
Towards Multimedia Fragmentation

Samir Saad
1
, Joe Tekli

1
, Richard Chbeir

1
, Kokou Yetongnon

1

1 LE2I Laboratory UMR-CNRS, University of Bourgogne
21078 Dijon Cedex France

{samir.saad, joe.tekli}@khali. u-bourgogne.fr
{richard.chbeir, kokou.yetongnon}@ u-bourgogne.fr

Abstract. Database fragmentation is a process for reducing irrelevant data
accesses by grouping data frequently accessed together in dedicated segments.
In this paper, we address multimedia database fragmentation by extending
existing fragmentation algorithms to take into account key characteristics of
multimedia objects. We particularly discuss multimedia primary horizontal
fragmentation and provide a partitioning strategy based on low-level
multimedia features. Our approach particularly emphasizes the importance of
multimedia predicates implications in optimizing multimedia fragments. To
validate our approach, we have implemented a prototype computing multimedia
predicates implications. Experimental results are satisfactory.

Keywords: Multimedia fragmentation, Range and KNN operators, predicates
implication, objects classification

1 Introduction

Since the last two decades, multimedia data are of key importance in many
application areas such as medicine, surveillance, cartography, meteorology, security,
visual data communications, etc. Hence, the need for systems that can catalog, store,
and efficiently retrieve relevant distributed multimedia data is becoming very high.
Initially, research in multimedia management has been handled separately by database
management and computer vision communities. As a result, different types of features
have been used, in the literature, for multimedia data management. Low-level features
such as color, texture, shape, layout, etc. are used by the computer vision research
community, while meta-data and semantic based features are widely used by the
database management community to describe data context and semantics. Emerging
applications in distributed environments create an increasing demand on the
performance of multimedia systems, requiring new data partitioning techniques to
achieve high resource utilization and increased concurrency and parallelism. Several
continuing studies are aimed at building distributed multimedia databases
management systems MMDBMS [20]. Nevertheless, most existing systems lack a
formal framework to adequately provide full-fledge multimedia operations.

Traditionally, partitioning techniques are used in distributed system design to reduce
accesses to irrelevant data. Three main fragmentation techniques have been defined
for relational databases: horizontal fragmentation HF, vertical fragmentation (VF),
and hybrid or mixed fragmentation (MF). These techniques have been recently
extended for object oriented databases. However, multimedia data fragmentation
issues haven’t been addressed in current systems.
Multimedia fragmentation is a relatively complicated issue owing to the complexity
of the multimedia data itself; different multimedia data types (video, audio, image
and/or text), frequently used with various formats, as well as the intricacy of the
description of physical and/or semantic multimedia data. In this paper, we address
primary horizontal fragmentation in distributed multimedia databases and analyze the
impact of multimedia operators and predicates. We particularly address multimedia
predicates implication required in current fragmentation algorithms such as
Make_Partition and Com_Min [2, 11, 12]. We also present our prototype with
corresponding experimental results conducted to validate our approach.
The remainder of this paper is organized as follows. Section 2 briefly reviews
background in DB fragmentation. Section 3 presents a motivation example. Section 4
details our multimedia fragmentation process. Section 5 presents our prototype and
experimental tests. Finally, section 6 concludes and draws future directions.

2 Background

Fragmentation techniques for distributed DB systems aim to achieve high resource
utilization and performance [5]. This is addressed by removing irrelevant data
accessed by applications and by reducing data exchange among sites [1]. In this
section, we briefly present traditional database fragmentation approaches, depicting
the evolution from relational to object oriented DBMS, and focus on horizontal
fragmentation algorithms. In essence, there are three fundamental fragmentation
strategies: Horizontal Fragmentation (HF), Vertical Fragmentation (VF) and Mixed
Fragmentation (MF).
HF underlines the partitioning of an entity/class in segments of tuples/objects
verifying certain criteria. The generated horizontal fragments have the same structure
as the original entity/class. Horizontal fragmentation is generally categorized in two
types: Primary HF and Derived HF. PHF is the partitioning of an entity based on its
attributes’ values [12]. DHF denotes the partitioning of an entity (called member)
based on links with other entities (called owners) [12]. In other words, it is the
partitioning of an entity/class in terms of the PHF of another entity/class [1] taking
into consideration their inner-links.
VF breaks down the logical structure of an entity/class by distributing its
attributes/methods over vertical fragments, which would contain the same
tuples/objects with different attributes [1]. The unique tuple/object identifier (id) is
kept in all vertical fragments [7] so that the DBMS can link related segments.
MF is a hybrid partitioning technique where horizontal and vertical fragmentations
are simultaneously applied on an entity/class [11].
To the best of our knowledge, two main algorithms for the PHF of relational DBMS
are provided in the literature: Com_Min developed by Oszu and Valduriez [12] and

Make_Partition Graphical Algorithm developed by Navathe et al. [10] (used
essentially for vertical fragmentation). The Com_Min algorithm generates, from a set
of simple predicates applied to a certain entity, a complete and minimal set of
predicates used to determine the minterm fragments corresponding to that entity. A
minterm is a conjunction of simple predicates [2] associated to a fragment.
Make_Partition generates minterm fragments by grouping predicates having high
affinity towards one another. The number of minterm fragments generated by
Make_Partition is relatively smaller than the number of Com_Min minterm fragments
[15] (the number of minterm fragments generated by Com-Min being exponential to
the number of simple predicates considered).
Similarly, there are two main algorithms for the PHF of object oriented DBMS: one
developed by Ezeife and Barker [6] using Com_Min [12], and the other developed by
Bellatreche et al. [2] on the basis of Make_Partition [10]. The use of Com_Min or
Make_Partition is the major difference between them.

3 Motivation

In order to use current partitioning approaches, widely employed in traditional
databases, for fragmenting multimedia data, several issues should be studied and
extended. On one hand, to achieve fragmentation, current algorithms require as an
input parameter [6] the database conceptual schema (CS). This requirement is not
always fulfilled in some multimedia databases due to the unstructured (or semi-
structured) and complex nature of multimedia data. On the other hand, multimedia
queries contain new operators handling low-level and semantic features. These new
operators should be considered when studying predicates and particularly predicate
implications. For example, let us consider the following predicates used to search for
photos similar to given photos in an Employee multimedia database as shown below.

Predicate P1 P2 P3 P4
Attribute Emp_photo Emp_photo Emp_photo Emp_photo
Operator1 Range_Simε1 Range_Simε2 Range_Simε3 KNN

Value

Parameter ε2 > ε1 ε2 > ε1 ε3 > ε1 K=3

In current approaches, the following predicates are considered different and analyzed
separately:

 P1 and P2: two range queries with different parameters (radius)
 P1 and P3: two range queries with different parameters and values
 P3 and P4: two different operators

However, in multimedia applications, P1 would also retrieve objects belonging to
results of queries based on P2 and P3. Likewise, P4 may return a subset of P3’s results.
Thus, we can say that P2 and P3 infer P1 (denoted by P1 → P2,P3), and consider only
the results returned by P2 / P3 , thus eliminating P1.

1 More details about multimedia operators will be given later.

It is important to notice that ignoring such implications between predicates can lead,
in multimedia applications, to higher computation costs when creating fragments,
bigger fragments which is very restrictive for multimedia storage, migration, and
retrieval, as well as data duplication on several sites. In [2, 11], the authors have only
highlighted the implication issue importance, but have not well detailed nor identified
the various kinds of implications. These issues will be tackled in following paragraphs.

4 Multimedia Primary Horizontal Fragmentation

In this section, we start by introducing some concepts and definitions necessary to
tackle multimedia primary horizontal fragmentation. We develop subsequently
additional steps to be integrated in current approaches, allowing adequate multimedia
data fragmentation processing.

4.1 Definitions

4.1.1 Multimedia Object

A multimedia object is described by a set of attributes, related to a set of meta-data. It
can be formally depicted as a set of attribute (ai) and value (vi) doublets:
O {(a1, v1); (a2, v2), … , (an, vn)}. Multimedia attributes and values can be simple (like
color = “red”), complex (color histogram, texture, shape, etc.) or the raw data (BLOB
files) of multimedia objects.

4.1.2 Multimedia Type

A multimedia type allocates a set of attributes used to describe multimedia objects
corresponding to that type: T(a1, a2, a3, … , an).We consider that two objects,
described by the same attributes, are of the same type.

4.1.3 Multimedia Query

A multimedia query is written as follows [2, 9]:
q = {(Target clause), (Range clause), (Qualification clause)}, where:

 Target clause: contains multimedia attributes returned by the query
 Range clause: gathers the entities (tables/lasses) accessed by the query, to

which belong target clause and qualification clause attributes
 Qualification clause: is the query restriction condition, a Boolean

combination of predicates, linked by logical connectives Λ, ν, ¬

4.1.4 Multimedia Operators and Predicates

As mentioned before, multimedia information introduces new types of data and new
operators and predicates. In the following, we explain multimedia operators and
predicates related to low-level features. Note that semantic similarity operators are out
of this paper’s scope and will be detailed in future studies.

4.1.4.1 Multimedia Operators

In multimedia databases, objects are widely described using vector spaces with
numeric attributes, such as shape or color descriptors. Thus, in order to retrieve
multimedia data, dedicated similarity queries are used, involving range queries and/or
k-nearest neighborhood operators. Formal definitions are given thereafter.

4.1.4.1.1 Multimedia Range Query Operator

A range query operator θ returns the set of objects Vj of an object value Vi located
within a certain range ε from Vi using a distance function D (cfr. Figure 1). It can be
formally written as:

Range Query(Vi, θ , ε) = ε
iθN (V) = {Vj / D(Vi, Vj) ≤ ε / ε ∈ \ (1)

The function D can be the classic Euclidean distance, a weighted Euclidean distance,
a quadratic form distance, etc.

Fig. 1. Visualizations of a range query operator θ

A range query operator θ has the following interesting properties, useful for
optimizing the computation process:

 ji εε
i jθ θ() () ε εi iN V N V if⊆ ≤

 j ji l i lε εε ε ε ε
i j lθ θ θ θ θ θif () () () () () () ε ,ε ,εi j j l i lN V N V and N V N V N V N V⊆ ⊆ → ⊆ ∀

4.1.4.1.2 Multimedia KNN Operator

A K-Nearest Neighborhood (KNN) operator θ
G

 returns the set of K neighbors of an
object value Vi located into either a ranged or unlimited domain space, using a
distance D [3, 20]. It could be formally written as follows:

{ }k

i i j=1..k i j iθK N N (V , θ ,) =N (V) = V / D (V , V) D (V ,V)k ε ε ≤G
G

k *

i iθ V N (V), where k and Max(D(V ,V)) / { }ε ε∀ ∉ ∈ ≤ ∈ ∪ ⊥G ` \

If ε =⊥ , the domain space is unlimited

(2)

As for range query operators, a KNN operator can be observed as a visual object in
function of values dimensions. Fig. 2 shows a ranged 2D KNN operator with k=3.

Vi
ε

A

Vi ε

B

Fig. 2. Visualizations of a ranged 2D KNN operator θ

G

A KNN operator θ

G
 has the following properties:

 ji kk
i jθ θ() () k ki iN V N V if⊆ ≤G G

 j ji l i lk kk k k k
i j lθ θ θ θ θ θif () () () () () () k , k ,ki j j l i lN V N V and N V N V N V N V⊆ ⊆ → ⊆ ∀G G G G G G

4.1.4.2 Multimedia Predicates

A multimedia predicate �P is defined as follows:

� i i m iP = (A V)θ
Where:
 Ai is a multimedia attribute or object
 Vi is a value in the domain of Ai or a multimedia object

{ }m tθ θ θ, θ= ∪
G where tθ is a traditional operator such as a comparison

operator (=, <, ≤, >, ≥, ≠), or a set operator (contained-in, set-equality, …), etc.

4.2 Steps for Multimedia Data Primary Horizontal Fragmentation

Before applying current fragmentation approaches, several steps should be executed
in order to support and provide relevant multimedia data fragmentation. We suggest
integrating the steps detailed below.

Multimedia_fragmentation_pre-processing ()

 Begin
 Multimedia_Types_Classification()
 For each multimedia Type
 Predicates_Grouping()
 Multimedia_Predicates_implication()
 EndFor
 End

4.2.1 Classification of Multimedia Objects

By applying existing horizontal fragmentation algorithms to a multimedia database,
we attain non consistent horizontal fragmentation criteria (minterms). Suppose that
Camera Position, Audio Frequency and Dominant Color are three multimedia
attributes describing Video, Audio and Image objects respectively. The following
Boolean expression: CameraPosition = “North West”Λ AudioFrequency = “6 KHz”
Λ DominantColor = ((10; 10; 10), RGB) is a non consistent minterm, specifying

V2

V3

K = 3

ε
Vi

V1

criteria on “heterogeneous” attributes describing multimedia objects of different
types, therefore producing an empty horizontal fragment.
In order to attain coherent minterms, we need to gather related objects together. As
mentioned before, we assume that multimedia objects having the same attributes are
considered of the same type. The algorithm provided below is used for classifying
objects, according to their corresponding types.

Multimedia_Types_Classification ()

 Input : MM // multimedia objects
 Output : TM //set of multimedia types corresponding to objects in MM

 Begin
 For each Moi ∈ MM
 If Moi.A ≠ all Ti.A // Adding a new type corresponding to the object Moi
 New Tn+1 / Tn+1.A = Moi.A // if the type isn’t considered yet in MM
 Tn+1 = Tn+1 U Mo
 Else
 Ti = Ti U Moi / Moi.A = Ti.A // Adding the object Moi to its corresponding type
 EndIf // if the type is already identified
 Endfor
 End

4.2.2 Predicate Grouping

It is also important to gather predicates into groups on the basis of operators. Using
the algorithm below, two predicate groups are identified: multimedia and traditional.
This separation will allow defining appropriate methods for multimedia implication:

l l

m

t

θ
θ

θ

P P
P P

P P
i j

i j
i j

⎡ ⎤⎯⎯→
⎢ ⎥⎯⎯→ ⇔
⎢ ⎥⎯⎯→⎣ ⎦

θ⎯⎯→ denotes a multimedia similarity implication

tθ⎯⎯→ denotes a traditional implication

Recall that traditional implication is out of this paper’s scope.

Predicates_grouping ()

 Input: Q //set of all user queries
 Ti //a multimedia type
 Output: i

jP //a query predicate defined on type T

 l
iP //set of multimedia predicates applied on T

iP //set of traditional predicates applied on T

 Begin
 For each query Qi ∈ Q

 For each i
jP ∈ Qi

 If ∈i
jP P)(� then

 l l= ∪ i
i jiP P P

 Else

 = ∪ i

ji iP P P

 Endif
 EndFor
 EndFor
 End

4.2.3 Multimedia Predicates Implication

Finding inference or implication between predicates is crucial to cutback the number
of predicates involved in the fragmentation process [4, 11] (a large number of
unnecessary fragments would notionally achieve low system performance). When a
predicate Pi implies a predicate Pj (denoted by Pi → Pj), Pi can be removed from the
minterm fragment to which it belongs and replaced by Pj. Predicate implication is
taken into consideration in traditional algorithms, mainly in Com_Min [12] and
Make_Partition algorithms [10]. In the following, we detail the rules that can be used
to determine implication between low-level feature-based predicates, by using both:
range query and KNN methods.

4.2.3.1 Range Query Predicates Implication

Two range query predicates i jP and P are in implication if:

 { }0 (,) -j i i j i jP P D V V ε ε→ ⇔ ≤ ≤

Fig. 3. 2D Range Query Predicates Implication

However, if εi = εj and D(Vi, Vj) ≠ 0 or if εi - εj < D(Vi, Vj) ≤ εi + εj, then there is an
intersection between jP and Pi . Therefore, i jP and P cannot be associated via
implication.

4.2.3.2 KNN Predicates Implication

The KNN implications for ranged or unlimited domain space are identical and can
only be computed as follows:

{ } j i i j i jP P V V and k k→ ⇔ = ≥
JJG JG

Fig. 4. KNN Predicates implication with identical values

b

Vi
c

a
Vi = Vj
Ki = 3
Kj = 2

ε

Vi

V

Pi

Pj

Note that two KNN predicates i jP and P
JG JJG

 identified within two limited ranges iε and

jε are not in implication (like for range queries) if:

{ }0 (,) - where [0,1]i j i j i jD V V andε ε ε ε< ≤ ∈

4.2.3.3 Multimedia Predicates Implication

Using the same reasoning, we consider that two multimedia predicates l l i jP and P are
in implication if:

l l

l l { }()0 (,) - and and ()

OR

i j i j i j

j i

i j i j

D V V P P P

P P
V V and k k

ε ε ε ε⎧ ⎫≤ ≤ ∨ ∈ <
⎪ ⎪⎪ ⎪
⎨ ⎬→ ⇔
⎪ ⎪

= ≥⎪ ⎪⎩ ⎭

G

The first condition allows computing the implication between either two range query
predicates or a range query predicate and a ranged KNN predicate. ε

G
 is used to

designate the range of KNN predicate, and ε to designate the radius of the range
predicate. The second condition highlights KNN predicates implication.
The following algorithm generates sets of multimedia predicate implications, ISi,
corresponding to each multimedia type Ti. Note that every set element consists of a
doublet of predicates (Pi , Pj), meaning that Pi implies Pj.

Multimedia_Predicates_Implication ()

Input: l
iP //set of M multimedia predicates applied on a multimedia type T

Output: ISi //set of multimedia predicates implications applied on a type Ti

Variable: i
jP //a query predicate defined on type T

Begin
For each i

jP ∈ l
iP

If j≤M-1 then
For each i

j+1P ∈ l
iP

If (Aj=Aj+1) then //same attribute
If(i

jP .operator = θ and(i
j+1P .operator = θ or

G
i
j+1P .operator = θ)) then

If (εj > εj+1) then // Rj Rj+1 , Rj Kj+1
If ≤ ≤j j+1 j j+10 D(V ,V) ε - ε then // →i i

j+1 jP P

ISi=ISi ∪ (i i
j+1 jP ,P)

Endif
Elseif (εj+1 > εj and i

j+1P .operator = θ) then // Rj Rj+1

If ≤ ≤j+1 j j+1 j0 D(V ,V) ε - ε then // →i i
j j+1P P

ISi=ISi ∪ (i i
j j+1P ,P)

Endif
Endif

Elseif (
G

i
jP .operator = θ and

G
i
j+1P .operator = θ) then // Kj Kj+1

If
i j

D(V,V)= 0 or Vi=Vj then

If (kj ≥ kj+1) then

ISi=ISi ∪ (i i
j+1 jP ,P)

Elseif (kj+1 ≥ kj) then
ISi=ISi ∪ (i i

j j+1P ,P)

Endif
Endif

Elseif(
G

i
jP .operator = θ and i

j+1P .operator = θ) then // Kj Rj+1

If (εj+1 > εj) then
If 0 ≤ ≤j+1 j j+1 jD(V ,V) ε -ε then // i i

j j+1P P→

ISi=ISi ∪ (i i
j j+1P ,P)

Endif
Endif

Endif
Endfor

Endif
Endfor
ISi = Optimize(ISi)

End

Optimize(ISi)

 Input: ISi // set of multimedia predicates implications applied on a type T

 Begin

 For each (i i
j kP ,P)∈ ISi

 For each (i i
k lP ,P)∈ IS

 If (→ →i i i i
j k k lP P and P P) then

 ISi=ISi ∪ (i i
j lP ,P)

 Endif
 EndFor

EndFor
 End

4.2.4 Algorithm Complexity

The complexity calculations are carried out below on the basis of the worst case
analysis. Suppose nf represents the largest number of possible fragments, no represents
the largest number of multimedia objects in a type or a fragment, nq the largest
number of user queries, nt the largest number of types, np the largest number of
multimedia predicates, ni the largest cardinality of the sets ISi, nv the largest feature
vector dimension involved. Our fragmentation pre-processing algorithm is of time
complexity of O(nt × (no + nq×np + nv×np

2 +ni
2)), which simplifies to O(nt × (nv×np

2)).
Note that the polynomial (quadratic) nature of our features implication computation
algorithm (O(nv×np

2)) dominates the complexity formulae and is experimentally
demonstrated in our simulation prototype.

4.2.5 Computation Example

In the following, multimedia predicates (range query and KNN) will be illustrated in
the same manner for the sake of simplicity:

P = A Similar(ε) V and P
JG

 = A Similar(k, ε) V where:

− A is a multimedia attribute. In the present example, A stands for Dominant Color : DC
− Similar represents θ , the range similarity operator, when the number between brackets ε

denotes a real value such as 0.0 ≤ ε ≤ 1.0 ; ε designating the similarity range
− Similar stands for θ

G
, the KNN operator, when the number between brackets k denotes an integer

value ; k representing the number of neighboring objects to be returned by the KNN predicate
within a range ε

Figure 5 shows three images a, b and c characterized by their feature vector values
Va, Vb and Vc respectively ; V designating, for each image, its Dominant Color
feature in RGB color space (vector dimension = 3).

Va = (20; 21; 20) Vb = (110; 20; 25) Vc = (240; 12; 12)

Fig. 5. Sample images

We also consider the following two range query predicates:
− P1: DC Similar(ε1) V1 and P2: DC Similar(ε2) V2 (DC: Dominant Color) where V1 = (22; 22;

22), V2 = (90; 10; 10), ε1 = 0.6, and ε2 = 0.2

Please note that in our similarity computations, we used the following weighted
Euclidean distance function:

[]1

1

()²
(,) 0,1

()

N

i i
i
N

i i
i

x y
D ist X Y

x y

=

=

−
= ∈

+

∑

∑

N = Max (dim(X), dim(Y)), dim(X)
and dim(Y) being the dimensions
of vectors X and Y respectively.

Following our multimedia implication computation rules, predicate p2 implies
predicate p1 (0 ≤ Dist(V1, V2) ≤ ε1 – ε2) where:

− Dist(V1, V2) = ((22-90)2 + (22-10)2 + (22-10)2)1/2 / (22 +90 + 22 + 10 + 22 + 10) = 0.397
− and ε1 – ε2 = 0.6 – 0.2 = 0.4

A query utilizing predicate P1 would return still regions a and b
− Dist(V1, Va) = 0.024 (< ε1, returned object)
− Dist(V1, Vb) = 0.399 (< ε1, returned object)
− Dist(V1, Vc) = 0.662 (> ε1)

Whereas a query invoking predicate P2 would return still region b
− Dist(V2, Va) = 0.417 (> ε2)
− Dist(V2, Vb) = 0.102 (< ε2, returned object)
− Dist(V2, Vc) = 0.401 (> ε2)

One can clearly realize that the set of multimedia objects returned by P1 ({a, b})
includes those returned by of P2 ({b}). If taken into account, such implications would
reduce fragment creation computation cost, fragment size and multimedia data
duplication on multiple sites.

5 Prototype

To validate our approach, we have implemented a C# prototype called “Multimedia
Implication Identifier” encompassing:

• A relational database, storing multimedia objects via Oracle 9i DBMS,
described following the multimedia meta-model M² (MPEG-7 compatible)
developed by Chalhoub et al. in [4].

• A set of interfaces allowing users to formulate simple and complex
multimedia queries, providing the ability to select multimedia information.

• Containers for storing user queries, enabling, via specific processes, the
computation of query access frequencies which are basically used in the
predicate affinity calculations.

• Specific containers undertaking the storage of predicates, utilized by
dedicated procedures to calculate predicate implications.

The prototype accepts, as input, multimedia queries. Automatic processes
subsequently calculate query access frequencies, identify corresponding predicates,
and compute for each multimedia type (represented by a table) its Predicate Usage
Matrix (PUM)1 and its Predicate Affinity Matrix (PAM)2 used to measure the affinity
between predicates, the PAM taking into account our predicate implication steps.
Note that we chose to present multimedia implications in PAM matrixes, proposed by
[15, 4], for the sake of clearness (PAMs being suitable structures for displaying
predicate implications). Nevertheless, our algorithm is generic in the sense that it
could be equally used with other primary horizontal fragmentation approaches,
Com_Min [16] in particular.

5. 1. Simulation example

Among the various tests that were conducted, we present a simple simulation example
comparing predicate affinities (PAM) obtained with and without the inclusion of our
multimedia physical implication rules. In the following example, multimedia type
“Still Region”, designating motionless images, is selected for PUM and PAM
calculations. Let Q = {qi = 0 to 5} be a set of user queries defined on “Still Region”
Type. Recall that we represent queries following paragraph 4.1.3.

q0: { (MO); (StillRegion); (ObNature = "vehicule" Λ
 DC Similar(0.3) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }
q1: { (MO); (StillRegion); (ObNature = "vehicule" Λ ObColor = "red" Λ
 DC Similar(0.2) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }
q2: { (MO); (StillRegion); (ObNature = "truck" Λ ObColor = "red" Λ
 DC Similar(0.1) ((9; 8; 7), (7; 8; 7), (10; 11; 10))) }
q3: { (MO); (StillRegion); (ObNature = "vehicule" Λ
 DC Similar(3) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }
q4: { (MO); (StillRegion); (ObNature = "vehicule" Λ ObColor = "red" Λ
 DC Similar(1) ((12; 10; 13), (14; 15; 16), (20; 20; 20))) }
q5: { (MO); (StillRegion); (ObNature = "truck" Λ ObColor = "red" Λ
 DC Similar(1) ((9; 8; 7), (7; 8; 7), (10; 11; 10))) }

1 It contains the predicates used by each query as well as query access frequencies and is
subsequently used as input to the PHF process adopted by [11, 2]

2 Following [15, 4], the PAM is a square and symmetric matrix where each value aff(Pi, Pj) can
be numerical or non numerical. Numerical affinity represents the sum of the frequencies of
queries which access simultaneously Pi and Pj. Non numerical affinity underlines the
implication relation between predicates Pi and Pj

Let P = {Pi, i = 0 to 8} be the set of predicates used by Q.

P0: ObNature = “vehicule”
P1: DC Similar(0.3) ((12; 10; 13), (14; 15; 16), (20; 20; 20))
P2: ObColor = “red”
P3: DC Similar(0.2) ((12; 10; 13), (14; 15; 16), (20; 20; 20))
P4: ObNature = “truck”
P5: DC Similar(0.1) ((9; 8; 7), (7; 8; 7), (10; 11; 10))
P6: DC Similar(3) ((12; 10; 13), (14; 15; 16), (20; 20; 20))
P7: DC Similar(1) ((12; 10; 13), (14; 15; 16), (20; 20; 20))
P8: DC Similar(1) ((9; 8; 7), (7; 8; 7), (10; 11; 10))

P contains traditional predicates (P0, P2) as well as multimedia predicates (P1, P3, P4,
P5, P6, P7, P8). Note P1, P3 and P5 are range query predicates (the number between
brackets being a real value – similarity range ε), while P6, P7 and P8 are KNN
predicates (the number between brackets being an integer value – number of objects k
to be returned by the predicate). Also note that DC represents a composite Dominant
Color feature vector stating the three consecutive dominant colors in an image, in
RGB color space. For example, DC1 of predicate p1 underlines dominant colors C(12;
10; 13), C’(14; 15; 16) and C’’(20; 20; 20).
By reading the updated PAM, one can clearly point out the multimedia implication
rules defined in the paper:

− Predicate P3 (ε3 = 0.2, V3 = ((12; 10; 13), (14; 15; 16), (20; 20; 20))) implies P1 (ε1= 0.3, V1 =
((12; 10; 13), (14; 15; 16), (20; 20; 20))) having:

• V1 = V3 and ε1 > ε3
− Predicate P5 (ε5 = 0.1 “max”, V5 = ((9; 8; 7), (7; 8; 7), (10; 11; 10))) implies P1 (ε1 = 0.3, V1 =

((12; 10; 13), (14; 15; 16), (20; 20; 20))) having:
• ε1 > ε5 , dist(V1,V5) ≤ ε1 – ε5

− No implication can be identified between predicates P3 and P5 having:
• dist(V3,V5) > ε3 – ε5 (similarity circle intersection/exclusion)

− Predicate P7 (k7 =1, V7 = ((12; 10; 13), (14; 15; 16), (20; 20; 20))) implies predicate P6 (k6 =3, V6
= ((12; 10; 13), (14; 15; 16), (20; 20; 20))) having:

• V6 = V7 and k6 > k7
− No implication can be identified between P6 (orP7) and P8, having:

• V8 ≠ V6 (correspondingly V7)

Fig. 6. Updated Predicate Affinity Matrix.

Updated Predicate Affinity Matrix

Predicate Usage Matrix

Predicates invoked in user queries

User queries
and

corresponding
access

frequencies

Disregarding our multimedia implication rules would yield, in the present example, a
PAM with only numerical affinities.
The PUM and uPAM make up the inputs to the NHP primary horizontal partitioning
algorithm [11, 2], not being implemented yet in our prototype.

5.2 Timing Analysis

We have shown that the complexity of our physical similarity implication simplifies
to O(nv×np2). We verified the formula experimentally, the timing results being
presented in Fig. 7.

0

2

4

6

8

10

12

14

20 40 60 80 100
nb Predicates

Ti
m

e
(s

ec
on

ds
)

200

400

600

800

1000

Fig. 7. Timing results

The experiment was carried out on a Pentium 4 PC (2.8 Ghz CPU, 798 Mhz bus, 512
MB RAM). One can see that the time to compute similarity implications grows in a
polynomial (quadratic) fashion with the number of predicates involved. Our
experiments also show that feature vector dimension affects time complexity, owing
to predicate distance computations (weighted Euclidian distance).

6 Conclusion and Future Work

In this paper, we proposed an approach for the Primary Horizontal Fragmentation of
multimedia databases, by extending existing fragmentation methods. Following the
definition of a multimedia type, we identified the need to classify multimedia objects
corresponding to the same type, in order to achieve consistent horizontal
fragmentation criteria. The “Type Fragmentation” phase could be then followed by
the PHF of each generated type. The original idea of emerging new multimedia
operators allowed the adaptation of existing fragmentation procedures to partition
multimedia data. We concentrated our efforts on the primary horizontal fragmentation
of unstructured multimedia data, emphasizing the impact of multimedia predicate
implications in optimizing multimedia fragments.
Future directions include the introduction of semantic-based multimedia predicates.
Our future goals also incorporate generating a multimedia conceptual schema,
including the derived horizontal fragmentation process, and optimizing, if possible,
the used fragmentation methods (semantic implication is yet to be developed).
Likewise, multimedia vertical fragmentation and XML fragmentation will be talked in
upcoming studies.

Feature vector
dimension

References

1. Baiao F, Mattoso M., A Mixed Fragmentation Algorithm for Distributed Object

Oriented Databases. 9th Inter. Conf. on Computing Information, Canada, 1998
2. Belatreche L, Karlapalem K, Simonet A., Horizontal class partitioning in object-

oriented databases. 8th Inter. Conf. on Database and Expert Systems Applications
(DEXA’ 97), Toulouse, September 1997

3. Braunmuller B, Ester M, Kreigel H. P., Sander J., Efficiently Supporting Multiple
Similarity Queries for Mining in Metric Databases. Proc. of the 16th Inter. Conf.
on Data Engineering, p.256, 2000

4. Chalhoub G, Saad S, Chbeir R, Yetongon K., A Multimedia Meta-Database
Model for Distributed Multimedia DBMS. WSEAS, 2004

5. Chinchwadkar G.S., Goh A., An Overview of Vertical Partitioning in Object
Oriented Databases. The Computer Journal, Vol. 42, No. 1, 1999

6. Ezeife C.I., Barker K., A Comprehensive Approach to Horizontal Class
Fragmentation in a Distributed Object Based System. Inter. Journal of Distributed
and Parallel Databases, 1, 1995. Kluwer Academic Publishers

7. Ezeife C.I., Barker K., Distributed Object Based Design: Vertical Fragmentation
of classes. Journal of Distributed and Parallel DB Systems, 6(4): 327-360, 1998

8. Kosch H., Distributed Multimedia Database Technologies Supported by MPEG-7
and MPEG-21, Auerbach Publications, 280 p., 2004

9. Navathe S.B, Ceri S, Wiederhold G, Dou J., Vertical Partitioning Algorithms for
Database Design. ACM Transactions on Database Systems, 9, 680-710, 1984

10. Navathe B, RA M., Vertical Partitioning for Database Design: a Graphical
Algorithm. 1989 ACM SIGMOND Conf., Portland, p. 440-450, 1989

11. Navathe S.B, Karlapalem K, Ra M., A Mixed Partitioning Methodology for Initial
Distributed Database Design. Journal of Computer and Software Engineering,
3(4): 395-426, 1995

12. Ozsu M.T, Valduriez P., Principals of Distributed Database Systems. Prentice
Hall, Prentice Hall, 1991

13. Gertz M, Bremer J.M., Distributed XML Repositories: To-Down Design and
Transparent Query Processing. Department of CS, University of California, 2004

14. Sub C., An approach to the model-based fragmentation and relational storage of
XML-documents. Grundlagen von Datenbanken 2001:98-102

15. Sub C. et al., Data Modeling and Relational Storage of xml-based Teachware. GI
Jahrestatung (1) 2001:378-387

16. Grosky W. I., Managing Multimedia Information in Database Systems,
Communications of the ACM, 1997, Vol. 40, No. 12, pp. 72-80

17. Synchronized Multimedia Working Group, www.w3.org/tr/rec-smil, 02-02-2006
18. SVG Working Group: www.w3.org/tr/svg., 02-12-2006
19. MovingPictureExperts Group: http://www.chiariglione.org/mpeg/standards/mpeg-

7/mpeg-7.htm, 02-27-2005
20. Bernhard Braunmuller et al., Efficiently Supporting Multiple Similarity Queries

for Mining in Metric Databases, IEEE Trans. on Knowledge and Data
Engineering, v.13 n.1, p.79-95, January 2001

