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Abstract—This work investigates multi-hop serial relaying half-
duplex (HD) networks comprising one source, one destination
and K decode-and-forward (DF) relays. Buffer-aided (BA) relays
are considered where finite size buffers are added to relays.
For this setup, we propose a novel BA relaying strategy that
selects the node that must transmit over one epoch in a block
fading environment. Selecting a node depends on the buffer state
information of all relays and on the availability of the hops.
Moreover, the proposed relaying scheme is controlled by an
adjustable parameter that allows the system to achieve multiple
levels of tradeoff between the average packet delay (APD) and
the outage probability (OP). A Markov chain model is adopted
to evaluate the system’s performance and simple closed-form
expressions were derived for the APD and OP based on an
asymptotic analysis. The performance analysis proves the ability
of the suggested relaying scheme to achieve significant OP and
APD gains with small buffer sizes. Two variants of the proposed
relaying scheme are particularly appealing. The APD-prioritizing
variant achieves the smallest APD of2K without improving the
diversity order. The second OP-prioritizing variant reaches the
full diversity order of K+1 while increasing the asymptotic APD
to K(K + 3).

Index Terms—Serial relaying, multi-hop, Markov chain, diver-
sity order, buffer, optimization, data queue, queuing delay, outage
probability, performance analysis, cooperative networks.

I. I NTRODUCTION

In the literature, there is an increasing interest in studying
cooperative relaying because of its promising ability to widen
the coverage of wireless networks [1]. In scenarios where
the direct communications between a source node (S) and
destination node (D) are highly unreliable because of excessive
path-loss, serial relaying techniques can be implemented to
enhance the network connectivity. Consequently, signals from
S to D propagate through a number of shorter hops/links that
are less prone to signal degradation. In this context, multi-hop
communication constitutes an attractive solution that hasbeen
recently investigated in several practical systems including
Internet-of-Things (IoT), internet of vehicles, satellite, mil-
itary systems and unmanned aerial vehicle (UAV) [2], [3].
Either regenerative decode-and-forward (DF) relaying or non-
regenerative amplify-and-forward (AF) relaying can be imple-
mented at the cooperating relays. For both relaying techniques,
the end-to-end outage performance is mostly dependent on the
weakest of all hops; i.e. the hop that suffers from the highest
outage probability [4].

Relaying techniques evolved from buffer-free (BF) to buffer-
aided (BA) relaying where relays are equipped with buffer (or
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data queues) that can temporarily store information packets
until the links are available for transmission. This feature
allowed for an additional degree of freedom that allows to
mitigate channel fading and, hence, enhance the reliability of
communications at the expense of introducing queuing delays
[5], [6]. The existing literature focused primarily on the perfor-
mance of parallel half-duplex (HD) DF BA relaying networks
with the main problem of relay selection in these systems
[7]–[11]. For such networks, one of theK neighboring relays
is selected to relay the information from S to D involving
a source-to-relay transmission phase and a subsequent relay-
to-destination transmission phase. Enabling data buffering at
the relays implies that the two transmission phases can take
place over two non-consecutive time slots. As such, the relay
selection protocol revolves around selecting a single relay to
either receive (from S) or transmit (to D) over a certain time
slot. The policy regulating the relay selection can be either
based solely on the channel state information (CSI) as adopted
in [7], [8] or on both the CSI and buffer state information (BSI)
as in [9]–[11]. For the latter category of protocols, the numbers
of packets stored in the relays’ buffers are included in the relay
selection process thus improving the system performance by
avoiding the congestion and starvation of the buffers.

Relaying the information serially throughK relays involves
(K+1)-hop transmissions where the information packets from
S are transmitted successively from one relay to another until
they reach D. While the research on BA parallel relaying
is extensive, BA serial relaying was less investigated in the
literature [12]–[19]. Denote the relays by R1, . . ., RK , the
source by R0 and the destination by RK+1. The serial relaying
procedure revolves around selecting which link, among the
K + 1 links R0-R1, . . ., RK-RK+1, must be chosen for
activation in each time slot where the transmission is limited
to a single HD node in order to avoid interference.Max-link
selection was analyzed in [12]–[14] where the link with the
highest instantaneous signal-to-noise ratio (SNR) is selected.
The selection is limited to the set of available links where
the link Rk−1-Rk is available when the buffer at Rk−1 is
not empty, i.e. has at least one packet of information to be
transmitted, and the buffer at Rk is not full, i.e. can accept
at least one packet. In [12], it was possible to derive a
lower-bound on the bit error rate (BER) by loosening the
aforementioned availability constraint and assuming thatthe
relays buffers have an infinite size and that each relay is
always able to transmit a packet. The derived lower-bound has
a diversity order ofK + 1 under independent and identically
distributed Rayleigh fading with the same path-loss assumed
along all hops. In [13], the BER and outage probability of the
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max-link scheme were analyzed. Results proved that the full
diversity order ofK+1 is exclusively achievable with infinite
buffer sizes while practical finite-size buffers can achieve
only a fraction of this maximum diversity order. A Markov
chain (MC) analysis was used to evaluate the outage and
delay performance of themax-link scheme in [14]. Results
are consistent with [13] where large buffer sizes are neededto
extract the maximum diversity advantage from the underlying
network. Moreover, results showed that the asymptotic average
delay increases with the buffer size. As such, keeping the delay
at acceptable levels incurs the implementation of buffers with
small sizes at the relays which, in turn, reduces the diversity
gain that can be reaped from the BA system. The outage
performance of themax-link scheme was improved in [15]
assuming the absence of inter-relay-interference (IRI). This
strict assumption holds if perfect IRI cancellation techniques
are implemented or if highly-directive antennas are deployed.
Neglecting the IRI, the relaying protocol in [15] allows forthe
simultaneous transmissions along two hops that are selected
from two groups out of the total number of three groups in
which the hops are partitioned. As in themax-link scheme,
the instantaneous SNR controls the selection of a node.

HD BA DF serial relaying was tackled in [16] with infinite
buffer sizes. The authors in [16] targeted the maximization
of the average rate for a communication session extended
over an infinite number of fading blocks in a block fading
environment. The implementation of the relaying protocol
in [16] necessitates the availability of perfect instantaneous
CSI at each transmitting node (source or relay) so that this
node adapts its transmission rate to the underlying channel
conditions where Gaussian codebooks are employed. As in
[12]–[15], the relaying protocol in [16] is based solely on the
CSI where the transmission modes are related to the rates
that can be achieved over the different hops. While [12]–[16]
considered HD relaying, full-duplex (FD) serial relaying was
considered in [17]–[19] where the relays can transmit and
receive at the same time and in the same frequency band.
FD BA DF two-hop relaying was considered in [17] where,
in a way that is analogous to [16], the relaying protocol
revolved around maximizing the transmission rate over an
infinite number of time slots based on the instantaneous SNRs
along the two constituent hops. The buffer at the relay is
assumed to be sufficiently large so that the incoming data
can always be stored with no overflow. FD BA DF serial
relaying was also studied in [18] and [19] in the context
of millimeter-wave (mm-wave) and free-space optical (FSO)
communications, respectively. While the self-interference (SI)
impairment was taken into consideration in [16], SI and IRI
can be neglected for mm-wave and FSO communications since
the mm-wave and laser beams are highly directive. As such,
the relaying protocols in [18], [19] take into consideration that
concurrent transmissions can take place along all hops in the
absence of interference.

In this paper, we suggest a novel BA relaying protocol for
serial HD communications with any number of DF relays. The
proposed strategy improves on the existing schemes [12]–[16]
by including the buffer state in the link selection process.This
approach results in the following advantages. (i): Achieving

the maximum diversity order ofK+1 with finite-size buffers
whose storage capacity does not exceed five packets. (ii):
Achieving acceptable levels of the queuing delays that do not
increase with the buffer size. (iii): Achieving multiple levels of
tradeoff between the average packet delay (APD) and outage
probability (OP) by including a variable parameter in the link
selection process. Unlike themax-link scheme [12]–[14] where
increasing the buffer size improves the diversity order at the
drawback of increasing the APD, such compromises on the
buffer size are not needed for the proposed scheme that can
reap the full capabilities of the multi-hop network with very
small buffer sizes. As such, the proposed scheme relaxes the
reported need to deploy very large buffer sizes at the relaysof
a serial system by relaxing the full dependence of the existing
relaying protocols on the strengths of the hops as in [12]–
[16]. We adopt a MC analysis to evaluate the performance
of the proposed scheme and to study the effect of buffer size
L, number of relaysK and algorithm-controlling parameter
s on the triad of APD, OP and diversity order. Since the
total number of states of the MC increases exponentially with
K, we also present an asymptotic analysis that focuses on
the most probable states for large values of the SNR. The
asymptotic analysis yields accurate closed-form expressions
of the asymptotic APD and OP over Rayleigh block fading
channels. From this asymptotic analysis, conclusions about the
selection of the values ofs andL are reached.

The contributions of this research paper are clarified in
three-fold:

- We suggest a novel relaying scheme for HD BA DF
multi-hop communications.

- We analyze the proposed scheme in a theoretical frame-
work using a MC formulation.

- We derive closed-form analytical expressions for the
APD, OP and diversity order.

This paper is structured as follows. The system model and
the relaying strategy are presented in Section II. The perfor-
mance analysis of the proposed relaying scheme is detailed
in Section III including an asymptotic analysis and some
observations about the system design. Section IV presents the
numerical results and a demonstration of the main features of
the system. Finally, Section V presents a conclusion of the
paper.

II. SYSTEM MODEL AND RELAYING STRATEGY

A. Basic Parameters

The system consists of a serial relaying network that in-
volves K + 2 nodes comprisingK relay nodes denoted by
R1,. . ., RK , a source node S and a destination node D. Because
of possible long distances between S and D, the assumption
of no direct link between S and D is valid and, consequently,
a packet is transmitted from S to D inK + 1 hops through
the relays R1 to RK as depicted in Fig. 1. We denote S and
D by R0 and RK+1, respectively, and we assume that each
relay Rk can transmit a packet to the next relay Rk+1 (if any).
We assume that each node is equipped with only one antenna
and that all nodes are HD which implies that simultaneous
transmission and reception is impossible.
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Fig. 1. System Model

The considered system model has the potential of broad-
ening the network coverage and maintaining high spectral
efficiency. The dissection of large communication distances
into multi-hops allows to mitigate the fading effects and to
reduce the outage when the transmitter’s energy is limited.
Practical examples include unmanned aerial vehicle (UAV)
relaying networks where multiple UAVs are employed as relay
nodes to forward information packets from a source to a
destination [20]. Multi-hop relaying is critical for such appli-
cations in order to minimize the delays and improve the system
reliability. Other applications include wireless backhauling of
fifth generation (5G) small cells where a Macro cell Base
Station (MBS) needs to send packets to a far Small cell Base
Station (SBS). In this case, closer SBSs will forward packets
sequentially in short range hops until these packets reach the
target SBS [21].

In what follows, we assume a Rayleigh block fading channel
and we indicate byhk the channel coefficient of thek-th
link between nodes Rk−1 and Rk for k = 1, . . . ,K + 1 as
presented in Fig. 1. The channel coefficients are circularly
symmetric complex Gaussian distributed random variables
with zero mean and variances. We denote the variances by
Ωk for the k-th link. Finally, all links experience an additive
white Gaussian noise (AWGN) that has zero mean and unit
variance.

Each link is considered in outage when its corresponding
channel capacity is lower than the targeted rater0 (in bits per
channel use (BPCU)). Consequently, the outage probability
along thek-th link is calculated as:

pk = Pr

{
1

K + 1
log2(1 + γ̄|hk|

2) ≤ r0

}

= 1−e
− 2(K+1)r0−1

Ωkγ̄ ,

(1)
where γ̄ denotes the average transmit signal-to-noise ratio
(SNR). In (1), the division byK + 1 is introduced since the
communication of a packet from S to D is performed inK+1
time slots.

It is assumed that each relay is equipped with one buffer of
finite sizeL, which allows for temporarily storing the packets
until better channel quality is available. We denote bylk ∈
{0, . . . , L} the actual amount of stored packets present in the
buffer Bk at Rk for k = 1, . . . ,K.

The unavailability probability of thek-th link is denoted by
qk. Three cases arise:

• Consider the first hop between S and R1. The link 1
is judged unavailable if the buffer B1 is full (cannot
accommodate for an incoming packet) or the channel S-
R1 is in outage (that is with probabilityp1).

• Consider the last hop between RK and D. The linkK+1
is unavailable if the buffer BK is empty (no packet can
be communicated to D) or the channel RK-D is in outage
(that is with probabilitypK+1).

• Consider an intermediate hop between Rk−1 and Rk. The
link k, for k = 2, . . . ,K, is unavailable if the buffer Bk is
full or the buffer BK−1 is empty or the channel between
Rk−1 and Rk is in outage (that is with probabilitypk).

Consequently, the unavailability probabilities{qk}
K+1
k=1 can

be expressed as:

qk(l1, . . . , lK) = pk + (1 − pk)×






δl1=L, k = 1;

δlk−1=0 + δlk=L − δlk−1=0δlk=L, k = 2, . . . ,K;

δlK=0, k = K + 1.

, (2)

whereδS is either equal to1 if the statementS is true or equal
to 0 if S is false.

B. Buffer State Based Relaying Strategy

To reap the maximum performance gains from the under-
lying serial system, the proposed relaying strategy will be
based on the availabilities of theK + 1 links as well as the
buffers’ states captured by the vector(l1, . . . , lK) representing
the current number of packets stored in theK buffers B1, . . . ,
BK . At each time interval, the relaying strategy determines
the link k̂ that must be activated as follows:

k̂ = arg max
k∈La

{∆k}, (3)

denoting that, in the corresponding time slot, Rk̂−1 must
transmit and R̂k must receive. In (3),La ⊂ {1, . . . ,K + 1}
denotes the set of links that are available and∆k denotes the
weight that is assigned to linkk for k = 1, . . . ,K + 1.

The relaying strategy that we propose in this work is based
on defining the weights{∆k}

K+1
k=1 as in (4).

∆k =

{
s, k = 1;
lk−1, k = 2, . . . ,K + 1.

. (4)

The rationale behind (4) is as follows. In the goal of avoid-
ing the excessive queuing of the packets at the relays’ buffers
which negatively impacts the queuing delay, the proposed
strategy corresponds to the selection of the relay whose buffer
is storing the highest number of packets at the transmitting
node. Evidently, the selection is limited among the relays
whose links with the subsequent relay (or D) is available since,
otherwise, no packet can be successfully communicated along
the link that must be activated. While the weight associated
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with each one of theK relays is determined from the number
of packets stored in this relay’s finite-size buffer, a distinct
weight s is assigned to S (i.e. link 1). Note that the source
is assumed to be equipped with an infinite size buffer and to
be fully backlogged, i.e., it always has enough information
packets to be transmitted. These assumptions are common
in the open literature on BA relaying [7]–[19]. It is worth
highlighting that any link that is not in outage will ensure the
delivery of a packet from the transmitting node to the receiving
node. In other words, if a link is stronger than another link
while both links are not in outage, then there is no added
value in activating the stronger link since, in both cases, the
objective of successfully transmitting the dequeued packet is
realized. As such, referring to (1), there is no need to include
the explicit value of the link capacity in the link selection
process as long as this capacity is above the threshold value.

The nonzero parameters will be restricted to the set
{1, . . . , L} to have comparable values with the buffer lengths
l1, . . . , lK . As will be highlighted later, the parameters has a
major impact on the achievable diversity orders and queuing
delays and the subsequent performance analysis will suggest
convenient options for selecting this parameter. Finally,in (3),
in case multiple links share the same maximum weight, the
highest order link (i.e. the closest link to D) will be selected.
This selection will accelerate the arrival of packets at D and,
thus, will contribute to reducing the average packet delay.

Given that each node in multi-hop networks can communi-
cate only with the preceding and subsequent nodes, the signal-
ing protocol in such networks differs from that implemented
in parallel-relaying networks where S (or D) can broadcast
signaling information to all relays. However, for the proposed
relaying scheme, the decision on the link to be selected can be
implemented in an advantageously simple sequential manner.
In fact, instead of collecting all buffer state and channel state
information and sharing it with a central node that makes
a decision on the selected link, every relay can make an
intermediate decision on whether this relay or the subsequent
relay (if any) is better suited for transmission. The intermediate
decision along with the corresponding recursive weight canbe
shared with the previous relay sequentially until the signaling
information reaches S that makes the final decision on the
selected link as follows:

- Starting from RK , relay Rk performs the following tasks
for k = K, . . . , 1. (i): It generates the recursive weight
rk and the indexik of the link that is the best candidate
so far. (ii): It shares the metrics(rk, ik) with the previous
relay Rk−1.

- After K signaling time slots, S (relay R0) receives(r1, i1)
and generates the metrics(r0, i0). The integeri0 will be
equal to the index of the best link̂k in (3).

- The indexi0 then needs to be shared with theK relays
over K additional signaling time slots. Starting from
R0, relay Rk shares the value ofi0 with Rk+1 for
k = 0, . . . ,K − 1.

- Consequently, all nodes R0,. . .,RK have acquired the
index of the best link and the corresponding node (if any)
can initiate the data transmission.

For k = K, . . . , 0, rk andik can be determined recursively
as follows:

rk = max{∆k+1sk+1, rk+1}

ik =

{
k + 1, ∆k+1sk+1 > rk+1;
ik+1, otherwise.

,
(5)

whererK+1 = 0, iK+1 = 0, ∆k is given in (4) andsk = 0
(resp.sk = 1) if link k is in outage (resp. not in outage). Note
that, ∆k+1sk+1 = 0 if either ∆k+1 = 0 (i.e. the buffer at
Rk is empty) orsk+1 = 0 (i.e. the linkk + 1 over which Rk
transmits is in outage). In both cases, linkk+1 is unavailable
and it cannot be selected as the best candidate link. Finally,
i0 = 0 means that allK + 1 hops are unavailable and the
network is in outage.

Comparing the signaling overhead with that of the parallel-
relaying BA scheme in [11]:

- In the downlink (from relays to S), the proposed scheme
requires the transmission ofK messages of lengthd1 =
⌈log2((K + 1)(L + 1))⌉ in K consecutive time slots
since {(rk, ik)}

K
k=1 ⊂ {0, . . . , L} × {0, 2, . . . ,K + 1}.

Similarly, the scheme in [11] necessitates the transmission
of K messages overK time slots but now the length of
each message isd2 = ⌈log2(4(L+1))⌉ where the factor
four captures the joint availabilities of the links S-Rk and
Rk-D. Note that, even with parallel-relaying,K distinct
signaling time slots are needed since theK relays cannot
transmit simultaneously in order to avoid interference.

- In the uplink (from S to relays),K messages of length
u1 = ⌈log2(K+2)⌉ must be transmitted overK time
slots to inform the relays which one of theK+1 hops
must be activated (in addition to the option that all nodes
must remain idle). For [11], one message of lengthu2 =
⌈log2(2K+1)⌉ can be broadcasted from S to inform all
relays on the node to be selected (if any) and on whether
the selected relay should transmit or receive.

As such, except for the incapability of broadcasting in any
multi-hop network, the signaling overheads of the proposed
scheme and [11] are comparable especially for practical sys-
tems comprising a limited number of relaysK.

The proposed scheme is appealing from a signaling-
overhead point of view for the following reasons. (1): The
proposed scheme can be implemented with small buffer sizes
which limits the portion of the signaling overhead pertaining
to the buffer state information. In particular, we prove in the
next section that there is no need to deploy buffers whose
sizes exceed five. As such, an immaterial number ofd1 = 6
bits in the downlink can accommodate a network with up to
nine relays. Therefore, the cost of collecting the buffer state
information is not overwhelming. (2): The signaling overhead
needs to indicate simply whether the links are in outage or
not through the variablesk in (5). Moreover, this variable can
be further multiplied by the weight∆k since there is no need
to report the number of stored packets if the corresponding
link is in outage since this link will not be selected. As such,
unlike the benchmarkmax-link scheme in [14], the proposed
scheme does not include the actual values of the path gains
{hk}

K+1
k=1 in the decision-making process. In fact, feeding

back theK + 1 gains results in excessively long signaling
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messages if the real-valued path gains are to be quantized
with a sufficiently high level of accuracy. In this context, it is
worth highlighting that the signaling of themax-link scheme
can be implemented sequentially as well. While the number of
messages and the length of each message in the uplink remains
the same as compared to our proposed scheme, the length of
each one of theK messages in the downlink must increase
from d1 = ⌈log2((K + 1)(L + 1))⌉ to ⌈log2((K + 1)M)⌉
whereM is the number of quantization levels that exceeds
L+1 (whose maximum value is 6 with the proposed scheme)
by several orders of magnitude.

III. PERFORMANCEANALYSIS

A. Generalities

We will adopt a Markov Chain (MC) analysis to study the
behavior of the BA serial relaying system where the featuresof
interest are the outage probability (OP) and the average packet
delay (APD). We define a state as the mixture of the current
amount of stored packets in all buffers and will be denoted by
(l1, l2, . . . , lK). The number of states in this MC is(L+1)K

in total sincelk ∈ {0, . . . , L} for k = 1, . . . ,K. In this work,
we consider a finite buffer sizeL that yields a finite-state MC.
This choice is motivated by the fact that infinite-size buffers
are not practical since all storage devices have a finite capacity.
Moreover, as will be discussed in Section III-D, we prove that
the proposed BA relaying scheme is capable of extracting the
full capabilities of the cooperative network with buffers having
a finite size of five. As such, the use of infinite-size buffers
and finite-size buffers withL > 5 is not justified since such
options do not enhance the asymptotic performance gains.

The transition probability of going from the state
(l1, . . . , lK) to the state (l′1, . . . , l

′
K) is denoted by

t(l1,...,lK),(l′1,...,l
′

K
) . The transition matrixT of size(L+1)K×

(L+1)K describes the evolution between the states. The(i, j)-
th element ofT is given by:

Ti,j = t(l1,...,lK),(l′1,...,l
′

K
) ;

i = N(l′1, . . . , l
′
K) , j = N(l1, . . . , lK),

(6)

wherej = N(l1, . . . , lK) is the one-to-one function relating
the integerj ∈ {1, . . . , (L+1)K} and the state(l1, . . . , lK) ∈
{0, . . . , L}K and is expressed as:j = 1+

∑K
k=1 lk(L+1)K−k.

We denote byπl1,...,lK the steady-state probability of the
system being in the state(l1, . . . , lK). These steady-state
probabilities are calculated as follows [7]:

π = (T + B − I )−1 b, (7)

whereπ is a(L+1)K-dimensional vector and itsj-th element
is equal toπl1,...,lK with j = N(l1, . . . , lK). In (7), B and I

are two matrices of size(L + 1)K × (L + 1)K that denote
the all-one matrix and the identity matrix, respectively.b is a
vector with (L+ 1)K elements all equal to 1.

The system is defined to be in outage only if none of itsK+
1 links can be activated, that is no packets can be transmitted
along any of these links. Hence, for a given state(l1, . . . , lK)
an outage occurs with the probability

∏K+1
k=1 qk(l1, . . . , lK)

following from (2). The steady state probabilities allow then
the calculation of the outage probability as follows::

OP =

L∑

l1=0

· · ·

L∑

lK=0

πl1,...,lK

K+1∏

k=1

qk(l1, . . . , lK). (8)

The queuing at the relays’ buffers will imply a delay in
the arrival of the packets to D. The average packet delay is
formulated following from [14] and Little’s law [22]:

APD =
K + OP + (K + 1)L̄

1−OP
, (9)

where the term̄L is denoting the average queue length of the
buffers and is obtained as follows:

L̄ =

L∑

l1=0

· · ·

L∑

lK=0

πl1,...,lK

[
K∑

k=1

lk

]

. (10)

It is worth highlighting that the presented MC analysis holds
for multi-hop networks with any numberK ≥ 1 relays. For
single-hop networks (i.e.K = 0), the MC framework is not
needed since the network comprises only one link with no
relays’ buffers.

B. State Transition Matrix

In what follows, the unavailability probabilities in (2) will
be written asqk for simplicity. We will denote the state by
l = (l1, . . . , lK), the set of all relays byA = {1, . . . ,K} and
ek will denote thek-th row of theK ×K identity matrix.

The self transition at any statel of the MC occurs only if
all links are unavailable:

tl,l =

K+1∏

k=1

qk. (11)

To transit to another state, at least one link should be
activated. Denote byak the probability of activating the link
k for k = 1, . . . ,K + 1. This probability is mapped to the
transition probabilities as follows:

ak =







tl,l+ek , k = 1;

tl,l+ek−ek−1
, k = 2, . . . ,K;

tl,l−ek−1
, k = K + 1.

(12)

A link k is selected to be activated if it is available and its
weight∆k is the highest among all other available links:

ak = (1− qk)
∑

K⊂A\{k}

[
∏

i∈K

(1 − qi)

]


∏

j∈A\{k}∪K

qj



Qk,K,

(13)
where the setK comprises the indices of the links, other than
the link k, that are available. In (13),Qk,K designates the
probability that∆k is greater than ∆k′ for all k′ ∈ K. We
emphasize on the concept oflarger ∆k that considers the tie
breaking rule following from the numbering of links based on
their distances from S. As such,Qk,K =

∏

k′∈K Qk,k′ where
Qk,k′ denotes the probability that∆k is greater than∆k′ :

Qk,k′ = δk′<kδ∆k≥∆k′
+ δk′>kδ∆k>∆k′

; k′ 6= k, (14)
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ak = (1 − qk)





K+1∏

i=1,i6=k

qi +
K+1∑

k1=1,k1 6=k

(1 − qk1)





K+1∏

j=1,j 6=k,j 6=k1

qj



Qk,k1

+

K+1∑

k1=1,k1 6=k

K+1∑

k2=k1+1,k2 6=k

(1− qk1)(1− qk2)





K+1∏

j=1,j 6=k,j 6=k1 ,j 6=k2

qj



Qk,k1Qk,k2 + · · ·



 . (15)

ak = (1 − qk)





K+1∏

i=1,i6=k

qi







1 +

K+1∑

k1=1,k1 6=k

(1− qk1)

qk1

Qk,k1



1 +

K+1∑

k2=k1+1,k2 6=k

(1− qk2)

qk2

Qk,k2



1 + . . .



1 +

K+1∑

kK=kK−1+1,kK 6=k

(1 − qkK
)

qkK

Qk,kK















 , (16)

since, for∆k = ∆k′ , it is preferred to activate the link that is
farther from S that is having the higher index.

Equation (13) can be developed as (15) on the top of the
page that further simplifies into (16) on the top of the page.

Equation (16) can be implemented recursively resulting in
the following expression:

ak = (1− qk)





K+1∏

i=1,i6=k

qi



 [1 + fr(A, k, 0)], (17)

wherefr(·, ·, ·) is the recursive function that can be derived
using algorithm 1.

Function: fr(Y, k, a)
Data: Y ⊂ A, k ∈ {1, . . . ,K + 1} and

a ∈ {0, . . . ,K + 1};
Result: Sum;
initialization: Sum = 0;
if a+ 1 > |Y| then

return 0
end
for m = a+ 1 : |Y| do

k′ = Ym (m-th element ofY)
if k′ 6= k then

Sum = Sum+ (1−qk′ )
qk′

Qk,k′ [1 + fr(Y, k,m)]

end
end

Algorithm 1: Recursive functionfr(Y, k, a)

C. Asymptotic Analysis

Using (17) to evaluate the transition probabilities in (12)
then stacking these probabilities in the state transition matrix
to determine the steady-state probabilities in (7) does notyield
tractable expressions of the OP and APD especially whenK
and/or L are large. This observation follows from (i): the
complexity of the recursive function in (17), (ii): the large
number of states that can a statel transit to according to (12)
and (iii): the need to invert a(L+ 1)K × (L+1)K matrix in

(7) where there is an exponential increase of the number of
states with the number of relaysK. As such, we next resort to
an asymptotic analysis that holdsγ̄ ≫ 1. This analysis yields
tractable closed-form expressions of the APD and OP in the
asymptotic regime and allows to draw useful conclusion about
the system performance.

The (L + 1)K states of the state spaceS , {0, . . . , L}K

will no longer be considered in the steady-state probability
calculations, instead, the asymptotic analysis will focuson a
subsetSc of S where this subset comprises a much smaller
number of states and where the MC is inSc with a probability
tending to one asymptotically. In other words,

∑

l∈Sc
πl →

1 while πl → 0 ∀ l /∈ Sc for γ̄ ≫ 1 where the steady-
state probabilities satisfy (7). The setSc is called the closed
subset where the probability of exiting this set tends to zero
asymptotically:

tl,l′ → 0 ∀ l ∈ Sc , l
′ /∈ Sc. (18)

The performed asymptotic analysis shows that the closed
subsetSc and the corresponding steady-state probabilities
depend on the weights of link 1 in (4). In particular, the
cases1 < s < L, s = 1 and s = L need to be considered
separately. For the sake of notational simplicity, the following
definitions of some states that depend on the parameters are
introduced:

s
(1)
1 = (s− 1, . . . , s− 1),

s
(1)
2 = (s+ 1, s− 1, . . . , s− 1),

s
(1)
3 = (s− 1, . . . , s− 1, s− 2),

s
(2)
n = (s− 1, . . . , s− 1

︸ ︷︷ ︸

n−1 times

, s, s− 1, . . . , s− 1
︸ ︷︷ ︸

K−n times

),

s
(3)
n = (s, s− 1, . . . , s− 1

︸ ︷︷ ︸

n−1 times

, s, s− 1, . . . , s− 1
︸ ︷︷ ︸

K−n−1 times

),

s
(4)
n = (s− 1, . . . , s− 1

︸ ︷︷ ︸

n−1 times

, s, s− 1, . . . , s− 1
︸ ︷︷ ︸

K−n−1 times

, s− 2),

(19)

with n=1, . . . ,K for s(2)n andn=1, . . . ,K−1 for (s(3)n , s
(4)
n ).
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1) Case 1: 1 < s < L:
Proposition1: For 1 < s < L, the closed subset comprises

3K + 1 states as follows:

Sc = {s(1)n ; n = 1, 2, 3} ∪ {s(2)n ; n = 1, . . . ,K}

∪ {s(3)n , s(4)n ; n = 1, . . . ,K − 1}, (20)

where the corresponding steady-state probabilities are given
by:







π
s
(1)
1

=
1−

∑K+1
k=2 pk

K+1

π
s
(1)
2

= p2

K+1

π
s
(1)
3

= p1

K+1

π
s
(2)
n

=
1−

∑
n
k=1 pk

K+1 , for n = 1, . . . ,K

π
s
(3)
n

=
∑n+1

k=2 pk

K+1 , for n = 1, . . . ,K − 1

π
s
(4)
n

= p1

K+1 , for n = 1, . . . ,K − 1.

(21)

Proof: The above proposition is proved in Appendix A.

2) Case 2: s = 1:
Proposition2: For s = 1, the closed subset comprises2K+

1 elements:

Sc = {s(1)n ; n = 1, 2} ∪ {s(2)n ; n = 1, . . . ,K}

∪ {s(3)n ; n = 1, . . . ,K − 1}, (22)

with the following steady-state probabilities:






π
s
(1)
1

=
1−

∑K+1
k=2 pk

K+1−Kp1

π
s
(1)
2

= p2

K+1−Kp1

π
s
(2)
n

=
1−

∑
n
k=1 pk

K+1−Kp1
, for n = 1, . . . ,K

π
s
(3)
n

=
∑n+1

k=2 pk

K+1−Kp1
, for n = 1, . . . ,K − 1.

(23)

Proof: The details of the proof are presented in Appendix
B.

3) Case 3: s = L:
Proposition3: For s = L, the 3K-element closed subset

along with the steady state probabilities are presented below:

Sc = {s
(1)
1 , s

(1)
3 } ∪ {s(2)n ; n = 1, . . . ,K}

∪ {s(3)n , s(4)n ; n = 1, . . . ,K − 1}, (24)







π
s
(1)
1

=
1−

∑K+1
k=3

pk

K+1

π
s
(1)
3

= p1

K+1

π
s
(2)
n

=
1−

∑n
k=1 pk

K+1 , for n = 1, . . . ,K

π
s
(3)
n

=
∑n+1

k=3 pk

K+1 , for n = 1, . . . ,K − 1

π
s
(4)
n

= p1+p2

K+1 , for n = 1, . . . ,K − 1.

(25)

Proof: The details of the proof are presented in Appendix
C.

In (21), (23) and (25), the terms comprising the product of
two or more outage probabilities among{pk}Kk=1 are ignored

since these terms are small for large values of the SNR. It is
obvious that the probabilities in (21) add up to one. The same
holds for the probabilities in (23) and the probabilities in(25).

AssumingL ≥ 5 and replacing (21), (23) and (25) in (8)
implies the expressions of the asymptotic OP provided in (26)
on the top of the next page.

It is worth highlighting that the asymptotically-dominant
states in (19) comprise the buffer lengthss− 2, s− 1, s and
s+1. Therefore, the casess = 2, s = 1, s = L ands = L−1
need to be considered separately in the OP derivations. In
fact, for s ∈ {1, 2} (resp.s ∈ {L − 1, L}) some buffers are
empty (resp. full) and, hence, cannot transmit (resp. receive)
packets. In this context, only the case2 < s < L− 1 implies
that the unavailability probabilities in (2) satisfyqk = pk for
k = 1, . . . ,K+1 for all states in (19) that determine the closed
subset. As an illustration, fors = 2, the linkK +1 is always
unavailable for the states inSu = {s

(1)
3 , s

(4)
1 , . . . , s

(4)
K−1} in

(20). Therefore, the product of the unavailability probabilities
in (8) simplifies to

∏K+1
k=1 qk =

∏K
k=1 pk for the states

in Su and to
∏K+1

k=1 qk =
∏K+1

k=1 pk otherwise. As such,
the asymptotic OP can be written asOPAsymp = (1 −
∑

l∈Su
πl)

∏K+1
k=1 pk + (

∑

l∈Su
πl)

∏K
k=1 pk which simplifies

to the second expression in (26) after replacing the steady-
state probabilities by their values from (21) and observingthat
∑

l∈Su
πl =

p1

K+1 + (K − 1) p1

K+1 = Kp1

K+1 .
The asymptotic OP expressions in (26) yield the diversity

order of the BA relaying system. The value of the diversity
order can be extracted from the OP(γ̄) curve on a log-log scale
as the negative slope of this curve. Asymptotically, the product
of n terms among{p1, . . . , pK+1} scales as̄γ−n (given that
each outage probability in (1) scales asγ̄−1) generating a
diversity order ofn. Consequently, the system’s diversity order
d is found to be:

d =







1, s = 1;

K + 1, 1 < s < L;

K, s = L.

, (27)

implying that the choice1 < s < L is the most appealing for
maximizing the diversity order.

For the asymptotic APD derivations, the outage probabilities
{pk}

K+1
k=1 can be ignored in evaluating the steady-state prob-

abilities in (21), (23) and (25). In fact, it was observed that
this approach yields to a simple asymptotic APD expression
that is highly accurate. Settingp1 = . . . = pK+1 = 0 in (21),
(23) and (25) results inπ

s
(1)
1

= π
s
(2)
1

= · · · = π
s
(2)
K

= 1
K+1

for all values ofs while other steady-state probabilities can be
ignored. Therefore, the average queue length in (10) is equal
to L̄ = 1

K+1K(s− 1) + K
K+1 (K(s− 1) + 1) following from

the definitions of the statess(1)1 and s
(2)
n in (19). Replacing

this value ofL̄ in (9) while ignoring OP that is very small
asymptotically implies the below expression of the asymptotic
APD that holds for all values ofs:

APDAsymp = 2K + (s− 1)K(K + 1). (28)

implying that the choices = 1 is the most appealing for
minimizing the queuing delay.
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OPAsymp =







1−
∑K+1

k=2 pk

K+1−Kp1
p1 +

∑K
n=1

1−
∑

n
k=1 pk

K+1−Kp1
p1pn+1 +

p2

K+1−Kp1
p1p2 +

∑K
n=2

∑n+1
k=2 pk

K+1−Kp1
p1p2pn+1, s = 1

[

1− Kp1

K+1

]
∏K+1

k=1 pk +
Kp1

K+1

∏K
k=1 pk, s = 2

∏K+1
i=1 pi, 2 < s < L− 1

[

1− p2

K+1

]
∏K+1

i=1 pi +
p2

K+1

∏K+1
i=2 pi, s = L− 1

1 + p1 −
∑K+1

k=3 pk
K + 1

K+1∏

i=1

pi +

K∑

n=1

1−
∑n

k=1 pk
K + 1

K+1∏

i=1,i6=n

pi

+

K∑

n=2

∑n+1
k=3 pk
K + 1

K+1∏

i=2,i6=n

pi +

K−1∑

n=1

p1 + p2
K + 1

K+1∏

i=1,i6=n

pi,

s = L.

.

(26)

Equation (28) demonstrates that the asymptotic APD in-
creases as the number of relaysK is increasing where the
delay is accumulated as the information packets move from
one relay’s buffer to the buffer of the next relay. However,
unlike the max-link scheme in [14], the asymptotic APD is
independent of the buffer sizeL highlighting on the impor-
tance of including the buffer state information in the relaying
strategy where the proposed relaying scheme revolves around
avoiding the congestion of the relays’ buffers.

The MC framework constitutes the broad mathematical
tool to analyze queues [5], [7]–[11], [14], [15], [19]. The
particularities of the underlying network and the implemented
relaying strategy render the MC analysis different from one
system to another. It is worth highlighting that the dynamics
of the buffers in serial-relaying systems are more complicated
compared to parallel-relaying systems as in [11]. In fact,
for parallel-relaying, each packet is queued in one and only
one relay buffer before being delivered to D. However, for
serial-relaying, the packets move from one buffer to another
and, hence, each packet will be sequentially queued in all
relays’ buffers before reaching D. Therefore, the transition
probabilities derived in this paper differ substantially from
those presented in [11]. The role of the source node S also
differs substantially between [11] and the current work. A
main challenge in the MC analysis performed in this paper
resides in quantifying the role of S via a parameters that
was introduced in the link selection protocol in (4). As such,
S has to compete with the relays for transmitting unlike
[11]. As demonstrated in the presented performance analysis,
the parameters impacts the closed subset and, hence, three
variants of the asymptotic analysis need to be carried out
depending on the value ofs. Unlike [11] where the closed
subset contained only four states for any number of relaysK,
the asymptotic MC analysis presented in this paper is more
challenging for the following reasons. (i): The number of states
in the closed subset is not constant since it depends on the
parameters. (ii): The number of states in the closed subset
is relatively large and increases with the number of relaysK.
As such, identifying the closed subset is much more difficult.
Moreover, it is tougher to reach the asymptotic steady-state
probabilities in equations (21), (23) and (25) (as comparedto

eq. (44) in [11]) since a larger number of balance equations
involving a larger number of variables need to be solved. This
also results in more complicated asymptotic OP expressions
as can be observed by comparing (26) with eq. (45) in [11].

D. Conclusions about the design of the BA relaying scheme

Following from (26)-(28), we can reach the following
conclusions pertaining to the values of the weights and buffer
sizeL.

- There is no interest in selectings > 3. From (28), such
large values ofs penalize the APD while not presenting
any advantage in terms of the diversity order as can be
observed from (27).

- The values{1, 2, 3} all constitute valid options for the
parameters thus allowing the proposed relaying scheme
to achieve different levels of tradeoff between APD and
OP.

- Setting s to 1 is the best choice if the most critical
performance metric of a given application is the delay.
Consequently, this will guarantee the minimal asymptotic
APD value of2K at the drawback of a minimal diversity
order of1. In this case, all values ofL ≥ 3 result in the
same levels of the asymptotic APD and OP and, hence,
there is no need to deploy buffer sizes exceeding 3 when
s = 1.

- Settings to {2, 3} constitute the best choices in case the
outage is set to be the most critical performance metric.

- Setting s to 2 permits to reach the maximum diversity
order ofK + 1 but with an asymptotic APD ofK(K +
3). In this case, the OP and APD performance does not
improve by increasingL above 4 and, hence, settingL =
4 presents the best choice whens is fixed to 2.

- Settings to 3 permits to achieve the maximum diversity
order ofK +1 as well. However, comparing the choices
s = 3 and s = 2, the former choice incurs an increase
in the asymptotic APD value to2K(K + 2) with the
advantage of reducing the asymptotic OP following from
the second and third expressions in (26). Therefore,
increasings from 2 to 3 maintains the same maximum
diversity order with the disadvantage of increasing the
delay by K(K + 1) and the advantage of a coding
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gain of 10
K+1 log10

(

1 + K
K+1

ΩK+1

Ω1

)

decibels. Finally, for
s = 3, the buffer size ofL = 5 is sufficient to reap
all the performance gains in the asymptotic regime. In
fact, the derivations in Section III-C demonstrated that
the probability of having more than five packets stored
in any buffer tends to zero asymptotically. As such, there
is no need to deploy buffers that can store more than five
packets. Note that the delay-loss increases withK while
the coding gain decreases withK rendering the choice
s = 2 more adequate to serial relaying systems with a
large number of relays.

- Even though finite-size buffers were assumed in this
work, the analysis presented in Section III-C withs ∈
{1, 2, 3} holds for infinite-size buffers as well. In fact,
the finite set of recurrent states in (19) will shape the
asymptotic steady-state distribution of the MC even with
an infinite number of states since all remaining states will
be transient.

IV. N UMERICAL RESULTS

We next provide some numerical results supporting the
theoretical expressions and conclusions derived in the previous
sections. In what follows,r0 is fixed to 1 BPCU in (1). In
addition, we define the(K + 1)-dimensional vectorΩ as
Ω = [Ω1, . . . ,ΩK+1] capturing the strengths of theK + 1
hops.

Fig. 2 and Fig. 3 present the curves of OP and APD,
respectively, for a network of three relays withL = 8
and Ω = [4, 4.5, 5, 4.5]. The results in these two figures
demonstrate the accuracy of the asymptotic analysis and the
validity of the formulated OP and APD asymptotic expressions
in (26) and (28), respectively. In fact, for all values ofs, the
asymptotic and the exact OP and APD curves are perfectly
matched for average-to-large values of SNR. Furthermore, the
theoretical MC analysis that was performed is proved to be
valid since the curves of theoretical OP and APD, from (8)
and (9) respectively, are perfectly matched with their numerical
counterparts that were generated by Monte Carlo simulations.
Consequently, we can deduce the following observations. (i):
The choice s = 1 leads to the highest OP and lowest
APD. In fact, assigning a small weight to link 1 privileges
the transmissions from relays with non-empty buffers which
positively contributes towards reducing the queuing delays.
(ii): The choicess = 2, s = 3 and s = L − 1 satisfy the
condition 1 < s < L and, hence, all achieve the maximum
diversity order ofK + 1 following from (27). This results
in comparable OP performance where the corresponding OP
curves are the steepest as can be observed from Fig. 2.
However, from Fig. 3, increasing the value ofs leads to higher
APD values in coherence with (28). Among the above choices,
the values = 3 results in the smallest OP as predicted from
(26); however, the coding gain with respect to the case of
s = 2 is small (around 0.65 dB) and does not justify the
increase in the asymptotic APD from 18 to 30. (iii): Selecting
s = L results in a higher OP and a higher APD than the case of
1 < s < L and, consequently, this choice does not present any
advantage. As a conclusion, the above observations validate
the findings reported in Section III-D.

5 10 15 20 25 30
SNR (dB)

10−9

10−7

10−5

10−3

10−1

OP

s=1
s=2
s=3
s= L−1
s= L

Fig. 2. OP with K = 3 and L = 8. Dashed lines, solid lines with
hollow markers and solid lines correspond to the simulation, theoretical and
asymptotic values, respectively.

5 10 15 20 25 30
SNR (dB)

0

20

40

60

80

AP
D

s=1
s=2
s=3
s= L−1
s= L

Fig. 3. APD with K = 3 and L = 8. Dashed lines, solid lines with
hollow markers and solid lines correspond to the simulation, theoretical and
asymptotic values, respectively.

Fig. 4 and Fig. 5 make a comparison between the proposed
scheme and themax-link scheme [14] at a SNR of 35 dB
with L = 5 andL = 10. These figures show the variations
of the OP and APD, respectively, as function of the number
of relaysK for Ω = [3, . . . , 3]. For the proposed scheme,
we consider the values ofs in {1, 2, 3} that constitute the
valid values for this parameter following from Section III-D.
Results in Fig. 4 and Fig. 5 validate equations (26) and (28),
respectively, demonstrating that the asymptotic performance
of the proposed scheme is independent ofL as long as
L ≥ 5. In fact, the OP and APD curves of the proposed
scheme pertaining to the casesL = 5 and L = 10 overlap
for all values of s highlighting that the proposed scheme
can be advantageously associated with a small buffer size of
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2 3 4 5 6
K

10−12
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Prop s=1, L=5
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Prop s=3, L=10
Max-Link L=5
Max-Link L=10

Fig. 4. Asymptotic OP of themax-link scheme and the proposed scheme for
different values ofK.
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Max-Link L=5
Max-Link L=10

Fig. 5. Asymptotic APD of themax-link scheme and the proposed scheme
for different values ofK.

five. This observation does not hold for themax-link scheme
where small buffer sizes present a small diversity order and
full diversity is only reached with infinite buffer sizes [14].
Similarly, the max-link scheme admits an asymptotic APD
of K + L

∑K−1
i=0 (K − i) that depends onL. As such, for

the max-link scheme, increasing the value ofL for enhancing
the diversity order will result in increasing the APD and a
full diversity order (achievable withL → ∞) will incur an
infinitely large delay. However, for the proposed scheme, the
full diversity order ofK+1 can be achieved with a finite buffer
size of five while keeping the APD bounded toK(K + 3)
and 2K(K + 2) for s = 2 and s = 3, respectively. Fig. 4
and Fig. 5 demonstrate that the proposed scheme outperforms
the max-link scheme for all values ofK. This superiority
stems from including the buffer state information in the link
selection algorithm unlike [14] where this selection depends

10 15 20 25 30
SNR (dB)
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10−7

10−5
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Ma -Link
Buffer-free

Fig. 6. OP forK = 5 andL = 5.
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Fig. 7. APD forK = 5 andL = 5.

solely on the values of the links’ strengths. Moreover, the
inclusion of the parameters in the link selection process
presents an additional degree of freedom that can optimize the
performance. From Fig. 4 and Fig. 5, the proposed scheme
with s = 1 results in a delay that is severally smaller than
that of themax-link scheme at the expense of an increase in
the OP since the choices = 1 does not present any diversity
gain. On the counterpart, the proposed scheme withs ∈ {2, 3}
outperforms themax-link scheme in both the OP and APD
performance for all values ofK and L. For example, for
s = 2, K = 4 andL = 10, implementing the proposed scheme
instigates sharp reductions in the APD from104 to 28 and in
the OP from around10−6 to around10−12 as compared to
the max-link scheme.

Fig. 6 and Fig. 7 compare between the proposed scheme
and themax-link scheme [14]. We added the performance of
a buffer-free system whose OP is given by1−

∏K+1
k=1 (1−pk)
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where this system is not in outage only when all hops are
not in outage. In these figures, we consider a 5-relay network
with L = 5 and Ω = [4.5, 4, 3.75, 5, 4.5, 4.5]. Results in
Fig. 6 and Fig. 7 demonstrate the capability of the proposed
scheme to achieve a wide range of OP and APD levels, only
by controlling the value ofs. It can be seen that the best
OP performance is achieved withs = 3 and the best APD
performance is found fors = 1. The ability of the proposed
relaying scheme in reaching the full diversity order withs = 2
and s = 3 manifests in the significant improvements in the
OP where the performance gains exceed 10 dB at an OP of
10−5 as compared to themax-link scheme. The superiority
in terms of the APD performance manifest clearly in Fig. 7.
Finally, while both the buffer-free systems and the proposed
scheme withs = 1 achieve the same diversity order of 1, the
latter scheme results in OP improvements as can be observed
from Fig. 6. From Fig. 7, these improvements are associated
with an APD value that converges to2K = 10 as the SNR
increases. For buffer-free systems on the other hand, a delay
of K+1 = 6 is incurred for an information packet to traverse
theK + 1 hops between S and D inK + 1 time slots.

V. CONCLUSION

In this paper, we suggested a novel BA relaying strategy
for serial-relaying HD networks for any number of relays.
The priority of transmitting from a relay was captured by
the current amount of packets stored in its buffer while the
priority of transmitting from the source was quantified by
a variable parameters. Through an appropriate asymptotic
analysis that limited the Markov chain evaluation to a tractable
number of dominant states, we related the diversity order,
outage probability and queuing delay to the parameters. This
analysis was culminated by suggesting convenient choices of
the parameters and the buffer sizeL. Advantageously, the
delay does not increase withL and small buffer sizes not
exceeding 5 are sufficient to achieve the ultimate performance
gains of the network. These advantages constitute the main
improvements of the suggested scheme with respect to the
benchmark schemes in the literature.

APPENDIX A

For convenience, we introduce the following definition of
the asymptotic order of a probability that can be written as the
weighted sum of terms involving the product of 0 toK + 1
elements of{p1, . . . , pK+1}. For a probabilityp that can be
expressed as:

p =
∑

i1≥0

· · ·
∑

iK+1≥0

ci1,...,iK+1

K+1∏

n=1

pinn , (29)

where{ci1,...,iK+1} are constants, then the asymptotic order
of p is defined as:

O(p) = min
i1≥0 ··· iK+1≥0

{
K+1∑

n=1

in | ci1,...,iK+1 = 0 ∀
K+1∑

n=1

in < O(p)

}

. (30)

For example,O(1/3 − p1 + 2p2 + · · · ) = 0 andO(p21 +
p1p2p3+· · · ) = 2. From (30), it follows thatO(pp′) = O(p)+
O(p′) andO(p + p′) = min{O(p), O(p′)}.

The asymptotic analysis that we carry out in this appendix
is an order-1 analysis where all probabilities whose asymptotic
orders exceed 1 are ignored. In fact, for asymptotic SNR
values,pk ≪ 1 for k = 1, . . . ,K + 1 implying that the
terms involving the product of two or more elements of
{p1, . . . , pK+1} can be ignored.

First, we demonstrate that the setSc in (20) is closed by
proving that the corresponding transition probabilities satisfy
(18). A key element in the proof is to further partition the set
Sc into two subsetsSc,1 andSc,2 such thatSc = Sc,1 ∪ Sc,2

and (fork ∈ {1, . . . ,K + 1}):

∀ l ∈ Sc,1 : tl,l′ =

{
1− pk, l

′ ∈ Sc,1;
pk, l

′ ∈ Sc,2.
(31)

∀ l ∈ Sc,2 : tl,l′ =

{
1− pk, l

′ ∈ Sc,1 ∪ Sc,2;
pk, l

′ /∈ Sc,1 ∪ Sc,2.
, (32)

where all transition probabilities whose asymptotic orders
exceed one were ignored.

Proposition4: For the subsetsSc,1 andSc,2 satisfying (31)-
(32), the asymptotic orders of the steady-state probabilities of
the corresponding states satisfy the relation in (33):







O(πl) = 0, l ∈ Sc,1;
O(πl) = 1, l ∈ Sc,2;
O(πl) ≥ 2, l /∈ Sc,1 ∪ Sc,2.

. (33)

Proof: We will prove that (33) satisfies the asymptotic
orders of all balance equations. For any statel, the balance
equation at steady-state is generalized as follows:

πl =
∑

l′∈Sc,1

tl′,lπl′ +
∑

l′∈Sc,2

tl′,lπl′ +
∑

l′ /∈Sc,1∪Sc,2

tl′,lπl′ (34)

implying that:

O(πl) = min







min
l′∈Sc,1

{O(tl′,l)
︸ ︷︷ ︸

,o1

+O(πl′)
︸ ︷︷ ︸

=0

},

min
l′∈Sc,2

{O(tl′,l)
︸ ︷︷ ︸

,o2

+O(πl′)
︸ ︷︷ ︸

=1

}, min
l′ /∈Sc,1∪Sc,2

{O(tl′,l)
︸ ︷︷ ︸

≥0

+O(πl′)
︸ ︷︷ ︸

≥2

}







(35)

, min {O1(πl), O2(πl), O3(πl)} , (36)

where the asymptotic orders from (33) were replaced in (35).
(i): For l ∈ Sc,1, o1 = 0 ando2 = 0 following from (31) and
(32), respectively. Consequently,O1(πl) = 0, O2(πl) = 1 and
O3(πl) ≥ 2 implying from (36) thatO(πl) = 0 thus proving
the first relation in (33). (ii): Forl ∈ Sc,2, o1 = 1 and o2 =
0 following from (31) and (32), respectively. Consequently,
O1(πl) = 1, O2(πl) = 1 andO3(πl) ≥ 2 implying from (36)
thatO(πl) = 1 thus proving the second relation in (33). (iii):
For l /∈ Sc,1∪Sc,2, o1 ≥ 2 ando2 = 1 following from (31) and
(32), respectively. Consequently,O1(πl) ≥ 2, O2(πl) = 2 and
O3(πl) ≥ 2 implying from (36) thatO(πl) = 2 thus proving
the third relation in (33).
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Fig. 8. Closed Subset for1 < s < L.

Lemma1: For the subsetsSc,1 andSc,2 satisfying (31)-(32),
the setSc = Sc,1 ∪ Sc,2 is closed asymptotically.

Proof: For l /∈ Sc = Sc,1 ∪ Sc,2, O(πl) ≥ 2 from (33)
implying that the steady-state probabilityπl can be ignored
when carrying out the order-1 asymptotic analysis. Therefore,
the MC is always in one of the states ofSc asymptotically
implying that this set is closed.

Lemma2: For the order-1 asymptotic analysis, the transition
probabilities in (32) can be approximated by:

∀ l ∈ Sc,2 : tl,l′ ≈

{
1, l

′ ∈ Sc,1 ∪ Sc,2;
0, l

′ /∈ Sc,1 ∪ Sc,2.
. (37)

Proof: Since the transitions fromSc,2 to states outsideSc

are ignored since the setSc is asymptotically closed following
from lemma 1, thenpk can be approximated by 0 in (32).
In fact, the inclusion of the probabilitypk in the transitions
appearing in (32) will only yield to terms whose asymptotic
orders exceed two and, hence, can be ignored.

Proposition5: The following subsets of the setSc in (20)
satisfy the conditions in (31)-(32):

Sc,1 = {s
(1)
1 } ∪ {s(2)n ; n = 1, . . . ,K}

Sc,2 = {s(1)n ; n = 2, 3} ∪ {s(3)n , s(4)n ; n = 1, . . . ,K − 1}.
(38)

Proof: We first prove the condition in (31). Ignoring
the terms involving the product of two or more elements of
{pk}

K+1
k=1 asymptotically, the non-zero transition probabilities

from elements ofSc,1 in (38) are:

t
s
(1)
1 ,s

(2)
1

= 1− p1 ; t
s
(2)
K

,s
(1)
1

= 1− pK+1

t
s
(2)
n ,s

(2)
n+1

= 1− pn+1 , n = 1, . . . ,K − 1,
(39)

and:

t
s
(1)
1 ,s

(1)
3

= p1 ; t
s
(2)
1 ,s

(1)
2

= p2

t
s
(2)
n ,s

(3)
n−1

= pn+1 , n = 2, . . . ,K,
(40)

where the proof of (39) and (40) follows directly from the
relaying strategy in (3)-(4). We will next provide the proof
for the statess(1)1 and s

(2)
n for n = 2, . . . ,K − 1. The

proof for other states inSc,1 follows in a similar manner

and, hence, will be omitted for the sake of brevity. (i): For
s
(1)
1 = (s − 1, . . . , s− 1), ∆1 = s and∆2 = · · · = ∆K+1 =
s− 1 implying that preference is given for transmission from
S. In this case, if link 1 is not in outage (with probability
1 − p1), there will a transmission of a packet from S to R1

which implies an increase in the number of packets stored
in the buffer of R1 by 1 thus moving to the states(2)1 =
(s, s − 1, . . . , s − 1). If link 1 is in outage (with probability
p1) and since∆2 = · · · = ∆K+1, the priority will be given for
the transmission along the link with the highest indexK + 1
according to the tie breaking rule adopted in the relaying
protocol. Therefore, with probabilityp1(1 − pK+1) ≈ p1, a
packet will be transmitted from RK to D implying that the
MC will move to the states(1)3 = (s− 1, . . . , s− 1, s− 2). If
link K+1 is in outage, the subsequent transition probabilities
will involve the multiplicative termp1pK+1 implying that such
terms can be neglected in the order-1 asymptotic analysis. (ii):
For s(2)n (with n = 2, . . . ,K − 1), ∆1 = ∆n+1 = s while
∆2 = · · · = ∆n = ∆n+2 = · · · = ∆K+1 = s − 1. As
such, priority will be given for transmission along linkn+ 1
followed by link 1 if the linkn+1 is in outage. Therefore, with
probability1− pn+1, a packet will be transmitted from Rn to
Rn+1 implying that the number of packets stored in Rn will be
reduced by 1 while the number of packets stored in Rn+1 will
rise by 1, thus incurring a transition to the states

(2)
n+1. On the

other hand, with probabilitypn+1(1 − p1) ≈ pn+1, a packet
will be transmitted from S to R1 thus incurring a transition to
the states(3)n−1. Other transition probabilities will involve the
termpn+1p1 and, hence, can be ignored for large values of the
SNR. As a conclusion, the transition probabilities in (39)-(40)
satisfy the condition in (31).

Next, we prove the condition in (32). For elements ofSc,2

in (38), the transitions that are confined inSc = Sc,1 ∪ Sc,2

occur with the following probabilities:

t
s
(1)
2 ,s

(3)
1

= 1− p2 ; t
s
(1)
3 ,s

(4)
1

= 1− p1

t
s
(3)
K−1,s

(2)
1

= 1− pK+1 ; t
s
(4)
K−1,s

(1)
1

= 1− pK

t
s
(3)
n ,s

(3)
n+1

= 1− pn+2 , n = 1, . . . ,K − 2

t
s
(4)
n ,s

(4)
n+1

= 1− pn+1 , n = 1, . . . ,K − 2,

(41)
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Fig. 9. Closed Subset fors = 1.

while the transitions leading to states outsideSc occur with
the following probabilities:

t
s
(1)
2 ,s

(1)
2 +e1

= p2 ; t
s
(1)
3 ,s

(1)
3 −eK−1+eK

= p1

t
s
(3)
K−1,s

(3)
K−1−e1+e2

= pK+1 ; t
s
(4)
K−1,s

(4)
K−1+e1

= pK

t
s
(3)
n ,s

(3)
n −e1+e2

= pn+2 , n = 1, . . . ,K − 2

t
s
(4)
n ,s

(4)
n +e1

= pn+1 , n = 1, . . . ,K − 2,

(42)

where (41)-(42) follow directly from the relaying strategyin
(3)-(4). As an illustration, we will provide the proof for the
state s

(3)
n with n = 1, . . . ,K − 2 and the proof for other

states ofSc,2 will follow in a similar manner. For the state
s
(3)
n (with n = 1, . . . ,K − 2), ∆1 = ∆2 = ∆n+2 = s while
∆k = s−1 for k 6= 1, 2, n+2 implying that the highest priority
is to transmit along the linkn+ 2 followed by the link 2 (in
case the linkn+ 2 is in outage). Therefore, with probability
1− pn+2, Rn+1 transmits and Rn+2 receives resulting in the
transitions(3)n → s

(3)
n − en+1 + en+2 = s

(3)
n+1. Ignoring the

outage of more than one link asymptotically, with probability
pn+2, R1 transmits and R2 receives resulting in the transition
s
(3)
n → s

(3)
n − e1 + e2 /∈ Sc. As a conclusion, the transition

probabilities in (41)-(42) satisfy the condition in (32).

Therefore, the union of the sets in (38) is closed asymptot-
ically following from lemma 1 and the transition probabilities
in (41) and (42) can be approximated by 1 and 0, respectively,
following from lemma 2. This results in the simplified closed
state diagram illustrated in Fig. 8.

From Fig. 8, the3K + 1 balance equations in the closed

subsetSc are given by:

π
s
(1)
1

= (1− pK+1)π
s
(2)
K

+ π
s
(4)
K−1

(43)

π
s
(2)
1

= (1− p1)π
s
(1)
1

+ π
s
(3)
K−1

(44)

π
s
(2)
n

= (1− pn)π
s
(2)
n−1

, n = 2, . . . ,K (45)

π
s
(1)
2

= p2π
s
(2)
1

(46)

π
s
(3)
1

= p3π
s
(2)
2

+ π
s
(1)
2

(47)

π
s
(3)
n

= pn+2π
s
(2)
n+1

+ π
s
(3)
n−1

, n = 2, . . . ,K − 1 (48)

π
s
(1)
3

= p1π
s
(1)
1

(49)

π
s
(4)
1

= π
s
(1)
3

(50)

π
s
(4)
n

= π
s
(4)
n−1

, n = 2, . . . ,K − 1. (51)

Solving the relation
∑

l∈Sc
πl = 1 along with the above

balance equations, generates the expressions of the steady-
state probabilities presented in (21).

APPENDIX B

The case ofs = 1 differs from the case1 < s < L presented
in Appendix A by the elimination of the statess(1)3 and s

(4)
n

for n = 1, . . . ,K − 1 since these states do not exist fors = 1
(sinces − 2 becomes negative in this case). Removing these
states from (20) results in the closed subset provided in (22).
The closed subset is now as presented in Fig. 9 that is obtained
by removing the above mentionedK states from the state
diagram in Fig. 8.

Consequently, in the balance equations (43)-(51), equations
(49)-(51) must be removed while equation (43) must be
replaced by:

π
s
(1)
1

= (1 − pK+1)π
s
(2)
K

+ p1π
s
(1)
1
. (52)

Solving (44)-(48) and (52) along with the relation
∑

l∈Sc
πl = 1 generates the steady-state probabilities pre-

sented in (23).
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Fig. 10. Closed Subset fors = L.

APPENDIX C

The case ofs = L differs from the case1 < s < L
presented in Appendix A by the elimination of the state
s
(1)
2 = (s + 1, s − 1, . . . , s − 1) since s + 1 exceeds the

buffer sizeL for s = L. As such, the closed subset in (20)
reduces to the one given in (24). The reduced state diagram
for s = L is illustrated in Fig. 10 where a transition can
occur from s

(2)
1 to s

(4)
1 with probability p2. In fact, in the

states(2)1 = (s, s− 1, . . . , s− 1), the highest priority is given
for transmission along link 2 followed by the transmission
along linkK + 1 since the buffer at R1 is full for s = L and
the link 1 is unavailable. Consequently, equation (46) mustbe
removed while equations (47) and (50) must be replaced by:

π
s
(3)
1

= p3π
s
(2)
2

(53)

π
s
(4)
1

= p2π
s
(2)
1

+ π
s
(1)
3
. (54)

Solving equations (43)-(45), (48)-(49), (51) and (53)-(54)
along with the relation

∑

l∈Sc
πl = 1 generates the steady-

state probabilities presented in (25).
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