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Evolution Strategies for Lightwave Power Transfer
Networks

Thanh-Dat Le, Georges Kaddoum, Ha-Vu Tran, and Chadi Abou-Rjeily

Abstract—This work revolves around lightwave power transfer
networks in which we aim to maximize the number of users
served while simultaneously minimizing the transmit power.
By formulating the problem as a reinforcement learning (RL)
problem, we propose the use of the evolution strategies (ES)
method as a novel solution. In this context, ES is a heuristic
search method inspired from the biological evolution of nature
and it is used to solve complex machine learning problems. Hence,
a learning scenario and an ES-based algorithm are devised to
solve the RL problem. The results demonstrate that the proposed
approach can achieve considerable performance gains compared
to the conventional Q-learning method.

Index Terms—Lightwave power transfer, light energy harvest-
ing, machine learning, evolution strategies, Q-learning.

I. INTRODUCTION

The sixth-generation of wireless communication networks
(6G) could be the first network generation that implements
standards to wirelessly transfer energy to recharge terminal
devices [1]. The ever-increasing demand for prolonging the
operational lifetime of wireless devices is challenging the
research community. In this context, the radio frequency
(RF) wireless power transfer (WPT) technology has been
considered as an appealing approach [2]. However, this
approach entails a performance compromise between RF
energy harvesting and information transfer due to the spectrum
scarcity problem [2]. This limitation motivated researchers
to investigate lightwave WPT technology over visible light
(VL) and infrared light (IRL), both operating in the optical
license-free spectrum. In particular, this technology can be
perceived as a complementary approach to RF WPT since it
does not interfere with RF information transmission. To this
end, in [3], the visible and infrared light emitted from the laser
or LEDs was used as the source for optical wireless power
transfer. In [4], a hybrid VLC-RF network using light energy
harvesting for downlink communication was investigated
and the corresponding secrecy outage performance for RF-
based uplink communication was studied. Similarly, a novel
collaborative RF and lightwave resource allocation policy for
hybrid VLC-RF networks was proposed in [5] with an aim
to improve the QoS of the network while maintaining an
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acceptable illumination in the area. Also, in [6], to balance
the trade-off between the light harvested energy and the QOS
in lightwave energy harvesting systems, novel strategies for
simultaneous lightwave information and power transfer were
proposed.

In this paper, we consider a lightwave power transfer
network in which multiple optical transmitters recharge
terminal devices using IRL. We specifically aim to derive a
power allocation scheme that autonomously maximizes the
number of users served while simultaneously minimizing the
transmit power. In this regard, we characterize the power
control as a reinforcement learning (RL) problem. The
model-free Q-learning method is applied to solve the problem
[7]. However, while this technique has the capability to
perform well for problems having a small action/state space,
its performance drastically deteriorates as the action/state
space increases, or even becomes continuous. To avoid this
limitation, we propose in this work an alternative learning
framework based on evolution strategies (ES) to design a
scheme that tackles the power allocation problem in lightwave
power transfer networks. The ES algorithm belongs to a
category of black-box optimization methods, motivated
by natural selection, and it has been gaining significant
attention from the research community due to its simplicity
and efficiency in handling RL problems [8]. We design a
reward function to maximize the number of users served at
the minimum cost of transmit power. Finally, to highlight
the advantages of ES, we provide a numerical comparison
between our ES-based algorithm and Q-learning. Results
confirm the promise of the proposed approach to enable
next-generation artificial intelligence (AI)-powered wireless
recharging networks.

II. SYSTEM MODEL

We consider a network model, illustrated in Fig. 1, where
O optical transmitters replenish the batteries of J terminal
devices via downlink transmissions using IRL [3], [6]. Each
terminal device is equipped with a solar panel to harvest light
energy [3], [6], [9], [10].

A. Channel Model

In this work, the optical channel with only a line-of-sight
(LOS) component is considered since the contribution of non-
line-of-sight (NLOS) components can be neglected [4], [6].
Hence, the optical channel between the IRL light emitting
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Fig. 1. A multi-cell lightwave power transfer network.

diode (LED) o (1 ≤ o ≤ O) and the photodetector of device
j (1 ≤ j ≤ J), denoted by ho,j , is given by [6]:

ho,j =
Aj(mo + 1)

2πd2
o,j

cosmo(φo,j)Ts(ψo,j)g(ψo,j)cos(ψo,j),

(1)

where Aj is the active area, mo is the Lambert’s mode number,
do,j is the transmission distance, and φo,j and ψo,j are the
irradiation angle and the angle of incidence, respectively.
In addition, Ts(ψo,j) and g(ψo,j) are the optical band-pass
filter gain, and the optical concentrator gain, respectively.
Furthermore, the parameters mo and g(ψo,j) are derived based
on the LED semi-angle at half-power φo,1/2 and the field of
view (FOV) ψfov ≤ π/2 given in [6].

B. Lightwave Energy Harvesting

The IRL energy harvested at device j is [6]:

EIRL
j =

O∑
o=1

foptIo,j,GVo,j,c, (2)

where fopt is the fill factor and Io,j,G is the generated direct
current (DC) component computed as

Io,j,G = νPo,jho,j , (3)

where ν represents photodetector responsivity and Po,j is the
IRL power. Furthermore, Vo,j,c is the open circuit voltage
computed as

Vo,j,c = Vtln
(

1 +
Io,j,G
Id

)
, (4)

in which Vt and Id are the thermal voltage and the dark satu-
ration current, respectively. Note that as Vo,j,c is a logarithmic
function with respect to Po,j , the IRL energy harvested, as
displayed in Eq. (2), is a non-linear function of Po,j .

III. PROBLEM FORMULATION

In this work, we aim to maximize the number of users
served, subject to the constraints of energy harvesting (EH)

performance and the power budget. Thus, the resulting opti-
mization problem can be formulated as follows:

OP1: max
{Po,j≥0},sj

J∑
j=1

sj (5a)

s.t.: sj =

{
1 if Eamb

j + EIRL
j ≥ θj ,

0 otherwise.
(5b)

J∑
j=1

Po,j ≤ Po, (∀o) (5c)

where, in constraint (5b), sj is a variable such that sj = 1
signifying user j being served with an EH rate higher than or
equal to a threshold θj , where Eamb

j is the harvested energy
from the ambient environment. In this paper, we assume
that all the users experience the same conditions from the
ambient environment, such as from the solar energy resource.
Therefore, the ambient energy is set to a postiche constant
value. Constraint (5c) implies that the optical transmitter o is
constrained by the power budget Po.

Given OP1, there might be several optimal sets of users
served, i.e., {s◦j}, with the same optimal value

∑J
j=1 s

◦
j . As

a result, there may exist several possible corresponding sets
of {P ◦o,j}. To save energy, IRL transmit power is minimized
in the second stage. The corresponding optimization problem
can be written as

OP2: min
{Po,j}

O∑
o=1

J∑
j=1

Po,j (6a)

s.t.: {Po,j} ∈ F (6b)

where F stands for a feasible set of {P ◦o,j} obtained by solving
problem OP1. Then, after tackling OP2, the optimal solutions,
denoted by {P ?o,j} and the corresponding sets of {s?j}, are
obtained.

It is noteworthy to mention that the maximization of the
number of users served is always coupled with the mini-
mization of the power allocation of the BS. Such coupling
optimization problem makes all the involved variables, i.e.
{s◦j} and {P ◦o,j}, correlated with each other. As a result, the
solutions to this problem has to be obtained through a joint
manner. In other words, the integer-based variables {s◦j} are
always concurrently and implicitly considered with the power
allocation variables {P ◦o,j} during the optimization process.
Besides, the optimization problem (5) also involves non-linear
constraints due to the intrinsically non-linear structure of the
energy harvesting model given in (2), making the optimization
problem more challenging.

IV. EVOLUTION STRATEGIES-BASED SOLUTION

A. Learning Scenario with Evolution Strategies

In light of previous works [7], [11], the resource manage-
ment scheme can be considered as an RL problem. The idea
relies on learning the interrelation between IRL transmit power
and the number of users served continuously by interacting
with the network.
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Fig. 2. The proposed learning scenario with ES.

The ES algorithm belongs to a category of black-box optimiza-
tion methods that are known for their simplicity and efficiency.
The ES works directly on the policy itself instead of trying
to explore and reinforce the policy using the value-estimate
method, as the Q-learning method does. Fundamentally, for
each time slot, a set of new policy candidates, namely a
population, is generated by applying random perturbations
on the randomly initialized policy. Note that a Gaussian
distribution function could be used for generation. Then, the
quality of every newly generated policy is estimated through
its corresponding reward. The main policy is updated in the
direction of policy candidates that have highest rewards. This
policy update rule incorporates the property of the natural
selection from the evolution theory, where the elite individuals
with the strongest characteristics will survive and pass on these
helpful features to the next generation.

On this basis, each iteration of the ES algorithm consists
of two phases: (i) generating a population of actions, and (ii)
observing the returned rewards and selecting "elite" actions
that fit the objective well to make a policy update for the next
iteration. Our proposed learning scenario with ES is shown in
Fig. 2, where the environment consists of O optical transmit-
ters and J terminal devices. Further, the optical transmitters
are connected to a central processing unit, which plays the role
of an agent. The agent’s objective is to maximize the number
of users served at a minimum transmit power. Additionally, the
transmit power level stands for the action in the ES algorithm.
Detailed mathematical descriptions of the proposed scheme
are provided in the next subsection.

B. Evolution Strategies-Based Algorithm

In this work, we consider an RL problem in which R(·) is a
reward function provided by the environment, and P (defined
by P = [P1,1...P1,J ...PO,1...PO,J ]) is the parameter of actions
determined by the agent.

In the first phase, we start by setting an initial value for
P, denoted by P(0). Next, based on pψ which is defined
as an isotropic multivariate Gaussian distribution with mean
ψ and covariance σIOJ , where IOJ is an identity matrix,
we initiate a population with a distribution over parameters
pψ(P(0)) and aim to maximize the average objective value
EP(0)∼pψR(P(0)). Here, we can rewrite EP(0)∼pψR(P(0)) as

EP(0)∼pψR(P(0)) = Ea∼CN (0,IOJ )R(P(0) + σa), (7)

where, the part on the right side can be seen as a Gaussian-
blurred version of the one on the left side.

In the second phase, assuming that there are K generated
samples of a, i.e., {ak} (1 ≤ k ≤ K), the agent observes the
returned rewards Rk(P(0) +σak) and then updates P(0) using
the following rule:

P(t+1) ← P(t) +
α

Kσ

K∑
k=1

Rk(P(t) + σak)ak, (8)

where α is the learning rate. One can see that each ak is
weighted by its returned reward Rk. This implies that the
actions with higher reward values have higher impacts on the
next generation than the ones with lower reward, reflecting the
characteristics of natural selection. Our scheme is summarized
in Algorithm 1.

Algorithm 1 Evolution Strategies-Based Algorithm

Input: Learning rate α, noise standard deviation σ, initial
policy parameters
Initialization:

1: Initiate the value of P, i.e., P(0) = P
OJ 1OJ

LOOP Process
2: for t = 0, 1, 2, ..., T do
3: Sample a1, ...,aK ∼ CN (0, IOJ)
4: Observe returned rewards Rk = R(P(t) + σak), (1 ≤

k ≤ K)

5: Standardization: Rk =
Rk −mean({Rk})

std({Rk})
, (0 ≤ k ≤

K)

6: Update P(t+1) ← P(t) +
α

Kσ

∑K
k=1Rkak

7: end for

C. Proposed Reward Function

Designing the reward function is critical because it should
sufficiently represent the objective of the optimization prob-
lem, which is to maximize the number of users served with
minimum power consumption. We therefore propose the fol-
lowing reward function:

R(P) =
f(P)− g(P)

J
, (9)

where f(P) and g(P) are the two separate reward score
functions. More specifically, since we aim to maximizing the
number of served user, f(P) is computed by the following
rule:

Set rf = 0
for j = 1, ..., J do

If Eamb
j + EIRL

j (P) ≥ θj then rf+ = 1 + 1
ι1+(Eamb

j +EIRL
j (P))

.

Otherwise rf− = ι2(θj − Eamb
j − EIRL

j (P)).
end for
Return f(P) = rf

where ι1 and ι2 (ι1, ι2 > 0) are the constant parameters. Note
that we also aim to serve the users at a minimum cost. As a
result, it can be seen that excessively increasing the transmit
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power could probably lower the value of f(P).
In addition, under a fixed power budget at each transmitter,
any exceeded transmit power should also result in a penalty.
Thus, g(P) is calculated by the below rule where κ1 and κ2

(κ1, κ2 > 0) are penalty factors that handle the tightness of
the power budget.

Set rg = 0
for o = 1, ..., O do

If
∑J
j=1 Po,j > Po then rg+ = κ1(

∑J
j=1 Po,j − Po).

end for
Return g(P) = rg + κ2

∑O
o=1

∑J
j=1 Po,j

V. Q-LEARNING AS A BENCHMARK

We aim to provide a fair performance comparison between
the ES and Q-learning methods. Due to the problem’s nature,
the stateless Q-learning is employed [7]. In this regard, the Q-
learning scenario, algorithm, and reward function are similar
to those of the ES-based method. However, in the action
space, denoted by P , each action is an OJ-dimensional vector.
Feasible vector element values are obtained by dividing the
interval between 0 and Po into equal power steps of ∆p.
The agent selects the actions {Pq} from P having the same
probability. Note that as a traditional look-up table method,
the Q-learning technique will aim to update its Q-value
table, where the values of all possible actions are constantly
estimated. As the action vector has the size of OJ elements,
the look-up table has the size of ( P

∆p
)OJ . The implementation

details of the stateless Q-Learning are formally described in
Algorithm 2. With a priority for a lightweight and autonomous
network subjected to a limited energy budget constraint,
the high computational complexity of neural-network-based
methods make it less desirable compared to the classic Q-
learning based method. On top of that, given the characteristic
of the stateless problem considered in this paper, a direct
utilization of a neural-network-based method, e.g. Deep Q
learning method, needs fundamental modifications related to
the method structure because such techniques require a system
state as an input to the neural network. For these specific
reasons, the authors believe that the comparison with the
Stateless Q Learning method ensures the fairness as well as
showcases the advantages provided by the proposed method.

Algorithm 2 Stateless Q-Learning Algorithm

Input: Learning rate ᾱ
Initialization:

1: Initiate the value of Q(Pq) = 0, ∀Pq ∈ P
LOOP process

2: for t = 0, 1, 2, ..., T do
3: Select Pq

Pq =

{
q = arg max

q
{Q(Pq)}, with probability ε,

q ∼ U(1, |P|), otherwise.
4: Observe returned rewards Rq = R(Pq),
5: Update Q(Pq)← (1− ᾱ)Q(Pq) + ᾱRq
6: Update ε← ε

t
7: end for

VI. NUMERICAL RESULTS

We consider a network consisting of three optical transmit-
ters and five user devices, as shown in Fig. 1. The distances
in meters between the three transmitters and the five devices
are set as follows: [2, 2.35, 2.5, 0, 0], [0, 2.3, 2.45, 2.1, 0], and
[0, 0, 0, 2.35, 2.05]. The value 0 denotes that the corresponding
device is located outside the coverage area of the correspond-
ing transmitter. The power budget at each optical transmitter
Po = 1.5 W. For convenience, we set θj = θ = 15 mW,
and Eambj = 2 mW. Regarding the VLC channels, based on
[6], [12], we set Ts(ψo,j) = 1, ψo,j,c = 70◦, φo,1/2 = 60◦,
Aj = 85 cm2, ν = 0.4, and fopt = 0.75. Further, considering
the ES parameters, we set σ = 0.05, α = 0.004, and K = 50.
In terms of the reward function, we set κ1 = 30, κ2 = 1/10,
ι1 = 0.5, and ι2 = 2. As for the Q-learning parameters, ᾱ = 1,
ε = 1, and ∆p =

Po

6
. As a result, the size of the look-up table

will be 615.
In Fig. 3, we present a performance comparison between the

ES-based and Q-learning methods in terms of acquired reward
and the convergence rate. We trained the ES proposed algo-
rithm over 8000 iterations, with each iteration consisting of
1 training step. The deep Q-learning algorithm is also trained
over 8000 iterations, but with each iteration consisting of 300
training steps. From Fig. 3, we can see that the Q-learning
method took considerably more time than the proposed ES
algorithm to converge to a stable value. This is due to the
time-consuming update process of the Q-value table, which the
Q-learning algorithm relies on to make an action decision. This
observation confirms the inferiority of the Q-learning method
when dealing with problems having continuous action spaces
because the Q-value table update process becomes intolerable
as the action space increases. Fig. 3 also shows that the ES-
based algorithm significantly outperforms the Q-learning one
due to its ability to adapt to continuous-variable scenarios.
As we can see from Fig. 3, the Q-learning method has a
considerably higher complexity than the proposed scheme.
Therefore, if the energy consumption related to the execution
of the algorithm is considered, the proposed method still
outperforms the Q-learning based scheme.

In Fig. 4, the IRL power received at each user,
{
∑O
o=1 Po,j}, is shown for the two methods. It is obvious that

the ES-based algorithm is more efficient at power allocation
than the Q-learning one. According to Fig. 4, the ES-based
algorithm is able to satisfy the EH performance of four
users while the Q-learning one can satisfy the performance
of three users. Note that the target line in Fig. 4 represents
the threshold value, denoted as θj − Eambj = 13 mW. We
can also see that there is no power allocated to User 3 under
the proposed algorithm. Looking at the positions of the users,
we can see that User 3 is the furthest one from the three
optical transmitters. As a result, the ES-based policy chooses
to ignore this user resulting in a more efficient distribution of
the available power to the more valid users, thus increasing
the total number of served users..

Lastly, in Fig. 5, we compare the total allocated power and
number of users served by the proposed algorithm with the
Q-learning based method. The number of optical transmitters
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Fig. 4. Transmit IRL power allocated to each user.

and that of users are selected from the sets of [3, 5], [4, 7], and
[5, 10], respectively. From Fig. 5, we observe that the proposed
ES algorithm provides less total power while serving more
users than the Q-learning policy. This observation confirms the
effectiveness and scalability of the ES-based algorithm over
the Q-learning-based method.

VII. CONCLUSION

In this work, we studied a resource allocation strategy to
maximize the number of users served while minimizing the
transmit power in the lightwave power transfer network. To
this end, we proposed, for the first time, to apply ES to handle
this challenge, and then we designed an ES-based algorithm
to tackle the formulated RL problem. The numerical results
indicate that the proposed ES-based method outperforms the
conventional Q-learning approach.
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