
1

Lightwave Power Transfer for Federated
Learning-based Wireless Networks

Ha-Vu Tran, Georges Kaddoum, Hany Elgala, Chadi Abou-Rjeily and Hemani Kaushal

Abstract—Federated Learning (FL) has been recently pre-
sented as a new technique for training shared machine learning
models in a distributed manner while respecting data privacy.
However, implementing FL in wireless networks may significantly
reduce the lifetime of energy-constrained mobile devices due to
their involvement in the construction of the shared learning
models. To handle this issue, we propose a novel approach
at the physical layer based on the application of lightwave
power transfer in the FL-based wireless network and a resource
allocation scheme to manage the network’s power efficiency.
Hence, we formulate the corresponding optimization problem and
then propose a method to obtain the optimal solution. Numerical
results reveal that, the proposed scheme can provide sufficient
energy to a mobile device for performing FL tasks without using
any power from its own battery. Hence, the proposed approach
can support the FL-based wireless network to overcome the issue
of limited energy in mobile devices.

Index Terms—Lightwave power transfer, light energy harvest-
ing, resource allocation, federated learning.

I. INTRODUCTION

Recently, the concept of Federated Learning (FL) has been
introduced by Google [1], [2]. The main idea behind FL is to
build a shared learning model based on data sets that reside
across multiple terminal devices while protecting data privacy.
In FL networks, each device computes the gradient updates
based on its local training data. The updates are then sent to a
central server in order to be aggregated in the current global
shared model. Afterward, the central server feedbacks the new
global model to all devices. By doing so, raw local training
data are not leaked.

In the past few years, FL has attracted increasing at-
tention from the research community [2]–[4]. Nevertheless,
the following critical issue was overlooked in the literature:
in FL-based wireless networks, mobile devices are energy-
constrained, hence, the energy consumed for executing FL
might significantly decrease the devices’ lifetime [4]. To over-
come this issue, prolonging the devices’ lifetime, performed
at the physical layer (PHY), can be a prominent solution.
In this context, wireless power transfer (WPT) over radio
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frequency (RF) waves is interesting [5]. However, deploying
RF WPT results in a performance trade-off between RF
energy transfer and RF information transmission due to the
RF spectrum scarcity [5]. Further, because of the propagation
loss and the restriction of human exposure to RF signals [6],
RF WPT may not provide wireless devices with sufficient
energy for executing FL tasks, including computation and
uplink transmission. Thus, this motivates researchers to seek a
new WPT technique, which relies on a license-free spectrum
and can provide a better performance than the RF WPT. In
this regard, wireless lightwave energy recharging, operating
in the visible light (VL) and infrared light (IRL) parts of the
electromagnetic spectrum, has recently gained great interest
from both academia and industry since it does not interfere
with existing RF communication systems. Particularly, its high
potential in enabling continuous wireless recharging has been
confirmed in [7]–[10].

In this work, we propose the use of lightwave power transfer
to enable new possibilities for the sustainability of future FL-
based wireless networks. Accordingly, we consider a FL-based
network scenario where each terminal device harvests energy
from VL and IRL transmitted by an optical transmitter and
then uses this energy for: (i) computing the gradient updates
based on its local training data and (ii) conveying them to an
access point (AP) via RF uplink communication. On this basis,
we aim to derive a resource allocation scheme to handle the
power efficiency in the network. In this regard, optimizing the
transmit light power from the optical transmitter, the time-slots
of computation and uplink transmission at each device and the
receive beamformers at the RF AP constitute interesting open
research problems. In addition, the total energy consumption
for executing FL is restricted by the harvested energy while
the uplink rate and the transmit power budget are constrained
by preset thresholds. The resulting optimization problem is
difficult to solve because multiple variables are coupled in
constraints. Therefore, we propose a method to tackle the
problem in an efficient way. The contributions of our work can
be summarized as proposing, for the first time, the application
of power transfer through light in FL-based wireless networks
and deriving the optimal solution for the resulting problem.

II. SYSTEM MODEL

Recently, the LIGHTS transmitter developed by the Wi-
Charge company is able to wirelessly recharge a mobile phone.
This inspires us to consider the network model depicted in Fig.
1 where one optical transmitter aims to recharge J terminal
devices by using VL and IRL in downlink transmission while
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Fig. 1. Scenario of lightwave power transfer for FL-based networks.

the devices communicate with an M -antenna RF AP through
RF uplink transmissions. Each device is equipped with a
single antenna, and a transparent solar panel integrated into the
device’s screen. We assume that a line-of-sight (LOS) trans-
mission exists between the optical transmitter and individual
devices.

Particularly, in this work, we assume that managing the
network to achieve a given accuracy level within a given
convergence time of the FL model is done by a network
operator in upper layers. Hence, at the PHY, it is supposed that
each terminal device has been assigned with FL tasks, such as
the preset numbers of global and local update iterations and
a preset time frame for communication and computation. On
this basis, in contrast to previous works [2]–[4], our letter
focuses on addressing the problem of how to sufficiently
supply wireless energy to terminal devices for their FL tasks at
each global iteration with the preset number of local iterations
and the time frame.

At the PHY, the proposed FL-based scenario is described
as follows:

• The terminal devices harvest energy from downlink VL
and IRL. This energy will be used to accomplish the FL
tasks consisting of computation and RF uplink transmis-
sion.

• Each device computes the gradient update to build a
shared learning model based on its local training data.
Next, the devices send their gradient updates to the RF
AP over the RF uplink channels and need to finish
their uplink transmissions at the same time. The gradient
updates are synchronously aggregated once they are all
are collected at the RF AP.

A. Optical Downlink Wireless Power Transfer
1) Channel Model: We consider optical channels with only

the LOS component since the contribution of a non-line-of-
sight (NLOS) component to the mission of power transfer
could be neglected [8], [9]. Thus, the optical channel between
the optical transmitter and the receiver photodetector of a
device j (1 ≤ j ≤ J) is denoted by hi,j , i.e., i = {0; 1}.
Further, h0,j and h1,j represent the VL and IRL channels,
respectively, are given by [9]:

hi,j =
Aj(mi + 1)

2πd2
j

cosmi(φi,j)Ts(ψi,j)g(ψi,j)cos(ψi,j), (1)

where Aj is the photodetector’s active area, mi is the Lam-
bert’s mode number, dj is the distance between the optical
transmitter and device j, φi,j is the irradiation angle, ψi,j is
the angle of incidence, Ts(ψi,j) is the optical band-pass filter
gain, and g(ψi,j) is the optical concentrator gain. Moreover,
mi and g(ψi,j) are computed according to the LED semi-angle
at half-power, denoted by φi,1/2, and the field of view (FOV),
denoted by ψi,j,c ≤ π/2 [8].

2) Lightwave Energy Harvesting: The optical harvested
energy at device j during a time frame τ is

EHj = τ
∑
i=0,1

EHi,j , (2)

where EHi,j can be computed as [9], [11]

EHi,j = foptIi,j,GVi,j,c, (3)

in which fopt is the fill factor and Ii,j,G is the generated DC
current which can be calculated as

Ii,j,G = νPi,jhi,j , (4)

where ν is the photodetector responsivity, Pi,j is the transmit
power of the DC component, and Vi,j,c is the open circuit
voltage computed as

Vi,j,c = Vtln
(

1 +
Ii,j,G
Id

)
, (5)

where Vt is the thermal voltage and Id is the dark saturation
current.

Note that EHi,j refers to the maximum obtainable energy
that the solar panel can generate. Generally, a solar panel
can continuously work at the maximum power point under
an appropriate management strategy. Thus, this model can be
used to gauge the EH performance of solar panels [11].

B. FL Computation Model
Each device keeps a local data set, denoted by Dj . In

the supervised learning setting, the data set Dj may include
Dj input-output pairs, so that the task of each device is to
find model parameters which map an input to an output. We
denote the number of CPU cycles needed for each device to
process one input-output pair by c. In particular, the value of
c can be computed offline [12]. Thus, for a given user j, the
CPU energy consumption to process all its data for one local
iteration can be expressed as follows [4]

Ecomp
j =

α

2
cDj(f

CPU
j )2 =

α

2
(cDj)

3 1

(T comp
j )2

. (6)
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where α
2 is the effective capacitance coefficient of the device’s

computing chipset and fCPU
j is the CPU-cycle frequency.

Furthermore, the corresponding computation time per local
iteration of each device is defined as T comp

j =
cDj
fCPU
j

.

C. Radio Frequency Uplink Transmission
We denote the uplink transmission channel between device

j and the RF AP by gj ∈ CM . Accordingly, for a given
transmission time T trans

j , the achievable uplink data rate of
device j can be computed as

RU,j = T trans
j Blog2

1 +

∣∣∣gH
j wj

∣∣∣2 PU,j

wH
j

( ∑
j′ 6=j

gj′g
H
j′ + σ2

0I

)
wj

, (7)

where B is the bandwidth, wj ∈ CM denotes the receive
beamforming vector at the RF AP, PU,j is the transmit power
of the device, σ2

0 is the variance of the additive white Gaussian
noise (AWGN), I is the identity matrix and (.)H stands for
the Hermitian operation. Furthermore, the transmission energy
consumption at user j is

Etrans
j = T trans

j PU,j . (8)

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

A. Problem Formulation

For the power efficiency purpose, we aim to minimize the
IRL transmit power, subject to the constraints of the RF uplink
rate, the total energy consumption used for computation and
transmission, and the power budget. Particularly, to maintain
consistent illumination, the transmit power and the light beam
of VL can not be flexibly changed, and thus should not be
considered as variables in the problem formulation. Hence,
the corresponding optimization problem can be formulated as
follows:

OP1: min
wj ,P1,j ,PU,j,

f
comp
j

,T trans
j

∑
∀j

P1,j (9a)

s.t.: RU,j ≥ θj , (∀j) (9b)
Ecomp
j + Etrans

j ≤ EHj , (∀j) (9c)

0 ≤ P1,j ≤ Pj , (∀j) (9d)
KjT

comp
j + T trans

j = τ, (∀j) (9e)

fmin
j ≤ fCPU

j ≤ fmax
j , (∀j) (9f)

|wj |2 = 1, (∀j) (9g)

where constraint (9b) is set to ensure that the uplink rate of
device j is greater than or equal to the threshold θj . Constraint
(9c) implies that the energy consumed for the computation and
the uplink transmission is lower than the harvested energy
from the downlink. The IRL transmit power is constrained in
(9d) by the power budget Pj . In constraint (9e), Kj is the
required number of local iterations. This constraint implies
that the total time for computation and transmission is equal
to the time frame τ . Note that Kj and τ are thresholds set
by an upper-layer. Constraint (9f) imposes the CPU-frequency
range of the devices. Finally, constraint (9g) implies that the
receive beamforming vectors have unit power.

It can be observed that OP1 has an intractable form since
variables wj , P1,j , PU,j , f

CPU
j , and T trans

j are coupled in con-
straints (9b), (9c), and (9f). Hence, solving OP1 is challenging.

B. Proposed Optimal Solution

1) Optimal Receive Beamformers w?
j : We start by observ-

ing constraints (9b) and (9c). First, optimizing wj does not
impact optimizing wj′ (∀j′ 6= j). Second, solving problem
OP1 implies minimizing the sum of Ecomp

j and Etrans
j . Then,

the optimal value of wj is the one maximizing RU,j in order
to reduce T trans

j and PU,j , following from equations (7) and
(8). In light of this discussion and (9g), the optimal value of
wj can be computed as

w?
j = arg max

|wj |2=1
RU,j (∀j). (10)

Hence, based on Rayleight-Ritz quotient [13], w?
j is the

eigenvector corresponding to the largest eigenvalue of the

matrix gjg
H
j

(∑
j′ 6=j gj′g

H
j′ + σ2

0I
)−1

.
2) Eleminating Variables f comp

j and T comp
j : To make prob-

lem OP1 more tractable, we aim to suppress variables f comp
j

and T comp
j in constraints (9c) and (9f).

According to (6), and (9e), Ecomp
j can be derived as

Ecomp
j =

α
2 (cDj)

3K2
j(

τ − T trans
j

)2 . (11)

Next, let Γj =
|gHj w?j |2

w?Hj

( ∑
j′ 6=j

gj′g
H
j′+σ

2
0I

)
w?j

. Hence, (7) and (9b)

can be rewritten as

PU,j =
2

θj

T trans
j

B − 1

Γj
. (12)

Thus, (8) can be rewritten as

Etrans
j = T trans

j

2

θj

T trans
j

B − 1

Γj
. (13)

By substituting (11) and (13) into (9c), constraint (9c) can be
further expressed as

α
2 (cDj)

3K2
j(

τ − T trans
j

)2 + T trans
j

2

θj

T trans
j

B − 1

Γj
≤ τEHj . (14)

Furthermore, in light of (6) and (9e), constraint (9f) can be
reformulated as

0 < τ − cDjKj

fmin
j

≤ T trans
j ≤ τ − cDjKj

fmax
j

< τ. (∀j) (15)

3) Decomposing problem OP1 into subproblems without the
loss of optimality: Based on the characteristic of OP1, one
can observe that minimizing the sum of optical powers is
equivalent to minimizing the individual ones, i.e., { P1,j}.
This follows from the fact that the variables associated with
each user are not coupled.

Moreover, since EHj is an increasing function of P1,j , this
implies that P1,j reaches its minimum once the part on the
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left side of (14), denoted by Ψ(T trans
j ), i.e., Ψ(T trans

j ) =

α
2 (cDj)

3K2
j

(τ−T trans
j )

2 + T trans
j

2

θj

T trans
j

B −1
Γj

, reaches its minimum over

T trans
j . Thus, this suggests that one needs to find the minimum

of Ψ(T trans
j ) and then seeks the minimum of P1,j .

In light of the above analysis, without loss of optimality,
we decompose OP1 into the two following subproblems

SubOPj1: min
T trans
j

Ψ(T trans
j ) (16a)

s.t.: eq. (15),

SubOPj2: min
P1,j

P1,j (17a)

s.t.: EHj = ε?j , (17b)

(9d),

where ε?j = Ψ(T ?trans
j ) and T ?trans

j is obtained by solving
SubOPj1.

4) Solving SubOPj1 for Optimal Transmission Time
T ?trans
j : SubOPj1 is convex and its convexity can be verified

by evaluating the second derivative of Ψ(T trans
j ) as follows

d2Ψ(T trans
j )

d(T trans
j )2

=
3α(cDj)

3K2
j(

1− T trans
j

)4 +
θ2
j2

θj

T trans
j

B

B2(T trans
j )3Γj

, (18)

which is larger than 0 under constraint (15). Further, one can
see that T trans

j is the only variable in SubOPj1 and its value
is bounded by constraint (15). Then, SubOPj1 can be solved
using the Golden-section search method [14] where T trans

j is
updated until convergence with the following rule:

If Ψ(an+1) ≤ Ψ(bn+1) then T trans
j ∈ [an, bn+1].

Else T trans
j ∈ [an+1, bn].

Herein, an+1 = an+ρ(bn−an), bn+1 = an+(1−ρ)(bn−an),
ρ = 3−

√
5

2 , a0 = τ − cDjKj
fmin
j

, and b0 = τ − cDjKj
fmax
j

[14]. The
optimal solution is found based on consecutively narrowing the
interval inside which the solution exists by using the Golden
ratio ρ. The solution is simple to achieve and the method is
guaranteed to converge.

5) Solving SubOPj2 for Optimal Power P ?1,j: Constraint
(17b) can be rewritten as

EH1,j =
ε?j
τ
− EH0,j . (∀j) (19)

Following from (3), (4), and (5), constraint (17b) can be
reformulated as

ln
(

1 +
Ii,j,G(P1,j)

Id

)
≥

ε?j
τ − EH0,j

foptVtIi,j,G(P1,j)
, (20)

where Ii,j,G(P1,j) denotes that Ii,j,G is a function of P1,j .
SubOPj2 has only one variable to be minimized, i.e., P1,j .

The value of P1,j is bounded by constraint (9d). Compared
with SubOPj1, SubOPj2 has one additional constraint (i.e.,
(20)). Thus, based on the given characteristics, SubOPj2 can
be tackled by a bisection-based algorithm [14]. By setting
Pmin = 0 and Pmax = Pj , P1,j is updated until convergence
through the rule below:
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Fig. 2. Total transmit IRL power versus the uplink rate.

If (20) is satisfied with P1,j =
Pmin + Pmax

2
,

then Pmin = P1,j . Else Pmax = P1,j .

Using the bisection search, the value range of the optimal
solution is narrowed through repeatedly bisecting the interval
according to the above rule. So this method is straightforward
and obtaining the final solution is not challenging.

IV. NUMERICAL RESULTS

In this simulation, we consider the environment shown in
Fig. 1. We assume that the three devices, namely 1, 2, and
3, are located 3.3 m, 3 m, and 2.7 m away from the RF AP,
respectively; while being 2.3 m, 2.2 m, 2.1 m away from
the optical transmitter, respectively. Regarding the uplink RF
channels, we set M = 4. Further, the uplink RF channels are
assumed to follow a Rician distribution with a Rician factor
of 8 dB and a pathloss exponent factor equal to 2.6. For the
optical downlink channels, important parameters are listed in
Table 1. For the uplink rate, B = 1 MHz, and σ2

0 = 10−10

W. For the light EH model, Id = 10−9 mA, fopt = 0.75, and
ν = 0.4 A/W (i.e., silicon solar cell). For the computation
model, α = 2 ∗ 10−28, c = 20, {Dj} = 10 Mb, fmax

j = 1.5
GHz, and fmin

j = 0.3 GHz [4]. The simulation is carried out
over 10000 channel realizations.

TABLE I
IMPORTANT PARAMETERS

Parameters System values
The optical band-pass filter gain, Ts(ψi,j) 1
The field of view, ψi,j,c 70◦

The LED semiangle at half-power, φ0,1/2 60◦

The photodetector’s active area, Aj 85 cm2 (phone screens)
VL transmit power, P0,j 28 W [15]

Fig. 2 presents the variation of the total transmit IRL power
with respect to the uplink rate threshold {θj} for different
values of φ1,1/2. It can be observed that a higher uplink
requires a higher IRL power that needs to be transferred by the
optical transmitter. Furthermore, using a lower φ1,1/2 (which
implies a narrower IRL beam) reduces the required transmit
power while maintaining the same uplink rate. With the used
system settings, the uplink rate needed for the FL updates is 36
Kbps [4]. Therefore, the proposed approach can support the
mobile devices in handling the FL tasks without expending
any power from their batteries.
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In Fig. 3, the optimal ratios of {T trans
j } to {T comp

j } at the
devices are shown for different values of the uplink rate. It
is observed that device 3, the nearest device to the RF AP,
has the shortest transmission time. This can be explained the
fact that a longer distance requires a higher Etrans

j and hence
a higher T trans

j following from (8). Further, setting a higher
θ requires, not only a higher transmit power (as in Fig. 2),
but also a longer transmission time. In these cases, since the
computation tasks are the same for all the devices, the optimal
management implies increasing {T trans

j } rather than {T comp
j }.

In Figs. 4 and 5, the impacts of {Kj} on {T comp
j } and the

transmit IRL power are presented. Herein, we set {Kj} = K,
and θ = 40 kbs. Interestingly, in Fig. 4, the gap of {T comp

j }
between the two cases of τ increases as K increases. It
is due to the computation consumes more energy than the
transmission. Hence, {T comp

j } is given as much as possible
to minimize the total energy consumption. Furthermore, Fig.
5 shows that increasing τ yields a lower level of additional
transmit IRL power. This can be explained by that the CPU
energy consumption refers to the energy consumed to process
a certain amount of data during a time interval. If the amount
of data is unchanged; a longer time interval results in a
lower energy consumed for processing and a lower additional
transmit IRL power.

V. CONCLUSION

In this work, we proposed for the first time the application
of the lightwave power transfer to the FL-based wireless
networks. On this basis, we devised a strategy to manage the
power efficiency of the network and formulated the corre-
sponding optimization problem. Moreover, we provided the
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Fig. 5. The additional transmit power vs. the number of local iterations.

algorithms to tackle the problem optimally. The numerical
results indicate that the proposed scenario can sufficiently
replenish energy for the terminal devices to open up new
opportunities for sustainable FL-based wireless networks.
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