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Abstract—Emergent technologies such as smart phones and 

wireless Internet have transformed the Web from a static data 

publishing platform into a collaborative information sharing 

environment. Yet, attaining the next stage in Web 

engineering, i.e., the so-called Intelligent Web: allowing 

meaningful human-machine and machine-machine 

collaboration, requires another breakthrough: allowing the 

sharing and organization of collective knowledge (CK), where 

CK underlines the combination of all known data, 

information, and meta-data concerning a given concept or 

event. In this context, various methods have been put forward 

to perform automatic event extraction and description. Yet, 

most of them do not capture the semantic meaning embedded 

in Web-based multimedia data, which are usually highly 

heterogeneous and unstructured. To address this problem, we 

introduce in this study a generic Multimedia Representation 

Space Model called MRSM, designed for multimedia data and 

multimedia-based event representation, in order to allow 

event detection and identification based on multimedia CK. 

We formally define MRSM, its dimensions, their coordinates, 

and the associated distance (similarity) metrics and 

properties. We then provide the building blocks for an Event-

based Collective Knowledge (CK) Management Framework, 

built upon MRSM, and geared toward effective CK 

management. The proposed approach provides a means of 

extracting, representing, and linking events from 

heterogeneous multimedia data without any prior knowledge 

about event-related clues. Preliminary tests confirm the 

quality and potential of our approach. 

Keywords—Multimedia, Metadata, Collective Knowledge, 

Knowledge Management, Event Detection and Identification. 
 

I. INTRODUCTION 

Nowadays, emerging technologies such as Smart-phones, 

Wireless Internet, as well as Web and Mobile Services allow users 

to create, annotate, and share multimedia data on the Web at an 

unprecedented and increasing pace. These technologies have 

transformed users from static data consumers during the 1990s 

(i.e., accessing static Web pages) to intelligent produces and 

proactive sensors of information during the 2010s (i.e., producing 

blogs, publishing and annotating images and videos, commenting 

on tweets, posting opinions, etc.), transforming the Web from a 

static data publishing platform into a collaborative information 

sharing environment [1-4]. Here we distinguish between data 

(containing no meaning, e.g., “1998” is considered as a number 

consisting of 4 digits) and information (data having a certain 

meaning in a certain context, e.g., for a Web expert, “1998” is the 

year of creation of the XML W3C standard). Nonetheless, 

attaining the next stage in Web development and engineering, i.e., 

the so-called Intelligent Web: allowing meaningful human-

machine and machine-machine collaboration, requires yet another 

breakthrough: allowing the sharing and organization of collective 

knowledge (CK) [5]. Here, knowledge represents a higher level of 

data abstraction: as the combination of all known data, 

information, and meta-data concerning a given concept, fact, or 

event, as well as the semantic links between them [6, 7] (e.g., 
knowing that “the year of creation of the XML standard" is “1998", 

following Wikipedia in an article published in 2000). In this context, 

CK can be viewed as the development of knowledge assets or 

(semantic) information from a distributed pool of contributions 

[8]. Hence, intelligent terminals (software agents) connected to 

the Web are expected to automatically analyze and handle large 

collections of multimedia data with their contents, links and 

transactions, using the sum of their respective intelligence and 

knowledge, in order to improve individual and collaborative 

information management (indexing, storage, exchange, search, 

and retrieval) [5, 9]. 

However, realizing the Intelligent Web vision faces many 

difficulties [5]. According to [10], more than 80% of the data 

shared in the Web is heterogeneous, streamed, unstructured, 

massive, multimedia, and are inherently associated to so-called 

events. An event can be defined as a given observable occurrence 

at a certain time and place that interests a group of people (e.g., 

soccer match, car accident, heavy storm, presidential debate, etc.) 

[11]. Usually participants of an event capture multimedia data 

(image, video, audio, etc), annotate, publish and share them to 

describe the event (e.g., videos from the soccer match, pictures of 

the storm, opinions about presidential debate, etc.) [12]. However, 

annotations of similar multimedia data objects (e.g., similar 

images taken about the same storm) might be heterogeneous both 

in content and format, and would depend on the knowledge and 

experience of the annotator (e.g., an expert meteorologist would 

describe a storm or a heat wave differently from a non-expert 

observer). Hence, handling diverse and heterogeneous multimedia 

data descriptions to identify meaningful events, needed as the 

building blocks for CK organization remains a major challenge.   

Addressing the above challenge requires a central stepping 

stone: producing a generic multimedia data representation model 

which is machine-readable, openly accessible, and linked to 

existing knowledge and other datasets, which can be easily used 

for multimedia object representation and description, event 

extraction, and intelligent reasoning later on. Here, evaluating the 



spatial coverage, temporal coverage, and most importantly the 

semantic meaning of shared multimedia objects become of key 

importance in performing event detection and identification [13].   

In this context, various methods have been put forward to 

perform automatic event extraction [14-17]. Yet, collecting and 

organizing shared multimedia data related to a specific event of 

interest remain a difficult task for existing approaches, due to: i) 

the complex and heterogeneous nature of multimedia data from 

different sources [13, 15], ii) using low-level multimedia data 

descriptors alone, which are prone to noise, rather than handling 

multimedia semantics (visually similar images might describe 

totally different things, e.g., an image of a blue sky versus an 

image of a blue sea) [14, 16]. In other words, most existing 

approaches do not capture the semantic meaning embedded in the 

multimedia objects (e.g., image of the Mediterranean Sea near the 

shores of Alexandria versus image of the sky above the Atlantic 

shore of Florida). 

Hence, a new approach that effectively represents 

multimedia objects, in order to detect and identify meaningful 

events, considering the heterogeneous and noisy nature of the data 

is needed. For this purpose, we introduce in our current study a 

Multimedia Representation Space Model (MRSM), allowing to 

prepare the stage: from multimedia data representation toward 

event detection and identification. We formally define MRSM, its 

dimensions, their coordinates, and associated distance (similarity) 

metrics and properties. We then provide the building blocks for an 

Event-based Collective Knowledge (CK) Management 

Framework, built upon MRSM, and geared toward effective CK 

management (i.e., recommendation, prediction, versioning, and 

decision making processes later on). The proposed approach 

provides a means of extracting, representing, and linking events 

from heterogeneous multimedia data without any prior knowledge 

about event-related clues. Preliminary tests confirm the potential 

of our approach. 

The rest of the paper is structured as follows. Section 2 

presents a motivating scenario that highlights some of the 

challenges related to our work. Section 3 briefly reviews related 

works. Section 4 presents our multimedia representation space 

model, its properties, and the associated event-based CK 

management framework. Experimental setup and the results are 

discussed in Section 5. Finally, we conclude and highlight future 

research direction in Section 6. 
 

II. MOTIVATION 
 

In this section, we present a motivational scenario that illustrates 

the need for event-based CK management. 

Climate change due to global warming increases the 

probability of occurrence of some types of unusual weather. One 

effect of global warming is the occurrence of heavy rainfall. 

Excessive rain during short periods of time can cause flash floods. 

The flood may cause disruptions of basic utility services such as 

transportation, electricity, tap water supply, and telephone lines. 

When such an event occurs in a city nowadays, residents often 

capture different kinds of multimedia objects (e.g., images, 

videos, sounds, etc.), annotate, publish, and share them on social 

media sites like Facebook1, Flickr2, and YouTube3 timelines. They 

might also post comments on tweeter4 to share their appreciation 

and/or criticism regarding the level of preparedness and action 

                                                                 
1 www.facebook.com 
2 www.flickr.com 
3 www.youtube.com 
4 www.twitter.com 

taken by the city administration to handle the observed 

phenomena. Moreover, local media providers may be continually 

publishing news feeds related to the occurrence of the event. 

In order to provide better services to its residents, the city’s 

administration would largely benefit from organizing and 

processing the CK associated to events that are occurring, in order 

to make adequate decisions and take reactive/precautionary 

measures accordingly.  

To build such a CK base, the following main challenges need 

to be addressed: 

 Data sources are heterogeneous and their content is 

unstructured, 

 Existence of large volumes of data and content that are 

published online and grow continuously, 

 Multimedia data annotation is not consistent, and depends on 

annotators’ experience, 

 Users may publish content that may not be related to events, 

and thus may be misleading, 

 Some of the shared multimedia data may have missing 

location, date/time, or annotation information. 

 

In this study, we provide an architecture to address the above 

challenges: introducing a generic MRSM for effective multimedia 

data description dedicated for event detection and representation.  

III. RELATED WORKS 
 

Recently, a number of research works have been conducted 

targeting knowledge management in open linked data and event 

detection from social media sources, e.g., [18-23], including a 

focused European project [24], which we briefly review and 

discuss in this section. 

The open data initiative has availed opportunities for 

researchers and support innovation. In developing countries such 

as Kenya, open data initiatives are showing encouraging impact in 

different areas [25]. Universities in the UK and Australia have 

also benefited from open research data [19, 26], which are 

becoming a common trend in the academic arena, allowing to 

share research-related CK. Here, research data designates not only 

publications and linked researcher profiles, but also refers to the 

recorded factual material commonly accepted in the scientific 

community as necessary to validate research findings. It includes 

facts, observations, images, computer program results, recordings, 

measurements, and/or experiences on which an argument, theory, 

test, or hypothesis, or another research output is based. It can also 

be data which is collected, observed, or created in a digital form, 

for the purpose of analyzing and disseminating original research 

findings. Experience gained from early adopters of open research 

data shows that open access to such data promotes high quality 

research (e.g., since researchers are constantly aware of their 

colleagues’ finds and can build on them accordingly), reduce 

redundant efforts deployed by researchers (e.g., no need to 

perform the same experiment following the same test protocol 

redundantly by different researchers), protecting against research 

fraud, and helping to develop a culture of transparency and 

sharing of knowledge [18-21]. 

On the other hand, there is a number of initiatives to detect 

events from social media data. The authors in [15] used the New 

York Times news corpus of twenty-two years of coverage, to 

extract a storyline using a dedicated topic tracking and detection 

algorithm. They clustered similar text together to enrich the 

storyline with information extracted from Web knowledge source 

using the Linked Data platform [22] in order to construct a 



dedicated predictive model. This central approach shifted the level 

of analysis from targeting specific entities/topics, to considering 

broader classes of observations and events. The work made real-

time predictions about the likelihoods of future human and natural 

events of interest. The authors assumed that real-world events 

were generated following a probabilistic model, and then 

identified a target predicting event in a certain domain. However, 

their approach only worked for structured news articles, and did 

not address unstructured and heterogeneous news contents from 

distributed sources. 

Becker et al. [14] use event aggregation platforms (such as 

Last.fm, EventBrite, LinkedIn and Facebook events) to generate 

planned events. In this work, only social media contents which 

have location and time information are considered for the purpose 

of detecting events. However, we argue that time and geo-location 

information might not be enough to effectively detect events, 

since: i) some social media authoring tools lack location recording 

components, and ii) the time stamp value of social media contents 

might be distorted or noisy due to the particular configurations of 

media capturing tools. Note that the work in [14] focuses on 

generating events based on predefined preferences stated in 

advance in existing event aggregation platforms (e.g., anticipated 

soccer match, or awaited heat wave, which are expected to occur 

at certain dates/locations, etc.), and does not identify 

instantaneous/unknown events such as an unexpected flood, 

earthquake, car accident, or thunderstorm. 

Differently from [14], Psallidas et al. [13] address the 

challenge of automatically identifying unknown event contents, 

considering the high rate of the social streams and the noisy 

nature of Web data. They propose an online clustering framework 

that leverages different features associated with each social media 

document, mainly focusing on Twitter posts (e.g., using publisher, 

publication time, and the published text features to describe a 

tweet). Yet, the authors did not discuss how to overcome the often 

noisy contents of the twitter messages. Also, they solely consider 

twitter messages in event extraction, without considering any 

outside knowledge (such as tags or multimedia content from other 

social media sources for instance). 

Another method considering multiple features in identifying 

events is developed in [23], where the authors attempt to address 

the problem of structuring social media activities into events. The 

authors utilize different properties (such as location, time and user 

participation) from social media sites, based on the assumption 

that: an event happening in a certain place and time, will most 

probably be coined with a large number of photos and videos 

taken and shared in different social media sites. Yet, the approach 

in [23] requires a minimal number of photos and videos, above a 

certain manually defined threshold, in order to perform event 

detection and identification. In other words, if the number of 

photos/videos taken by users is less than the threshold, they are 

disregarded and will not be considered as event representatives. 

To summarize, existing event extraction methods in the 

literature are either: i) domain dependent and consider certain 

specific kinds of information (e.g., structured news article), e.g., 

[14], ii) generate events based on predefined clues (and are not 

able to identify unknown events), e.g., [13], or iii) consider 

manually defined thresholds which affect event detection 

coverage (missing certain events) and thus quality, e.g., [23]. In 

addition, most existing methods, to our knowledge, do not 

consider the semantic meaning associated to multimedia data and 

solely focus on time, space, and/or syntactic textual descriptions. 

Even though the open linked data initiative supports shared 

knowledge within the research community, e.g., [18-21], yet it 

generally considers fairly homogeneous data (e.g., publications, 

books, reports), properly defined and generated by expert 

(scientific) sources, in contrast with the heterogeneous nature of 

multimedia data published on the Web, which is often coined with 

incomplete or noisy descriptions generated by non-experts. 

Interested readers can refer to [27] for a detailed survey on event 

detection, identification, and mining techniques.  

In this paper, we propose a new framework to fill some of 

the gaps highlighted in existing works, providing a generic model 

to deal with i) multimedia data heterogeneity and ii) semantic 

meaning, in performing event extraction.  
 

IV. PROPOSED FRAMEWORK 
 

Our Event-based CK Management Framework consists of two 

main components: i) our Multimedia Representation Space Model 

(MRSM), and the ii) Event Extraction process built upon MSRM. 

In the following we first present each of the aforementioned 

component in Sections 4.1 and 4.2 respectively, before describing 

the overall framework and data/control flow in Section 4.3.  

 

A. Multimedia Representation Space Model 

Event definitions are theoretically described using the 5W1H 

model: When, Where, What, Who, Why and How aspects [28-30]. 

Yet, as described in Section 3, only few of these features are 

practically covered in existing methods, mainly: When (time) and 

Where (location) [13-15]. In our work, we consider an additional 

feature: the What (meaning) of the event, thus covering the 

temporal, spatial and semantic facets (remaining Who, Why, and 

How facets will be covered in a subsequent dedicated study). To 

do so, we define our MSRM as a hyperspace consisting of three 

composite dimensions: temporal, spatial and semantic, describing 

each and every multimedia object (as shown in Figure 1.a). 

Consequently, an event can be represented in the same space, 

consisting of the collection of multimedia objects describing it (cf. 

Figure 1.b). In this subsection, we formally describe each 

dimension, its coverage, and related properties, allowing to 

describe a multimedia object, and then an event in our MSRM. 
 

 

 

 

 

a. Describing a multimedia object b. Representing two events e1 and e2 

 

Figure 1.  Multimedia Representation Space Model (MRSM). 
 

1) Temporal Dimension 
 

Definition 1: [Temporal Dimension (𝕋)]. We define the temporal 

dimension 𝕋 as a finite sequence of discrete and ordered primitive 

temporal units used to define and interpret a multimedia object’s 

temporal feature values, formally:   

𝕋= {t0, t1, t2, …} (1) 

where ti is  the ith temporal unit, and t0
  the initial temporal value  

𝕃 (Where) 

𝕊 (What) 

𝕋 (When) 

𝕃 (Where) 

𝕊 (What) 

𝕋 (When) 

1 

2 

t 



s 



The unit of measurement of the temporal dimension can be 

chosen by the user (or the system admin) based on the kinds of 

events to be detected. For instance, detecting a soccer player’s 

maneuvers in a soccer match would require a small time unit (like 

seconds) whereas detecting thunderstorms and weather-related 

events can be handled using bigger time units (like hours or days). 

In our study, we consider the International System (IS)’s second 

unit (s) as the default time unit, such that the dimension’s origin 

(t0) is the UNIX time (a.k.a. POSIX or Epoch time, describing 

instants in time since 00:00:00 UTC, January 1, 1970). 
 

Definition 2: [Temporal Stamp (t)]. It designates a single discrete 

value of the temporal dimension 𝕋   
 

Definition 3: [Temporal Coverage (T)]. It is an ordered collection 

of time stamps enclosed within a start stamp and an end stamp, 

describing the temporal coverage of a multimedia object and/or 

event. We use it to represent the duration or capture of a 

multimedia object (e.g., a video), or the duration of an event (e.g., 

duration of a storm). Formally:  

T = {ti ∊ 𝕋 | ti ≥ ts  ∧  ti ≤ te } (2)  

where ts is the start time stamp of T, and te its end time stamp  

 

 

Definition 4: [Temporal Coverage Representative Point (tc)]. It is 

the middle time stamp of a temporal coverage T, representing the 

temporal coverage’s center of gravity.  Formally: 

tc(T) = 
ts+te

2
   (3) 

where ts is the start time stamp of T, and te its end time stamp  
 

Temporal coverage representative points are introduced to 

simplify mathematical computations when comparing the 

temporal coverage of two multimedia objects or events: instead of 

comparing the whole coverages, we compare their representative 

points (cf. Section 4.2). 
 

2)  Spatial Dimension 
 

Definition 5: [Spatial Dimension (𝕃)]: We defined the spatial 

dimension 𝕃 as a composite dimension consisting of three 

components (sub-dimensions) representing geographical position 

following Earth’s geo-referential system, formally:  

𝕃 = <Ø, λ, h>                                       (4)  

where Ø represents the latitude, λ the longitude, and ℎ the altitude 

sub-dimensions (cf. Figure 2.a)  
 
 

  

a. Composite spatial dimension b. Composite semantic dimension 
 

Figure 2.  Temporal and semantic dimensions in our MRSM. 

 

Similarly to the temporal dimension, the unit of measurement 

for the spatial (sub) dimension(s) can be chosen by the user (or 

system admin) based on the kinds of events to be detected. For 

instance, detecting a soccer player’s maneuvers in a soccer match 

would require a small spatial unit (like meter or foot), whereas 

detecting thunderstorm or weather-related events would require 

bigger spatial scales (as in kilometers or miles). In our study, we 

adopt IS‘s meter unit (m) as the default unit of spatial measure. It 

can be used trait forwardly with the altitude sub-dimension (h), 

and is converted to the DMS scale (Degrees, Minutes, and 

Seconds) or Radians with the latitude (Ø) and longitude (λ), based 

on user preferences. We adopt as point of origin for the spatial 

dimension the geographic center of the surface of the Earth (i.e., 

the intersection of the Equator and Prime Meridian (0, 0), or 

Greenwich meridian), even though the point of origin can also be 

modified/chosen by the user (system admin). 
 

Definition 6: [Spatial Stamp (𝓵)]. It is discrete and instantaneous 

value of the composite spatial dimension 𝕃, consisting of a triplet:  

ℓ= < Ø, λ, h >                                       (5) 

where Ø, λ, and h designate individual coordinate values defined 

with respect to (w.r.t.) each of the latitude (Ø  Ø), longitude       

(λ  λ), and altitude (h  h) sub-dimensions of 𝕃  

 

Definition 7: [Spatial Coverage (L)]. It is the set of spatial stamps 

(surface coverage bounded by local lower and upper spatial 

stamps) in the composite spatial dimension 𝕃, in which a 

multimedia object was created (e.g., area in which a video stream 

was recorded) and/or event occurred (e.g., area affected by a 

storm). Formally, given the composite nature of 𝕃, we define L as: 

                   

L= (x) (y) h(z) dx dy dz             
x y z

     (6)  

where Ø(x) is latitude function, λ(y) is longitude function, and 

h(z) is altitude function  

 

Definition 8: [Spatial Coverage Representative Point (lc)]. It is 

the midpoint (center of gravity) of a spatial coverage L, formally: 
 

           

c

x y z (x) (y) h(z) dx dy dz

=         
(x) (y) h(z) dx dy dz

x y z

x y z

 

 

  

  
 (7)

 

 

3)  Semantic Dimension 
 

While temporal (When) and spatial (Where) information have 

been considered with existing event extraction methods (cf. 

Section 3), yet the semantic (What) facet has been totally 

disregarded. Hence, we include a semantic dimension in our 

MRSM as described hereunder: 

 

Definition 9: [Semantic Dimension (𝕊)]. It is a set of semantic 

network units such as concepts from ontologies or knowledge 

bases such as WordNet [31] or Yago [32] linked with semantic 

relationships (semantic network edges, e.g., IsA, PartOf, etc.), and 

ordered following semantic network edge hierarchy 

(ancestor/child), to define semantic meaning (reflected by concept 

synonyms, e.g., car, auto, and automobile are all synonyms of 

concept car in WordNet [31]; and/or has the same gloss 

description, e.g., a motor vehicle with four wheels). It can be 

formalized as a labeled directed graph 𝕊=(N, E), where N is the 

set of concepts (nodes) and E is the set of semantic relationships 

(edges)  

𝕃 (Where) 

𝕊 (What) 

𝕋 (When) 

Semantic 
network 

𝕃 (Where) 

𝕊 (What) 
𝕋 (When) 

Ø λ 

h 

Latitude 
Longitude 

Altitude 



The unit of the semantic dimension can be a concept, or a 

group of concepts, following the user (system admin)’s perception 

of semantic meaning. For instance, a user might not care to 

distinguish between concepts sport car, sedan, SUV, and muscle 

car, and might prefer to refer to all of them as the more general 

concept vehicle. Here, concept vehicle would subsume the group 

of aforementioned concepts, designated as one single semantic 

unit. In this study, and for the sake of simplicity, we consider each 

individual concept to be single semantic unit (varying semantic 

units as groups of concepts to modify the semantic dimension’s 

granularity will be considered in a dedicated study). The origin of 

the semantic dimension can be defined as the root node of the 

corresponding semantic network. If the reference semantic 

network contains multiple root nodes (such as in WordNet which 

has more than 11 root concepts), then we create an artificial root 

which subsumes all of them. 
 

Definition 10: [Semantic Stamp (s)]. It is an instance or a single 

concept of the semantic dimension 𝕊  
 

Definition 11: [Semantic Coverage (S)]. It is a set of concepts 

(semantic stamps), along with their semantic relationships, 

highlighting the semantic description of a multimedia object 

and/or an event. It can be defined as a sub-graph of the semantic 

dimension 𝕊, noted S = (𝙽, 𝙴), where 𝙽 N (set of concepts, i.e., 

nodes) and 𝙴  E (semantic relations, i.e., edges, cf. Figure 2.b)   
 

Definition 12: [Semantic Coverage Representative Point (sc)]. It a 

single concept (semantic stamp) that represents a semantic 

coverage S. It can be defined as the lowest super ordinate (least 

common ancestor, a.k.a., most specific common ancestor) of 

concepts included in the semantic coverage S of a multimedia 

object and/or event  
  

After defining our MRSM and its dimensions, we can define 

the data model for describing a multimedia object and an event. 
 

Definition 13: [Multimedia Object o]. A multimedia object o 

(e.g., video, image, chart, tweet, or Wiki article) in a given social 

media environment is defined, following MRSM, as a quadruplet: 
 

o = (oid, tc , lc , sc )                              (8) 
 

having a unique object id, oid, as well as three representative 

points: temporal tc, spatial c, and semantic sc, following each of 

MRSM’s dimensions  
 

Consequently, and following mainstream event extraction 

approaches (cf. Section 3), an event can be defined as an 

aggregation or a group of similar multimedia objects: 
 

Definition 14: [Event ε]. An event ε is an occurrence of a social 

or/and natural phenomenon happening at a certain time and/or 

location, and can be identified/described by the set of multimedia 

objects O describing it, formally: 

 

where eid is a key value used to uniquely identify an individual 

event ε, 

or all 

T  (T )
i

i

f o O

 , 
or all 

L  (L )
i

i

f o O


and 

or all 

S  (S )
i

i

f o O


 

designate respectively: the union of the set of multimedia objects’ 

temporal coverage representations U(Ti), spatial coverage 

representations U(Li), and semantic coverage representations 

U(Si), for all multimedia objects oi  O belonging to event ε in the 

representation space  
 

  
 

oid 3452155896 

tc 1238964834 

lc lat="45.51" long="-73.55” 

UTM= 

18T 612643mE 5041241mN 

S Ian Mosley, Mark Kelly, Pete 

Trewavas, Steve Hogarth, 

Steve Rothery, concert, gig, 

live, weekend, music, 
progressive, marillion 

 

 

oid 128796702 

tc 1145040959 

lc lat="47.43" long="-122.29” 

UTM= 

10T 553236mE 5253825mN 

S Stardance, Norwescon 

Seattle, DoubleTreeHotel, 

Nikkor, Washington, 

conference, cosplay,  
costume, fantasy  

 

  
 

oid 128800481 

tc 1145041372 

lc lat="47.43" long="-122.29” 

UTM= 

10T 553236mE 5253825mN 

S Stardance, Seattle,  

Double Tree Hotel,  Nikkor, 
Norwescon, Washington, 

conference,  cosplay, 

costume, fantasy, scifi 
 

 

oid 3421558753 

tc 1238956813 

lc NULL 

S marillion, weekend, 

montreal 
 

 

 

 

 
 

oid  129778685 

tc  1145105698 

lc  lat="47.435" long="-122.294” 

 UTM=   

 10T 553236mE 5253825mN 

S  Norwescon , Seattle,  

 DoubleTreeHotel , Nikkor,    

 Washington,  conference,   

 convention, cosplay , costume  
 

 

oid 3443324510 

tc 1238876657 

lc  lat="45.51" long="- 73.557” 

 UTM=  
18T 612695mE 5041397mN 

S  Steve Hogarth, concert,   

 gig, live, marillion ,   

 weekend, montreal ,     

 music, progressive 
 

Figure 3.  Sample images extracted from the MediaEvalSED 

2013 image dataset [17], described using our MRSM. 

 

Consider for instance the sample 6 images in Figure 3 described 

following our MRSM. The events extracted based on these images 

are provided in Figure 4, also described following MRSM. 
 

B. Metric Properties of the MRSM 

A key issue to be addressed when defining a space model (such as 

our MRSM) is to define distance (similarity) measures allowing to 

compare and order entities (i.e., objects and/or events) represented 

in the space, and studying their properties which will govern the 

space model.  

ε = (eid, T, L, S)                                     (9) 



Following our MSRM definition, typical Euclidian distance 

can be utilized to compare time and location representatives of 

two multimedia objects/events. As for the semantic dimension, 

semantic distance can be computed as the inverse of any typical 

semantic similarity measure comparing two (sets of) concepts in a 

semantic network [33]. Here, semantic similarity measures can be 

classified as edge-based (estimating similarity as the shortest path 

between concepts) [34], node-based (estimating similarity as the 

maximum amount of information content concepts share in 

common) [35], and gloss-based (estimating similarity based on 

word overlap between the concept’s gloss descriptions) [36]. In 

our study, we adopt an aggregate semantic similarity introduced in 

[37, 38] producing similarity scores [0, 1], 0 designating 

minimal (no) similarity and 1 designating maximum (total) 

similarity: 
 

SimSemantic(c1, c2, SN) =  wEdgeSimEdge(c1, c2, SN) +   

wNode  SimNode(c1, c2, SN)) +  

   wGloss  SimGloss(c1, c2, SN))     

(10) 

 

 

where: c1 and c2 are two concepts being compared, SN is the 

reference semantic network (such as WordNet), wEdge+ wNode + 

wGloss =1 and (wEdge, wNode, wGloss) ≥ 0, SimEdge is a typical edge-

based measure from [34], SimNode is a typical node-based measure 

from  [34], and SimGloss is a typical gloss-based measure from 

[36], expanded and normalized in [37, 38]. 

Consequently, similarity between two multimedia objects or 

two events, represented in our MSRM, can be computed as the 

aggregation of individual dimensional similarity measures, using 

any convenient aggregation function such as maximum, minimum, 

average, or weighted sum: 
          

Sim(o1, o2) =     SimTime(o1, o2) + 

  SimLocation (o1, o2) + 

  SimSemantic (o1, o2) 

 

(11) 

where o1 and o2 are two multimedia objects in MRSM, (SimTime, 

SimLocation, SimSemantic)  [0, 1] designate temporal, spatial, and 

semantic similarity measures respectively (computed as inverse 

distances, e.g., 1/(1+Distance(o1, o2) [0, 1]),  +  +  = 1 and 

(, , )  0.  The same formula can be applied when computing 

Sim(1, 2) where 1 and 2 are two events represented in MRSM.  

Based on the above formula and description, our combined 

MRSM similarity measure would be consistent with the formal 

definition of similarity [39, 40], and comes down to a generalized 

metric – i.e., a similarity (distance) function satisfying minimality, 

reflexivity and symmetricity properties, but not triangular 

inequality:  
 

i. Minimality: Sim(o1, o2) = 0  A and B have no common 

characteristics, 

ii. Reflexivity: Sim(o1, o1) = 1, 

iii. Symmetricity: SimXDoc (o1, o2) = SimXDoc (o2 , o1) 
 

In fact, triangular inequality is controversially discussed and 

is usually domain and application-oriented [35, 40]: 

iv. Triangular inequality: Sim(o1, o2) ≥ Sim(o1, o3) × Sim (o3, 

o2) (i.e., Dist(o1, o2  Dist(o1, o3) + Dist(o3, o2)) 

 

While temporal and spatial similarity measures do satisfy 

triangular inequality, yet most semantic similarity measures in the 

literature, e.g., [34-36], fail to satisfy the latter property. An 

example by Tversky [41], illustrates the impropriety of triangular 

inequality with an example about the similarity between countries: 

“Jamaica is similar to Cuba (geographical proximity); Cuba is 

similar to Russia (political affinity); but Jamaica and Russia are 

not similar at all”. That is due to fact that semantic similarity is 

usually evaluated through multiple semantic relations (links) 

between concepts (nodes), e.g., geographic proximity on one 

hand, and political affinity on the other.  

A possible solution, allowing to verify triangular inequality, 

would be to consider one kind of semantic relationships (e.g., 

geographic proximity only) when evaluating semantic similarity. 

In other words, SimSemantic would be computed as the aggregation 

of multiple similarities evaluated each w.r.t. the corresponding 

relationship (SimSemantic_GeoProx, SimSemantic_PoliticalAff, etc.), where 

each measure would (individually, and when aggregated) verify 

triangular equality. 
 

 

 

 

 

eid 1 

T {1238876657,  1238956813, 1238964834} 

L lat="45.5156"   long="-73.5578” 

lat="45.517"    long="-73.5571” 

S Ian Mosley, Mark Kelly, Pete Trewavas, Steve Hogarth, Steve 

Rothery, concert, gig, live, marillion, weekend, music, 

progressive, montreal, Steve Hogarth  

 

 

 

eid 2 

T {1145040959,  1145041372,  1145105698} 

L lat="47.4357"   long="-122.294” 

lat="47.4357"   long="-122.294” 

lat="47.4357"   long="-122.294” 

S Stardance,  Norwescon Seattle, DoubleTreeHotel, Nikkor  , 

Washington, conference,  cosplay,  costume , fantasy, scifi,  
convention 

 

Figure 4.  Events generated based on the sample images from 

Figure 3, described using our MRSM. 
 

C) Event extraction 
Given set of multimedia objects represented in our MRSM, we 

group them into clusters, based on their time, space, and semantic 

similarities, where each cluster of similar objects would identify 



an event. Here, we introduce an adapted graph-based 

agglomerative group average-link and partitioning clustering 

method [42], in order to perform event extraction as shown in 

Algorithm 1 (cf. Figure 5). Given n multimedia objects, a fully 

connected undirected graph G with n vertices and n(n-1)/2 

weighted edges is created. The vertices represent multimedia 

objects, and edges between nodes corresponding to the similarities 

between nodes computed following our aggregate similarity 

measure (cf. formula 11). Aggregate similarity scores computed 

for all pairs of input multimedia objects, are stored in an (n  n) 

matrix of similarity scores (i.e. SimMat[][]), provided as input for 

event extraction as shown in Algorithm1. 

The algorithm accepts multimedia objects (using SimMat) as 

input, and then groups objects based on their similarity scores 

using a hierarchical clustering approach. The algorithm generates 

clusters by varying the clustering level between lo and 0, at a 

constant decrement pace of Dec-value. The group link clusters for 

a clustering level li can be identified by combining those vertices 

with weights w ≥ li from the graph G. Lines 8 and 9 show 

clustering at level lo which group similar objects into m partitions 

calling Generate_Initial_Clusters(SimMat)function. Lines 11 to 

15 show clustering at level li which involves two steps: firstly, 

computing the similarity distance between the two clusters using 

UPGMA (Unweighted Pair-Group Averaging Method) [43], as 

shown in formula 12; and secondly, grouping the clusters if their 

corresponding weight is greater than or equal to li: 
 

  1 2

i j

    
1 2

1 1

Sim(o , o )

Avg _ Sim clus ,  clus           
| clus |   |clus |

i jo clus o clus 




 
(12)

 

 

where oi and oj are multimedia objects in clusters clus1 and clus2 

respectively, and |clus1| and |clus2| are cluster cardinalities (in 

number of objects). 
 

 Input: 

1.  SimMat[,]:Decimal // similarities of pair of MM objects 

 Variable: 

2.  Dec-value: Decimal// clustering  level decrement value (e.g., -0.1) 

3.  li: Decimal  // Clustering  level  

4.  cl: Decimal // stopping clustering level 

5.  lo:  Decimal   // initial parameter to have m partitioned clusters  

 Output: 

6.  Clusters: Collection // contain the result of clustering 

 Begin 

7.  For li= lo Down to 0 Step Dec-value 

8.  If li = lo Then 

9.  Clusters=Generate_Initial_Clusters(SimMat) 

10.  Else 

11.  For each pair of clusters (ci, cj) in Clusters  

 //Clusters contains group of multimedia objects at level li-1 

12.  Average-Similarity = UPGMA(ci,cj))  // eq. 11 

13.  If Average-Similarity ≥ li Then 

14.  group ci and cj in the same cluster 

15.  End If 

16.  Next 

17.  End if 

18.  Next 

19.  cl =C-Index(Clusters) // stopping rule for clustering 

20.  Return clusters[cl] 

 End 

Figure 5. Event Extraction Pseudo code. 

 

A stopping rule is necessary to determine the most 

appropriate clustering level for the link hierarchies. Milligan & 

Cooper in [44] present 30 such rules, among them, C-index 

exhibits excellent performance and is thus adopted in our study 

(line 19). Clusters identified at stopping clustering level are 

considered and returned as events (as shown in Line 20). 
 

C. Event-based CK Management Framework 
 

Given our space representation model (MRSM) and event 

extraction algorithm, we design our event-based CK management 

framework as shown in Figure 6. It consists of five interacting 

components: i) Identity Manager, ii) Input Data Manager, iii) 

Event Manager, iv) Profile and Context Manager, and v) CK 

Miner, which we briefly describe below. 
 

1) Identity Manager 
 

It is responsible for managing system user identities, using a role-

based approach, where users are categorized broadly into two 

main categories: i) expert and ii) non-expert, with dedicated roles 

being associated to each group. An expert user gets support from 

the knowledge base system, empowered to add domain 

knowledge into the framework, and analyze the produced CK. 

Non-expert users have access and are able to upload event related 

multimedia objects, and can use data and knowledge search 

facilities using dedicated interfaces. 
 

 
Figure 6.  Event-Based CK Management Framework. 

 

2) Input Data Manager 
 

It categorizes input Web data sources into: i) event-related 

collections and ii) none event collections. It uses dedicated 

document classification algorithms to filter out none event 

collections from event collections. The heterogeneity in data 

representation formats adopted by different data sources is handed 

using our uniform data representation model. Thus the data from 

each source is mapped to our MRSM using dedicated mediators. 
 

3) Event Manager 
 

It is responsible for detecting candidate events from the 

multimedia data collection, identifies relevant events, and linking 

related events based on their semantic relationships. This 

component learns event discriminating features and their 

granularity values from source datasets. Then after, our 

unsupervised event detection algorithm (cf. Figure 5) is applied to 

identify potential events from massive data sources. 

 

4) Profile and Context Manager 
 

This component of the framework mainly handles user profile 

information. It activates when users create their accounts, and 

updates user context information when the latter connects to the 



system (context information including: user location, kind of 

device utilized by the user, as well as any other relevant 

constraints such as connectivity bandwidth and so on).  The user 

profile and context information is later used to provide near real 

time notification of events, as well as to recommend the 

likelihood of related events as an effect of the preceding event for 

system users. 
 

5) Collective Knowledge (CK) Miner 
 

It uses the evolved event CK base to respond to user search 

requests. In addition, the component mines and provides 

recommendations and prediction values to registered system 

users. The event CK base is in turn responsible for maintaining 

event knowledge in a machine readable format (such as 

RDF/XML5, or N-Triples6). The user profile database stores user 

personal information (such as user name, birth date, and 

hometown), as well as user interests and preferences.  

In other words, we go from raw images with their 

descriptions (cf. Figure 3), to clusters of similar images where 

similarity is evaluated following the different dimensions of our 

MRSM. Clusters represent events which can also be described 

following our MRSM (cf. Figure 4). Event descriptions provide 

the seeds for knowledge (after being run through semantic 

analysis and disambiguation [45]) which, when grouped together 

with knowledge from other events, produces CK. 

Note that in this paper, we mainly focus on the multimedia 

representation space and its properties, considering the temporal 

Where), location (When), and semantic (What) dimensions, while 

disregarding user related information (i.e., Who, Why, and How 

dimensions) to be covered in a future dedicated study. 
 

V. EXPERIMENTAL SETUP & RESULTS 
 

A. Experimental Dataset and Pre-Processing 
 

We utilized the MediaEvalSED 2013 image dataset [17] to 

evaluate our event extraction approach. The dataset contains a 

collection of 131,211 photos and their associated metadata in 

XML (extensible Markup Language) format, uploaded between 

January 2006 and December 2012. Moreover, the dataset contains 

the ground truth event annotations which had been created by 

human users. The ground truth consists of associating each image 

to a single label designating an event, such that no image can 

belong to more than one event. Image metadata consist of an 

XML document associated to each image, containing image_id, 

photo_url, username, dateTaken, dateUploaded, title, description, 

tags, and location (defined in terms of latitude and longitude) 

among others. Based on our MRSM, we only extract and process 

image metadata associated with temporal features (i.e., dateTaken 

and dateUploaded), spatial features (i.e., latitude and longitude), 

and semantic features (i.e., title, tags, and description). Note that 

almost all of the photos have temporal information, but only 

46.1% of them have spatial information, 95.6% of them have tags, 

97.9% have titles, and 37.9% have description information. 

We utilized regular expressions to clean out the HTML 

(Hyper Text Markup Language) tags from the XML documents. 

In order to simplify similarity computations: i) temporal values 

were converted into UNIX epoch, ii) Non-English textual 

metadata were translated using the Google API Translate7 

                                                                 

5  http://www.w3.org/TR/rdf-syntax-grammar/ 
6  http://www.w3.org/2001/sw/RDFCore/ntriples 
7 http://code.google.com/p/google-api-translate-java/ 

services, iii) stop words were removed based on the WordNet stop 

word lists, and iv) terms were stemmed using the Porter stemmer8.  
 

B. Evaluation Metrics 
 

To evaluate the quality of our event detection process, we used the 

Normalized Mutual Information (NMI) and F-score measures [46] 

which are commonly in the literature. On one hand, NMI is an 

informed probabilistic measure that evaluates the clustering 

accuracy (purity) of extracted events, computed by comparing the 

generated events (clusters) and the available ground truth (user 

defined clusters): 

                                                                                    (13) 

 

where: Ω={w1, w2,…, wk} is the set of generated clusters, C={c1, 

c2, …, cj} is the set of predefined clusters (ground truth), I(Ω, C) 

is the mutual information between  the generated clusters and the 

predefined clusters, and H(Ω) and H(C)  are entropies of the sets 

of generated clusters and predefined clusters respectively. 

On the other hand, F-score measures the goodness of 

extracted events (clusters of objects), computed as the harmonic 

mean of precision (PR) and recall (R) measure widely utilized in 

information retrieval [47]. 

 

(14) 

 

 

C. Experimental Results 
 

We ran a battery of experiments using different parameter values 

for weight parameters , , and  highlighting the impact of 

temporal (), spatial (), and semantic (1--) dimensions when 

performing similarity-based image clustering to extract events. 

The top 5 results for both NMI and F-score are shown in Table 1. 

Results clearly highlight three observations: i) all three 

dimensions seem to be almost equally important in extracting 

meaningful events, since the best results were obtained with very 

close weight values for , , and ; ii) it is also clear that 

considering semantic descriptions of images and their semantic 

similarities is beneficial for event extraction since both NMI and 

F-score regularly increase with the increase of parameter  

designating the impact of semantic similarity evaluation; iii) 

considering semantic information only (neglecting temporal and 

spatial dimensions, i.e., ==0 and =1), likewise when 

considering temporal only or spatial only information, produced 

lower quality results, which points back to our first observation, 

i.e.: integrating all dimensions seems to be key in improving event 

extraction quality. 
 

TABLE I.  The best five results of our experiment by varying the 

temporal, spatial and semantic parameter values. 

Parameter 

values 

α (0.5)        

β (0.5) 

 (0) 

α  (0.4)      

β (0.4) 

 (0.2) 

α  (0.4)     

β (0.35) 

 (0.15) 

α (0.35)      

β (0.35) 

 (0.3) 

α (0.35)          

β (0.3) 

 (0.35) 

NMI 0.9667 0.9759 0.9792 0.9826 0.9865 

F-score 0.9255 0.9372 0.9388 0.9407 0.9435 
 

Moreover, we compare our best experimental results with 

those of some of the main related works in the literature, namely 

those approaches who have also utilized the MediaEvalSED 2013 

[17] test dataset as benchmark for applying unsupervised 

clustering approaches in order to extract events. 

                                                                 

8 http://tartarus.org/martin/PorterStemmer/ 
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TABLE II. Comparison of experimental result with the existing 

state-of-the arts. 

Method 
Features 

NMI F-Score 

Nguyen et al. [16] 

Temporal, 

Spatial, 

Textual 

0.9849 0.9320 

Manchon-Vizuete et al. [48] 

Temporal, 

Spatial, 

Textual 

0.9731 0.8833 

Sutltano et al. [49] 

Temporal, 

Spatial, 

Textual 

0.9540 0.8120 

Our Method 

Temporal 

Spatial 

Semantic 

0.9865 0.9435 

 

Results in Table 2 show that our MRSM-based approach was 

able to improve the event extraction process, which is mainly due 

to the fact that our approach considers the semantic descriptions 

and semantic similarities of user contributed metadata (title, tags 

and description) in the aggregated similarity evaluation process 

when performing similarity-based clustering, whereas existing 

methods focus solely on the temporal/spatial aspects and 

disregarding multimedia metadata semantics.  
 

VI. CONCLUSION 
 

In this paper, we introduce the core components of an event-based 

CK management framework, using shared multimedia data from 

social media sources to identify and describe events and their 

multimedia object constituents. It is built around a generic 

Multimedia Representation Space Model called MRSM, designed 

for multimedia data and multimedia-based event representation 

from heterogeneous multimedia data without any prior knowledge 

about event-related clues. Preliminary tests highlight the 

effectiveness of our multimedia representation space, integrating 

spatial, temporal, and semantic information for event extraction 

and representation. We are currently conducting additional tests to 

evaluate the scalability and adaptability of our solution when 

dealing with different kinds of multimedia objects with different 

sizes and properties. As upcoming works, we are investigating 

crowd-sourcing (using FOAF for instance) [50] as a 

supplementary metadata source, adding a fourth dimension to our 

MRSM for user-sensitive event detection and identification. We 

are also investigating auto-calibration techniques, allowing to 

choose the proper unit of measurement for each dimension of our 

MRSM based on the properties of media objects and events 

described. In the near future, we plan to implement and evaluate 

recommendation, inference, and query management functionality, 

using our MRSM, in order to infer related future events based on 

current ones, and handle related users query. Also, we aim to 

study the semantic relationships among events (i.e., their 

identification and formal representation following MRSM), 

toward creating an open linked event based CK base. 
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