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Abstract. Database fragmentation is a process for reducing irrelevant data 
accesses by grouping data frequently accessed together in dedicated segments. 
In this paper, we address multimedia database fragmentation by extending 
existing fragmentation algorithms to take into account key characteristics of 
multimedia objects.  We particularly discuss multimedia primary horizontal 
fragmentation and provide a partitioning strategy based on low-level 
multimedia features. Our approach particularly emphasizes the importance of 
multimedia predicates implications in optimizing multimedia fragments. To 
validate our approach, we have implemented a prototype computing multimedia 
predicates implications. Experimental results are satisfactory. 
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1   Introduction 

Since the last two decades, multimedia data are of key importance in many 
application areas such as medicine, surveillance, cartography, meteorology, security, 
visual data communications, etc. Hence, the need for systems that can catalog, store, 
and efficiently retrieve relevant distributed multimedia data is becoming very high. 
Initially, research in multimedia management has been handled separately by database 
management and computer vision communities. As a result, different types of features 
have been used, in the literature, for multimedia data management. Low-level features 
such as color, texture, shape, layout, etc. are used by the computer vision research 
community, while meta-data and semantic based features are widely used by the 
database management community to describe data context and semantics. Emerging 
applications in distributed environments create an increasing demand on the 
performance of multimedia systems, requiring new data partitioning techniques to 
achieve high resource utilization and increased concurrency and parallelism. Several 
continuing studies are aimed at building distributed multimedia databases 
management systems MMDBMS [20]. Nevertheless, most existing systems lack a 
formal framework to adequately provide full-fledge multimedia operations. 



Traditionally, partitioning techniques are used in distributed system design to reduce 
accesses to irrelevant data. Three main fragmentation techniques have been defined 
for relational databases: horizontal fragmentation HF, vertical fragmentation (VF), 
and hybrid or mixed fragmentation (MF). These techniques have been recently 
extended for object oriented databases. However, multimedia data fragmentation 
issues haven’t been addressed in current systems.  
Multimedia fragmentation is a relatively complicated issue owing to the complexity 
of the multimedia data itself; different multimedia data types (video, audio, image 
and/or text), frequently used with various formats, as well as the intricacy of the 
description of physical and/or semantic multimedia data. In this paper, we address 
primary horizontal fragmentation in distributed multimedia databases and analyze the 
impact of multimedia operators and predicates. We particularly address multimedia 
predicates implication required in current fragmentation algorithms such as 
Make_Partition and Com_Min [2, 11, 12]. We also present our prototype with 
corresponding experimental results conducted to validate our approach. 
The remainder of this paper is organized as follows. Section 2 briefly reviews 
background in DB fragmentation. Section 3 presents a motivation example. Section 4 
details our multimedia fragmentation process. Section 5 presents our prototype and 
experimental tests. Finally, section 6 concludes and draws future directions. 

2   Background 

Fragmentation techniques for distributed DB systems aim to achieve high resource 
utilization and performance [5]. This is addressed by removing irrelevant data 
accessed by applications and by reducing data exchange among sites [1]. In this 
section, we briefly present traditional database fragmentation approaches, depicting 
the evolution from relational to object oriented DBMS, and focus on horizontal 
fragmentation algorithms. In essence, there are three fundamental fragmentation 
strategies: Horizontal Fragmentation (HF), Vertical Fragmentation (VF) and Mixed 
Fragmentation (MF).  
HF underlines the partitioning of an entity/class in segments of tuples/objects 
verifying certain criteria. The generated horizontal fragments have the same structure 
as the original entity/class. Horizontal fragmentation is generally categorized in two 
types: Primary HF and Derived HF. PHF is the partitioning of an entity based on its 
attributes’ values [12]. DHF denotes the partitioning of an entity (called member) 
based on links with other entities (called owners) [12]. In other words, it is the 
partitioning of an entity/class in terms of the PHF of another entity/class [1] taking 
into consideration their inner-links.  
VF breaks down the logical structure of an entity/class by distributing its 
attributes/methods over vertical fragments, which would contain the same 
tuples/objects with different attributes [1]. The unique tuple/object identifier (id) is 
kept in all vertical fragments [7] so that the DBMS can link related segments.  
MF is a hybrid partitioning technique where horizontal and vertical fragmentations 
are simultaneously applied on an entity/class [11].  
To the best of our knowledge, two main algorithms for the PHF of relational DBMS 
are provided in the literature: Com_Min developed by Oszu and Valduriez [12] and 



Make_Partition Graphical Algorithm developed by Navathe et al. [10] (used 
essentially for vertical fragmentation). The Com_Min algorithm generates, from a set 
of simple predicates applied to a certain entity, a complete and minimal set of 
predicates used to determine the minterm fragments corresponding to that entity. A 
minterm is a conjunction of simple predicates [2] associated to a fragment. 
Make_Partition generates minterm fragments by grouping predicates having high 
affinity towards one another. The number of minterm fragments generated by 
Make_Partition is relatively smaller than the number of Com_Min minterm fragments 
[15] (the number of minterm fragments generated by Com-Min being exponential to 
the number of simple predicates considered).  
Similarly, there are two main algorithms for the PHF of object oriented DBMS: one 
developed by Ezeife and Barker [6] using Com_Min [12], and the other developed by 
Bellatreche et al. [2] on the basis of Make_Partition [10]. The use of Com_Min or 
Make_Partition is the major difference between them. 

3   Motivation 

In order to use current partitioning approaches, widely employed in traditional 
databases, for fragmenting multimedia data, several issues should be studied and 
extended. On one hand, to achieve fragmentation, current algorithms require as an 
input parameter [6] the database conceptual schema (CS). This requirement is not 
always fulfilled in some multimedia databases due to the unstructured (or semi-
structured) and complex nature of multimedia data. On the other hand, multimedia 
queries contain new operators handling low-level and semantic features. These new 
operators should be considered when studying predicates and particularly predicate 
implications. For example, let us consider the following predicates used to search for 
photos similar to given photos in an Employee multimedia database as shown below.  

 
Predicate P1 P2 P3 P4 
Attribute Emp_photo Emp_photo Emp_photo Emp_photo 
Operator1 Range_Simε1 Range_Simε2 Range_Simε3 KNN 

Value 

 

 
 

 

 

 

 

 

 
Parameter ε2 > ε1 ε2 > ε1 ε3 > ε1 K=3 

 
In current approaches, the following predicates are considered different and analyzed 
separately: 

 P1 and P2: two range queries with different parameters (radius) 
 P1 and P3: two range queries with different parameters and values 
 P3 and P4: two different operators 

However, in multimedia applications, P1 would also retrieve objects belonging to 
results of queries based on P2 and P3. Likewise, P4 may return a subset of P3’s results. 
Thus, we can say that P2 and P3 infer P1 (denoted by P1 → P2,P3), and consider only 
the results returned by P2 / P3 , thus eliminating P1.  

                                                           
1 More details about multimedia operators will be given later. 



It is important to notice that ignoring such implications between predicates can lead, 
in multimedia applications, to higher computation costs when creating fragments, 
bigger fragments which is very restrictive for multimedia storage, migration, and 
retrieval, as well as data duplication on several sites. In [2, 11], the authors have only 
highlighted the implication issue importance, but have not well detailed nor identified 
the various kinds of implications. These issues will be tackled in following paragraphs. 

4   Multimedia Primary Horizontal Fragmentation 

In this section, we start by introducing some concepts and definitions necessary to 
tackle multimedia primary horizontal fragmentation. We develop subsequently 
additional steps to be integrated in current approaches, allowing adequate multimedia 
data fragmentation processing. 

 
4.1   Definitions 
  
4.1.1   Multimedia Object 
 
A multimedia object is described by a set of attributes, related to a set of meta-data. It 
can be formally depicted as a set of attribute (ai) and value (vi) doublets:  
O {(a1, v1); (a2, v2), … , (an, vn)}. Multimedia attributes and values can be simple (like 
color = “red”), complex (color histogram, texture, shape, etc.) or the raw data (BLOB 
files) of multimedia objects. 

 
4.1.2   Multimedia Type 
 
A multimedia type allocates a set of attributes used to describe multimedia objects 
corresponding to that type: T(a1, a2, a3, … , an).We consider that two objects, 
described by the same attributes, are of the same type. 

 
4.1.3   Multimedia Query 
 
A multimedia query is written as follows [2, 9]:  
q = {(Target clause), (Range clause), (Qualification clause)},   where: 

 Target clause: contains multimedia attributes returned by the query 
 Range clause: gathers the entities (tables/lasses) accessed by the query, to 

which belong target clause and qualification clause attributes 
 Qualification clause: is the query restriction condition, a Boolean 

combination of predicates, linked by logical connectives Λ, ν, ¬  
 

4.1.4   Multimedia Operators and Predicates 
 
As mentioned before, multimedia information introduces new types of data and new 
operators and predicates. In the following, we explain multimedia operators and 
predicates related to low-level features. Note that semantic similarity operators are out 
of this paper’s scope and will be detailed in future studies. 



4.1.4.1 Multimedia Operators 
 
In multimedia databases, objects are widely described using vector spaces with 
numeric attributes, such as shape or color descriptors. Thus, in order to retrieve 
multimedia data, dedicated similarity queries are used, involving range queries and/or 
k-nearest neighborhood operators. Formal definitions are given thereafter. 
 
4.1.4.1.1    Multimedia Range Query Operator 
 
 
 

A range query operator θ  returns the set of objects Vj of an object value Vi located 
within a certain range ε from Vi using a distance function D (cfr. Figure 1). It can be 
formally written as:  

 

Range Query(Vi, θ , ε) = ε
iθN (V )  = {Vj / D(Vi, Vj) ≤ ε / ε ∈ \  (1) 

 

The function D can be the classic Euclidean distance, a weighted Euclidean distance, 
a quadratic form distance, etc.  

 
 

  

Fig. 1. Visualizations of a range query operator θ  

A range query operator θ  has the following interesting properties, useful for 
optimizing the computation process: 

 ji εε
i jθ θ( ) ( )  ε εi iN V N V if⊆ ≤  

 j ji l i lε εε ε ε ε
i j lθ θ θ θ θ θif ( ) ( )  ( ) ( ) ( ) ( ) ε ,ε ,εi j j l i lN V N V and N V N V N V N V⊆ ⊆ → ⊆ ∀  

 
4.1.4.1.2    Multimedia KNN Operator 
 

A K-Nearest Neighborhood (KNN) operator θ
G

 returns the set of K neighbors of an 
object value Vi located into either a ranged or unlimited domain space, using a 
distance D [3, 20]. It could be formally written as follows: 

 
{ }k

i i j=1..k i j iθK N N (V , θ , )  =N (V ) = V  / D (V , V )   D (V ,V )k ε ε ≤G
G

  
k *

i iθ V N (V ), where k   and Max(D(V ,V))  /  { }ε ε∀ ∉ ∈ ≤ ∈ ∪ ⊥G ` \  

If ε =⊥ , the domain space is unlimited 

(2) 

 
As for range query operators, a KNN operator can be observed as a visual object in 
function of values dimensions. Fig. 2 shows a ranged 2D KNN operator with k=3. 

Vi 
ε 

A 

Vi ε
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Fig. 2. Visualizations of a ranged 2D KNN operator θ
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A KNN operator θ

G
 has the following properties: 

 ji kk
i jθ θ( ) ( )  k ki iN V N V if⊆ ≤G G  

 j ji l i lk kk k k k
i j lθ θ θ θ θ θif ( ) ( )  ( ) ( ) ( ) ( ) k , k ,ki j j l i lN V N V and N V N V N V N V⊆ ⊆ → ⊆ ∀G G G G G G

 
4.1.4.2   Multimedia Predicates 
 
A multimedia predicate �P  is defined as follows: 

� i i m iP = (A   V )θ  
Where: 
 Ai is a multimedia attribute or object  
 Vi is a value in the domain of Ai or a multimedia object 

{ }m tθ  θ   θ, θ= ∪
G  where tθ  is a traditional operator such as a comparison 

operator (=, <, ≤, >, ≥, ≠), or a set operator (contained-in, set-equality, …), etc. 
 

4.2 Steps for Multimedia Data Primary Horizontal Fragmentation 
 
Before applying current fragmentation approaches, several steps should be executed 
in order to support and provide relevant multimedia data fragmentation. We suggest 
integrating the steps detailed below.  
 
Multimedia_fragmentation_pre-processing () 

 
 Begin 
  Multimedia_Types_Classification() 
  For each multimedia Type 
   Predicates_Grouping() 
   Multimedia_Predicates_implication() 
  EndFor 
 End 
 

4.2.1 Classification of Multimedia Objects  
 
By applying existing horizontal fragmentation algorithms to a multimedia database, 
we attain non consistent horizontal fragmentation criteria (minterms). Suppose that 
Camera Position, Audio Frequency and Dominant Color are three multimedia 
attributes describing Video, Audio and Image objects respectively. The following 
Boolean expression: CameraPosition = “North West”Λ AudioFrequency = “6 KHz” 
Λ DominantColor = ((10; 10; 10), RGB) is a non consistent minterm, specifying 

V2 

V3 

K = 3 

ε  
Vi 

V1 



criteria on “heterogeneous” attributes describing multimedia objects of different 
types, therefore producing an empty horizontal fragment. 
In order to attain coherent minterms, we need to gather related objects together. As 
mentioned before, we assume that multimedia objects having the same attributes are 
considered of the same type. The algorithm provided below is used for classifying 
objects, according to their corresponding types.  

 
Multimedia_Types_Classification () 

 
 Input : MM         // multimedia objects 
 Output : TM       //set of multimedia types corresponding to objects in MM 
 
 Begin 
    For each Moi ∈ MM 
          If Moi.A ≠ all Ti.A                             // Adding a new type corresponding to the object Moi   
                  New Tn+1 / Tn+1.A = Moi.A        // if the type isn’t considered yet in MM 
                  Tn+1 = Tn+1 U Mo 
          Else 
                  Ti = Ti U Moi / Moi.A = Ti.A       // Adding the object Moi to its corresponding type 
          EndIf                                               // if the type is already identified 
    Endfor 
 End 
 
 
 
 
 
 
 
 
 

4.2.2   Predicate Grouping 
 
It is also important to gather predicates into groups on the basis of operators.  Using 
the algorithm below, two predicate groups are identified: multimedia and traditional. 
This separation will allow defining appropriate methods for multimedia implication: 
 

l l

m

t

θ
θ

θ

P P
P P

P P
i j

i j
i j

⎡ ⎤⎯⎯→
⎢ ⎥⎯⎯→ ⇔
⎢ ⎥⎯⎯→⎣ ⎦

 
 

θ⎯⎯→    denotes a multimedia similarity implication  

   
tθ⎯⎯→   denotes a traditional implication 

 

Recall that traditional implication is out of this paper’s scope. 
 
Predicates_grouping () 
 
 Input:  Q              //set of all user queries 
             Ti                    //a multimedia type 
 Output: i

jP     //a query predicate defined on type T 

  l
iP      //set of multimedia predicates applied on T 

  
iP      //set of traditional predicates applied on T 

 Begin 
  For each query Qi ∈ Q 

   For each i
jP  ∈ Qi 

    If ∈i
jP P)( �  then 

     l l= ∪ i
i jiP P P  

    Else 

             = ∪ i

ji iP P P  

    Endif 
   EndFor 
  EndFor 
 End 



4.2.3 Multimedia Predicates Implication 
 

Finding inference or implication between predicates is crucial to cutback the number 
of predicates involved in the fragmentation process [4, 11] (a large number of 
unnecessary fragments would notionally achieve low system performance). When a 
predicate Pi implies a predicate Pj (denoted by Pi → Pj), Pi can be removed from the 
minterm fragment to which it belongs and replaced by Pj. Predicate implication is 
taken into consideration in traditional algorithms, mainly in Com_Min [12] and 
Make_Partition algorithms [10]. In the following, we detail the rules that can be used 
to determine implication between low-level feature-based predicates, by using both: 
range query and KNN methods. 

 
4.2.3.1   Range Query Predicates Implication 
 
 
 

Two range query predicates  i jP and P  are in implication if: 

    { }0 ( , ) -j i i j i jP P D V V ε ε→ ⇔ ≤ ≤  
 

 
Fig. 3. 2D Range Query Predicates Implication 

 
 

However, if εi = εj and D(Vi, Vj) ≠ 0 or if εi - εj < D(Vi, Vj) ≤ εi + εj, then there is an 
intersection between   jP and Pi . Therefore,  i jP and P  cannot be associated via 
implication. 
 
4.2.3.2   KNN Predicates Implication 
 
The KNN implications for ranged or unlimited domain space are identical and can 
only be computed as follows: 
 

{ }  j i i j i jP P V V and k k→ ⇔ = ≥
JJG JG

 

 

 
Fig. 4. KNN Predicates implication with identical values 
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Note that two KNN predicates  i jP and P
JG JJG

 identified within two limited ranges iε and 

jε  are not in implication (like for range queries) if:  

{ }0 ( , ) -  where    [0,1]i j i j i jD V V andε ε ε ε< ≤ ∈  

 
4.2.3.3 Multimedia Predicates Implication  
 
Using the same reasoning, we consider that two multimedia predicates l l  i jP and P  are 
in implication if:  

l l

l l { }( )0 ( , ) -  and  and ( )

OR
  

i j i j i j

j i

i j i j

D V V P P P

P P
V V and k k

ε ε ε ε⎧ ⎫≤ ≤ ∨ ∈ <
⎪ ⎪⎪ ⎪
⎨ ⎬→ ⇔
⎪ ⎪

= ≥⎪ ⎪⎩ ⎭

G

 

 

The first condition allows computing the implication between either two range query 
predicates or a range query predicate and a ranged KNN predicate. ε

G
 is used to 

designate the range of KNN predicate, and ε  to designate the radius of the range 
predicate. The second condition highlights KNN predicates implication.  
The following algorithm generates sets of multimedia predicate implications, ISi, 
corresponding to each multimedia type Ti. Note that every set element consists of a 
doublet of predicates (Pi , Pj), meaning that Pi implies Pj.  
 
Multimedia_Predicates_Implication () 
 

Input: l
iP       //set of M multimedia predicates applied on a multimedia type T 

Output:  ISi //set of multimedia predicates implications applied on a type Ti 

Variable:    i
jP  //a query predicate defined on type T 

Begin 
For each i

jP  ∈ l
iP  

If j≤M-1 then 
For each i

j+1P ∈ l
iP  

If (Aj=Aj+1)  then                                                                                        //same attribute 
If( i

jP .operator = θ and( i
j+1P .operator = θ or

G
i
j+1P .operator = θ )) then     

If (εj > εj+1 )   then                                                                  // Rj Rj+1 , Rj Kj+1 
If ≤ ≤j j+1 j j+10 D(V ,V ) ε - ε  then                                // →i i

j+1 jP P  

ISi=ISi ∪ ( i i
j+1 jP ,P ) 

Endif 
Elseif (εj+1 > εj and i

j+1P .operator = θ ) then              // Rj Rj+1 

If ≤ ≤j+1 j j+1 j0 D(V ,V ) ε - ε  then                                 // →i i
j j+1P P  

ISi=ISi ∪ ( i i
j j+1P ,P ) 

Endif 
Endif 

Elseif (
G

i
jP .operator = θ  and 

G
i
j+1P .operator = θ ) then                    // Kj Kj+1 

If 
i j

D(V,V)= 0  or Vi=Vj then 

If (kj ≥  kj+1) then 



ISi=ISi ∪ ( i i
j+1 jP ,P ) 

Elseif (kj+1 ≥  kj) then 
ISi=ISi ∪ ( i i

j j+1P ,P ) 

Endif 
Endif 

Elseif(
G

i
jP .operator = θ  and i

j+1P .operator = θ ) then                                      // Kj Rj+1        

If (εj+1 > εj)  then 
If 0 ≤ ≤j+1 j j+1 jD(V ,V) ε -ε  then                                           // i i

j j+1P P→  

ISi=ISi ∪ ( i i
j j+1P ,P ) 

Endif 
Endif 

Endif 
Endfor 

Endif 
Endfor 
ISi = Optimize(ISi ) 

 
End 
 
Optimize(ISi) 
 

   Input: ISi                                                               // set of multimedia predicates implications applied on a type T 
 
   Begin 

   For each ( i i
j kP ,P )∈ ISi 

   For each ( i i
k lP ,P )∈ IS 

    If ( → →i i i i
j k k lP P  and P P ) then 

  ISi=ISi ∪ ( i i
j lP ,P ) 

  Endif 
  EndFor 

EndFor 
     End 
 
4.2.4   Algorithm Complexity 
 
The complexity calculations are carried out below on the basis of the worst case 
analysis. Suppose nf represents the largest number of possible fragments, no represents 
the largest number of multimedia objects in a type or a fragment, nq the largest 
number of user queries, nt the largest number of types, np the largest number of 
multimedia predicates, ni the largest cardinality of the sets ISi, nv the largest feature 
vector dimension involved. Our fragmentation pre-processing algorithm is of time 
complexity of O(nt × (no + nq×np + nv×np

2 +ni
2) ), which simplifies to O(nt × (nv×np

2)). 
Note that the polynomial (quadratic) nature of our features implication computation 
algorithm (O(nv×np

2)) dominates the complexity formulae and is experimentally 
demonstrated in our simulation prototype. 
 
4.2.5   Computation Example 
 
In the following, multimedia predicates (range query and KNN) will be illustrated in 
the same manner for the sake of simplicity: 

 

P  = A Similar(ε) V    and    P
JG

 = A Similar(k, ε) V    where: 



− A is a multimedia attribute. In the present example, A stands for Dominant Color : DC 
− Similar represents θ , the range similarity operator, when the number between brackets ε 

denotes a real value such as 0.0 ≤ ε ≤ 1.0 ; ε designating the similarity range 
− Similar stands for θ

G
, the KNN operator, when the number between brackets k denotes an integer 

value ; k representing the number of neighboring objects to be returned by the KNN predicate 
within a range ε  

 

Figure 5 shows three images a, b and c characterized by their feature vector values 
Va, Vb and Vc respectively ; V designating, for each image, its Dominant Color 
feature in RGB color space (vector dimension = 3). 

 

Va = (20; 21; 20) Vb = (110; 20; 25) Vc = (240; 12; 12) 

Fig. 5.  Sample images 

We also consider the following two range query predicates:                                             
− P1: DC Similar(ε1) V1  and  P2: DC Similar(ε2) V2 (DC: Dominant Color ) where V1 = (22; 22; 

22), V2 = (90; 10; 10), ε1 = 0.6, and ε2 = 0.2 
 

Please note that in our similarity computations, we used the following weighted 
Euclidean distance function: 
 

[ ]1

1

( )²
( , ) 0,1

( )

N

i i
i
N

i i
i

x y
D ist X Y

x y

=

=

−
= ∈

+

∑

∑

 
N = Max (dim(X), dim(Y)), dim(X) 
and dim(Y) being the dimensions 
of vectors X and Y respectively. 

 

Following our multimedia implication computation rules, predicate p2 implies 
predicate p1 (0 ≤ Dist(V1, V2) ≤ ε1 – ε2) where: 

− Dist(V1, V2) = ( (22-90)2 + (22-10)2 + (22-10)2 )1/2  /  (22 +90 + 22 + 10 + 22 + 10)  =  0.397 
− and ε1 – ε2 = 0.6 – 0.2 = 0.4 

A query utilizing predicate P1 would return still regions a and b 
− Dist(V1, Va) = 0.024 (< ε1, returned object) 
− Dist(V1, Vb) = 0.399 (< ε1, returned object) 
− Dist(V1, Vc) = 0.662 (> ε1) 

 

Whereas a query invoking predicate P2 would return still region b 
− Dist(V2, Va) = 0.417 (> ε2) 
− Dist(V2, Vb) = 0.102  (< ε2, returned object) 
− Dist(V2, Vc) = 0.401 (> ε2) 

 

One can clearly realize that the set of multimedia objects returned by P1 ({a, b}) 
includes those returned by of P2 ({b}). If taken into account, such implications would 
reduce fragment creation computation cost, fragment size and multimedia data 
duplication on multiple sites. 
 
5   Prototype 
 
To validate our approach, we have implemented a C# prototype called “Multimedia 
Implication Identifier” encompassing: 



• A relational database, storing multimedia objects via Oracle 9i DBMS, 
described following the multimedia meta-model M² (MPEG-7 compatible) 
developed by Chalhoub et al. in [4]. 

• A set of interfaces allowing users to formulate simple and complex 
multimedia queries, providing the ability to select multimedia information. 

• Containers for storing user queries, enabling, via specific processes, the 
computation of query access frequencies which are basically used in the 
predicate affinity calculations. 

• Specific containers undertaking the storage of predicates, utilized by 
dedicated procedures to calculate predicate implications. 

The prototype accepts, as input, multimedia queries. Automatic processes 
subsequently calculate query access frequencies, identify corresponding predicates, 
and compute for each multimedia type (represented by a table) its Predicate Usage 
Matrix (PUM)1 and its Predicate Affinity Matrix (PAM)2 used to measure the affinity 
between predicates, the PAM taking into account our predicate implication steps. 
Note that we chose to present multimedia implications in PAM matrixes, proposed by 
[15, 4], for the sake of clearness (PAMs being suitable structures for displaying 
predicate implications). Nevertheless, our algorithm is generic in the sense that it 
could be equally used with other primary horizontal fragmentation approaches, 
Com_Min [16] in particular. 
 
5. 1. Simulation example 
 
Among the various tests that were conducted, we present a simple simulation example 
comparing predicate affinities (PAM) obtained with and without the inclusion of our 
multimedia physical implication rules. In the following example, multimedia type 
“Still Region”, designating motionless images, is selected for PUM and PAM 
calculations. Let Q = {qi = 0 to 5} be a set of user queries defined on “Still Region” 
Type. Recall that we represent queries following paragraph 4.1.3. 
 

q0: { (MO); (StillRegion); (ObNature = "vehicule"  Λ  
         DC Similar(0.3) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }  
q1: { (MO); (StillRegion); (ObNature = "vehicule"  Λ  ObColor = "red"   Λ  
         DC Similar(0.2) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }  
q2: { (MO); (StillRegion); (ObNature = "truck"  Λ   ObColor = "red"   Λ 
         DC Similar(0.1) ((9; 8; 7), (7; 8; 7), (10; 11; 10))) }  
q3: { (MO); (StillRegion); (ObNature = "vehicule" Λ  
         DC Similar(3) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }  
q4: { (MO); (StillRegion); (ObNature = "vehicule"   Λ   ObColor = "red"   Λ 
         DC Similar(1) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }  
q5: { (MO); (StillRegion); (ObNature = "truck"   Λ     ObColor = "red"   Λ 
         DC Similar(1) ((9; 8; 7), (7; 8; 7), (10; 11; 10))) } 
 

 
                                                           

1  It contains the predicates used by each query as well as query access frequencies and is 
subsequently used as input to the PHF process adopted by [11, 2] 

2  Following [15, 4], the PAM is a square and symmetric matrix where each value aff(Pi, Pj) can 
be numerical or non numerical. Numerical affinity represents the sum of the frequencies of 
queries which access simultaneously Pi and Pj. Non numerical affinity underlines the 
implication relation between predicates Pi and Pj 



Let P = {Pi, i = 0 to 8} be the set of predicates used by Q. 
 

P0: ObNature = “vehicule” 
P1: DC Similar(0.3) ((12; 10; 13), (14; 15; 16), (20; 20; 20)) 
P2: ObColor = “red” 
P3: DC Similar(0.2) ((12; 10; 13), (14; 15; 16), (20; 20; 20)) 
P4: ObNature = “truck” 
P5: DC Similar(0.1) ((9; 8; 7), (7; 8; 7), (10; 11; 10)) 
P6: DC Similar(3) ((12; 10; 13), (14; 15; 16), (20; 20; 20)) 
P7: DC Similar(1) ((12; 10; 13), (14; 15; 16), (20; 20; 20)) 
P8: DC Similar(1) ((9; 8; 7), (7; 8; 7), (10; 11; 10)) 
 

P contains traditional predicates (P0, P2) as well as multimedia predicates (P1, P3, P4, 
P5, P6, P7, P8). Note P1, P3 and P5 are range query predicates (the number between 
brackets being a real value – similarity range ε), while P6, P7 and P8 are KNN 
predicates (the number between brackets being an integer value – number of objects k 
to be returned by the predicate). Also note that DC represents a composite Dominant 
Color feature vector stating the three consecutive dominant colors in an image, in 
RGB color space. For example, DC1 of predicate p1 underlines dominant colors C(12; 
10; 13), C’(14; 15; 16) and C’’(20; 20; 20).  
By reading the updated PAM, one can clearly point out the multimedia implication 
rules defined in the paper: 

− Predicate P3 (ε3 = 0.2, V3 = ((12; 10; 13), (14; 15; 16), (20; 20; 20))) implies P1 (ε1= 0.3, V1 = 
((12; 10; 13), (14; 15; 16), (20; 20; 20))) having: 

• V1 = V3 and ε1 > ε3  
− Predicate P5 (ε5 = 0.1 “max”, V5 = ((9; 8; 7), (7; 8; 7), (10; 11; 10))) implies    P1 (ε1 = 0.3, V1 = 

((12; 10; 13), (14; 15; 16), (20; 20; 20))) having: 
• ε1 > ε5 , dist(V1,V5) ≤ ε1 – ε5  

− No implication can be identified between predicates P3 and P5 having: 
• dist(V3,V5) > ε3 – ε5 (similarity circle intersection/exclusion) 

− Predicate P7 (k7 =1, V7 = ((12; 10; 13), (14; 15; 16), (20; 20; 20))) implies predicate P6 (k6 =3, V6 
= ((12; 10; 13), (14; 15; 16), (20; 20; 20))) having: 

• V6 = V7 and k6 > k7  
− No implication can be identified between P6 (orP7) and P8, having: 

• V8 ≠ V6 (correspondingly V7) 
 

 
Fig. 6. Updated Predicate Affinity Matrix. 
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Disregarding our multimedia implication rules would yield, in the present example, a 
PAM with only numerical affinities. 
The PUM and uPAM make up the inputs to the NHP primary horizontal partitioning 
algorithm [11, 2], not being implemented yet in our prototype. 
 
5.2   Timing Analysis 
 
We have shown that the complexity of our physical similarity implication simplifies 
to O(nv×np2). We verified the formula experimentally, the timing results being 
presented in Fig. 7.  

 

0

2

4

6

8

10

12

14

20 40 60 80 100
nb Predicates

Ti
m

e 
(s

ec
on

ds
) 

200

400

600

800

1000

 
Fig. 7. Timing results 

The experiment was carried out on a Pentium 4 PC (2.8 Ghz CPU, 798 Mhz bus, 512 
MB RAM). One can see that the time to compute similarity implications grows in a 
polynomial (quadratic) fashion with the number of predicates involved. Our 
experiments also show that feature vector dimension affects time complexity, owing 
to predicate distance computations (weighted Euclidian distance). 
 
6   Conclusion and Future Work 
 
In this paper, we proposed an approach for the Primary Horizontal Fragmentation of 
multimedia databases, by extending existing fragmentation methods. Following the 
definition of a multimedia type, we identified the need to classify multimedia objects 
corresponding to the same type, in order to achieve consistent horizontal 
fragmentation criteria. The “Type Fragmentation” phase could be then followed by 
the PHF of each generated type. The original idea of emerging new multimedia 
operators allowed the adaptation of existing fragmentation procedures to partition 
multimedia data. We concentrated our efforts on the primary horizontal fragmentation 
of unstructured multimedia data, emphasizing the impact of multimedia predicate 
implications in optimizing multimedia fragments. 
Future directions include the introduction of semantic-based multimedia predicates. 
Our future goals also incorporate generating a multimedia conceptual schema, 
including the derived horizontal fragmentation process, and optimizing, if possible, 
the used fragmentation methods (semantic implication is yet to be developed). 
Likewise, multimedia vertical fragmentation and XML fragmentation will be talked in 
upcoming studies.   

Feature vector  
dimension 
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