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Abstract—In this paper, we consider two-way relaying where (APD). DF BA relaying with a single relay was considered
two users exchange information through a decode-and-forwa in [7] with the objective of maximizing the throughput over a
(DF) buffer-aided (BA) relay. We formulate a generic BA relaying ., ymunication session that extends over an infinite number o
protocol that is based on both the channel and buffer statesrad .. . . .
that can be parameterized by two parameters. Through a Marke time slots. W_h'l,e the one—_v.va.y BA relaying schemes in [11_[7]
chain analysis, we show how these parameters can be seleced ~are deterministic, probabilistic schemes were proposg#él]in
the sake of minimizing the outage probability (OP) and averge [9] where an additional randomness is imposed on the link

packet delay (APD) for asymptotic values of the signal-to-oise  selection protocol for the sake of achieving different Iewvaf
ratio. The performed optimization sheds more light on the inpact tradeoff between OP and APD.

of the buffer sizes on the triad of diversity order, coding gén - . .
and APD that can be contemplated. In particular, we prove In addition to lone-way _BA fe'ay'”,@ tvyo-way BA relalyllng
that equipping the relay with two buffers of size three each Was also extensively studied due to its high spectral effayie

is sufficient for extracting the full capabilities of two-way BA where two HD users exchange information via a relay [10]-
relaying. Depending on the network setup, one or both buffer [21]. Unlike one-way relaying where only the traffic genecht

sizes can be further reduced to two at the expense of a reduced by a source node (S) is considered, two-way relaying must als
coding gain without affecting the diversity order and asympotic '

APD. Simulations under the generalized:— i fading demonstrate account for tr_'e traffic generated by .the destination node (D)
the appropriateness of the performed optimization of the réaying AS such, unlike one-way BA selection protocols that select
parameters and buffer sizes. among two possible transmission modes (S transmits toya rela
Index Terms—Relaying, cooperation, decode-and-forward, ora reI_gy transmits _to _D) [1]-{9], two-way relayir_lg involve
buffer, data queue, Markov chain, outage probability, queing an additional transmission mode where D transmits to a relay
delay, asymptotic analysis, diversity order. Moreover, in two-way relaying, the relay transmits a XORed
packet to both users in a broadcast phase. Finally, for one-
way BA relaying, each relay is equipped with a single buffer
for storing the information received from S. However, two-
The last years have witnessed an unprecedented progigs§ BA relaying necessitates equipping each relay with two
in the area of buffer-aided (BA) relaying. Equipping theyuffers (or, equivalently, splitting the single buffer antwo
relays with buffers offers flexible scheduling that mart$es gjsjoint parts) for the sake of storing the packets from ®th
into enhanced levels of throughput and diversity [1], [2hnd D before these packets are XORed and broadcasted by the
BA relaying was primarily introduced in dual-hop one-wayelay. As such, the complexity of the Markov chain analysis
cooperative networks where the information is transferrggcreases exponentially with the number of relays (resp. tw
from a source node to a destination node via a number ghes the number of relays) in one-way (resp. two-way) BA
relays [1]-[9]. In the context of one-way relaying, reséarchetworks.
focused on the problem of relay selection in half-duplex A transmission rate optimization problem was formulated
(HD) decode-and-forward (DF) networks [3]-[5]. In [3], iab  and solved in [10] in the case of infinite-size buffers. The
been demonstrated that activating the link with the hlgh@trategy in [10] was based on the channel state information
instantaneous  signal-to-noise ratio (SNR) achieves thle fgcs|) and was built on the assumption that each one of the
diversity order with infinitely large buffer sizes. By gign two buffers at R contains a large enough number of packets so
preference to transmission at the relays, the protocol Jn [that the maximum transmission rate is guaranteed. Rate-maxi
resulted in reduced delays compared to [3]. By taking in{gization was also considered in [11] with large enough buffe
account both the channel quality and buffer state, the Bdyes. In addition to the CSlI, the states of the buffers wise a
scheme in [5] achieves full diversity with finite size bulfertaken into account in [11] where a heuristic algorithm was
while keeping the delay at acceptable levels. The heurisfgoposed to abridge the difficult exact problem formulation
algorithms in [3]-[5] were unified in [6] in the special casle Othat follows from considering the special cases where the
a single relay highlighting on the tradeoffs that can beead puffers are either full or empty. Large enough buffer sizes
between the outage probability (OP) and average packey defgere also assumed in [12] that tackled rate maximizatioh wit
o _ ~aresidual energy based relay selection approach for energy
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transmission and fixed rate transmission, respectivelfl4h, between transmission from R and transmission from the users
[15], the optimal transmission mode is selected for maximgiz (eq. (2) in [20]). This alternation constrains the perfonta

the sum throughput in the delay unconstrained and delafthe system and is not justified since R possesses storing
constrained scenarios respectively. While the mode sefectcapabilities and, hence, can transmit or receive over more
is SNR-based in the case of infinite buffer sizes in [14], than one consecutive slots. Finally, while our work conside
mode selection is based on both the quality of the links aad trelay buffers with small sizes, the queuing theoretic asialy
buffer state with finite size buffers in [15]. While the relag in [21] assumes that the buffers are sufficiently large so
schemes in [10]-[15] considered the transmission over #rat there are always spare spaces in the buffers. Moreover,
infinite number of time slots, a practical slot-by-slot tway while the relaying schemes in [20], [21] are heuristic, the
relaying scheme was proposed and studied in [16] based opraposed scheme is optimized to achieve the best OP and APD
Markov chain analysis. performance.

Two types of traffic were considered in [17]; namely, an up- Two approaches can be adopted for designing BA relaying
link (UL) traffic and a down-link (DL) traffic. However, thesestrategies. The first one is an ergodic approach based on
two data traffics flow independently from each other sincepnsidering an observation window comprising a number of
unlike the considered two-way relaying scheme, these ¢gafftime slots that tends to infinity [7], [10]-[15]. The second
are not XORed at the relay. For example, for the orthogoragbproach revolves around the design of practical slothbty-s
scheme in [17], each time frame is divided into two slotslgorithms [3]-[6], [16], [20], [21]. While the first approh
one for the UL and the other for the DL and, thus, the studiésl more suitable for infinite and large buffer sizes, the seco
system is equivalent to two parallel one-way relaying syste approach holds for any buffer size and, in particular, foabkm
An amplify-and-forward (AF) two-way BA relaying schemebuffer sizes where the transient effects resulting fronmgll
was proposed in [18]. This scheme enhances the reliabflity the buffer at the beginning of the transmission session and
the system through time-diversity where the same informnatiemptying it at the end of this session cannot be neglected.
packet is transmitted over several time slots, thus, intgra In this work, we propose a novel slot-by-slot relaying
sharp reduction in the effective throughput. Compared &), [1 strategy for BA DF two-way networks where the relay is
the proposed solution reduces the outage probability whiguipped with buffers having practically-appealing firsiees.
transmitting each packet only once which positively impacihe relaying protocol is completely controlled by two thres
the network throughput. Moreover, storing the decodedriginaold parameters that are further optimized by consideringeth
packets in DF systems requires smaller buffer sizes cordpaf@uality-of-Service (QoS) indicators; namely, the OP, APD
to storing quantized values (over large number of levels) ahd diversity order. The capability of the proposed scheme i
the received samples for AF relaying. An adaptive rate twachieving optimal performance with finite size buffers diga
way relaying scheme was proposed in [19] where the trardifferentiates this scheme from (i): the existing heucistigo-
mitted packet spans more than one fading block. This cleariyfhms in [11], [12], [15]-[21] that can be applied with fiait
differentiates [19] from our work that proposes a fixed ratgize buffers and (ii): the optimal approaches in [10], [1#§tt
block-by-block scheme. While the modulation and physicélbold only for infinite size buffers thus circumventing theede
layer network coding were not addressed in [19], the proghosir implementing procedures that avoid the buffer overflow.
solution can be implemented with simpler transceiversesind major stage in the performed optimization revolved around
one coding and modulation scheme is needed for fixed rateriving simple closed-form expressions of the OP and APD
transmission. Moreover, confining the packet transmission for asymptotically large values of the SNR through a Markov
a single fading block incurs smaller delays and lower conchain analysis. These OP and APD expressions captured
plexities of the encoder and decoder. On the other hand, the dependence of the system performance on the threshold
implementation of [19] requires that a number of constmintvalues and buffer sizes in an intuitive manner thus allowing
on the time evolution of the channel states must be satisfieat the formulation of simple design criteria. Motivated by
unlike the block-by-block scheme proposed in this work théte large values of the buffer sizes considered in the open
does not impose any similar constraints. Finally, [19] adopliterature on BA two-way relaying, a primary focus in this
predefined scheduling where each time slot is divided intowark is dedicated to the issue of the buffer size; in paréigul
multiple access phase that precedes the broadcast phédse udetermining the smallest buffers that can be deployed witho
our work that relaxes this restriction by allowing any nodgopardizing the system performance. Denoting by and
to transmit over consecutive time slots. Similar predefindd, the sizes of the two buffers at the relay, [10]-[16], [21]
scheduling was adopted in [20] and [21]. Two variants afssumed that, = L, = L with L — +oco in [10], [13], [14],
two-way relaying were considered in these referencesriiffe [21], L = 500 in [11], [12], L = 10 in [15] while values of
by whether R transmits only XORed packets or can transniitup to 40 were considered in [16]. In contrast to these large
a packet extracted from one of the buffers. The predefinedlues, we prove that nothing can be gained from increasing
scheduling clearly differentiates [20], [21] from our wofkor (L1, Lo) beyond(3,3) in the asymptotic regime with opti-
example, for the Markov chain (MC) analysis considered imized relaying. Moreover, the buffer sizes(@f 3), (3,2) and
this paper, a state of the MC is completely defined by tw@, 2) can also achieve a full diversity order with a reduced
parameters corresponding to the numbers of packets storedading gain depending on the network topology in generdlize
the two buffers at R. On the other hand, a third parametery fading environments. Regarding the queuing delay, unlike
was added to the MC state in [20] forcing the MC to alternatée heuristic strategy in [16] where the asymptotic APD ggow



linearly with I when L is big enough, the proposed schem— — » uplink unicast Channel
achieves the smaller asymptotic value3as for all values of % Downlink Broadcast Channel °
L. In this regard, the appealing small values of the diversit .7
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achieving buffer sizes and queuing delays follow as dire « -, -, >
consequences of the adopted optimization methodology, th@ - ->| | | | | | | o) | | | | | | -——
highlighting on the effectiveness of this approach. —Q Erd

II. SYSTEM MODEL Fig. 1. Buffer-aided two-way decode-and-forward relaysygtem model.

A. Basic Parameters

Consider a three-node network, as depicted in Fig. 1, whejge-sided Gaussian distributions. The communication Ank
no direct link is available between the nodes A and B thﬂ is in outage if the Corresponding channel Capaciw falls
communicate with each other through a relay R. We assumiglow the target rate;, (in bits per channel use (BPCU)).
that the nodes are equipped with a single antenna each. We gle outage probability along this link is denotedbgnd can
assume that all nodes are half-duplex (HD) and, hence, tanpe determined fromp = Pr($logy(1 +v|h1[?) < ro) where
transmit and receive simultaneously. The signals receavéd - stands for the average transmit signal-to-noise ratio (SNR
B and R are corrupted by an additive white Gaussian noiggile the factorl /2 captures the fact that the communication
(AWGN) with zero mean and unit variance. We consider getween nodes A and B requires two time slots [3], [4].
flat block-fading channel model where the channel coefftsiensimilarly, the link B-R is in outage with the following proba
along the A-R and B-R links remain constant over a blodkjjity: ¢ = Pr (3 logy(1 4 7|ha|?) < r0). For thex — u fading
fading duration and vary independently from one fading blognodel, the parameter describes the ratio between the powers
to another. We denote by, andh, the channel coefficients of the dominant and scattered waves while the parameter
between A and R and between B and R, respectively. Finally,denotes the number of multi-path clusters. Denoting by
following from the channel reciprocity, the transmissidrmsn (1, 1) and (kz, p2) the parameters of the — ;. distribution
R to A and from R to B experience the same fading coefficiendgsociated with the links A-R and B-R, respectively, thegat

hi andhs, respectively. probabilities can be determined from [23]:
While the adopted system model considers HD relaying in a

way that is analogous to the majority of the existing one-way 7 =1 —Q,, (\/2111#17 V2t (14 m)(Qw)’l) 1)
[3]-[9] and two-way [10]-[21] relaying systems, the resdmar —
on fuil-duplex (FD) relaying is on the rise [2], [22]. While =1~ @ (\/2”2“2’ V2t (14 52)(27) 1) (2

conventional HD relaying relies on transmitting and recgjv whereQ,..(-, -) stands for the generalized Marcugrfunction
in different time slots, FD operation supports concurreams- \pije ¢ 2 22r0 _ 1. Finally, ; = E[|h[2] and Qs = E[|1|?].

mission and reception thus improving the theoretical iadialie For asymptotically large values of the SNR, the outage
spectral efficiency by a factor of two. However, in praaic%robabilities in (1)-(2) tend to:

HD relays may be preferred as they are easier to implement

than FD relays that suffer from residual self-interfere(8§ e h1 Oy M

even after cancellation. In fact, the theoretical doubbifighe 7 (1 +1) Lm(l T m)} ;

throughput was not attained experimentally and heavy SI may

even reduce the capacity of FD systems as compared to HD q— [

systems and may lead to oscillations within the transceiver Duz +1) Leua(1 + k2)
rendering the communication system unstable [2]. Morgoverherel'(-) stands for the gamma function. Equation (3) shows
a network-level capacity analysis reveals that inter-limler- that the diversity ordetsalong the links A-R and B-R are
ference and spatial reuse substantially reduce the FD gadgual toyn; and .o, respectively.

rendering it well below the theoretical value of two in pieat

scenarios [22]. The proposed HD scheme can be extengedp,qyet Exchange and Buffering

to FD relaying by allowing for two additional transmission

modes where A-and-R and B-and-R can transmit together. K ledae/ K led ACK/NACK) f h
However, the achievable gains will be highly dependent ort acknowledge/no-acknowledge ( ) from the

the levels of SI assumed. Moreover, as in [3]-[16], [18]11[21receiving node. The reception of a NACK or ACK message

we assume that the direct link between A and B does not e .@ icate_s whether th_e cor_responding link is i_n outa_lge of n_ot
because of shadowing and path-loss effects. If this linktexi respectively. As depicted in Fig. 1, the relay is equippethwi

the proposed scheme can be extended to a hybrid sch W2 l_)uf;erfs; oneAbuffzr, denoteddb)k/)l%ffor sté)ring tt(wje pacnj()ets

that adaptively switches to the direct transmission mode "ffcélved from A and a second bufler, denote by, Bor

the direct link can support the target rate. storing the packets received from _B. The sizes of these_ |t$u1_‘fe
In this work, we adopt the generalized- 1 fading model are denoted by.; and L, respectively. Four modes arise in

due to its wide applicability and generality [23]. The— the network. (i): Node A is transmitting. The transmissidh o
dlstrlbutlon en(_:ompgsses mar_]y well known_fadlng_ models astye diversity order is defined as the negative slope of thes@Bus-SNR
special cases including the Rice, NakagamiRayleigh and curve when plotted on a log-log scale.
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The communication from a transmitting node is followed by



a packet from A to R necessitates that the link A-R is nahade among A and B depending on the values @ndis. In

in outage and that Bis not full. (ii);: Node B is transmitting this case, priority should be given to filling the buffer hayi
which can occur only if the link B-R is not in outage and Bthe smaller number of stored packets in order to avoid the
is not full. (iii): The relay R is broadcasting a packet that isaturation of the other buffer. In other words, priority gltb
generated by XOR-ing a packet from A and a packet from Be given to A (resp. B) if; < [y (resp.l; > [3) and a random

At A, the packet from B can be reconstructed by XOR-ingelection is made if; = Is.

the packet received from R with As own packet. A similar Moreover, a node might lose its priority to transmit if the
reconstruction is implemented at B. As such, entering thi®rresponding link/links on which it is attempting to tramis
mode necessitates the presence of at least one packat inidfare in outage. This shift in the priority from one node to
and at least one packet in,BMoreover, both the R-A and another consequences a more efficient use of the network time
R-B links must not suffer from outage so that the XOR-erksources by avoiding the transmission over a channel that
packet can reach both A and B. (iv): Finally, if none of theloes not meet the target rate requirement. In other words, A
above transmission requirements are met, the network islases its priority to transmit if the link A-R is in outage, B
the idle mode and no node will be transmitting. Finally, ioses its priority to transmit if the link B-R is in outage and
analogy with [10]-[16], we assume an infinite supply of datR loses its priority to transmit unless when both links R-A
at A and B and we assume that these nodes are equipped &itd R-B are not in outage. Consequently, the network enters

infinite-size buffers. in one of the four previously delineated modes as follows:
Regarding the order of reception of the packets, it's worth _ |t poth the A-R and B-R links are in outage, the network

highlighting the following. (i): The buffers operate undbe is in the idle mode.

First-In-First-Out (FIFO) principle. (ii): There is no pieat loss - If the A-R link is not in outage and the B-R link is in

in the sense that the information packets are stored either i outage (with probabilityf1 — p)g), node A is selected to

As buffer, or in B's buffer or in R's buffers (until the chaeh transmit if the buffer B is not full (so that the received

cenditions are faverable for theee packets to be commuadcat packet can be accommodated). In this case, ifsBfull,
without outage). (iii): R transmits only XORed packets to A ihe network will be in the idle mode.

and B. Therefore, the-th transmission from R will involve  _ |t the A-R link is in outage and the B-R link is not in
the n-th packet from A (at the head of the buffef)Band the outage (with probability(1 — ¢)), node B is selected to
n-th packet from B (at the head of the buffes)BTherefore, transmit ifly # L while no node will transmit otherwise.

no involved network coordination is needed for A and B t0 _ |f poth the A-R and B-R links are not in outage (with
know which packets were XORed since the XORed packet propability(1—p)(1—q)), the following selection strategy
transmitted from R in its:-th transmission epoch carries the g implemented as rationalized before:

n-th packet of A and the:-th packet of B. This simplicity

of implementation clearly distinguishes the proposed sEhe Iy > l(l) , lo > lt(hQ), R Tx;
from the existing schemes [14]-[16], [20], [21] since, irsk I < 1(1) o > ltﬁf), A Tx:
references, the XORed-message broadcasting is not imposed I 1(1) Iy < 12 B Tx
1> th » ‘2 th > X,
on R. As such, the packet overhead for these schemes must L <ly, A TX '
disadvantageously include A's packet number and B’s packet o< 1D < 12 Lo>1 ’ BT !

. 1 =4 5 b2 th > 1> b2, X,
number since the packets at the heads of the two buffer B I, =l,, AorBTx
and B, might not have the same number unlike the scheme ’ (4)
we propose.

Finally, from (4), the threshold levels must satisfy the

C. Relaying Strategy following relation:

We denote by, the number of packets stored in Bith 0 < lt(hl) #Ly ; lt(hQ) # Lo, (5)
l; < L; for i = 1,2. The relaying scheme needs to incentivize
R to receive when the numbers of stored packets are small &fitbe, otherwise, the relatiords > 1) andl, > 1§? cannot
to transmit otherwise. The judgement on whether the numb®g satisfied and R can never transmit.
of packets are small or Iarge |s fixed by the two threshold The exchange of signaling messages is orchestrated by R.
levels lth e {0,...,L1} andl € {0,...,Ly}. As such, Based on the numbers of stored packets at Rifd/;) and on
considering the link A- R, the pr|0r|ty should be granted for the availability of the A-R and R-B links (acquired througet
to transmit ifl; < lt( and for R to transmit i, > 1] (1) The exchange of ACK/NACK signals with R), R makes a decision
and ©n which node must transmit at each time slot. R then shares
this decision with A and B by broadcasting a short signaling
message that precedes the information message in each time
If I3 > l ) andly > lth , priority is given to R that attempts slot. Srnce-the net\rvork comprises three nodes, a 2-b|tm@a

message is sufficient for informing the nodes on the single

to broadcasta XOR-ed packet to A and B. (ii)tif< I, and node that was selected to transmit. This signaling overhead
> 1), pr|0r|ty is given to A to transmit a packet to R. (ii): js judged to be very small and, hence, it does not affect the
If 1 > 1y andl, < I, priority is given to B to transmit a effective throughput of the network. This signaling oveatie
packet to R. (iv): Ifl; < l(l) andl, < lt(hQ), a selection must be is also smaller than that of [14]-[16], [20], [21]. In factrf

same holds for the Irnk B-R where B transmitg4f< l

R transmits ifl; > l Therefore the relaying protocol selects
the transmlttlng node accordlng to the following priori:



these references, the signaling message broadcasted from B Case Il: [} < lt(hl) andly > lt(hQ). Since the priority is
must include an additional bit since A and B can transmifiven to A, then:

together, R can transmit to A alone and R can transmit to B

alone (for example, refer to Table | in [14], [15]). b o), (h+102) = 1 =P (11)

regardless of the state of link B-R. Equation (11) impliestth
a packet can be readily delivered from A to R if the link A-R
is not in outage since the relatidn < lt(hl) and lt(hl) # Ly

In this section, we carry out a Markov chain analysis t§70m (5)) implies that; 7 L, and buffer B is not full.
evaluate the steady-state distribution, OP and APD. A state On the other hand, if the link A-Ris in outage, priority
the Markov chain is represented by the numbers of packé&fdfts to B. In this case, the number of packets storedsn B
present in the two bufferé;, i;) resulting in a total ofV, £ will either increase by one if the link B-R is not in outage and

IIl. PERFORMANCEANALYSIS

(Ly + 1)(Ly + 1) possible states. this buffer is not full or it will remain the same otherwise:
1102, (1o +1) = P(1 = @)1, 2L, (12)
A. Transition Probabilities baata),(11,1) = P4+ P(L = @)1=, (13)

We denote byt 1)) the transition probability of 3) Caselll: [, > 1§y andl, < 1y where the transmission
moving from the statél,, [») to the statél}, 13). The transition priority is given to B. Interchanging the roles of nodes A and

probabilities satisfy the following relation: B in (11), (12) and (13) results in:
L Ly b o), (hle+1) = 1 = @ (14)
Doty =1 bt ), (1 +1,02) = (1 = P)ad1, 2L, (15)
1=015=0 t(ll-,l2)v(l1-,l2) =pq+ (1 - p)q(gll:Ll' (16)

V (I1,12) €{0,..., L1} x {0,...,La}. (6)
(h12) €4 it 2} 4) CaselV: llglt(hl) andlgglfﬁ)whereanodeamongA

In what follows, ¢, 1, .,y = 0 if the new state(;, 13) ¢ and Bis .selected to Fransmit. The numbelrs of stored packets
{0,...,L1} x{0,..., Ly }. The transition probabilities will be will remain the same if both A-R and B-R links are in outage:
determined in the four following cases following from (4).

1) Case I I; > I8 andi, > 1> where the priority is
given to the transmission from R. In this case, if both the On the other hand:

R-A and R-B links are not in outage, then R successfully 1

manages to communicate the XOR-ed packet to both A ahh.i2).(+1.12) = (1-p) {q +(1-q) <5ll<lz + 5511—12>J )

B. Consequently, a packet is freed from &d another packet (18)

is freed from B for the sake of generating the XOR-ed packeivherel; can increase by one only if the link A-R is not in

This results in: outage. In this case, the selection of A (rather than B) to
transmit is triggered because of one of the following reason

ty ) (i—11a—1) = (1 = p)(1 = q). (7)  (i): The link B-R is in outage. (ii): The link B-R is not in

outage but B contains a smaller number of stored packets

When the link A-R is not in outage while the link B-R is incompared to B. (iii): The link B-R is not in outage anj = I,
outage, it is only meaningful for A to transmit. In this caBe, entailing a random selection among A and B where each one
can accommodate for the incoming packet only if this buffejf these nodes can be selected with probabiljt.

b1y 12),(11,12) = PY- (17)

is not full resulting in: Similar to (18):
1
bt n+1ie) = (1= P)adu 2Ly, @)t 000 = (11— ) [p +(1-p) (5ll>z2 + 5511—12)J '
whereds = 1 if the statemeng is true andds = 0 otherwise. (19)

Similarly, when the link A-R is in outage while the link
B-R is not in outage, B is selected to transmit and the numtr Steady-State Probability Distribution
of packets in B will increase by one if it was not initially

ull The transition probabilities will be stacked to form thig x

N, state transition matrix:
L1y ,00),(11,1a41) = P(L = @)01, L, - 9)
(l1,02),(l1,l2+1) 27#L2 sz(l’l,lg),w(llyb) — t(l1,lz),(l/1.,l/2)7 (20)

Finally,__the network remains idle if (i): both hops are ifyhere the functions(-) is used to number the states and it de-
outage, (ii): A is selected for transmission but B full or  fines 5 one-to-one relation between the set of all possiatesst
(iii): B is selected for transmission butyBs full: {0,...,L1} x{0,..., Ly} and the set of integerd., ..., N, }:

t(11,02), (11 12) = Pq + (1 = p)gdi, =1, +p(1 — q)01,=1,. (10) Y (l1,l2) =l(Le + 1)+ 12+ 1. (21)



The matrixT is used to evaluate the steady-state probabiligonsequently, the average packet delay (APD) of the two-way
distribution vectorII [3]-[5]: relaying network is given by:

O=(T-1+V) v, (22) D= L;DB. (26)
Wher_eI andV are N, x Ny matrlc_es denotmg_the identity  \ne denote by the average output throughput from node
matrix and all-one matrix, respectively. Vecteris the Ns- A which is equivalent to the input throughput at Bince the
dimensional vector whose elements are all equal to 1. relaying scheme in (4) circumvents the packet loss by stappi
~ At steady-state, the probability of havirlg packets stored the reception when the buffer is full. Evidently, a packet ca
in B, andl, packets stored in Bwill be denoted byr, 1,  depart from As buffer only if the link A-R is not in outage.
and can be determined from: As such, the following two cases arise depending on whether
o - the link B-R is in outage or not. (i): If the link B-R is in
Tigs = | (0 l2) =m, (23) outage, then A is selected to transmit and a packet can be
where II,, stands for then-th element of the vectoIl in delivered to R only if B is not full with probability 1 —W(Llf-
(22). Following from the joint distribution in (23), the nwinal  (ii): If the link B-R is not in outage, then either A, B or R

distributions can be determined from: can transmit depending on the values/pfand/, according
b Ly to (4). If I, > 1§ and i, > 1, R will transmit and no
7Tl(ll) _ Z Tty 7Tl(22) _ Z Ty sy (24) packet2 can depart from As buffer. Similarly, if > lt(hl) and

15=0 1,=0 2 < 13, B is selected to transmit and no packet can exit A's

I, <1{?, B is selected it and k it A

buffer. If [; < lt(hl) andil, > lt(hQ), A is selected to transmit
thus contributing to increasing the output throughput fram
Finally, if I; < lt(hl) andl, < lt(hg), then according to (4), A can
always transmit ifl; < ls while it transmits half of the time

wherewl(k) stands for the probability of havirigpackets stored
in B, at steady-state far=0,...,L; andk = 1,2.

C. Outage Probability if {4 = lo. Thereforeya can be determined from:
The network will be in outage if no packets can be com- Li Ly

municated along the constituent links resulting in the four , = (1 — p) [q (1 _ W(Lll)) +(1-gq) Z Z My 1y X

following cases. (i): If both the A-R and B-R links are in 11=015—=0

outage, then no packets can be transferred along any of thege 1

links and the system will suffer from outage. (ii): If the Kin 5[511ng;>512>1§,3> + 5zlgz§h”5zzgz§,$> <5ll<l2 + 5511_12)” -
A-R is not in outage and the link B-R is in outage, then A is 27)
allowed to transmit in this case. Since the A-R link is notin

outage, a packet can always be delivered to R unless i&B Slmllarly_, the average output throughput from node B can
full. (iii): Similar to the previous case, if the link A-R igni P€ determined from:

outage and the link B-R is not in outage, the system will suffe Li Lo

from outage if B is full since no packet can be transmitted 7z = (1 — q) [p (1 _ 7T(L22)) +(1—p) Z Z Ty 1 X
from B to R in this case. (iv): If the A-R and B-R links are not 11=0 15=0

in outage, the system will not be in outage. In fact; it lt(hl) 1

andl, > lt(hQ), a XOR-ed packet can be transmitted from R to [6ll>th1>5lz<l{h2) + 611§l{h”512§th2> <5ll>lz + 5511—12)” :
both A and B. If]; < lt(hl) andly > lt(hQ) (resp.l; > lt(hl) and (28)
I < lt(hQ)), then A (resp. B) can succgssfully transmit a packet The delayD .4 can be determined from [24], [25]:

to R and this packet can be stored in Besp. B) following

from (5). Finally, if [; < lt(hl) andl, < lt(hg), a packet can be Dy = @ + L 1 (29)
delivered from either A or B to R. Following from the above na  NA ’
four considered cases, the system outage probability engiv

whereL(®) = S, 1) is the average queue length of buffer
By for k = 1,2. The term% corresponds to the average
delay at B and it follows from applying Little’'s law [24]. The
1 -
Wherew(Ll) and 7T(Lz) stand for the probabilities of having; B termn—A—l corresponds to the average del_ay at the infinite-size
! 2 buffer at A [25]. In fact, the number of trials to successfull
and B, full, respectively. . Lo
transmit a packet from A follows the geometric distribution
with parametem, resulting in an average number of trials
D. Average Packet Delay of LA The subtraction of 1 from this average follows since

Because of the queuing at the buffers of A and R, tife successful transmission attempt at tiaihcurs a delay of
packets generated from A will arrive at B with a queuing— 1 (fori >1). _ _
delay denoted by 4. Similarly, we denote by the average ~ Similar to (29),Dp can be determined from:
delay for the packets generated at B to reach A where this L@ 1

delay follows form the buffering at Band at B's buffer. Dp = i + . L (30)

by:
Pout=pq + (1 —pgrs’) +p(1 — g)mt), (25)



1—p—2q 2p 0 3—5p—3q 3—2p—6q P 6—8p—9¢q 64+10p—15¢q p
1 3 3 1 3 9 3 1 1485 ~ 36 6
Mg )_ 1 221) IQqu % : Mé ): ?q 3 221) 2?;0 : Mé ): 6—1 3;)6+1 q 6 2128 3q g (36)
3 3 0 0 3 0 6 3 0
IV. OPTIMIZING THE RELAYING PARAMETERS Proposition2: For p < 1 andg < 1, all the steady-state
A. Order-0 Asymptotic Seady-State Distribution probabilities not included ifI™) will tend to zero while:
For asymptotically large values of the SNR,< 1 and 1Y SR SO F
g < 1. The order-0 asymptotic analysis is based on setting m® = ¢ M DS @), (35)
. .. s . 2 0 th th » 7
p — 0 andg — 0 in all the transition probabilities provided MO M o)
35 lh T b

in Section IlI-A. In other words, the transition probabédi
will assume one of the two values of 0 or 1 while all nonwhere the matriced1{"”, M{" andMy" are provided in (36)
zero powers of the probabilitigs and ¢ will be set to zero. on the top of the page.

Consequently, the steady-state probabilities in (22) teifid Proof: The proof is provided in Appendix B. |

to constants. This type of analysis is sufficient for drawing For p — 0 and ¢ — 0, the first two rows and first two
preliminary conclusions regarding the effect of the valoés columns of the matrixMz(.l) in (36) will tend to the matrix
Il andl{;’ on the outage probability as will be highlightedvi(”) in (33) fori = 1,2, 3.

in Section IV-C. The order-0 asymptotic analysis is also While the order-0 (resp. order-1) asymptotic analysis in-
appropriate for deriving exact values of the asymptotic APblves 4 (resp. 9) states and holds f#? < L; — 1 (resp.

as will be highlighted in Section IV-D. lt(r:) < L, —2) fori = 1,2, it can be easily proven that
(0) i Qi . . o

We denote byII™ the 2 x 2 matrix given by: the ordern asymptotic analysis will involven + 2)? states
qo | e T 4py 2Nd will hold for I < Li—n—1 (for i = 1,2) for any

T rw e T o ) Bl g<n< min(Lq, L) — 1. As such, determining the steady-
b+ LIRS state distribution will incur solving(n + 1)? equations in

where, from (5),lt(hl) <Li—-1 andlt(hQ) <Ly —1. (n+1)% unknowns. For, > 2, not only such solution might be
Propositionl: Forp — 0 andq — 0, all the steady-state hard to obtain in closed form, but also the oraeasymptotic
probabilities not included idI(®) will tend to zero while: analysis in this case will not provide any further insighitee

probabilities of the fornpiq’ for i + j > 1 are several orders

M(O) l(l) < 1(2)-
1y n 1N of magnitude smaller than the probabilitipsand ¢ for large

(0) 0 ) o 2.
I = M?O)’ lt(hl) > lt(hQ)' ’ (32) SNRs. Therefore, an orderasymptotic analysis with > 2
M3,y =l will not affect the findings reached in this work pertainirg t
where: the diversity order as well as minimizing the asymptotic OP

%
=}
=

—
Lol =
W= O
(ST
O 0|

J and asymptotic APD.
(33

1
} ;MQO)Z{S } ;M§O)=[ :
) C. Asymptotic OP Analysis and Diversity Order
Proof: The proof is provided in Appendix A. u Full buffers will contribute to the system outage according

. S to the relation provided in (25). The probabiliﬁ)g) assumes
B. Order-1 Asymptotic Steady-State Distribution the following asymptotic values: !

The order-0 asymptotic analysis provided in the previous

. ) i . (1 _ .
subsection does not yield highly accurate asymptotic OP ) B, lt(hl) =L -1
results when\") < L, — 2 or I{) < L, — 2. Therefore, in Tr, =9 Peg; ly =Li—-2; (37)
this subsection, we resort to an order-1 asymptotic arsalysi 0, lt(hl) < L;—2.

keeping only the constants, the tepmand the termy while
ignoring all higher powers of the probabilitipsandg. In other
words, we neglect all terms of the forpfy? for i+5 > 1in the
transition probabilities in (7)-(19). Consequently, theasly-
state probabilities in (22) will be approximated by express

where the constants; and 3, are provided in Table I. The
first and second probabilities in (37) are obtained by addmg
the elements of the last rows of the matridds” andM'" in
(33) and (36), respectively. The value of zero in (37) fokow

from (34) and proposition 2 that suggest that the probabilit
of the formag +a1p+a2q (Whereay, a; andas are constants) Fl(l) will tend to zero for alll; > lt(hl) Lo
forp< 1 andg <« 1. L

For lt(hl) <L,—2 andlt(hQ) < Ly — 2, we denote byT(") Similarly, inspecting the last columns of the matri@ﬁo)

1) - . - .
the 3 x 3 matrix given by: andM" in (33) and (36), in addition to (3)4) and proposition
2, the asymptotic values of the probabih’ty‘2 can be obtained
) Ty TR T e from: )
) — MW g™ T @ M gD o | ) Bs, lt(hQ) =Ly —1;
T 4o ® T oy T 4o (D) 4o Tr, = Bap, lyy =L2—2; , (38)

(34) 0, I <L,-2



TABLE |
VALUES OF THE PROBABILITIESS1, B2, 33 AND B4 IN (37)AND (38)

L M) <w? T >u) [ =1 |
B1 2/3 1/3 1/2
B2 1 1/3 2/3
B3 1/3 2/3 1/2
B 1/3 1 2/3
where the constants; and 3, are provided in Table I. follows:

Following from (25), (37) and (38), the asymptotic value - For j; < po: zt <[L;—2 anollt < Ly —2.
o(fl)the OI?Q)depends on the relative values that the perameters For pu1 > o 13“1 <L, —2 andlt{:g) < Ly—2.
lin an(_:i g’ assume v_vrth respect t_bl ahd Lo, respectrvely,_ - FOr 1 = pio: lt(h) <L, -2 andlth) < Ly—2.
according to the relations summarized in Table IIl. Foliogyi
from the results in Table 111, the following design critemigan
be reached.

Criterion 1: The asymptotic OP can be minimized by s
lecting any threshold Ievel(slthl), 1(2)) satisfyinglt(ﬁ) <L;-2
and lt(h) < Lz — 2. The minimum achievable asymptotic O
in this case is equal tpq. ot

From (3), it can be observed that the probability scales B> and g“ are glr/en in Table-l whilea; = T(ui+1) and
asymptotically as,~#—#2 resulting in the diversity order of % = g (iry for ¢ = 1,2 following from (3).

11 + pe. This diversity order ofu; + ps will be referred to

as the maximum achievable diversity order in what follows). Asymptotic APD Analysis

On the other hand, a buffer-free system is not in outage
only when both hops are not in outage resulting in an O{E
of 1 — (1 —p)(1—-¢q) =~ p+ q— pg. In this case, the
performance is dominated by the worst of the two hops and na=(1—p) [q (1 _ W(Ll)) T(1- Q)SA} . (40)
the corresponding diversity order is equalton{ .y, uo}. It !

is worth highlighting that the Rayleigh distribution folis as where the summatio§ 4 is given by:

a special case of the generalized- 1 distribution by setting 1

1 = 1. As such, while the maximum achievable diversity order Sy = 7 10 42 41 + T 4@ |:6lt(h])<lt(h2) + §§lt(h1)_lt(h2):| . (42)
over Rayleigh fading channels is equalito+ ps = 2 (since

u1 = pe = 1), the maximum diversity order; + ps can FoIIowrng from (33), the foIIowrng three cases arise. (i):

Considering the choices that maximize the diversity order
accordlng to criterion 2, the coding gain is maximized by
selectrnglth < L; — 2 and lth < L — 2 following from
crrterron 1 Compared to this selection, frxrmﬁ =L -2
Ij':md/orlth = Lo — 2 results in the asymptotic losses (in dB)
provided in (39) at the bottom of the page. The constants

Following from (31) and proposition 1, equation (27) can
written as follows for asymptotic values of the SNR:

exceed two for the generalized- i fading since, in general, lth < l |mpIy|ng thatSA = O+ x 1= =. (ii): l 2)

p1 > 1andus > 1. |mply|ng thatSA =3+1ix0=1. (|||) l % (2) resultrng
Following from the asymptotic OP values provided in Tablgr 5, = 1 + 5 X % = 1 Therefore Sa=zin aII cases and

lll, the corresponding diversity orders can be determingd0) s|mp||f|es to:

as summarized in Table II. In carrying out the diversity

order analysis, the probabilitigs;, p*> and ¢> are neglected 5, = (1 — p) [q (1 — w(Ll)) + - q} ~ U —p)(- q),

compared to the probabilitiep and ¢q. Moveover, if the ' 3 3 42)

probabilitiesr and s scale asymptotically ag~#~ and~~#-,

respectively, then the term+ s will scale asymptotically as )

= min{per s} or proportional tog and, hence, the term( — Ll) can be
From Table Il, it can be observed that the maximurfiéglected asymptotically. _

diversity order ofu; + s can never be achieved if either Slrhllar calculations show that the asymptotic expression o

I =1y —10ril?) = Ly — 1. In a more general manner, the(28) is given by:

follovying diversity order-maxirhizing design criterion lds. . . (2) 1-p] _(1-p1—q)
Criterion 2: The maximum diversity order of; + u» can 1B = (1—q)|p(1=7, )+ 3 |~ :

since, from (37), the probabllltay(Ll) is either zero, or constant

: . (2) i
be achieved by selecting the threshold val[fé)s andly’ as (43)
asbHl .
T logg (14 52 afl;%z ; ) = Ly — 2 (if yun < p2);
a b#2 .
ﬁr 210 (1 +54% : 12 = Ly — 2 (if py > pa); : (39)

a H2
i logyg (14 5222 b“2 +ﬂ4a12§1) Y =L -2 & 1) = Ly — 2 (if j = ).



TABLE Il
ACHIEVABLE DIVERSITY ORDERS

I P <ro—2 | P =r1,-2 |1 =1,-1]
ll(hl) <Li—2 1+ po p1 + min{pg, p2} M1
15 =Ly —2 || po+ min{p, 2} 2min{p, po} pa
=1L -1 2 2 min{y, po}
Similarly, the asymptotic values of the average queue compared to the choicgl, L) = (3,3). (ii): For
lengths can be determined from (33) as follows: 11 > pe, @ similar conclusion can be reached by
selecting(L1, L2) = (3,2). (iii): For uy = p2 = p,
(1), 242 1 (1) (2). ; ? ’
by + 300 +3) b <ln' the choices(Ly, L) € {(2,3),(3,2),(2,2)} are all
(LW, L®) = 1+ %Jt(h?) +2), 1> 1®: 0 (a4) feasible in the sense of maximizing the diversity

order. In this case, the smallest buffer sizes choice of

(1) 142 1 (1 _ 4(2) .
b+ 2l +2) b =ln' (L1, L) = (2,2) suffers from the smallest coding

Replacing (42) and (43) in (29) and (30), respectively, gain. Mpreover, _from (,39)' the c_hoic(eL_th) =
results inD,4 = 3LM + 2 and Dy = 3L® + 2 where (2,3) will result in a higher coding galnuthan the
the term(1 — p)(1 — ¢) in (42) and (43) was approximated choice (L1, Lz) = (3,2) if 22 > (Z—f) since
by 1 forp <« 1 andg <« 1. Therefore, from (26),D = By = B4 = 2 for lt(hl) — t(h2) following from Table I.

3L + L@ i . . .-
2(LY + L) + 2. From (44), it can be observed that the The main challenge in generalizing the proposed scheme

ionf,(M + L@ i ) : ) X
summationL ' + L assumes the same value in ‘F?‘” Ca5€3nd associated formulation to the multi-relay scenario re-
Consequently, the asymptotic APD can be determined frognjes in the complexity of the Markov chain analysis. In

the following expression: fact, for a K relay network, the Markov chain will involve
(L1 +1)%(Ly+1)E states implying an exponential increase in
the number of states. Moreover, the joint relay-selectmde-
selection optimization problem will involve K threshold
fbvels that can assumd.; L,)¥ possible values. While our
work considered the single-relay case as in [13]-[21], weeho
that this work will motivate more research in the directidn o
proposing efficient multi-relay two-way cooperative sclesm

In addition to extending the proposed scheme to the multi-
relay scenario, future work must tackle the issue of energy
E. Conclusions and Future Work: Optimizing the BA two-way harvesting for the sake of enhancing the energy efficiency.
relaying scheme

D= g () +1) +g vl <Ly —1& 1P <Lo—1.
(45)
Since (45) holds for all network setups, then the followin
APD-related design criterion must be considered.
Criterion 3: The asymptotic APD is minimized by setting
lt(hl) = lt(hQ) = 0 resulting in the minimum achievable APD
value of7/2.

Following from the asymptotic design criteria that were V. NUMERICAL RESULTS
reached, the following conclusions can be made regardeg th \ye next present some numerical results that support the

design of the DF BA two-way relaying systems. theoretical findings reported in the previous sections. The
- Regarding the threshold level§’ and I\”’, the best numerical results were obtained by running ten million Mont
choice corresponds to settirll@1 = lt(hQ) = 0. This Carlo simulations that yielded accurate OP and APD results
choice minimizes the asymptotic APD (following fromfor the SNR values that are not very large. We denotelpy
criterion 3) whereas any other choice will increase thie distance between A and R anddythe distance between
APD without offering any additional advantage in term8 and R. We assume that the relay is placed along the line

of the asymptotic OP or diversity order (following fromjoining A with B implying that the distance between A and B

criterion 1 and criterion 2). is equal tad; +d». The parameters of the— . distribution are
- Regarding the buffer sized; and L., the following taken to be distance dependent with, u1;) = (x(d;), u(d;))
conclusions can be reached by fixidﬁj) = lt(,f) =0 fori=1(A-R link) andi = 2 (B-R link). We consider link
in criterion 1 and criterion 2: distances of 1 km and 2 km and assume thdt = 1.5 and
- SettingL; = 3 and L, = 3 achieves the maximum #(1) = 3 whereas(2) = 1.25 and 1u(2) = 2. Assuming a
diversity order with the highest coding gain for anyhower loss exponent of 2, th@; = % fori = 1,2
network setup. in (1)-(2) [23]. Finally, we consider a target rate af = 1

- IncreasingL; and/or L, beyond 3 does not presentgpcy.
any particular advantage for high values of the SNR.
- Smaller buffers can be used depending on the net-
work setup as follows. (i): Fop; < ps, selecting A. Effect of the Threshold Levels
(L1, Lo) = (2,3) still achieves the maximum diver- Fig. 2 and Fig. 3 highlight the impact of the threshold
sity order at the expense of a reduced coding gaimrameterjt(ﬁ) and lt(hQ) on the OP and APD, respectively.
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TABLE Il
ASYMPTOTICVALUES OF THEOUTAGE PROBABILITY

[ o [ @i 1]
1) < L1 —2 pq pq + Bap® pq+ B3p
= —2 pq+ B2q® | pq+ B2q® + Bap® | pg+ B2g> + B3p
1 =L -1 g+ Bigq pq+ Big+ Bap® | pa+Pig+ B3p

14

—e— (1,1@)=(0,0)

th "'th

2 X —— (P 1P)=1,0)| |
1) 12y,
—0— (11P)=2,0)
10°F 10k
o [a]
o
o e 8
1010 6l
=——— Buffer-Free
——(01P)=00)
=v— (=00 4r
——(§1)=20)
10—15 L 1 I 2
0 5 10 15 20 25 0
SNR (dB) SNR (dB)

Fig. 2. Outage Probability fafl; = 1 km andde = 2kmandL; = Lo = 3. Fig. 3. Average Packet Delay fat; = 1 km anddz = 2 km and L1 =

Solid and dashed lines correspond to the exact and asympaities (from Lo = 3. Solid and dashed lines correspond to the exact and asyimpahies
Table IIl), respectively. Markers without lines corresgoto the simulation (from (45)), respectively. Markers without lines corresgdo the simulation
values. values.

i . approximatelyg while the asymptotic OP of the BA system
We fix L1 = Lo = 3 and (dy1,d2) = (1,2) km (resulting with (l(l)

1(2)) = (2,0) is approximately3;q = iq from

i _ _ ; th > “th ) 14 39

'n(#l n 3 and pz = 2). We cop5|der the thrge CaS€Sraple 11l and Table I, then the only advantage of the latter
(lth ’lth ) € {(070)1(170)1(270)} Slnceﬂl > p2 N this

: . o) 2) system resides in a coding gain%floglo(?,) ~ 2.4 dB. This
simulation setup, then only the choig&,”, ;") = (0,0) theoretical coding gain matches the numerical value that ca
will achieve the maximum diversity order as highlighteghe obtained from Fig. 2. Finally, Fig. 3 shows the variation
in criterion 2. This observation is demonstrated in Figyf the APD as a function of the SNR and demonstrates the
2 where the highle)st 2diversity order (steepest OP curvgjcuracy of the asymptotic expression provided in (45). As a
is obtained for (lt(h ,lt(h)) = (0,0). Results in Fig. 2 conclusion, the ChOiCelt(ﬁ),ltf)) — (0,0) not only minimizes
highlight on the accuracy of the asymptotic OP expressiofe OP, but it also minimizes the APD as highlighted in

provided in Table Il in predicting the performance for,:ig' 3. In this simulation setup whe#) is fixed to zero,
average-to-large values of the SNR. In fact, a perfe&;D

lap is ob db h q ~ “ircreasing the value dlfﬁ) by one will incur an increase of
overlap Is observed between the exact and asymptotic the asymptotic APD by 1.5 as highlighted in (45) and Fig.
curves for large values of the SNR. Moreover, results

X X X gl Finally, results show that the theoretical curves almost
Fig. .2 de_monstrate the accuracy of th_e diversity orde %rfectly overlap with the numerical curves in all simuthte
pf(?;"dgg n Table(ll)l. (;)-he three con(sllge(rze)d values  deenarios thus highlighting on the accuracy of the resilis.

(" lin”) = (0,0), (" ly”) = (1,0) and(ly, ", liy”) = (2,0)  ysefulness of the theoretical analysis resides in its dhfyab
correspond to the scenaricﬁqﬁ}) <Li—2; 1 <Ly—2|, of providing accurate results for all SNR values while the
lt(hl) — L, —2: lt(h2) < Ly—2 a num_er_igal analysis is limited to sr_nall-t_o-average SNRs rwhe

prohibitively large numbers of iterations are not required
W =L —1; 1 <L, —2| that appear in the first for yielding accurate results. Since a close match between
column of Table IlI, respectively. The corresponding diitgrs the theoretical and numerical results was observed in all
orders areu; + po = 5, o + min{py, o} = 4 andue = 2,  simulation setups, the numerical results will not be shown i
respectively, where all of these values are demonstratedtiie subsequent figures for the sake of clarity.
Fig. 2. Since the buffer-free (BF) system achieves a dityersi
order of min{ 1, ua} = po in this simulation setup, then the
choice (lt(,}),ltf)) = (2,0) is highly suboptimal since it does B. Eifect of the Buffer Sizes
not result in any diversity gain compared to the conventiona In Fig. 4 and Fig. 5, we fix the threshold levels to their
BF system. Since the asymptotic OP of the BF system aptimal valuesit(ﬁ) = lt(hQ) = 0 and we consider the buffer sizes
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10% 10%
102 £
102 ¢
104
-4 L
10 -
[a
5 o
10—8 L
10°®
10 s Proposed, L,=L,=3
1077 ¢ o=
=%/ Buffer-Free —— Proposed, L,=L,=10
107 £ | —— (L, L,)=(3.3) Rt
—3—(L,L,)=B2) 10" £ |—©—PP, L,=L,=10
— (L L,)=(22) T™, L,=L,=100
10710 I | 4 10-14 | i |
0 5 10 15 0 5 10 15 20 25
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Fig. 4. Outage Probability fod; = do = 1 km andlt(hl) — lt(h2) —0. Fig. 6. Outage Probability of the proposed scheme versudieand PP
schemes in [11] and [16], respectively.
7.5 ‘ ‘ : 40 ‘
—H— (LRI q —+— Proposed, L,=L,=3
7 —— (L, L,)=(32) | 35 —— Proposed, L,=L,=10 | 4
—_——(,L,)=(2,2) —%—PP, L,=L,=3
30 -\ —6—FP,L,=L,=10 B
™, L1=L2=100

0 5 10 15 20 25
SNR (dB) SNR (dB)

Py 5. etage Pacer Doy o = = 1w and) = ) =0 8. Aerage kel by of o proosedseme verasend 2

(L1, Ls) € {(3,3),(3,2),(2,2)} for d; = dy = 1 km. The the buffer sizes results in a slight increase in the APD faalém

asymptotic OP and APD expressions from Table 11l and (4gjallues of the SNR without affecting the APD performance for
show a perfect match with their exact counterparts for larG¥erage-to-large values of the SNR.

values of the SNR and, hence, only the exact expressions are _ _ o

shown for the sake of clarity. For this simulation setup vehe(C- Comparison with the Existing Schemes

u1 = ue, all considered buffer sizes achieve the maximum In what follows, we compare the proposed scheme with
diversity order following from criterion 2 and Section I\-E the existing BA two-way relaying schemes in [11], [15], [16]
Results in Fig. 4 demonstrate a diversity ordepof- u2 =6 The schemes in [15] achieve a diversity order of one over
where the different OP curves are parallel to each other feayleigh fading channels (refer to proposition 4, proposit
large values of the SNR. Results in Fig. 4 also highlight an tt5 and proposition 7 in [15]). Therefore, the proposed scheme
accuracy of (39) and show that the optioh,, Lo) = (3,3) presents the predominant advantage of doubling the diyersi
(resp.(L1, L) = (2,2)) shows the best (resp. worst) perforerder over such channels singe+ > = 2 (with p; = po =1
mance as predicated by the analytical derivations. Regultsover Rayleigh fading channels). As such, the schemes in
Fig. 4 show the huge performance gains that can be reapetl] suffer from severe OP degradations especially fordarg
through equipping the relay with buffers. For example, thealues of the SNR. Moreover, in [15], while the determin-
BA scheme withL; = L, = 3 outperforms the BF systemistic approach for constraining the delay achieves comstan
by around7.4 dB for an OP value ofl0~*. Results in Fig. 5 asymptotic delays, the probabilistic approach incursydetiaat
highlight on the accuracy of the asymptotic APD value of 3.icrease with the buffer size unlike the proposed schemeevhe
for all considered values df.1, L»). In this regard, increasing increasing the buffer size does not increase the delay.
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In Fig. 6 and Fig. 7, the OP and APD of the proposedhile all other transition probabilities will tend to zero.
scheme (With(hl) = t(hQ) = 0) are compared with those of the Similarly, for the state(lt(hl) + 1, lt(hQ)), (14)-(16) show that
throughput-maximizing (TM) scheme in [11] and the pradticaall transition probabilities out of this state will tend tern
protocol (PP) in [16]. In these figures, we fik = 1 km except for:
and d, = 2 km. For the proposed scheme, results in Fig. 6
and Fig. 7 demonstrate that the optiohs = L, = 3 and
Ly = Ly = 10 achieve the same OP and APD performance 1) (@) N
levels in the asymptotic SNR regime. For small values of the Finally, for the state(ly, ", l;;”), the transition probabilities
SNR, results show that increasing the buffer sizes resaltswill depend on whethetl,) < 1>, 1) > 11 or 1{)) = 1{?
a marginal decrease in the OP that comes at the expens@®highlighted in (18)-(19):

a noteworthy increase in the APD. Comparing the proposed
scheme with [16] highlights on the superiority of the progas a1y, a$d +1,12)
optimized scheme in concurrently reducing the OP and APD T
for average-to-large values of the SNR. Unlike the proposed T @ ) L @ = L

; ; - - a2, a1y 77 20 O
scheme where a buffer size of three is sufficient for attginin th /2l th 1, Ly =1
the best OP and APD performance asymptotically, results in T 1), a0 1P +1) 7

Fig. 6 and Fig. 7 show that, for the scheme in [16], increasing ager deriving the transition probabilities among the st

the buffer size reduces the asymptotic OP at the expenseyofs according to (46)-(49), the steady-state probabilities of

a significant increase in the asymptotic APD. Results in Fighoca states can be obtained by solving the balance equa-
7 are consistent with Lemma 1 in [16] that states that t (2)

; _ (1)
asymptotic APD of this scheme increases with the buffer sil%%ensse Sggtigoazzéﬁle’l?éﬁ\feﬁl’lbzy(; (21)' F:or o < o'
unlike the proposed scheme. On the other hand, the scheme byl
in [11] focuses on minimizing the end-to-end transmissions, +1.4% Wéful)vlff)’ 7Tl1(h1)+17lf(h2)+1 -y ,
time. As such, this scheme reduces the delay compared to frig +1 = 0- The solution of these equations results in
proposed scheme at the expense of suffering from excegsivible matrix M§°> in (33). Similarly, forlt(hl) > lt(,f), solving
large OP values even with very large buffer sizes. the equationSrlS)_’lt(hz) =T gy g T ) g = T ),

th th obin ",
7Tlt(h1)+l7lt(hz>+l = 7Tlt(h1)7lt(hz>+1 an 7Tlt(h1)+1’lt(h2) = 0 results in

VI. CONCLUSION the matringo) in (33). Finally, forlt(hl) = lt(hg), the balance
We proposed and analyzed a novel threshold-based relayétgiations are given b1yl(1> [ =T O T o) =
scheme for BA two-way relaying systems. We studied the B | " and woTom
. . . éﬂl<1>7l(2), T @ = T ) T 12 1
impact of the two threshold parameters on the diversity prde ‘"o th ol s oluti s in" :
) . o X T @ T T e whose solution results in the matrix
coding gain, outage probability and queuing delay and we sugm(O;r Ll i ol T
gested convenient choices of these parameters. The pedseM; ~ in (33).
analytical framework was culminated by simple criteria for
selecting the buffer sizes depending on the network topgolog APPENDIX B
Results showed that small buffer sizes are sufficient fquirea
the maximum performance gains at large SNR values.

t 1. (48)

%
41,03, 150 +1,1 +1)

— 1, lf,})<lf,12);

(1) ).
K4, i+ b o=t 49

7Tlt(h1)+1’lt(h2)+1,
T g @) and
h »bth

The steady-state probabilities can be written under the
general formm, 1, = 3,50 ;50 kijp'e’ where{k; ;} are
constants. We define the asymptotic order of the probability
Ty 1, aS!

APPENDIXA

We focus on the subset of stat§s= {(lt(ﬁ),lt(,f)), (lt(hl) +
L), (), 18 +1), (15 +1, 1 +1)} and we prove that this O(Tui2) = _min_ {i+7j | kij =0V i+j <O(m, 1)}
subset is closed for asymptotically large values of the SNR. = (50)

In this context, the transition probability from any statside For exampleO(1/3 —p+q+---) =0 andO(p? + pq +
S to any state outsid& tends to zero. Consequently, after a..) = 2. Since this appendix revolves around an order-1

certain number of iterations, the Markov chain will be in thesymptotic analysis, then we assume that, — 0 whenever
states ofS with a probability tending to one at steady-statep(r;, ;,) > 2.

2 yes Tde = L. We fix m £ 1§ andn £ 1{?) for notational simplicity. We
Consider first the stat(ét(hl)Jrl, lt(h2)+1) where the transition focus on the following subset of nine states far< L; — 2
probabilities out of this state are provided in (7)-(10).r Foandn < Lo — 2:

p — 0 andq — 0, (7) shows that: , o N
S={(m+in+j);i,7=0,12} =S US,, (51)

t — 1, (46)

(U LI+, 0071467 where:
while (8)-(10) show that all remaining transition prob#kgs

will tend to zero. S ={(m,n),(m,n+1),(m+1,n),(m+1n+1)} (52)
Considering the stat@{", 1{”) + 1), (11)-(13) show that: S, = {(m + 2,n), (m + 2,1 + 1), (m,n + 2),

+1,n+2),(m+2,n+2)}. (53
t(lt(hl)’lt(f12)+1)7(lt(h])+1’lt(h2)+1) — 1, 47 (m n ), (m n )} (83)
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By definition, a subset of states is declared todased
if the probability of leaving this subset is equal to zero.
Similarly, a subset of states is declared to dpesi-closed
if the probability of leaving this subset is small. The reaso
behind focusing on the subsétin (51) is justified by the
following proposition.

Proposition3: The subses in (51) is asymptotically closed
form = Ly —2 andn = L, —2 and it is asymptotically quasi-
closed otherwise.

Proof: We denote by7;, ;, as the set of states that can
be reached from the staté, ) (excluding the statél,,2)
itself).

We first consider the subsét. (i): From (17)-(19),7,,.» =
{(m~+1,n), (m,n+1)}. (ii): From (11)-(13)Tp.ns1 = {(m+
1,n+1), (m,n+2)}. (iii): From (14)-(16), Tmi1.n = {(m +
1,n+1), (m+2,n)}. (iv): Finally, from (7)-(10),7r41.n+1 =
{(m,n),(m+ 1,n+ 2),(m + 2,n 4+ 1)}. Consequently, we Fig. 8. Transitions among the states of the Sewhere the probabilityc
cannot leave the sef from any of the four states i;. is defined in (55). The self-loops of transition probgtgiljiy(resp.q) at the

Next, we consider the states i§, for which the set ?(t?)te_ssi' LiSQ;md S (1e5P- 5, Sr and Ss) exst T hn™ = L2 =2 (resp.
Tm+in+; €an be partitioned as follows: th = =1 ‘

Trnti - 7‘(0_‘)_ ;U Tw(ll-gi,n-ﬁ-j’ m <Ly —2; We denotet<m,n)7(m,n+1) =1- Lim,n),(m+1,n) £ o where:
| T Le m=Li -2 1) _ @)
2) 5. b, lyy” <y
U { Tm+i,n+j’ n f 22 ;, 5 (54) a = 1- ) lt(hl) > lt(hQ)’ ) (55)
2 n=1L:=2 14p—g () _ )
) 0) 2 ! th th *
where ¢ denotes the empty set. While the Sgf/; . ;  The state diagram describing the transitions between the
is included inS, the setsTn(llliynH and Trﬁ)i,nﬂ are not states ofS is provided in Fig. 8. For simplicity of notation,
included inS. the states will be numbered &5 = (m,n), S1 = (m,n+1),
(v): From (14)-(16), 7,2, = {(m + 2,n + 1)}, S2 = (mn+2), S35 = (m+1,n), Sy = (m+ Ln+1),
75 = {m+3,n)} andT,C), . = ¢. (vi): From (7)-(10), SSd:S(m +1n+2), S =(m+ 27?, 57 y (m+2, nwg 1t)>'l'
7.77(1(1227%1 — {(m+1,n), (m+2’n+2)}’7.n(11122,n+1 — {m+4 @NdSs= (m+2,n+2). Moreover, the steady-state probability

(2) o 0) of the stateS; will be denoted byr, for i =0,...,8.
3,n+1)} andTm+2,n1;1 = . (vii): FFOT (A1)-(A3).T g2 = From Fig. 8, the balance equations at staigsS; and Sg
{(m+1,n+2)}, Tn(%zH_Q = ¢ and Tn(%zH_Q ={(m,n+3)}. are given by:
(viii): From (7)-(20), 7.}, . 15 = {(m+2,n+2), (m,n+1)},

1 _ (2) - N o= (1—p—q)m (56)

12;11?732(10? ijlrrggl)frmﬂMQ{? {T;r 11?;))}),};?1)) Finall m=(1—a)m+ (1 —p—q)m7 (57)
B rim n = m ) TV v I n -

+2,n+42 +2,n+42 (1 _ q/)ﬂ_G = qrs, (58)

{m+3,n+2)} andT\7)s 1o = {(m +2,n+3)}. _ |
From (54), form = Ly —2 andn = Ly — 2, Trutintj = whereq = qif m = Ly —2andq¢ =0if m < L; — 2.

T,floli nti C S implying that we cannot leave the s&tfrom Introducing the probabilityy’ in (58) accounts for the self-
any of the five states it5,. As such, the sef = S, US, is l00p at the stateSs whenm = L, — 2 and for the transition
closed. from this state to the staten + 3,n) whenm < Ly — 2.

On the other hand, whem < L; —2 or n < Lo — Similarly, from Fig. 8, the balance equations at states
2, the states inS, might lead to states outsid§ since Sa andsSr are given by:
T,flljmﬂ U T,T(li)mﬂ ¢ S. However, the corresponding m = am + (1 —p — q)7s (59)

transition probabilities are small for large values of tHe¢RS B
IN 18CE, (1 1s9) (msimssy = p < 1 for i = 0,1,2 and / ma=1—-qm+(1—-—pm+(1—p—q)ms (60)
tm+2,n+5),(m+3.n+j5) = ¢ < 1 for j = 0,1,2 following from (1 —q)m7 =qma+ (1 - ¢)7s. (61)
(7)-(19). Therefore, as the probability of exitir®§) from the

Finally, at statesS,, S5 and Ss:
states inS; is zero while the probability of exitings from y 20 s

the states inS; is in the order ofp or ¢ that are both very (1 —p)m =pm (62)

small for large values of the SNR, then the subSewill be (1—p)ms = pra + (1 — p)mo (63)

quasi-closed in this case. [ | (1—p — q)rs = prr + g (64)
- - 8 — 5

The relative values af» andn will only affect the transition
probabilities from the statén,n) as highlighted in (18)-(19). wherep’ =pif n =Ly — 2 andp’ =0 if n < Ly — 2.



From (61),0(w7) > 1 following from the multiplication
of my by ¢. Similarly, from (63),O0(ms) > 1. Now, since
O(m7) > 1 and O(ws) > 1, then O(wg) > 2 following

from (64). Consequently;s = 0 when performing the order-1

asymptotic analysis.

In the asymptotic regime, (56)-(58) can be further simplifie

as follows:
mo=(1—-p—q)my ; m3=(l—)mo+m7 ; 7 = qms3, (65)

where the second equation follows sinde— p — ¢)77 =~ 77
since O(pm7;) = O(qm;) > 2 following from the fact that
O(77) > 1. The last equation follows smcle— ~q+qd ~q
since eitheiO(qq’) = O(¢?) = 2 (form = L, —2) orqgq =0
otherwise.

Similarly, for an order-1 asymptotic analysis, (59)-(6&nc
be simplified as follows:

m =amy+ms ; T = (1-¢)m3+(1—p)m ; 77 = qma+7s,
(66)
where the first equation follows sindg — p — ¢)ms ~ 75

sinceO(ms) > 1, the second equation follows from replacm

ms = 8 while the last equation follows sinc@(1 —
for ¢ = q or ¢ =0 while (1 — ¢)ms = 76 sinceO(mj) z 1
following from the last equation in (65).

Carrying out similar simplifications, (62)-(63) can be weit
as:

T =pm ; 75 = pms + (1 —p)ma. (67)

Manipulating equations (65)-(67) while ignoring the hlgrE

order terms shows that the probabilitiegr; ; ¢
0,1,2,3,5,6,7} can be related to the probability, as fol-
lows. (i): 7o = (1—p—q)m4. (ii): 71 = [+ (1 —a)p— aq]ms.
(iii): mo = apmy. (V): 73 = [1 —a — (1 — a)p + q]ma. (V):
5 = (1+a)pmy. (Vi): m6 = (1—a)gqmy. (Vii): 77 = (2—a)qmy.
Replacing these probabilities in the equat@‘jz0 m; = 1 and
solving for m, results in:
1

3+ 2ap+3(1—a)g

(68)

Ty =

1-¢

Forl( ) < lm2 , replacinga by pin (68) results inty = —
Forl(l) andl th , replacmga by 1—¢ and 1“’ 4
in (68) results inmy = 5 — j P andmry = 5 —-£-1 respectlvely.
Replacing in the equations that relate the different praitials
to m, results in the matriced1", M{"” and M{" in (36),
respectively.
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