonyms, 
acronyms, etc. in the edit distance process). In addition, we plan on releasing a public 
web service version of our prototype. 
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