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ABSTRACT
This paper proposes a new feature extraction method: the
Fast Fractal Stack, or FFS. The extraction algorithm con-
sists in decomposing the input grayscale image into a stack
of binary images from which the fractal dimension values
are computed, resulting in a compact and highly descriptive
set of features. We evaluated FFS for the task of classifi-
cation of interstitial lung diseases in computed tomography
(CT) scans, applied on a database of 248 CT images from 67
patients. The proposed approach performs well, improving
the classification accuracy when compared to other feature
extraction algorithms. Additionally, the FFS extraction al-
gorithm is efficient, with a computational cost linear with
respect to input image size.

Categories and Subject Descriptors
I.4.7 [Image Processing and Computer Vision]: Fea-
ture measurement—feature representation; J.3 [Life and
Medical Sciences]: Medical Information Systems

General Terms
Algorithms, experimentation

Keywords
Feature extraction, Fractal analysis, Computer-aided diag-
nosis, Computed tomography, Interstitial lung diseases

1. INTRODUCTION
Computer aided diagnosis (CAD) of interstitial lung dis-

eases (ILDs) is a major subject in high-resolution computed
tomography (HRCT) [18, 13, 9, 16]. This can be attributed
to the fast progress in computed tomography (CT) acquisi-
tion technology, and also to the fact that the interpretation
of HRCT images of the chest from patients affected with
ILDs is a challenging and time-consuming task even for ex-
perienced radiologists [5]. Additionally, a reliable CAD sys-
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tem could alleviate the radiologists’ manual labor and avoid
surgical lung biopsies.

The typical set-up of a CAD system consists in the ex-
traction of relevant visual features in the form of feature
vectors that are used as input to a classifier. Due to the in-
famous semantic gap problem [6], which corresponds to the
difference between the physicians’ image perception and the
features automatically extracted from the image, a challeng-
ing aspect of the feature extraction task is to obtain a set of
features (i.e. a feature vector) that is able to succinctly and
efficiently represent the visual contents of medical images,
supporting the specialist in the decision making process. A
way to accomplish this goal would be to extract as many fea-
tures as possible from the images, in order to describe most
of their visual information. However, the use of a large num-
ber of features would result in a problem known as the curse
of dimensionality [11], where the significance and informa-
tiveness of each feature decreases, making the classification
process inaccurate and also time consuming.

Thus, it is important to identify and remove irrelevant and
redundant attributes. Feature selection and feature trans-
formation are two major techniques that can be used for this
purpose. In attribute selection, a classification algorithm (or
a given metric based on general characteristics of the data)
is used to evaluate and select a subset of features from the
original set of features. An example of an attribute selection
method is the correlation-based feature selection (CFS) [7].
CFS uses the features’ predictive performances and inter-
correlations to find a good feature subset. In contrast, fea-
ture transformation methods take as input a set of features
and use a transformation technique to create new features.
Feature transformation methods such as the principal com-
ponent analysis (PCA), are able to generate features that
can be ordered based on their descriptive power. Therefore,
it is possible to reduce dimensionality by discarding less de-
scriptive features.

The disadvantage of feature selection and feature transfor-
mation is that they demand extra computational cost. As
an alternative approach to deal with both problems, that
is, the semantic gap and the curse of dimensionality, we
propose a method based on fractal geometry, entitled Fast
Fractal Stack (FFS), that extracts a compact and highly de-
scriptive feature vector to describe grayscale images. FFS
consists of two main steps: i) applying an adapted image
partitioning technique (binary stack decomposition [3]) in
order to transform the input image into a set of binary im-
ages, and then ii) computing, for each binary image, the
fractal dimension corresponding to its regions’ boundaries.



Experiments performed with regions of interest (ROIs) of
lung computed tomography (CT) show that the proposed
method is able to classify different disease patterns with ac-
curacy higher than 84% without using feature selection or
feature transformation. Moreover, our proposed method is
efficient, running in linear time with respect to the image
size (number of pixels).
As for the classification phase, we make use of an SVM

(Support Vector Machine) classifier, built on a polynomial
kernel using the SMO (Sequential Minimal Optimization)
algorithm [12]. We chose SVM due to its effectiveness and
wide exploitation in medical image classification and related
applications [4, 19]. The remainder of the paper is struc-
tured as follows. Section 2 discusses preliminary concepts
and techniques. Section 3 describes the proposed feature
extraction method. Results from the experiments are in-
terpreted and discussed in section 4. Final conclusions are
drawn in section 5. The symbols used throughout the paper
are listed in Table 1.

Table 1: Table of symbols

Symbol Definition

I Grayscale image.

Ib Binary image.

∆ Border image.

nl Gray level range.

T
Set of thresholds used to generate
the binary image stack.

nt Number of elements in T .

D Fractal dimension.

E Euclidean dimension.

D0 Haussdorf fractal dimension.

ǫ Box size in the box counting algorithm.

VD FFS Feature vector.

2. BACKGROUND AND TECHNIQUES
A grayscale image I can be modeled as a 2D function

I(x, y), where I(x, y) ∈ {0, 1, · · · , nl − 1}. I(x, y) is called
the grayscale value or intensity of the pixel at position (x, y).
Prior to the feature vector extraction phase, we employ the
binary stack decomposition technique [3] to partition the
input grayscale image I by applying successive thresholding
operations. The goal is to separate structures and objects of
different gray level intensities into different binary images.
When an image I(x, y) is thresholded by a value t, t ∈
{0, 1, · · · , nl−1}, a corresponding binary image is obtained.
That is:

Ib(x, y; t) =

{

1 if I(x, y) ≥ t

0, otherwise.
(1)

where Ib(x, y; t) denotes the binary image obtained with the
threshold t. For a given original image, there are nl poten-
tially different binary images. We refer to this set of binary
images as a binary image stack. To describe the boundary
complexity of objects and structures that were segmented
by binary stack decomposition we apply fractal analysis.

In Euclidean geometry, the dimension is a natural number,
i.e., a point possesses a dimension equal to 0, a straight line
has dimension 1, a plane has dimension 2, a solid possesses
dimension 3, and so on. However, modern (19th century)
mathematics developed by Hausdorff, Koch and Sierpinsk
put forward Fractal Geometry, a geometric theory suggest-
ing that shapes and objects may have fractional dimensions
as a consequence of the self-similarity property. In the im-
age analysis paradigm, fractal dimension measurements are
used to estimate and quantify the complexity of the shape
or texture of objects [14, 1].

Fractal geometry involves various approaches to define
fractional dimensions, the most common of which is the
Hausdorff’s dimension. Considering an object that possesses
an Euclidean dimension E, the Hausdorff’s fractal dimension
D0 can be computed by the following expression:

D0 = lim
ǫ→0

logN(ǫ)

log ǫ−1
(2)

where N(ǫ) is a counting of cubes of dimension E and length
ǫ that fill the object.

If we consider an object represented by a binary image Ib,
an approximation D for D0 can be obtained through the box
counting algorithm [15]. Without loss of generality, let us
explain the algorithm for the 2D case. Initially, the image is
divided into a grid composed of squares of size ǫ×ǫ. The next
step consists in counting the number N̄(ǫ) of squares of size
ǫ×ǫ that contains at least one pixel of the shape. By varying
the value ǫ, it is possible to create a log N̄(ǫ) vs log ǫ−1 curve.
Finally, this curve is approximated by a straight line using
a line fitting method (e.g. least squares fitting). The fractal
dimension D corresponds to the slope of this line.

3. PROPOSED METHOD
The FFS that we propose is a feature extraction method

consisting of two main steps: first we apply the binary stack
decomposition to the input grayscale image, resulting in a
set of binary images. Then, for each binary image, we com-
pute the fractal dimension from its regions’ boundaries.

The regions’ boundaries of a binary image Ib(x, y; t) are
represented as a border image denoted by ∆(x, y; t) and
computed as follows:

∆(x, y; t) =



















1 if ∃(x′, y′) ∈ N8[(x, y)] :

Ib(x
′, y′; t) = 0 ∧

Ib(x, y; t) = 1,

0, otherwise.

(3)

where N8[(x, y)] is the set of pixels that are 8-connected to
(x, y). ∆(x, y; t) takes the value 1 if the pixel at position
(x, y) in the corresponding binary image Ib(x, y; t) has the
value 1 and having at least one neighboring pixel with value
0. Otherwise, ∆(x, y; t) takes the value 0. Hence, one can
realize that the resulting borders are one-pixel wide.

The fractal dimension D(t), where t indicates the thresh-
old value used to obtain the border image ∆(x, y; t), is com-
puted using the box counting algorithm described in section
2. The value D(t) describes the boundary complexity of the
objects that were segmented using the threshold t.

By changing the value t it is possible to generate a curve
D(t)×t. We use this curve as a feature vector to describe the
boundary complexity of structures and objects segmented by
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Figure 1: FFS extraction scheme taking as input an
artificial grayscale image.

different threshold values. This procedure is illustrated in
the diagram of figure 1.
There are two main reasons to use the curve D(t)× t in-

stead of a single value D(t) computed from a single thresh-
old to describe an image. First, there is the non-trivial
and domain dependent task of finding the correct thresh-
old value that segments the structures and objects from the
background. Second, for some images, a binary segmenta-
tion may be inadequate and, hence, a single threshold value
may not produce a satisfactory result. For example, a single
medical imaging exam may contain more than two differ-
ent anatomical structures, each of which with different gray
level ranges. This will be further exemplified in section 4,
where we discuss the application of the proposed method for
the specific task of lung tissue classification.
Algorithm 1 summarizes the steps of the FFS feature ex-

traction process. Note that VD denotes the resulting feature
vector. In line 2, T is a set of all possible gray level values
that an image I can take. The Threshold procedure in line
3 thresholds the image I by a gray level t as described in
equation 1. The FindBorders procedure in line 4 corre-
sponds to equation 3.
Note that the fractal dimension can be efficiently com-

puted in linear time by the box counting algorithm proposed
in [17]. Thus, the complexity of the FFS extraction algo-
rithm is O(N · |T |), where N is the number of pixels in the
grayscale image I, and |T | is the number of different thresh-

old values used to generate the binary image stack. As we
will discuss in the next section, T is only a small subset of
all possible threshold values. Therefore, the FFS extraction
runs in linear time with respect to the image size.

Algorithm 1 Fast Fractal Stack (FFS).

Require: Grayscale image I.
Ensure: Feature vector VD.
1: i← 0
2: for t ∈ T ⊆ {0, 1, · · · , nl} do
3: Ib(x, y; t)← Threshold(I, t)
4: ∆(x, y; t)← FindBorders(Ib(x, y; t))
5: D(t)← BoxCounting(∆(x, y; t))
6: VD[i]← D(t), i← i+ 1
7: end for
8: return VD

3.1 FFS Feature Vector Dimensionality
The number of features extracted by the FFS algorithm

corresponds to the number of different thresholds used to
generate the binary image stack. That is, each binary image
contributes with one value of D(t) to the resulting feature
vector. If all nl possible threshold values are used, the re-
sulting feature vector will be composed of nl features. For
example, if an image pixel can take 256 different gray level
values, the maximum number of features extracted from this
image will also be 256.

Intuitively, one may think that using all possible threshold
values may result in better classification accuracy, because
a large number of features will be generated, introducing
more information into the classification process. However,
this is not true for two main reasons. First, binary images
obtained by contiguous thresholds tend to be very similar,
resulting in highly correlated fractal dimension values that
do not add useful information into the classification process.
Second, as discussed in section 1, the classification perfor-
mance degrades as the number of attributes increases, due
to the curse of dimensionality.

To overcome both problems, we adopt the strategy of se-
lecting a fixed number of equally spaced thresholds:

ti =

⌊

nl

nt + 1
· i

⌋

, i = 1, 2, · · · , nt (4)

where nt is the number of threshold values to be selected. In
our experiments, we empirically set nt equal to 8. Although
simple, this strategy has shown to be effective in pratice (as
we describe in section 4), obtaining results that were equiv-
alent (and sometimes better) than choosing the thresholds
by the supervised selection of attributes using Correlation-
based Feature Selection (CFS) method. Additionally, the
approach we adopt does not require any knowledge about
the class distribution of the image set.

4. INTERSTITIAL LUNG DISEASE CLAS-
SIFICATION

Considering a computed tomography (CT) image, the struc-
tures have their brightness measured in the image according
to its ability to absorb the incident X-ray. The air, for ex-
ample, is less dense than water, and therefore presents a
lower value of brightness in the image. Thus, it is possible
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Figure 3: (a) Classification accuracy for the proposed FFS method, histogram, Haralick and combined feature
vector without feature selection. (b) Feature vector size for each extraction method.

to identify different tissues in a CT scan image depending
on their attenuation coefficient.
We evaluate the FFS extraction method for the task of

classifying interstitial lung diseases (ILDs). We use the FFS
feature extraction algorithm to decompose a lung CT scan
image into a binary image stack where each binary image
corresponds to tissues of different attenuation coefficients.
The border complexity measure of each binary image is then
used to predict the occurrence of ILDs that are characterized
by alterations in the healthy pulmonary tissue.

(a) Normal (b) Consolidation (c) Emphysema

(d) Thicknening (e) Honeycombing (f) Ground glass

Figure 2: Examples of CT images with (a) normal
slice and abnormal slices with (b) consolidation, (c)
emphysema, (d) thicknening, (e) honeycombing, (f)
ground glass.

To evaluate the proposed feature extraction method, clin-

ical cases were selected from CT images from the Clinical
Hospital at Ribeirão Preto of the University of São Paulo -
Brazil based on normal cases and abnormal cases, reported
in clinical exams from 2001 to 2006. Our image database in-
cluded 248 CT images selected from 67 patients. The image
size was 512 × 512 pixels and the slice thickness was 1mm.
The bit-depth was 12 and was converted to 8 for the feature
extraction process.

The preparation of the image base consisted in first seg-
menting the lungs from the background in each CT slice.
Contiguous regions of interest (ROIs) with a matrix size of
64 × 64 pixels and an overlap of 16 pixels between two ad-
jacent ROIs were selected over the segmented lung region.

Each ROI was classified by a specialist as normal or as an
ILD pattern. The ILD patterns, shown at Figure 2, were the
following: (i) emphysematous change, (ii) consolidation, (iii)
interlobular septal thicknening, (iv) honeycombing and (v)
ground-glass opacities. Table 2 shows the class distributions
for the ROIs selected from our CT image base.

Table 2: Class distribution for the ROIs selected
from the CT image base.

Class Number of ROIs

Consolidation 451
Emphysema 502
Thicknening 590
Honeycombing 530
Normal 590
Ground Glass 595

We used as baseline comparison traditional features, such
as the gray level histogram and the Haralick descriptors,
widely employed in many works [18, 2] that consider CT
lung images. In order to perform histogram extraction, we
re-quantized the CT ROIs to 16 gray levels, resulting in a
feature vector with 16 features. As a measure of the ROIs’
texture, we employed the Haralick descriptors [8] based on
statistical moments obtained from the image co-occurrence
matrix, resulting in a feature vector with 140 components.
Additionally, we combined the Haralick and histogram fea-



tures with Zernike moments [10] and histogram statistics,
creating a single feature vector with 418 components. We
refer to this combined feature vector with the term “com-
bined”.
We applied an SVM classifier with a polynomial kernel

using the SMO algorithm for comparing the FFS accuracy
with the other extractors. The best SVM parameters were
evaluated by 10-fold cross validation.
Figure 3(a) shows the classification accuracy obtained us-

ing each feature extraction method. The results were ob-
tained by 10-fold cross validation with the SVM classifier
with 10 repetitions. The FFS produced an average classifica-
tion accuracy of 84.4%, outperforming the other extraction
methods.
Additionally, as it is shown in figure 3(b), the FFS has

the advantage of providing a feature vector with a smaller
number of features when compared to the other extraction
methods, what is meaningful regarding the curse of dimen-
sionality. Figure 4 depicts the results obtained when apply-
ing Principal Component Analysis (PCA) and Correlation-
based Feature Selection (CFS) to reduce the number of fea-
tures of the Haralick, histogram and combined feature vec-
tors to 8, which is the same number of features of the FFS
feature vector. Figure 4(a) shows the gain and loss of clas-
sification accuracy after employing PCA and CFS. Results
in Figure 4(b) show that FFS produced higher classification
accuracy in comparison with the other methods. This in-
dicates that the FFS provides a more compact and highly
descriptive representation of ILD patterns.
We have also investigated the performance of the clas-

sification between normal ROIs and abnormal ROIs. ROIs
classified as ILD patterns were considered positive cases and
normal ROIs were considered negatives cases. By varying
the SVM positive classification threshold value, receiver op-
erating characteristics (ROC) curves were generated as plots
of true positive rate (TPR) vs. false positive rate (FPR).
Figure 5(a) shows ROC curves for the feature extraction
methods. Since the top left corner (TPR = 1.0,FPR = 0.0)
of the ROC space corresponds to the optimum classifier op-
eration point, the Figure 5(b) zooms into the most inter-
esting part of the curve. Results in Figure 5(b) show that
FFS resulted in superior classification quality, in comparison
with Haralick, histogram and combined feature vectors.

5. CONCLUSIONS
In this paper we proposed a new feature extraction method

called Fast Fractal Stack (FFS). The FFS employs frac-
tal analysis to measure the border complexity of structures
and objects of grayscale images and provides a compact and
highly descriptive feature vector.
We have evaluated the proposed descriptor for classifying

interstitial lung diseases (ILDs) from lung CT scans. Ex-
perimental results have highlighted the effectiveness of the
FFS method in classifying normal lungs with respect to five
different types of interstitial lung disease patterns.
Additionally, FFS provides an efficient extraction algo-

rithm. While most feature extraction methods are at least
quadratic, the computational cost of the extraction algo-
rithm proposed in this paper is linear in the image size (num-
ber of pixels), based on the linear time algorithm to compute
the fractal dimension. Therefore, FFS is a promising solu-
tion for content-based image retrieval systems supporting
interactive decision making processes.
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Figure 4: (a) Gain and loss of classification accuracy
after employing PCA and CFS to the histogram,
Haralick and combined feature vectors. (b) Com-
parison of the classification accuracy with the pro-
posed FFS method.

Considering the compactness of the resulting vector rep-
resentation and the efficiency of the extraction algorithm,
we are currently investigating the extension and exploita-
tion of FFS in applications which specifically require low-
dimensional features, such as the indexing and retrieval of
images.
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