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Abstract

In this paper, we consider the problem of three-hop Free &@gutical (FSO) communications in
the context of decode-and-forward (DF) buffer-aided (B&pying where the two relays are equipped
with buffers of finite size. We adopt a Markov chain analysisdvaluating the outage probability (OP)
and average packet delay (APD) of the considered serialinglasystem that operates naturally in the
full-duplex (FD) mode. Given the large number of states imed in the analysis and the large number of
associated transitions resulting from the FD operationestablish an approximate performance analysis
approach following from the intractability of an exact aysa$. The suggested framework improves over
the existing asymptotic studies and provides closed-foppr@imate OP and APD expressions that
are extremely close to the exact expressions in the avecaigth signal-to-noise ratio (SNR) range.
Simulations over gamma-gamma atmospheric turbulencenetarighlight on the accuracy of the
adopted approximate approach irrespective of the unaeylyetwork setup. This accuracy is particularly
appealing for predicting the APD performance since the gatvéen the exact APD and the existing
asymptotic APD bounds can be huge for FSO networks with coalpa hop distances.

Index Terms
Free-Space Optics, FSO, multi-hop, serial relaying, perémce analysis, outage probability, queu-

ing delay, Markov chain.

I. INTRODUCTION

In order to meet the ever-increasing demand for commuwicapeed and reliability, coopera-

tion, which is a human-like behavior, has been adopted imaonication systems mainly through
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Cooperative Relaying (CR). This technique allows a sousceoimmunicate with its respective
destination through relays. In this way, diversity can heeéased as more paths become available
for signal propagation and path-loss can be decreased dsmtisnitting nodes become closer
to the receiving nodes [1].

Traditional Radio Frequency (RF) backhauling techniques (icrowave links) no longer
meet the growing demand of higher data rates due to theimsxpmedeployment costs and small
bandwidths following from the scarcity of the RF spectrunmu$, Free Space Optical (FSO)
communications emerged as a promising solution to the ffal&’” problem due to its high data
rate capacity and wide-bandwidth [2], [3]. The FSO techgglbas been recently investigated
for a wide variety of applications ranging from fronthagjibackhauling to disaster recovery [3].
However, FSO communications require a line-of-sight (L@&bh and, thus, are highly affected
by the weather where certain atmospheric conditions, as aad fog, attenuate the signal.
Accordingly, the overall system performance is detergatdh terms of outage probability (OP),
error probability and ergodic capacity [2], [4]. In orderdompensate for the unpredictability of
the FSO links, hybrid FSO/RF solutions were investigateeénera backup RF link is deployed
in parallel with the FSO link [2]. This solution stemmed frotime fact that the FSO links’
deficiencies are triggered by phenomena different from ¢héhe RF links. As such, when the
FSO link is in outage, the RF link will be activated and therefthe system will take advantage
of the high data rates provided by the FSO links, in additmthe RF link’s reliability [2]. The
deployment of relays has also served as a mean to mitigatattiaspheric limiting effects by
enhancing the diversity orders and communication rangdsS@ communication systems [5],
[6].

For RF communications, the deployed relays could operdterein the half-duplex (HD)
mode or the full-duplex (FD) mode. Unlike HD relaying, FDag$ can transmit and receive
concurrently in the same time slot thus enhancing the speefficiency at the expense of
increased levels of self-loop-interference [1], [7]. Or tither hand, FSO relays operate naturally
in the FD mode where the optical beam falling on the relay’stptdetector does not interfere
with the beam transmitted from the relay’s laser followimgn the high directivity of the LOS
FSO links [6]. In this case, signal detection and signal dmaission are handled by different
optical components and, hence, the relay can receive amshtitiat the same time. The literature
on FD FSO relaying is extensive especially in the context wuifdn-free (DF) relaying [8]—

[12]. For BF relaying, the decode-and-forward (DF) relagaties and retransmits the received
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information packets without possessing any buffering bdii@s at the physical layer.

While conventional BF relaying constitutes the most widedgearched cooperation model,
recent studies shed light on the benefits that can be reap@deiuipping the relays with buffers
whether in the context of RF communications [13]-[17] or F&®nmunications [18], [19]. In
the framework of buffer-aided (BA) relaying, it has beeny@oin the aforementioned references
that employing buffers enhances both the throughput anerslty at the expense of increased
average packet delays (APD). In BA systems, the informaiekets are stored until the channel
conditions become more favorable thus reducing the OP. @anmgpthe employment of buffers
with time diversity methods established on packet intetleaand network coding, it can be
observed that BA relaying does not lead to data-rate lossomplex dual encoding/decoding
at the expense of a trivial cost increase required to intedvaffers at the relays [20]. The RF
max-max scheme was proposed in [13] in order to improve thomweance of the max-min
protocol where the same relay is picked for both receptioth @ansmission. In comparison,
the RF max-max strategy refers to a two-slot protocol whieerelay with the best S-R link
is chosen for reception in the first time slot and that with best R-D link is chosen for
transmission in the subsequent time slot. This will redinee@P as the presence of buffers will
guarantee that different relays can be selected for remeptid transmission. Aiming to leverage
the fixed two-slot allocation, the RF max-link scheme alldivs communication to take place
along the strongest link selected among all the availabie &d R-D links and thus doubling
the diversity gain as compared to both max-min and max-marrses [14]. The problem of
packet delay was investigated in [15] where a scheme has fregosed aiming to lower the
APD by assigning a higher priority to R-D links as compareth&® S-R links and thus emptying
the buffers at a faster pace. Further improvements on thelimescheme were introduced in
[16] and this latter scheme was extended to the setup of rgrid-forward (AF) relaying in
[17].

In the context of DF FSO cooperative communications, BA Ipgreelaying and BA serial
relaying were investigated in [20] and [21], respectivéty[20], several relaying protocols were
studied and compared for FSO networks with an arbitrary rarmbrelays, each equipped with
a buffer of finite size. Similarly, in [21], a DF multi-hop BAFO communication system with
finite-size buffers was investigated in terms of the OP an® ABrformance. Among the different
relaying techniques, serial relaying (or multi-hop commeation) has drawn a lot of attention

especially for extending the coverage FSO networks in tlematos where the S-D distance
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is extremely long. Compared to conventional single-hop roamications, the multi-hop setup
provides a number of benefits such as enhanced energy-afficiprolonged coverage, better
link performance, improved throughput, simplicity and minent flexibility of network planning
[21]. While BF-AF-FSO serial relaying and BF-DF-FSO serielaying were studied in [22],
[23] and [24], [25], respectively, this relaying scheme Heen extended to the scenario of
BA-DF-FSO communications in [21] as previously delineated

For BA-DF-FSO systems with two or more relays, the OP and AP&ewderived using
an asymptotic approach that holds for large values of theasip-noise ratio (SNR) as exact
solutions were out of reach [21]. This is due to the large nemd§ states in the Markov chain
and the several possible transitions stemming from thediytllexity of the system. Moreover,
the asymptotic OP and APD expressions derived in [21] aréddnto the scenario where the
constituent hop distances are remarkably different. Threcdithis work is to leverage the solution
obtained in [21] and reach an approximate solution that$@dd a wider range of SNRs for a
three-hop system while relaxing all constraints on the pétvgetup. The proposed approximate
performance analysis framework revolves around the itleatiion of a closed set comprising
12 states out of théL + 1)? states for buffers of sizé. where, at steady-state, the Markov
chain is within this set with a probability approaching l.is'blosed-set is further divided into
3 quasi-closed subsets (comprising 4 states each) wheremvwe dhe approximate steady state
transitions between the different subsets and betweentdtesof the same subset. The selection
of the closed set and its subsequent partitioning into 3etgbsill vary depending on which
hop of the three hops is the bottleneck link. The proposecuaion methodology significantly
simplifies the theoretical analysis resulting in closedrf@pproximate OP and APD expressions
that accurately predict the performance of three-hop BAvagts over a wide range of SNR
values.

The remainder of this paper is structured as follows. Fitis& system model and other
preliminaries adopted for this study are given in SectioriflSection Ill, we derive the APD
and OP expressions using an approximate approach for tliffeeedt cases arising from the
relays’ placement. Subsequently, simulation results apgiged in Section IV with the aim of
comparing the approximate results and exact results.liainclusions are provided in Section
V.
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Fig. 1. Three-hop buffer-aided FSO system.

II. SYSTEM MODEL AND PRELIMINARIES

A. Basic Parameters

We consider a 3-hop FSO communication system with intemmsitgulation and direct-detection
(IM/DD) corrupted by additive white Gaussian noise (AWGNhe source (S) communicates
with the destination (D) through 2 decode-and-forward (Détays placed in series denoted by
R; and R,, respectively. Each relay is equipped with a buffer (dataugy of sizel.. We assume
that there is no direct link available between S and D. Thoasafpacket to be communicated
successfully, it should traverse all three indirect hopR;SR,-R, and R-D of lengthsd,, d»
and ds, respectively. The system model is depicted in Fig. 1.

We assume that the FSO channels are affected by gamma-gambakence-induced scintil-
lation along with pointing errors. The outage probabifitedong the S-R R;-R, and R-D links
are given by [21], [26]:
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where I (-) designates the Gamma function a64’;"[-] is the Meijer G-function. Moreover,
(a1, B1)=(aldr), B(dh)), (a2, B2)2(a(ds), B(ds))

and(as, B3)=(a(ds), B(ds)) refer to the parameters of the gamma-gamma distributicocasted
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with the three hops S-R R;-R, and R-D, respectively. These parameters can be determined

from:
a(d) = [exp (0.490§(d)/(1 + 1.110}5/5(@)7/6) - 1} B @)
5(d) = [exp (0.5103(0)/(1 +0.690(0))*) — 1] - (5)

where the Rytov variance is3(d) = 1.23C%k7/6d*/¢ with C2? andk symbolizing the refractive
index structure parameter and wave number, respectively.

In (1)-(3), P, indicates the optical power margin with respect to the detesignal-to-noise
ratio (SNR) threshold. In other words, the actual SNR is etu#’,; multiplied by the detection
SNR threshold. As such?,; > 1 (or, in decibels,P,; > 0 dB) so that the actual SNR exceeds
the threshold SNR in order to ensure that the informationsangs is decoded with an arbitrarily
small probability of error. For example, in Section 1V, wensaer the values of’,; ranging
from 0 dB to 30 dB. In (1)-(3),P is divided by the number of hops (that is equal to three).
This follows from evenly splitting the power among the catosint hops ensuring the same
transmission power as in non-cooperative point-to-poamim@unications.

In (1)-(3), the parametef, (for n = 1,2,3) is associated with pointing errors and can be
computed from¢,, = w.,, »/20,, Whereo,,, stands for the pointing error displacement standard

deviation at the receiver of the-th hop and:

wiq,n = W?,nﬁerf(vn)/ |:2'Un€_v’21] . (6)

In (6), w., represents the beam waist along tixh hop andv, = \/T/Q(an/wm) where
erf(-) indicates the error function and, refers to the receiver’s radius at the traversed hop.
Finally, G|, G, and G5 designate the gains resulting from the possibility of hgvine corre-
sponding indirect links shorter than the direct link of distedgp:

G, = ( A ) (fg'ﬁ 1) e o(dn=dso) 1y =1,2,3, )
Asp &3

whereo is the attenuation coefficient},, = erf(v,) while Asp andésp are the pointing error

parameters associated with the direct link S-D.

In order to highlight on the performance gains that can beeédrom multi-hop relaying
systems, these systems are customarily matched againbetittlhmark non-cooperative com-
munications where S and D communicate directly with no elplaced in between. As such,

even though a direct link is not assumed between S and D indbeted system model, yet the
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parametergsp, Asp and dsp appear in the formulation provided in (7). In fact, the pagten
Py, is formally defined as the power margin (above the detectimashold) measured at D
corresponding to a signal transmitted from S. In other woftlg is considered for a reference
distancedsp (with pointing error parameter§sp and Asp) implying that the effective power
margin for then-th hop of distancel, (with pointing error parameterg§, and A,,) is %
whereG,, is given in (7) whileN is the number of hops. This relation highlights the fact jthat
with respect to non-cooperative communications, the panamin is enhanced by a factaof,
and reduced by a facta¥. As such, placing more relays between S and D will result orten
hops (&, increases contributing positively to the SNR) with a smrdllaction of the total power
allocated to each hopV\{ increases contributing negatively to the SNR). This noisasibn is
essential for comparing systems with different numbersagfsh(or relays) as is carried out in
Section IV where we compare 1-hop, 2-hop and 3-hop systemallys from Fig. 1, it can be
observed that a direct link between S and D might not be dlailaven ifdsp is relatively
small since establishing this link necessitates placingdditional laser at S and an additional
photo-detector at D. Therefore, the implementation of tfegpsed solution necessitates 3 lasers
and 3 photo-detectors while an alternative system modéi avidlirect link necessitates 4 lasers
and 4 photo-detectors.

Various statistical models have been proposed over thes yfearmodeling atmospheric tur-
bulence. For the weak and strong turbulence conditiondotiieormal and negative exponential
distributions are often considered, respectively [27]cé&ely, the gamma-gamma distribution
has received considerable attention because of its ertéllevith measurement data for a wide
range of turbulence conditions (ranging from weak to straumpulence). For this reason, the
gamma-gamma scintillation model is adopted in this paper.

It is worth highlighting that the underlying distributionilvonly affect the specific values of
the outage probabilities in (1)-(3) without altering thébsequent calculation methodology for
deriving the performance metrics of the 3-hop BA system. Vigpecifically, the derived OP
and APD approximate closed-form expressions reported aticd®elll will hold for all values of
the hops’ outage probabilitigs ¢ andr regardless of how these probabilities are related to the
adopted scintillation model. Consequently, the analysesgnted in this paper can be applied
with all scintillation distributions and, in particular,ithr the Malaga distribution that was recently
proposed as a unifying distribution for modeling atmospgharrbulence [27]. In this case, the

single-term outage probabilities in (1)-(3) will be simpplaced by a weighted sum of multiple
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terms that have the same form (refer to eq. (11) in [28]). Wasth noting that the performance
analysis with the Malaga distribution often assumes thatdhannel parametet in (5) is a
natural number since, otherwise, the density function wblve an infinite summation thus
incurring a high degree of freedom on the distribution [228]. Therefore, the adopted gamma-
gamma model is better adapted for capturing the dependdribe performance metrics on the
placement of the relays that constitutes a central pararttetecharacterizes relaying networks.
In fact, in this work, no assumptions are made on the valué thfat can be directly related to

the underlying link distance according to (5).

B. FD Relaying Strategy

The FSO relays operate naturally in the full-duplex (FD) madhere the optical signals
received at the photo-detector and transmitted from ther lde not interfere with each other.
Consequently, all nodes in the network can simultaneouslysmit and receive where the
dedicated and highly-directive LOS FSO links do not intexfevith each other. In other words,
any relay with a non-full buffer can receive while any relaighwa non-empty buffer can transmit
where concurrent transmissions can take place frorarR R (as well as S). In what follows, the
numbers of packets present in the bufferdipfand R, will be denoted by, andl,, respectively,
where0 < [; < L and0 <[, < L.

C. Transition Probabilities

A Markov chain (MC) approach will be utilized to examine thensidered FSO BA system
where a state of the MC depicts the numbers of packets in tfferbwof the relays and is
designated by = (11, ;). Denote byA the state transition matrix defined as tier1)% x (L+41)?
matrix where the((L + 1)I} + 15 + 1, (L + 1)l; + ls + 1)-th element ofA is expressed af
which refers to the probability of moving from staltéo statel’.

The transition probabilities corresponding to the threp-RD scheme were derived in [21] in
seven different cases depending on the valuels ahd/,. For the sake of completeness, these
probabilities are reported in Table I. It is worth highligig that deriving the transition proba-
bilities does not constitute a contribution of this papeattfocuses on using these probabilities

to derive more accurate OP and APD performance metrics.
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TABLE |
THE TRANSITION PROBABILITIES OF THE THREE-HOPFD SYSTEM (DIVIDED INTO EIGHT CASES). IN THIS TABLE,

p=1—-p,g=1—qgANDT=1—r.

Cases| 1 = (0,0) 1= (L,0) 1=(L,L) 1= (l1,0)
Lh=1,.,L—1
Ly £(0,0),(0,0) = P L(L,0),(L,0) = 4 YL,n)(L,L) =T L(11,0),(12,0) = P4
1(0,0),(1,0) =P tr,0),-1,0) =4 | t@,o),,L—1) =7 | t1,0),0,1) =D

L(14,0),(13+1,0) = P4
L(1,,0),(11—1,1) = Pq

Cases| 1= (L, ) 1= (0,1s) 1=(I1,L) 1= (Iy, 1)
ly=1,..,L—1 lhy=1,...L L=1,.,L—1 |l,lo=1,...,[—1

t1y L(L12),(L,12) = QT t1 = pr t1y = pr ly = prq + pqr
(L) (L-1,00) = 4T ti1t(1,0) = Dr ti1t(1,0) = Dr Uy (-1,0) = Pqr
UL o), (Lla—1) = qT har,—1) =pr | ti14(0,—1) = DT U 14(1,-1) = Pgr
L) (L-1,0a+1) = Q7 | Ti1e(1,—1) = DT tir(1,—1) =Dpr U 1+(0,1) = Dgr

ha+(1,0) = Dgr
Ua(—1,1) = Pqr

U 14(0,—1) = Pqr

D. Motivation and Contribution

Following from the large number of states in the Markov ch@iat is equal tq Z +1)?) and
from the numerous possible transitions (arising from tHeduplexity of the system), an exact
solution to the considered problem seems to be out of reaghsé&gjuently, [21] resorted to an
asymptotic analysis that holds for large valuesiaf. The aim of this work is to leverage the
solution obtained in [21] and to reach an approximate smtuthat holds for a wider range of
values of Py;. In particular, results show that the adopted methodolagidy accurate closed-

form OP and APD expressions for average-to-high valueB,of

[Il. APPROXIMATE PERFORMANCEANALYSIS
A. Calculation Methodology

The approximate analysis presented in this paper revoheesmd the identification of a closed-

setS where a setS is said to be closed if it satisfies the following conditiori]2

t1’1120v165,1/¢5, (8)
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highlighting that no state iy leads to a state outside 6f
Unlike the asymptotic analysis in [21] that identifies a eldset of 4 states, the approximate
analysis in this paper identifies a closed-set of 12 stata@s.closed-set will be further partitioned
into 3 subsets comprising 4 states eagh= S; U.S, U Ss. This partitioning constitutes a key tool
for deriving the subsequent closed-form expressions fersteady-state probability distribution.
The probabilities of being in subsets, S; and Ss, at steady-state, will be denoted by y

and z, respectively:

Zﬂ'l:x§ Zmzy; Zmzz, 9)

1€51 1€S52 1S3

with = 4y + z = 1 thus resulting iny ,_,m = 1 wherem stands for the probability of being
in statel at equilibrium.

The first step in the analytical framework consists of evahgathe probabilitiesr, y and =z
by considering the transitions between subsgtsS, and S; taken, each, as lumped groups of
states. At a second time, the steady-state probabilityiloigton of elements o = S; U S, U S5

can be approximated as follows:

Mz, le sy
m R 7r1(2)y, 1€ Sy (10)
7T1(3)Z, leSs.

where wfi) stands for the conditional steady-state probability ohgen statel given that the
MC is in subsetS; for i = 1,2,3. These conditional probabilities satispy, . =1 for
1 = 1,2,3 and they will be calculated by assuming that the three salisetS, and S; are
guasi-closed (i.e. the probability of leaving any of thegbsets will be neglected when solving
for (i): the four probabilities{x{",1 € S,}, (ii): the four probabilities{”,1 € S,} and (iii):
the four probabilities{r\” 1 € S5}).

Finally, for the proposed analytical framework that tasgaterage-to-large values &%,, the
transition probabilities;;; comprising the product of two or more terms {f, ¢, 7} will be

neglected. Following from Table I, the simplified MC statagtiam is shown in Fig.2.

B. Seady-Sate Probabilities

The closed-set5 depends on which hop (among the three hops) constitutesattlereck
hop. This hop possesses the highest outage probability @mesponds to the link of longest

distance under identical scintillation and pointing-erconditions.
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1) Bottleneck Link: Hop 1:
Propositionl: If the bottleneck link is hop 1 (i.emax{p, q,r} = p), the steady-state proba-
bilities are given by:

_ pP(=q)(1-r)>.
100 = Tptgine
- _ pPA-p(-g-r).
0,1 (p+q+r)c !
. _ pP(l=p)(1—r)’.
1,0 (ptatr)e
_ p(1-p)? .
L1 = Tpfgene
T =0,
. _ pq(1—q) -
2,1 (p+4q(1—q)+7r)(p—pgr+p?qr+q—2pq)’ (11)
T — pg*(1—p)(1=r) .
3,0 (p+q(1—q)+7r)(p—pgr+p2qr+q—2pq)’
e — 7°(1-p)? :
3,1 (p+q(1—q)+r)(p—pgr+p2qr+q—2pq)’
o — PPa=a)(1=r)?.
2,2 (pt+gtr(l-r))ecr’
. — Pri=a)?(p+r—2pr).
2.3 (p+gtr(l—r))er
T — pgr(1-p)(1-g)(1—7).
32 (p+gtr(l-=r))er
Taa — 220=p)?(1—q)
[ 733 (p+gtr(l-r))ecr’

while all other probabilitiesr;; are equal to zero. In (11),= p*r — p*r2q + p*rq — 3pr — pq +
pqr + pr? + 1 and ¢, = pgr — pg*r + 4p>¢*r — bp?qr — dpqr? + 4pg*r? + TpPqr? — 5p*¢ir? +
p2q _ p2q2 +p27, _ 2p27,2 —|—p7“2 + q,,,2 _ q27‘2.
Proof: The proof is provided in Appendix A. This proof is based on gagtitioning of the
identified closed-se$ as S = S; U Sy U S3 with:
{(0,0),(0,1),(1,0),(1,1)}, i=1,
Si=19 {(2,0),(2,1),(3,0),(3,1)}, i=2; , (12)
{(2,2),(2,3),(3,2),(3,3)}, ©=3.
as depicted in Fig. 3.
For asymptotically large values df,; with ¢ < p andr < p, the nonzero probabilities in

(11) will tend asymptotically to the following values:
70,0 —p?, moq =m0 — p(1—p), T1— (1—]9)27 (13)

in coherence with the asymptotic results reported in [21].
Comparing the approximate distribution in (11) with theragyotic distribution in (13) high-
lights on the accuracy of the proposed approximate analirsifact, the approximate analysis

captures the dependence of the steady-state probabihitésonly on the probability of the
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Fig. 3. The closed-se$ and its partitioning when hop 1 is the bottleneck.

bottleneck hop, but also on the probabilitieandr of the two remaining hops. The gap between
(11) and (13) will increase in the scenarios wherand are not very small compared {0

2) Bottleneck Link: Hop 2:

Proposition2: If the bottleneck link is hop 2 (i.emax{p, ¢,r} = ¢), the steady-state proba-

bilities are given by:

30 =0;
2
_ p°(1—q) .
TL-31 = (prqtr)(p+a—2pq—par+pZqr)’
- _ p*q(1—p)(1-r)
L-20 (p+q+r)(p+q9—2pg—pgr+p3qr)’
- _ pg(1—p)? :
L—2,1 (p+q+7)(p+9—2pq—pgr+p3qr)’
10 =0;
q(1—q)
7T _ p—
L-11 ra(—a+)(I—ar—pa+par)’ 14
- _ ¢*(1=p)(1—r) : ’
L0 (p+q(1—q)+r)(1—qr—pg+pqr)’
L1 =0
o _ r2(1—p)(1—7) .
L2 (p+q+r(1—r))(g+r—2qr+pgr2—pqr)’
s =0
- _ gr(1—r)?
L=1.2 = Gprqrr(1—r)(g+r— 2qr+pqr2—pqr)
Tro1s = r?(1—q)
( L3 (p+a+r(1—n)(g+r—2qr+par2—pqr)

while the other probabilities are equal to zero.
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Proof: The proof is provided in Appendix B. This proof is based on #atection of the
subsetsS;, S, and S5 as follows:
{(L-3,0),(L—3,1),(L—2,0),(L—-2,1)}, i=1;
Si=19 {(L—-1,0),(L—1,1),(L,0),(L,1)}, i=2; , (15)
{(L-1,2),(L-1,3),(L,2),(L,3)}, i=3.
where these subsets are shown in Fig. 4.
In coherence with [21], the nonzero asymptotic steadyegtabbabilities follow from (14) as
follows:

Tro—>q , Tr—11—1—gq, (16)

for p < g andr < gq.

Similar to the observations made in Section IlI-B1, the jmled approximate analysis relates
the steady-state probabilities to the three outage protebp, ¢ andr rather than the probability
q alone as in (16).

3) Bottleneck Link: Hop 3:
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Proposition3: If the bottleneck link is hop 3 (i.emax{p, ¢,r} = r), the steady-state proba-

bilities are given by:

- _ pPe(1=r)?.
L-3,L-3 (p+g+r)c2’
_ p?r(1—q)(p+r—2pr).
TL-3,L—2 = (p+g+r)ce !
_ pPgr(1=p)(1=r).
TL-2,L-3 = " (prqine *
- _ pgr?(1-p)?.
L=2,L=2 = (prq¥r)cz’
_ ¢P=-p)(1-g)(1-r)?.
TL-1,L-3 = “(pxq(l—q)+r)cs
— _ 4q(d=9 .
TL—-1,L-2 — (p+q(1—q)+r)c3’ (17)
- _ *(1-p(-r) .
LL=3 = (prq(—q)+r)cs’
ML, L—2 = 0;
_ r2(1-p)(1-r) .
7TL7L_1 o m'
- _ P0-p?0-g) .
L,L (pt+g+r(1-r))cs’
_ o ra-r? .
Tr-1,L-1 = (p+q+r(1—r))ca’
_ r?(1=p)(1-g)(1-r)
L TL—-1,L —  (prgtr(1—-r))eqs *

while the other probabilities are equal to zero. In (§)+= pqr —4pqr? —4p*qr+5p*qr —2p*r?+
P*r+pri+qri+p’q, ¢ = 14+q—q°=3qr+2¢°r—2pq+pg* +3pqr—2pg°r+qr? —¢*r’ —pqri+pg*r?
andcy = 1+ p*r + pr? + qr? — qr — 3pr + pgr? — p*qr?.

Proof: The proof is provided in Appendix C based on the followingesg&bn:

[ ((L-3,L-3),(L—3,L—2),(L—2,L-3),

(L—2,L—2)}, i=1;
Si=4 {(L—1,L—3),(L—1,L—2),(L,L—3), , (18)
(L7L—2)}7 i:2;

\ {(L—l,L—1),(L—I,L),(L,L—l),(L’L)}’ 1= 3.

that is better depicted in Fig. 5.

In coherence with [21], the nonzero probabilities in (1 giify to the following expressions:
TL,L — r? y TL—1,L =T -1 —7 7’(1 - 7“) y TL—1,L—1 —7 (1 - 7’)27 (19)

for Pyy > 1, p<randg < r.
Similar observations as in Section 11I-B1 and Section I18-8an be reached by comparing the

approximate and asymptotic steady-state probabilities.
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Fig. 5. The closed-sef and its partitioning when hop 3 is the bottleneck.

C. Outage Probability
The system will be in outage if no packets can be transmiti@ugathe constituent links [21].
This results from the unavailability of all hops resultimgno change in the occupancy of any

of the two buffers. The system outage probability (OP) cameXx@essed as :

Pout = Zm,l/ [ (1= 6,0)p+ 2] [(1 = 80)(1 = dp,1)q

LU

+ 810 + 6, — S1,000,1] [(1 = Gy 0)r + drol |, (20)
whereJ, ; stands for the Kronecker delta function:

e
5i,j - ! J . (21)
0, otherwise.

The probability multiplying the termr,;; in (20) corresponds to the product of the unavail-
ability probabilities of the three hops. The unavailapilif each of the three hops depends on
the buffers’ states and the FSO channel conditions as fellow

o If the buffer at R is full (i.e. [ = L andd; ;, = 1), then no packet can be transmitted along

the first hop implying that this hop is unavailable. Othemyia packet cannot be transferred

on this hop only if it is in outage with probability.
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o If Ry is empty ( =0) or R, is full (I’ = L), then no packet can traverse the second hop
as there is no packet to send, no space for the arriving packanth. This is captured by
the probabilityd; o + 0y 1, — 01,00 1, In (20) that is equal to 1 if eithed; o =1 or oy, =1
(or both). Otherwise(d;,dr ) = (0,0) = (1 — §,0)(1 — 6y ) = 1 and the packet cannot
traverse the second hop successfully if it is in outage withbability .

. If the buffer at R is empty (i.e.l’ = 0 and ;o = 1), then no packet can be transmitted
along the third hop that becomes unavailable. Otherwis@cégt cannot be transferred on
this hop only if it is in outage with probability.

1) Bottleneck Link: Hop 1: Expanding (20) using the 12 dominant states in (12) resnits i

Pt = mo0(p) + 701 (pr) + m10(pq) + m11(pgr) + ma,0(pg)+

T2 (pqr) + m30(pq) + w31 (pqr) + par(mos + T3 + T30 + Wa3). (22)

Replacing the steady-state probabilities by their valuesf(11) implies thatP,, can be

written as:
p o P—ad=r)?+pr(l—p(—-gl-r)
o (p+q+r)c
N PPq(l = p)(1 —r)* + p*qr(l = p)? pqr?
(p+q+r)c p+qg+r(l—r)
P’r(1—q) + ¢’ (L —p)(1L =) + pg’r(l = p)* (23)

(p+q(1 —q) +7)(p—pgr+p*qr +q — 2pq)
Since, in this casepax {p,q¢,r} = p:
pt 0 0

Poy = =+ — + = =p’. (24)
p o p

By comparing the OP in (24) with that derived through an asptip analysis in [21], we
find that both yield the same result. However, the OP exprasisi (23) reached through the
proposed approximate analysis covers more states and,ithascuracy is higher.

2) Bottleneck Link: Hop 2: Expanding (20) using the 12 dominant states in (15) resaits i

Pouwt = mr-30(pq) + 7r—31(pqr) + mr—2,0(pq) + mr—21(pgr) + 7r-1,0(Pq)

+ mr11(pgr) + 7ro(q) + mra(qr) + mr-12(pgr) + mr—13(pgr) + wr2(qr) + 7 3(gr). (25)
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By further substituting the steady-state probabilitiesrfr(14) in (25),F,,; can be written as:
p _Pel-g P -—p—r) +pqr(d - p)’
(p+aq+7r)(p+q—2pg — pgr + p*qr)
p’r(1—q) +¢*(1 —p)(1 —1)
(p+aq(l—q)+r)(1—qr—pqg+pgr)
pg*r*(1 = 1) +pgri(l — q) + ¢*r*(1L = p)(1 — )

(26)
(p+q+r(l—r))(qg+r—2qr+pgr* —pqr)
Since, in this casepax {p,q,r} = ¢:
0 3 0
Pout_>_2+q_+_2:q27 (27)
q q q

that corresponds to the asymptotic value derived in [21jd&mly, the approximate OP expres-
sion in (26) captures the dependence®f; on the three probabilities, ¢ andr, thus, resulting
in better accuracy.

3) Bottleneck Link: Hop 3: Similarly, from (18) and (20):

Pouwt = (pqr)(mr—s,—3 + T3 -2+ Tr—2 -3 + Tr—2,1,-2)
+ mr1,0-3(pqr) + mr_1,0-2(pgr) + 7L -3(qr) + 7L 1-2(qT)
+ mr—1,0-1(pgr) + moo1,0(pr) + 7o o-1(qr) + (1), (28)

that, from (17), results in:
p o _prA=p)(A =g =r)+per(l—q) _ p'ar
o (p+q(1—q) +7)es pHa+r
pg’r(1—p)(1 —7) pgr(1—r)* (1 =p)*(1 —q)
(p+q(l—q)+r)es  (p+g+r(l—r))as  (p+g+r(l—r))a
N pri(t=p)A—q)(1 —r) + (L —p)*(A—r)

29
p+qg+r(1—r))ey (29)
Since, in this casepax {p,q,r} =r:
4
P 24 24T, (30)
T T T

The conclusion, pertaining to the accuracy of the derived i©RBimilar to that reached in
Section 1lI-C1 and Section III-C2.
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D. Average Packet Delay

Storing the information packets in the buffers at &d R results in queuing delays [20].

Following from [21], the average packet delay (APD) of theiaerelaying system can be

APDz(i—l)%—(&ﬂL&), (31)
m m 2

where L,, andn, correspond to the average queue length and the effectivét thppughput at

determined from:

R,, respectively, fom = 1,2. On the other hand, the ter|g7i511 — 1 represents the average delay
at S.

The effective throughout at,Rcan be computed as follows:

(1-p)1 -7, n=1;
M = (1)

) , (32)
1-1 -7 -7), n=2

Wherewl”) denotes the steady-state probability of havimmackets in R’s buffer. Equation (32)
highlights that a packet will enter the buffer af Bnly if this buffer is not full and the S-Rlink
is not in outage. Similarly, a packet will enter the bufferRatonly if (i): the previous buffer at
R; is not empty, (ii): the buffer at Ris not full and (iii): the link R-R; is not in outage.

The marginal probabilitie¢r' ", 7}~ in (32) can be calculated from" = % 7, and
w2} = Sk m.. Following from these probabilities, the average queugtiemin (31) can be
derived from:

. i ON Sito Yo lmiy, n=1; .
1=0 Zszo Zszzo Uy, n=2.

Finally, replacing the steady-state probabilities fror)(X14) or (17) in (32) and (33) results

(33)

in the approximate APD expressions that turn out to be vecyrate in the average-to-high SNR
range. This improved accuracy results from covering maatestin the approximate analysis as
compared to [21].

1) Bottleneck Link: Hop 1: In the case wherenax {p, ¢, 7} = p, the steady-state probabilities

in (11) tend to the following asymptotic values:

4 3
P> 2 _
0 = 5 =D M0 =0, w2 — 0,

2
To,1 — % =p, w1 —0, m3—0, (34)
2
T1,0 — % =p, w39 —0, m32—0,

71'171—)%:1, 7T371—>0, 71'273—)0;

\
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As shown in (34),m; — 1 indicating that, at steady-state, both buffers will mosihably
contain one packetl{, — 1 for n = 1,2). This is in accordance with the fact that the poor
quality of the first hop will reduce the input throughputs tthbrelays that are placed in series.
Accordingly, from (32), bothy, andn, will tend to 1 since the probability of obtaining empty
or full buffers tends td . This will result in an APD value tending t2.

2) Bottleneck Link: Hop 2: In the case wherenax {p, ¢, 7} = ¢, following from (14):

;

Tr-30=0, 7r_10=0, Tr—-12 — 0,
Tr—31 — 0, 711 — g =1, 713 —0,
(35)
Tr—20 — 0, 70— 0, L2 — 0,
( T2-31— 0, 7m1=0, L3 = 0;

As shown in (35)r;,_;1; — 1 indicating that, at steady-stat; — L — 1 and L, — 1. This
is in accordance with the fact that the flow of packets willwomore efficiently along the S.R
and R-D hops than along the bottleneck link4R,. This will result in filling the buffer at R
at a faster pace compared to the buffer at Rrom (32), bothy; andn, will tend to 1. This
will result in an APD value tending td. following from (31).

3) Bottleneck Link: Hop 3: In the case wherenax {p, ¢,r} = r, following from (17):

.
r o __
Tr—31-3 0, mp_11-3—0, Tp_1p-1— v = 1,

2
[ A—
Tr-3r-—2—0, T 2—0, T — - =,

2

(36)
Tpor-3—0, mpr3—0, 7w —>=m,

2.

?

| 23120, T 2=0, TLL — 7}—3 =T
As observed in (36)7;_1;_1 — 1 indicating that, at steady-state, — L—1andL, — L—1.
This is due to the minimal output throughputfat that will result in the congestion of the buffers.

As in Section IlI-D1 and Section I1I-D2, bothy, and, will tend to 1 following from (32). This
will result in an APD value tending ta(L — 1).

IV. NUMERICAL RESULTS

We next report some numerical results that support the mi@néioned findings reported in
the preceding sections. As previously mentioned in Sedfio®; and R, are situated serially
between S and D and their positions are determined by th@wdct (d;, d, d3) with dsp =
Zizl d,, (where all distances are expressed in km). The refractdexstructure parameter and
the attenuation constant are set todg= 1.7x10~'* m~%/® ando = 0.44 dB/km, respectively.
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Fig. 6. Dominant group of steady-state probabilities do& (3, 2,2) km.

We also assume an operating wavelengtbf 1550 nm, a total distancés, of 7 km, and a
buffer sizeL of 5. In what follows, as a benchmark, we also show the asytieptesults derived
in [21]. The receiver radius, beam waist and pointing erispldcement standard deviation are
assumed to be the same for all hops and they will be denoted by, ando,, respectively. In
what follows, we set;/a = 3 andw,/a = 25.

As a benchmark, we show the performance of the 3-hop buféer{BF) system. This system
will not suffer from outage only if the three constituent Bogre not in outage resulting in
P = 1—(1—p)(1—q)(1—r). We also show the performance of the 2-hop BF and BA
systems [21]. For these systems, we assume that the reldsicisdpat the distancé, + ds/2
from S and at the distanc®; + d»/2 from D thus maintaining the same end-to-end distance
of dsp = Eizl d,. Finally, we show the performance of the 1-hop system whewen& D
communicate directly over a link of distandep.

Fig. 6, Fig. 7 and Fig. 8 show the performance with= (3,2,2) km, where hop 1 is
the bottleneck. As predicted in (13), for large valuesif, the probability is mostly split
among the statek = (0,0), 1 = (1,0), 1 = (0,1), andl = (1,1). In this simulation setup,
mo,1 = m o following from (11) sinceq = r following from the fact thatd, = ds;. The steady-
state probabilities of these dominant states are plottea fasction of P, in Fig. 6. Results in
Fig. 6 highlight on the high accuracy of the probabilitiesigkd in (11) over the entire range of
values of Py;. In fact, the approximate curves practically overlap whike exact curves foP,,

values as small as 0 dB. Regarding the asymptotic steatly/{stababilities from [21], while
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Fig. 7. OP ford = (3,2,2) km.
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Fig. 8. APD ford = (3,2,2) km.

the asymptotic values ofy,, 71 o andn,; show close match with the exact ones for the values
of Py, exceeding 10 dB, this accuracy is compromised for the largesbability 7, ; where
the gap is noticeable for values &%, up to 15 dB. Regarding OP, in Fig. 7, the approximate
and exact OP curves almost perfectly overlap with each dtreall values of Py,. In terms of
APD, Fig. 8 reveals that in comparison to the results obthimg the asymptotic analysis, the
approximate analysis yields results much closer to theteXB® for all P, values. Results in
Fig. 7 show that equipping the relays with buffers resultsignificant reductions in the OP.

Moreover, increasing the number of relays from 1 to 2 redtlbe©OP even for the same value of
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Fig. 9. Dominant group of steady-state probabilitiesdoe (2, 3,2) km. The approximate and asymptotic valuestef, and

5,1 are equal to zero following from (14) and (16).

Fig. 10. OP ford = (2, 3,2) km.
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the total distancésp. For example, at an OP value of—*, the 3-hop BA system outperforms

the 2-hop BA system by arourid8 dB. This reduction in the OP is associated with an increase

in the APD as shown in Fig. 8 since the packets will be queuezhatadditional buffer before

reaching the destination.

Fig. 9, Fig. 10 and Fig. 11 illustrate the performance witlptd as the bottleneck hop

for d = (2,3,2) km. As expected from (16), the dominant state is clearly oleskto be
1= (L—-1,1) = (4,1) followed by the statd = (L,0) = (5,0) as highlighted in Fig. 9.
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Fig. 11. APD ford = (2,3,2) km.

A shown in this figure, the gap between the approximate andtesedues ofr,; and s is
practically negligible for all values of?,,. Regarding the remaining statés$ 0) and (5, 1),
both (14) and (16) predicted that the corresponding apprate and asymptotic steady-state
probabilities are zero. This prediction is not problemaiicce the exact probabilities, , and
751 are several orders of magnitude smaller than the probabilit ; andrs, as shown in Fig.
9. Comparing the OP curves in Fig. 10 yields to similar findiag in Fig. 7 where the exact and
approximate OP curves practically overlap with each otbeafl values ofP,,;. Moreover, as in
Fig. 7, the gap between the asymptotic and exact OP curvesignificant for average-to-large
values ofP,,. In terms of APD, Fig. 11 reveals that the approximate amalyiglds results close
to the exact APD where the two corresponding curves overli#p @ach other forP,;, > 6 dB.
Whereas, the asymptotic APD shows significant deviatiomflmth the exact and approximate
APD curves for lowP,, values. Results in Fig. 10 and Fig. 11 show that the 3-hop B#esy
achieves the smallest OP at the expense of increasing the R&§ults in Fig. 10 also highlight
on the benefit of placing two relays between S and D. For ex@naplan OP value af0—2, the
3-hop system outperforms the 1-hop systendlB and16 dB in the absence and presence of
buffers, respectively.

Fig. 12, Fig. 13 and Fig. 14 show the performance for the tktdnario where hop 3 is
the bottleneck withd = (2,2,3) km. From (19), the probability is split, as observed in Fig.
12, among the statds= (L — 1,L —1) = (4,4),1 = (L —1,L) = (4,5),1 = (L, L — 1) =

(5,4), andl = (L, L) = (5,5). In this simulation setupg,s = 754 following from (17) since
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Fig. 12. Dominant group of steady-state probabilitiesdo= (2,2, 3) km.
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Fig. 13. OP ford = (2,2, 3) km.

p = q following from the fact thatd; = d,. Figures 12, 13 and 14 demonstrate the accuracy
of the proposed performance evaluation approach in thid ggenario as well. Regarding the
asymptotic approach in [21], while the asymptotic OP mat§en acceptable level of accuracy
as shown in Fig. 13, the asymptotic APD value2f. — 1) = 8 diverges significantly from the
exact APD for P, values below 10 dB as highlighted in Fig. 14. This furtheesses on the
significance of the presented approximate analysis. ReBulFig. 13 demonstrate the boosted
levels of reliability that can be reaped from equipping tekys with buffers. For example, at

an OP value ofl0~2, the BA systems outperform the BF systems%gB and10 dB with one
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Fig. 14. APD ford = (2,2, 3) km.

relay and two relays, respectively.

V. CONCLUSION

In this paper, we studied a three-hop BA FSO system wheree thifferent cases arose
depending on the bottleneck hop. For each case, we derigedutage probability and average
packet delay through an approximate analysis as exacicuutave seemed to be out of reach
due to the large number of states. Results confirm that thptedanethodology results in OP

and APD of higher accuracy than those reached using an astimphalysis.

APPENDIX A

The inter-subset transition probabilities are presentedhle dotted arrows in Fig. 3. From
(9), sincez, y and z stand for the steady-state probabilities of being in s#SgtS, and Ss,
respectively, then the balance equations between the tsub@e be written asi(1 — p)qjz =
(p(1 —¢q)ly and[(1 — p)(1 —q)r]y = [(1 — p)g(1 — r)]z. Solving these equations along with the

equationz + y + z = 1 results in:
r=—L2 (37)
ptq+r

q
= 38
S vl —g +r (36)
T
Z = .
p+qg+r(l—r)

Next, we derive the balance equations pertaining to theeghdy assuming that it is closed.

(39)
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At1=(0,0): (1 —p)moo=p(l —r)mp1 = 71 = ﬁﬂo,o-
At 1= (1,0), the transition probability, () 2,0) Will be neglected as this transition is not
confined in.S;. Therefore, the approximate balance equation becorties: ¢)m o = (1 —

p)moo+ (1 =p)(1 =7)mos = (1= p)mog+ (1 = p)(1 =) s5tsmo0 = (1 = p)moo(l + 52) =

_ _1-p
1.0 = {i=g)p0.0-

Atl = (1,1), the probabi|itiest(1,1),(2,0), t(171)7(172), t(271)7(171), t(270)7(171) and t(0,2),(1,1) will
be neglected as these transitions are not confinefl; inConsequently, the approximate bal-

ance equation can be written g1 — ¢)(1 —r)m1 = (1 — p)rmeq + (1 — p)(1 — ¢)mio =
[(1—@% 1 <1—p>2] o (1) (1-p)?
0,0 —

p(1-r) p p [ﬁ + 1} To0 = 11 = P2(1—q)(1—r)2 10,0~

Therefore, the following relations hold:

_ 1-p .

70,1 —p—(l_T)Wo,o,
_ 1-p .

71,0 —(1_q)p7T0,0y . (40)
_ (1-p)?

1,1

= p-g(1—n2 100"
Sincemy o + m1 + m1,0 + m11 = x, then the following relation follows from (37) and (40):
1-— 1-— 1—p)?
oo (1 o —Z:“) - egp i pz(l(—q)g)—r)z) B p+Z+r'
Simplifying the above equation and replacing in (40) resButhe first four equations provided
in (11).
Next, we consider the transitions insidg. At 1 = (2,0), all transition probabilities of the

form t(,.0) are neglected ak ¢ S, implying thatmy o = 0.

(41)

At 1= (3,0), the probabilityt ¢ (1,0) Will be neglected as the transition is not limited $5
and the balance equation becom@s: q)ms = (1 —p)q(1 —r)m; = ms0 = %m,l
Atl = (3, ]_), the prObabilitieSt(gJ)’(;l’()), t(371)7(372), t(470)7(371), t(4’1)7(371) and t(2’2)7(371) will all

tend to zero as the transitions are not limitedSinand the balance equation becompe&t —

2

Q)1 —=7r)m1 = (1 =p)(1 = )30 = q(1 —7r)(1 —p)’myy = w31 = (13(_11!1)(1)(17@’1

Therefore, the following relations hold:

20 — U,

T30 = 7(1_171)3((11_T)W2,1; . (42)
2

3.1 (;(lli)q)qﬂ 1

Sincemy o + mo1 + T30 + m31 = y, then from (38) and (42):

(1=-p)gl—=7r)  (1—=pPq) q
W2’1<1+ 1—g¢q +p(1—q))_p+Q(1—Q)+T'

(43)
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Simplifying the above equation and replacing in (42) resuthe second set of four equations
in (11).
Finally, we consider the subsét. At 1 = (2,2), neglecting the probabilities unconfined to

Sy yields: (1 — p)(1 — q)rme = p(1 — q¢)(1 —r)mg0 = Moo = (1(1 ))7r32 Atl = (2,3):

(= pg(l = )mas = (L= q) pL=7) +r(L=p) Mz = oy = 52 [ + 55| mo. At
1:(3,3):p(1—q)(1—r)7r3,3:(1— P —q)rmsy = myy = Limy .

Therefore, the following relations hold:

1—r

e -
LL } LEPH (44)

33 = ;l(lpr) 3.2
Sincemy s + mo 3 + T3 2 + 33 = 2z, then from (39) and (44):
pl—r) 1—qf p r (1—p)r .

L + + + — . s
e e e = =) e e

Simplifying the above equation and replacing in (44) resulihe last four equations in (11).

APPENDIX B

Similar to Appendix A, we will first consider the inter-sulbgeansition probabilities denoted

by the dotted arrows in Fig. 4. Solving the two correspondatance equations:
_(d=-pg . _(A—gr

Ty oz= ; 46
pi—0 a(i-n" “o
as well as the equation+ y + z = 1 results in:

- (47)

p+q+r

q
y= (48)

p+a(l—q)+r

- (49)

:p+q+dl—0'
It is worth highlighting that in developing (46), the tratsh probability ;2 1) (.-1,0) =
(1—p)q(1 —r) was approximated byl — p)q S0 thatm ;s 1) (1—1,0) = T(L-20),-1) = (1 —Pp)g
that will denote the inter-subset transition probabilitpri subsetS; to subsetS,. Similar
approximations are used to determine the transition pibted® from S, — S;, So — S3 and
S3 — S.
Looking into S;, we solve the three following balance equations where wdenegll the
transitions to or from a state outside the $gt (i): At 1 = (L — 3,0), w30 = 0. (ii): At

January 13, 2021 DRAFT



29
1 =(L—-20),1-=p)(1—=q)mr00=0p1—-q1—=1r)Tr-01 = 720 = p(ll_ Loy, 2,1-
(i) At 1 = (L—-3,1), (1 —p)g(1 —=r)mp—31 = p(1 —¢)(1 —r)mp—a1 + p(1 — Q)20 =
[p(l - Q)(l )+ p(llqi)p(lr) MTr—21 = TL-31 = (Ii(_llj)%)qﬂ'L—Z,l-
Therefore, the following relations hold:

T30 =0;

Tp—20 = %7@—3@; (50)
)2

Tp—21 = S(li)q)qﬂ'L—&l-

Solving (50) while taking into consideration that_s o+ 7731+ 720+ Tr—21 = x results

in:

(1-—pgd—r) (- p)ZQ> p
+ = s 51

(1—q) p(1—q) prq+r (1)
where the probabilityr was replaced by its value from (47). Finally, replacing (31)(50)

TrL—31 (1 +

results in the first four equations in (14).

Next, considerS,. At1 = (L —1,0) andl = (L, 1), all transition probabilities are neglected
as all the transitions to these states are from states eutéithis set implying thatr, 1o =0
and7,; = 0. At 1= (L,0): (1—q)mpo = %m_u. Combining this equation along with
the equationr;,_ o+ mr—11 + 7o + 71 = 11 + 7o = y results in the second set of four
equations in (14) wherg is replaced by its value from (48).

In regards to the third subseéf, atl = (L 3), 73 =0.Atl = (L—-1,2): (1—-p)(1—
Qrrp—12=(1—-q)(1—r)mp2 = Tp_12= (1 p) T2 Atl = (L—1,3): (1—p)g(1—7)mp_13 =
(1—q)(r+(1—r))rms = 713 = mﬂLg Combining these relations results in:

3 =0,
TrL—-1,2 — (1 p) L2 . (52)
MLl = gt The

Sincerp o+ T3+ o190+ Tpo13 = from (49), then solving (52) results in:

= prera=n)
L—r l1—g¢q ) r
|\ L+ + = . 53
L’z( (L=pyr (A=pyl-r)) p+g+rl-r) (53)
Finally (52) and (53) result in the last set of four relationg(14).
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APPENDIX C

Similar to the previous appendices, solving the inter-stilmlance equations along with
x+vy -+ z=1results in (refer to Fig. 5):

_p
x_p+q+r (54)
B q
Y prai—q +r (53)
: (56)

z = .

p+qg+r(l—r)

Looking into S;, similar derivation steps as those provided in Appendix A &ppendix B
show that the local balance equations will result in:

TL-3,L-3 = ?1(1_;;27TL—2,L—3;
TL-2, -2 = S(l_f,)j;WL—ZL—s; ) (57)
TL—3,L-2 = % & + ﬁ] M[—92,[,—3-
implying that:
pd—r) (A—=pr 1—q[ p r p
mp_or_3| 1+ - - - = 58
LQ’“’( (L=p)r p(l—r) ¢ [1-p 1-7 prqtr (58)
sincem;_s -3+ Tr_31-2+ Tr_21-3+ TrL_21—2 = .
At S, the balance equations will yield the following relations:
-2 =0;
Tr—1,L-3 = %WLL—:@J . (59)
TL—1,L-2 — G_IJ)%WL,L—?,-
Solving (59) along with the relation;_y ;5 + 7r—1,1—2 + T -3 + T —2 = y results in:
l1—q q
Tr,L—3 1+(1—q)(1—7“)+ ) = . (60)
( (L=pg(l=r)) p+tqll—q) +r
In regards to the third subsét, the following relations hold:
Tr—1,L = (11:IST7TL,L;
TL,L—1 = ul_;;VWL,L; . (61)
_ (-2
TL-1,L-1 = [{A—p)2{d—qn2 "L,L-
Sincerny, 1+ 7L +7Tr-1-1+ 7-1.L = 2, then (56) and (61) yield:
1—7r 1—7r (1 —17)? ) r
WL,L 1 + + + = . (62)
( (I=pr (A-=qgr @Q-pPQ-qr’) p+tqg+r(l-r)

Finally, replacing (58), (60) and (62) in (57), (59) and (&Bspectively, results in the solution
provided in (17).
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