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Abstract—In this paper, we propose a novel relay selection
strategy for half-duplex decode-and-forward cooperative net-
works with an arbitrary number of buffer-aided (BA) relays.
Unlike most of the existing predetermined relaying protocols, the
proposed strategy is adjustable in the sense that it is controlled by
K threshold levels. A Markov chain (MC) analysis is adopted for
evaluating the outage probability (OP) and average packet delay
(APD) of the proposed scheme. Through an asymptotic analysis,
we highlight on the impact of theK controlling parameters on the
triad of OP, APD and diversity order that can be contemplated.
While most of the existing schemes are designed to achieve fixed
APD and diversity order values, the proposed scheme can achieve
all diversity orders ranging from K to 2K while compromising
the asymptotic APD that will range from 2 to 2K + 2. We also
target the optimization of the buffer size and we prove that a
buffer size of three is sufficient for extracting the full capabilities
of the BA network. Simulations over Rayleigh fading channels
demonstrate the performance gains and the OP-APD tradeoffs
that can be attained.

Index Terms—Relaying, cooperative networks, relay selection,
buffer, data queue, performance analysis, Markov chain, outage
probability, queuing delay, diversity order, half-duplex, buffer
size, decode-and-forward.

I. I NTRODUCTION

The recent unparalleled increase of mobile data traffic
necessitates the development of spectrally-efficient physical-
layer techniques [1]. Among the fifth generation (5G) tech-
nologies, buffer-aided (BA) cooperative relaying has the po-
tential of improving the reliability as long as the introduced
queuing delays can be tolerated [2], [3]. BA cooperative
relaying achieves diversity gains by taking advantage of the
presence of a set of relays (R’s) between the source node
(S) and the destination node (D). Equipping the relays with
buffers constitutes an additional degree of freedom since the
information packets can be temporarily stored until the under-
lying channel conditions are more favorable. In half-duplex
(HD) BA cooperative networks, a key factor that influences
the system performance is the relay selection strategy. This
strategy determines which relay is to transmit or receive within
a time slot, thus predominantly affecting the levels of outage
probability (OP) and average packet delay (APD) that can
be achieved. This paper tackles relay selection in HD BA
networks with an arbitrary number of relays. We introduce
a novel relay selection protocol, and we study its impact on
the OP, APD and diversity order.

The ubiquitous influence of the BA relaying technology
manifests in the large number of studies that covered a broad
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range of research topics including HD amplify-and-forward
(AF) relaying [4], HD decode-and-forward (DF) relaying [5]–
[19], full-duplex (FD) BA relaying [20], BA relaying with
non-orthogonal multiple access (NOMA) [21], physical layer
security in BA relaying networks [22] and BA relaying for
optical wireless communications [23]. Single-relay BA DF HD
relaying was considered in [5]–[7]. In [5], [6], the objective
was to maximize the throughput over a communication session
that extends over an infinite number of time slots while
ignoring the probability of buffer overflow. Finite bufferswere
considered in [7] where the performance evaluation revolved
around the OP and APD.

The problem of relay selection in multi-relay BA DF HD
networks was considered in [8]–[19]. In what follows, we
denote byK the number of relays and byL the buffer size
at each relay. Themax-link scheme was suggested in [8] and
consists of selecting the strongest link among all available
S-R and R-D links. Themax-link scheme achieves the full
diversity order of2K for infinitely large buffer sizes while
suffering from a high APD ofKL + 1. In an attempt to
reduce the APD of themax-link protocol, the scheme of [9]
selects a relay based on the strongest link as well while giving
preference for the R-D links. Compared with [8], this led to
a smaller asymptotic APD value of 2 which was realized at
the expense of a reduction in the diversity order. A similar
relay selection approach was presented in [10] attempting to
equalize the buffer lengths at the relays. While the delay was
improved compared to themax-link scheme, the diversity order
is equal toK as in buffer-free (BF) systems. A channel state
information (CSI) based relay selection protocol was proposed
in [11] where the priority was given to the S-R and R-D
hops in odd and even time slots, respectively. For finite buffer
sizes, the scheme in [11] slightly improves the diversity order
compared to themax-link protocol.

Unlike [8]–[11] where the relay selection policy is based
solely on the CSI, the schemes in [12]–[17] include the buffer
state in the selection process. A balancing BA scheme was an-
alyzed in [12] targeting to keep the number of packets at each
buffer the closest possible toL/2 in symmetrical networks. A
priority-basedmax-link scheme was proposed in [13] where
three classes of priority were considered; namely relays with
full, empty and neither full nor empty buffers. The diversity
order was also proven to be equal to2K for large values
of L in the case of quasi-symmetrical networks. The scheme
proposed in [14] classifies the relays as in the transmission
mode or the reception mode based on their actual queue length.
After this classification, the protocol generates the decision
on whether to transmit or receive based on the maximum and
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minimum number of stored packets for the transmission and
reception modes, respectively. For symmetrical networks,the
scheme in [14] achieves a diversity order of2K along with an
improved asymptotic APD of2K +2 with finite buffer sizes.
A maximum-weight selection protocol was proposed in [15]
where a weight is assigned to each link while differentiating
between S-R and R-D links. Similar to [14], the scheme in [15]
achieves a full diversity order of2K in symmetrical networks
for all buffer sizes exceeding two. In order to better tacklethe
situation where multiple links have the same weight, a relay
selection factor was introduced in [16] including the weight of
the link as the first metric and the link quality as the second
metric. This resulted in two schemes prioritizing either the OP
or the APD. Two delay-aware relay selection policies were
proposed in [17] based on the availability of the links and
buffer sizes. While one policy achieves an asymptotic APD of
4K − 1, the second policy reduces the delay to2K +1 at the
expense of reducing the diversity order.

While the BA relaying schemes in [8]–[17] are determinis-
tic, probabilistic relay selection was considered in [18],[19].
In [18], after selecting the strongest available S-R link and the
strongest available R-D link, the system randomly chooses
one of the two links. For quasi-symmetrical networks, this
probabilistic scheme achieves the full diversity order of2K
with infinite buffer sizes and allows to achieve different levels
of tradeoff between OP and APD. In [19], the protocol first
selects the S-R and R-D links with the smallest and largest
numbers of packets in the corresponding buffers, respectively.
Then, a random selection is made among these links according
to a probability distribution that takes into consideration the
delay constraints.

The main contributions of this work are as follows:

- Proposing a novel threshold based relay selection strategy
that combines the advantages of both deterministic relay-
ing and probabilistic relaying with an arbitrary number
of relays.

- Introducing the innovative idea of threshold based relay-
ing. In this context, the relay selection decision is based
on the relative values of the buffer sizes with respect toK
reference threshold levels and not on the implicit values
of these buffer sizes as in [8]–[19].

- Analyzing the performance of the proposed scheme for
any network setup and deriving closed-form expressions
of the OP, APD and diversity order for large values of
the signal-to-noise ratio (SNR).

- Proposing adequate choices of the threshold levels for
controlling the diversity order and asymptotic APD in an
efficient manner.

The proposed strategy constitutes the first known scheme
that is capable of achieving different levels of tradeoff between
OP and APD while avoiding any uncontrolled randomness
in the relay selection process. Unlike the deterministic relay
selection schemes in [8]–[17] that can each achieve only one
pair of diversity order and APD values, the proposed scheme
can be adjusted to achieveK +1 such pairs of values. Unlike
the probabilistic schemes in [18], [19], the proposed scheme
can be fully controlled and geared towards improving the

performance of the system in a completely predictable manner.
We prove that the proposed relaying scheme is capable of
achieving a diversity order ofK+N and an asymptotic APD
of 2N + 2 where the integerN depends on theK threshold
levels and can assume all values between0 andK. The main
challenge in implementing the proposed BA relaying scheme
resides in acquiring the CSI and the states of the buffers. In
fact, the relaying protocol determines the relay that needsto
receive or transmit based on the availability of all S-R and
R-D links as well as the numbers of packets stored in the
relays’ buffers. As such, a central node needs to coordinate
the cooperation efforts in the network by gathering the above
information, deciding about the relay that must be activated
(whether in reception or transmission modes) and then sharing
this decision will all relays. This role can be played by any
node in the network; in particular, by S or D for example.

The proposed BA solution is practical for 5G networks
where user coordination in dense environments is pivotal
for meeting the capacity demands. In fact, 5G endorsed a
methodical shift from base-station centric to user centric
architectures where users are expected to participate in storage,
relaying, content delivery and computation within the network
[1]. In particular, relay selection plays a key role in device-
to-device (D2D) communications that have been recently
proposed to increase the spectrum efficiency and network
coverage. Moreover, as the node density increases in Internet-
of-Things (IoT) networks, various devices can act as relaysto
forward traffic from the end-nodes to the core network and vice
versa. On the other hand, 5G systems are conceived as highly
flexible infrastructures that provide enhanced performance in
terms of latency, reliability and throughput while meeting
diverse requirements from multiple services. In this context,
the adjustability of the proposed relaying strategy renders it
suitable for supporting multi-services since it can handlethe
interplay between delay and diversity. For applications like
video streaming, web browsing and file sharing, the threshold
levels can be adjusted to achieve maximum reliability while
sacrificing the latency. For applications like gaming, robotics
automation and industrial private networks, the thresholdlev-
els can be adjusted to achieve minimum delay rendering the
proposed scheme suitable for such applications as long as the
predetermined amount of delay can be tolerated.

II. SYSTEM MODEL AND RELAYING STRATEGY

A. Basic Parameters

Consider a cooperative network comprisingK + 2 nodes
including a source node S, a destination node D andK
relay nodes denoted by R1,. . ., RK . It is assumed that there
is no direct connection between S and D and, hence, S
communicates with D only through theK neighboring relays.
We assume that the nodes are equipped with a single antenna
each. We also assume that all nodes are half-duplex and, hence,
cannot transmit and receive simultaneously.

Denote byhk andh′
k the channel coefficients of the S-Rk

and Rk-D links, respectively, fork = 1, . . . ,K. A Rayleigh
block fading channel model is assumed where the channel
coefficients are assumed to be circularly symmetric complex
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Fig. 1. BA cooperative network withK relays. The relays are numbered in an ascending order of their distances from S.

Gaussian distributed random variables with zero mean and
average channel gainsΩk and Ω′

k for the S-Rk and Rk-D
links, respectively. We assume that the relays are numberedin
an increasing order according to their distances from S with
R1 (resp. RK) being the closest (resp. farthest) relay from S
resulting in:Ω1 ≥ · · · ≥ ΩK . Finally, all S-R and R-D links
are corrupted by an additive white Gaussian noise (AWGN)
with zero mean and unit variance. The system model is better
depicted in Fig. 1.

A communication link is in outage if the corresponding
channel capacity falls below the target rater0 (in bits per
channel use (BPCU)). As such, the outage probabilities along
the S-Rk and Rk-D links are given by:

pk = Pr

{

1

2
log2(1 + γ̄|hk|

2) ≤ r0

}

= 1− e
− 2

2r0−1

Ωkγ̄ (1)

qk = Pr

{

1

2
log2(1 + γ̄|h′

k|
2) ≤ r0

}

= 1− e
− 2

2r0−1

Ω′

k
γ̄ , (2)

where γ̄ stands for the average transmit signal-to-noise ratio
(SNR).

We assume that the relays are equipped with buffers (data
queues), of finite sizeL, in which the information packets
can be temporarily stored so that they can be retransmitted
when the channel conditions are more favorable. We denote
by lk ∈ {0, . . . , L} the number of packets stored in the buffer
Bk at Rk for k = 1, . . . ,K. While the same buffer size is
assumed for all relays, it is worth noting that the parameterL
is a variable. As will be highlighted in Sections IV and V, one
of the objectives of this work is to suggest adequate values for
L. In particular, we prove that there is no need to increaseL
beyond 3.

We denote bypk and qk the unavailability probabilities
along the links S-Rk and Rk-D, respectively. The link S-Rk
is unavailable if either the channel between S and Rk is in
outage (with probabilitypk) or Bk is full (since the incoming
packet cannot be accommodated). Consequently:

pk(lk) = pk + δlk=L − pkδlk=L, (3)

where δS = 1 if the statementS is true while δS = 0
otherwise.

Similarly, the link Rk-D is unavailable with the following
probability:

qk(lk) = qk + δlk=0 − qkδlk=0, (4)

since no packet can be transmitted from Rk to D if the buffer
Bk is empty.

B. Threshold-Based Relaying Strategy

The relaying strategy is parameterized byK threshold
values{lth,k}Kk=1 where the threshold levellth,k determines
the operation mode of Rk for k = 1, . . . ,K. If lk > lth,k,
relay Rk is deemed to have alarge enough number of packets
and, intuitively, transmission (Tx) is given preference over
reception (Rx) in an attempt to decrease the number of stored
packets at Bk and, hence, avoid the congestion of this buffer.
On the other hand, iflk ≤ lth,k, the number of packets stored
in Bk is judged to be small and, hence, Rk enters the Rx mode
since it hasenough room to accommodate for the incoming
packet. We define the parameter∆k as follows:

∆k , lk − lth,k ; k = 1, . . . ,K. (5)

Following from (5), the operation mode of each relay can
be determined as follows:

{

∆k > 0 : Rk in Tx mode

∆k ≤ 0 : Rk in Rx mode
. (6)

Evidently, the threshold levels satisfy the following relation:

lth,k ∈ {0, . . . , L− 1} ; k = 1, . . . ,K, (7)

sincelth,k = L implies that∆k ≤ 0 and, hence, Rk can never
be in the Tx mode.

We define six subsets of theK relays as follows. (i):
Tc = {k | Rk-D not in outage}, the set of relays for which
the Rk-D link is not in outage. (ii):Tb = {k | ∆k > 0},
the set of relays in the Tx mode. (iii):T ′

b = {k | lk 6= 0},
the set of relays that have packets to transmit to D. (iv):
Rc = {k | S-Rk not in outage}, the set of relays for which
the S-Rk link is not in outage. (v):Rb = {k | ∆k ≤ 0}, the
set of relays in the Rx mode. (vi):R′

b = {k | lk 6= L}, the set
of relays that have enough space to store a packet from S.

The relaying strategy consists of choosing one relay in
each time slot to either receive from S or transmit to D
in order to avoid interference. A plausible relaying strategy
must put a preference on the transmission to D since the
excessive accumulation of the packets at a buffer with an
infrequent liberation of these packets will result in excessive
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and unjustified delays. Based on this observation, the proposed
relaying scheme can be implemented based on the following
steps for selecting the relay Rk̂ to transmit or receive:

1) Choose among the relays in Tx mode with available R-
D link the relay with the highest∆k to transmit:k̂ =
argmaxk∈Tc∩Tb

{∆k}.
2) If step 1 returns no available relay (Tc ∩ Tb = φ),

choose among the relays in Rx mode with available
S-R link the relay with the smallest∆k to receive:
k̂ = argmink∈Rc∩Rb

{∆k}.
3) While step 1 and step 2 ensure that each relay is

operating in its corresponding operation Tx or Rx mode,
these steps might yield no available relay. Therefore, if
step 2 returns no available relay (Rc∩Rb = φ), relay R̂k
is selected for transmission among all relays with non-
empty buffers (and not necessarily in Tx mode) with
available R-D link:k̂ = argmaxk∈Tc∩T ′

b
{∆k}.

4) If step 3 returns no available relay (Tc ∩ T ′
b = φ), the

selection of a relay to receive is broadened from the
relays in Rx mode to relays with non-full buffers:k̂ =
argmink∈Rc∩R′

b
{∆k}.

If step 4 returns no available relay, then all S-R and R-D links
are not available and the system will be in outage. The relay
selection protocol is better described by algorithm 1.

Data: Tc, Tb, T ′
b , Rc, Rb, R′

b and{∆1, . . . ,∆K};
Result: A relay to Tx or Rx;
initialization: No relay is selected;
for n = 1 : 2 do

if n = 2 then
Let Tb = T ′

b andRb = R′
b

end
if Tc ∩ Tb 6= φ then

Rk̂ Tx with k̂ = argmaxk∈Tc∩Tb
{∆k}

break
end
if Rc ∩Rb 6= φ then

Rk̂ Rx with k̂ = argmink∈Rc∩Rb
{∆k}

break
end

end
Algorithm 1: Threshold Based Relay Selection Protocol

Finally, if the comparisons in step 1 or step 3 result in a
tie, the smallest value of̂k is selected; i.e. the closest relay
to S is chosen to transmit based on the adopted numbering
of the relays. In fact, relays that are closer to S have a high
rate of arrival of packets because of the good quality of the
S-R link and, hence, it is preferable to release a packet from
these congested relays. Similarly, if the comparisons in step 2
or step 4 result in a tie, the largest value ofk̂ is selected. In
this case, it is preferred to accommodate the received packet
in the buffer that is the least congested (on average) and that
corresponds to the relay that is the farthest from S.

As an illustrative example, denote the subsets of the relays
in the Tx and Rx modes bySt andSr, respectively. Following
from algorithm 1, the priority order of the proposed strategy
is as follows. (i): The highest priority is for a relay inSt to
transmit. (ii): The second priority is for a relay inSr to receive.
(iii): The third priority is for a relay inSr to transmit. (iv): The
least priority is for a relay inSt to receive. For (i) and (iii), the

relay with the largest value of∆k with an available R-D link
is selected while, for (ii) and (iv), the relay with the smallest
value of∆k with an available S-R link is selected. From (6),
St and Sr are determined from{∆k}

K
k=1. For example, if

{∆k}
K
k=1 = {+1,−1,+2,+3, 0}, thenSt = {1, 3, 4} while

Sr = {2, 5}.

III. G ENERALITIES AND BASIC PARAMETERS

In this paper, a Markov Chain (MC) analysis is adopted to
evaluate the steady state distribution, the outage probability
(OP) and the average packet delay (APD) of the proposed
scheme. A state of the MC represents the combination of the
number of packets in the buffer of each relay and is defined
as(l1, . . . , lK). Sincelk ∈ {0, . . . , L} for k = 1, . . . ,K, then
the total number of states involved is(L + 1)K .

We denote byt(l1,...,lK),(l′
1
,...,l′

K
) the transition probability of

going from the state(l1, . . . , lK) to the state(l′1, . . . , l
′
K). The

transition probabilities are stacked in the(L+1)K×(L+1)K

state transition matrixT whose(i, j)-th element is given by:

Ti,j = t(l1,...,lK),(l′
1
,...,l′

K
) ;

i = N(l′1, . . . , l
′
K) , j = N(l1, . . . , lK), (8)

where the functionj = N(l1, . . . , lK) = 1 +
∑K

k=1 lk(L +
1)K−k defines a one-to-one relation between the integerj ∈
{1, . . . , (L + 1)K} and the state(l1, . . . , lK) ∈ {0, . . . , L}K .

We denote byπl1,...,lK the steady-state probability of being
in the state(l1, . . . , lK). The steady-state probabilities can be
determined from [8]:

π = (T − I + B)−1 b, (9)

where thej-th element of the(L+1)K-dimensional vectorπ
is equal toπl1,...,lK with j = N(l1, . . . , lK). In (9), I andB

are the(L + 1)K × (L + 1)K matrices denoting the identity
matrix and the all-one matrix, respectively.b is the vector
whose elements are all equal to 1.

The cooperative network is said to be in outage when no
packets can be communicated along any of its2K S-R or R-
D constituent links. When the MC is in the state(l1, . . . , lK),
all S-R and R-D links will be unavailable with the probability
∏K

k=1 pk(lk)qk(lk) following from (3) and (4). Consequently,
the outage probability can be determined from:

OP =

L
∑

l1=0

· · ·

L
∑

lK=0

πl1,...,lK

K
∏

k=1

pk(lk)qk(lk). (10)

Following from the storage of the packets in the relays’
buffers, these packets will reach D with a certain queuing
delay. Following from [14] and Little’s law [24], the average
packet delay can be determined from:

APD = 1 +
2L̄

1−OP
, (11)

whereL̄ denotes the average queue length that can be deter-
mined from:

L̄ =

L
∑

l1=0

· · ·

L
∑

lK=0

πl1,...,lK

[

K
∑

k=1

lk

]

. (12)
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Determining the steady-state probabilities from (9) consti-
tutes the major hindrance behind evaluating the performance
of K-relay BA systems for any SNR value. In fact, the state
transition matrixT is a (L+1)K× (L+1)K matrix while the
steady-state vectorπ comprises(L+ 1)K elements. As such,
deriving the exact OP and APD expressions in closed-form for
any SNR value is intractable since it is impractical to solve
for the very large number of elements ofπ especially for large
values ofK. As such, [8]–[19] related the OP and APD toT
and π = (T − I + B)−1 b without explicitly solving the last
matrix equation and, hence, without reaching closed-form ex-
pressions for all SNR values. In an attempt to circumvent this
challenge, [8]–[11], [13]–[15], [17] provided a complementary
asymptotic analysis that yielded intuitive expressions ofthe
OP and APD for large values of the SNR. Therefore, even
though the large SNR assumption might not hold in practice,
we carry out an asymptotic analysis in Sections IV-B and V-B
as in [8]–[11], [13]–[15], [17]. The purpose of this analysis
is to derive closed-form expressions of the OP and APD that
offer clear and intuitive insights on the system performance.
Moreover, the asymptotic analysis is indispensable for deriving
the diversity order that constitutes a major performance metric
that captures the performance of fading mitigation techniques
whose performance gains increase with the SNR. As will be
highlighted in Section VI, the derived asymptotic expressions
yield accurate results not only for large SNRs but also in the
mid-SNR range.

IV. PERFORMANCEANALYSIS: 2 RELAYS

A. Transition Probabilities

For simplicity, in this section the unavailability probabilities
pk(lk) andqk(lk) will be expressed aspk andqk, respectively.

The self transition of going from the state(l1, l2) to this
same state occurs when all S-R and R-D links are unavailable:

t(l1,l2),(l1,l2) = p1p2q1q2. (13)

The remaining transitions depend of the relative values that
l1 and l2 assume with respect tolth,1 and lth,2, respectively,
resulting in the four following cases.

1) Case 1: l1 ≤ lth,1 and l2 ≤ lth,2: R1 and R2 are in the
Rx mode. In this case, four possible transitions can take place
as follows. (i):(l1, l2) → (l1 +1, l2). In this case, the number
of packets stored in B1 will increase by one only if the S-R1
link is available (with probability1−p1). In this context, R1 is
selected for reception (rather than R2) if either the S-R2 link is
unavailable or if this link is available with∆1 < ∆2 since the
relay with smaller value of∆k is selected for Rx following
from step 2 of the proposed relaying protocol. Therefore:

t(l1,l2),(l1+1,l2) = (1− p1) [p2 + (1− p2)δ∆1<∆2
] . (14)

(ii): (l1, l2) → (l1, l2 + 1). Similar to (14), this transition
occurs if R2 is selected for reception:

t(l1,l2),(l1,l2+1) = (1− p2)[p1 + (1− p1)δ∆1≥∆2
], (15)

since, for∆1 = ∆2, the preference is to send the packet to
the relay that is farther from S which is the relay R2 following
from the adopted numbering convention.

(iii): (l1, l2) → (l1 − 1, l2). Knowing that R1 and R2 are
in the Rx mode, then in order to have R1 or R2 transmitting
a packet, both links S-R1 and S-R2 should be unavailable. In
this case, a relay will be selected for transmission based on
the R1-D and R2-D linkss status and the values of∆1 and∆2.
R1 is chosen to transmit a packet if either the link R1-D is
available and the link R2-D is unavailable or both links R1-D
and R2-D are available with∆1 ≥ ∆2:

t(l1,l2),(l1−1,l2) = p1p2(1− q1)[q2 + (1− q2)δ∆1≥∆2
], (16)

where, for∆1 = ∆2, the preference is to send from the relay
that is closer to S which is the relay R1.

(iv): (l1, l2) → (l1, l2 − 1). As in (16), R2 is chosen to
transmit a packet with the following probability:

t(l1,l2),(l1,l2−1) = p1p2(1− q2)[q1 + (1− q1)δ∆1<∆2
], (17)

following from step 3 of the proposed relaying scheme.
Finally, it can be easily proven that the probabilities in (13)-

(17) add up to one.
2) Case 2: l1 ≤ lth,1 andl2 > lth,2: R1 in Rx mode and R2

in Tx mode. In this case, the transitions (excluding the self
transition) and their corresponding probabilities are given by:

(l1, l2) →



















(l1, l2 − 1), 1− q2;

(l1 + 1, l2), q2(1 − p1);

(l1 − 1, l2), q2p1(1 − q1);

(l1, l2 + 1), q1p1q2(1− p2).

. (18)

(i): (l1, l2) → (l1, l2 − 1). Since R2 is the only relay in
the Tx mode, then R2 is chosen to transmit whenever the
link R2-D is available as this scheme puts preference on
transmission following from step 1 of the proposed scheme.
(ii): (l1, l2) → (l1 + 1, l2). R1 is chosen to receive if the link
R2-D is unavailable (step 1 did not yield an available relay
for Tx) and the link S-R1 is available (step 2 of the relaying
strategy). (iii):(l1, l2) → (l1− 1, l2). If both relays are unable
to operate in their corresponding operation mode (both R2-
D and S-R1 links are unavailable), according to step 3, R1

will be chosen to transmit if the link R1-D is available. (iv):
(l1, l2) → (l1, l2 + 1). R2 is chosen to receive if the links
R2-D, S-R1 and R1-D are unavailable and the link S-R2 is
available following from step 4.

3) Case 3: l1 > lth,1 and l2 ≤ lth,2: R1 in Tx mode and
R2 in Rx mode. The analysis in this case is similar to that of
case 2. Exchanging the roles of R1 and R2 in (18) results in
the following transition probabilities:

(l1, l2) →



















(l1 − 1, l2), 1− q1;

(l1, l2 + 1), q1(1 − p2);

(l1, l2 − 1), q1p2(1 − q2);

(l1 + 1, l2), q1p2q2(1− p1).

. (19)

4) Case 4: l1 > lth,1 and l2 > lth,2: R1 and R2 are both
in the Tx mode. If the relays operate in their designated Tx
mode (step 1), the corresponding transition probabilitiesare
given by:

(l1, l2) →

{

(l1 − 1, l2), (1 − q1)[q2 + (1− q2)δ∆1≥∆2
];

(l1, l2 − 1), (1 − q2)[q1 + (1− q1)δ∆1<∆2
].

,

(20)
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where a necessary condition for Rk to be selected for trans-
mission is the availability of the link Rk-D. Regarding the
remaining R-D link, it can be either unavailable or available
with ∆1 ≥ ∆2 (for R1 to be selected) and∆1 < ∆2 (for R2

to be selected).
On the other hand, a necessary condition for the relays to

switch to reception is the unavailability of the R-D links. In
this case, following from step 4, the corresponding transition
probabilities are given by:

(l1, l2) →
{

(l1 + 1, l2), q1q2(1− p1)[p2 + (1− p2)δ∆1<∆2
];

(l1, l2 + 1), q1q2(1− p2)[p1 + (1− p1)δ∆1≥∆2
].

. (21)

B. Asymptotic Analysis

Replacing the transition probabilities in (8) and inverting
the matrix T − I + B in (9) will yield intractable results
especially for large values of the buffer sizeL. Therefore,
we resort to an asymptotic analysis that is useful for offering
clear insights on the system performance and for reaching
tangible conclusions regarding the selection of the threshold
levels lth,1 and lth,2. The asymptotic analysis revolves around
the following proposition:

Proposition1: For asymptotically large values of the SNR,
the following setS forms a closed subset of the states:

S =

{(lth,1, lth,2), (lth,1, lth,2+1), (lth,1+1, lth,2), (lth,1+1, lth,2+1)},
(22)

where πl1,l2 → 0 for (l1, l2) /∈ S while the steady-state
probabilities of the states inS tend to the following asymptotic
values:
{

πlth,1,lth,2 = 1−q2

2

πlth,1,lth,2+1 = 1−p2

2

;

{

πlth,1+1,lth,2 = p2

2

πlth,1+1,lth,2+1 = q2

2

. (23)

Proof: The proof revolves around ignoring the product
of two or more terms in{p1, p2, q1, q2}. The detailed proof is
provided in Appendix A.

Following from (23), the OP in (10) assumes the following
asymptotic expression:

OPAsym =

lth,1+1
∑

l1=lth,1

lth,2+1
∑

l2=lth,2

πl1,l2p1(l1)p2(l2)q1(l1)q2(l2). (24)

Consequently, the choice of the threshold levelslth,1 and
lth,2 will affect the value of OP as well as the diversity
order following from the dependence of the unavailability
probabilities{pk(lth,k), pk(lth,k+1), qk(lth,k), qk(lth,k+1)}2k=1

in (3)-(4) on the threshold levels. Following from (3) and (4):

(pk, qk) =







(pk, 1), lk = 0;
(pk, qk), lk = 1, . . . , L− 1;
(1, qk), lk = L.

. (25)

As such, the asymptotic OP and diversity order depend on
whetherlk = 0, lk ∈ {1, . . . , L−2} or lk = L−1 for k = 1, 2
resulting in the nine possible values ofOPAsym summarized

in Table I. In Table I,OPAsym was approximated by the sum-
mation of terms comprising the smallest number of multipli-
cands among{p1, p2, q1, q2}; i.e.,

∑

n αn

∏2
k=1 p

ik,n

k q
jk,n

k ≈
∑

n=n̂ αn

∏2
k=1 p

ik,n

k q
jk,n

k whereαn is a constant and̂n =
argminn{dn} , argminn{i1,n+ i2,n+ j1,n+ j2,n} resulting
in a diversity order ofd = n̂. The diversity order is defined
as the negative slope of theOP (γ̄) curve on a log-log scale
where the product ofn terms among{p1, p2, q1, q2} scales
asymptotically as̄γ−n (since each outage probability in (1)
scales as̄γ−1) resulting in a diversity order ofn.

Table I holds for allL ≥ 2 where the asymptotic OP values
in the caseL = 2 can be obtained by removing the second
row and second column of Table I since{1, . . . , L−2} = φ in
this case. As such, the following conclusions can be reached:

- The threshold levels have a direct impact on the achiev-
able diversity order that varies from 2 to 3 forL = 2 and
from 2 to 4 forL > 2.

- Among theL2 possible values of(lth,1, lth,2) satisfying
(7), the value(lth,1, lth,2) = (0, 0) results in the smallest
diversity order of 2 which is the same as the diversity
order achieved by 2-relay buffer-free systems.

- For L = 2, the maximum achievable diversity order is
3. This value can be attained for(lth,1, lth,2) = (1, 0) or
(lth,1, lth,2) = (1, 1).

- The proposed BA relaying scheme is capable of achieving
the maximum diversity order of 4 for(lth,1, lth,2) ∈
{1, . . . , L − 1} × {1, . . . , L − 2} while confining the
threshold levels within{1, . . . , L − 2} × {1, . . . , L − 2}
results in the smallest asymptotic OP value ofp1p2q1q2
and, hence, in the largest coding gain.

Replacing (23) in (12) shows that the average queue length
assumes the following asymptotic expression:

L̄Asym = πlth,1,lth,2(lth,1 + lth,2) + πlth,1,lth,2+1(lth,1 + lth,2 + 1)

+ πlth,1+1,lth,2(lth,1 + lth,2 + 1)

+ πlth,1+1,lth,2+1(lth,1 + lth,2 + 2)

= (lth,1 + lth,2) + 0.5 + q2. (26)

Replacing (26) in (11) results in:

APDAsym = 1 +
2(lth,1 + lth,2) + 1 + 2q2

1−OPAsym

≈ 2(1 + lth,1 + lth,2), (27)

sinceOPAsym ≪ 1 andq2 → 0 for asymptotically large values
of the SNR.

Equation (27) shows that increasing the threshold levels will
result in an inconvenient increase in the APD. In this context,
the smallest APD value of 2 can be achieved by fixinglth,1 =
lth,2 = 0.

C. Conclusions regarding the System Design

Following from Table I and (27), the following conclusions
can be reached regarding the selection of the threshold levels
lth,1 and lth,2 as well as the selection of the buffer sizeL.

Regarding the buffer size, the OP values in Table I show
that there is no interest in increasingL beyond 3 in the
asymptotic SNR regime. In fact, the smallest possible OP value
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TABLE I
ASYMPTOTIC OUTAGE PROBABILITIES FORK = 2.

lth,1

lth,2 0 {1, . . . , L− 2} L− 1

0 p1p2/2 p1p2q2 p1q2/2
{1, . . . , L− 2} p1p2q1/2 p1p2q1q2 p1q1q2/2

L− 1 p2q1(p1 + p2)/2 p2q1q2(p1 + q2
2

+ p2
2
) q1q2(p1 + q2)/2

of p1p2q1q2 can be achieved withL = 3 and the choiceL > 3
does not reduce this minimum OP any further. On the other
hand, the choiceL = 2 is feasible but it penalizes the diversity
order rendering the full diversity order of 4 unachievable.As
such, the buffer sizeL = 3 is recommended when the SNR
is large enough.

Regarding the threshold levels, Table I and (27) show that
there is no interest in selecting values of(lth,1, lth,2) outside
the setϕ = {(0, 0), (0, 1), (1, 0), (1, 1)}. In fact, increasing
lth,1 and/orlth,2 beyond the value of 1 will increase the APD
following from (27) whereas this increase does not present
any advantage in terms of the OP performance following
from Table I. In fact, from Table I, increasinglth,1 and/or
lth,2 beyond entails one of the following implications that are
not beneficial. (i): decreasing the diversity order (for example,
increasinglth,2 from L−2 to L−1), (ii): maintaining the same
diversity order but increasing the OP (for example, increasing
lth,1 from L− 2 to L− 1) or (iii): keeping the same diversity
order and same OP (for example, increasinglth,1 or lth,2 from
1 to L− 2). Among the choices within the setϕ with L ≥ 3:

- The choice(lth,1, lth,2) = (0, 0) achieves the smallest
asymptotic APD value of 2 at the expense of the smallest
diversity order of 2.

- The choice(lth,1, lth,2) = (1, 1) achieves the highest di-
versity order of 4 at the expense of the highest asymptotic
APD value of 6.

- The choices(lth,1, lth,2) = (0, 1) and (lth,1, lth,2) = (1, 0)
achieve a tradeoff between the APD and diversity order
with an asymptotic APD value of 4 and a diversity
order of 3. Compared to(lth,1, lth,2) = (0, 0), these
choices increase the diversity order from 2 to 3 while,
compared to(lth,1, lth,2) = (1, 1), these choices reduce
the asymptotic APD from 6 to 4. From Table I, the choice
(0, 1) is preferable over the choice(1, 0) if q2 < q1

2 .

V. PERFORMANCEANALYSIS: K RELAYS

After considering the special case of two relays, we next
consider the general case of an arbitrary number of relays.
As will be highlighted later, the evaluation of the transition
probabilities will entail implementing involved recursive func-
tions while the asymptotic OP and APD expressions will be
comparable to those obtained in Section IV.

A. Transition Probabilities

In what follows,pk(lk) andqk(lk) will be expressed aspk
andqk, respectively, for simplicity. The state will be denoted
by l = (l1, . . . , lK), the set of all relays will be denoted by
A = {1, . . . ,K} and thek-th row of theK × K identity
matrix will be denoted byek.

For any state of the MC, a self transition occurs when all
links are unavailable:

tl,l =

K
∏

k=1

pkqk. (28)

At each time slot, theK relays will be classified according
to their operation modes resulting in the three following cases.

1) Case 1: Rb = A andTb = φ (all relays are in the Rx
mode) resulting in the two following possibilities.

(i): A relay Rk will be selected for Rx if the link S-Rk is
available and if∆k is the smallest among all{∆i} of the
relays whose S-R links are available:

tl,l+ek
=(1− pk)

∑

K⊂A\{k}

[

∏

i∈K

(1− pi)

]





∏

j∈A\{k}∪K

pj



Pk,K,

(29)
wherePk,K denotes the probability that∆k is smaller than
∆k′ for all k′ ∈ K. The notion of smaller or larger ∆i

must take into consideration the tie breaking rule according to
numbering the relays according to their distances from S. As
such,Pk,K =

∏

k′∈K Pk,k′ wherePk,k′ denotes the probability
that∆k is smaller than∆k′ :

Pk,k′ = δk′<kδ∆k≤∆k′
+ δk′>kδ∆k<∆k′

; k′ 6= k, (30)

since, for∆k = ∆k′ , the preference is to transmit to the relay
that is farther from S; i.e, to the relay with higher index.

Therefore, (29) can be written as equation (31) on the top of
the next page. This equation can be can be written in a more
convenient form as shown in (32) on the top of the next page
where this relation can be implemented recursively resulting
in the following expression of the transition probability:

tl,l+ek
= (1− pk)





K
∏

i=1,i6=k

pi



 [1 + fr(A, k, 0)], (33)

where the functionfr(·, ·, ·) can be determined in a recursive
manner according to algorithm 2.

(ii) A relay Rk (in the Rx mode) is selected to transmit if
all S-R links are unavailable, the link Rk-D is available and
∆k is the largest among all{∆i} of the relays whose R-D
links are available:

tl,l−ek
=





K
∏

j=1

pj



 (1− qk)×

∑

K⊂A\{k}

[

∏

i∈K

(1− qi)

]





∏

j∈A\{k}∪K

qj



Qk,K, (34)
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tl,l+ek
= (1 − pk)





K
∏

i=1,i6=k

pi +
K
∑

k1=1,k1 6=k

(1− pk1
)





K
∏

j=1,j 6=k,j 6=k1

pj



Pk,k1

+

K
∑

k1=1,k1 6=k

K
∑

k2=k1+1,k2 6=k

(1 − pk1
)(1 − pk2

)





K
∏

j=1,j 6=k,j 6=k1 ,j 6=k2

pj



Pk,k1
Pk,k2

+ · · ·



 . (31)

tl,l+ek
= (1 − pk)





K
∏

i=1,i6=k

pi







1 +

K
∑

k1=1,k1 6=k

(1− pk1
)

pk1

Pk,k1



1 +

K
∑

k2=k1+1,k2 6=k

(1− pk2
)

pk2

Pk,k2



1 + . . .



1 +

K
∑

kK=kK−1+1,kK 6=k

(1− pkK
)

pkK

Pk,kK















 , (32)

Function: fm(X , k, c) for m = “r′′ or m = “t′′

Data: X ⊂ A, k ∈ {1, . . . ,K} andc ∈ {0, . . . ,K};
Result: S;
initialization: S = 0;
if c+ 1 > |X | then

return 0
end
for n = c+ 1 : |X | do

k′ = Xn (n-th element ofX )
if k′ 6= k then

if m = “r′′ then
S = S +

(1−p
k′ )

pk′

Pk,k′ [1 + fr(X , k, n)]

end
if m = “t′′ then

S = S +
(1−qk′ )

qk′

Qk,k′ [1 + ft(X , k, n)]

end
end

end
Algorithm 2: Recursive functions fr(X , k, c) and
ft(X , k, c)

whereQk,K denotes the probability that∆k is larger than
∆k′ for all k′ ∈ K. Considering the tie-breaking rule, this
probability can be written asQk,K =

∏

k′∈KQk,k′ where

Qk,k′ = δk′<kδ∆k>∆k′
+ δk′>kδ∆k≥∆k′

; k′ 6= k, (35)

since, for∆k = ∆k′ , the preference is to transmit from the
relay that is closest to S; i.e, to the relay with lower index.

Given the similarity between (29) and (34), this latter
equation can be written in terms of the recursive function
ft(·, ·, ·) (defined in algorithm 2) as follows:

tl,l−ek
=





K
∏

j=1

pj



 (1 − qk)





K
∏

i=1,i6=k

qi



 [1 + ft(A, k, 0)].

(36)
For K = 2, it can be easily proven that (33) simplifies

to the expressions provided in (14) and (15) fork = 1 and
k = 2, respectively. Similarly, (16) and (17) follow from (36).
While (14)-(17) explicitly relate the transition probabilities to
the parameters{pk, qk,∆k}

2
k=1 in the simple special case of

K = 2, the functionsfr(·) and ft(·) in (33) and (36) need
to be evaluated recursively in the general case of an arbitrary
number of relays.

2) Case 2: Rb = φ and Tb = A (all relays are in the
Tx mode). Similar to the analysis provided in the previous
subsection, a relay Rk is chosen to transmit a packet with the
following probability:

tl,l−ek
= (1− qk)





K
∏

i=1,i6=k

qi



 [1 + ft(A, k, 0)], (37)

while a relay Rk is chosen to receive a packet with the
following probability:

tl,l+ek
=





K
∏

j=1

qj



 (1− pk)





K
∏

i=1,i6=k

pi



 [1 + fr(A, k, 0)],

(38)
where (37) and (38) can be obtained by interchanging the
unavailability probabilitiespk ⇌ qk and the functions
ft(·, ·, ·) ⇌ fr(·, ·, ·) in (33) and (36), respectively. As in case
1, (37) and (38) simplify to (20) and (21), respectively, in the
special case ofK = 2.

3) Case 3: Rb 6= φ andTb 6= φ. The four following cases
need to be considered.

(i): Following from step 1 of the proposed relaying protocol,
the highest priority is given for the transmission from the relay
Rk with k ∈ Tb having the largest ∆k. This transmission
incurs the following transition probability:

tl,l−ek
= (1− qk)





∏

i∈Tb,i6=k

qi



 [1 + ft(Tb, k, 0)] ; k ∈ Tb,

(39)
in a way similar to (37).

(ii): The second priority is given to relay Rk with k ∈ Rb to
receive. This occurs if all Rj-D links for j ∈ Tb are unavailable
(step 1 did not yield a valid relay), the link S-Rk is available
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and∆k is the smallest among all{∆i} of the relays inRb

whose S-R links are available. Therefore, similar to (38):

tl,l+ek
=





∏

j∈Tb

qj



 (1− pk)





∏

i∈Rb,i6=k

pi



×

[1 + fr(Rb, k, 0)] ; k ∈ Rb. (40)

(iii): If none of the relays can operate in its corresponding
Tx or Rx mode, the third priority is given for a relay Rk not
in the Tx mode (k /∈ Tb) to transmit. SinceTb∪Rb = A, then
k ∈ Rb. The corresponding transition probability is given by:

tl,l−ek
=





∏

j∈Tb

qj









∏

j′∈Rb

pj′



 (1− qk)





K
∏

i∈Rb,i6=k

qi



×

[1 + ft(Rb, k, 0)] ; k ∈ Rb, (41)

since for step 3 to occur, (1): step 1 must yield an invalid
relay (all Rj -D links are unavailable forj ∈ Tb), (2): step 2
must yield an invalid relay (all S-Rj′ links are unavailable for
j′ ∈ Rb), (3): the link Rk-D is available and (4):∆k is the
largest among the relays inRb whose R-D links are available.

(iv): Finally, a relay Rk with k ∈ Tb is selected to receive
if all R-D links are unavailable and all S-Rj links for j ∈ Rb

are unavailable. Rk will be chosen based on the comparison
of ∆k with the corresponding values of the relays inTb:

tl,l+ek
=





K
∏

j′=1

qj′









∏

j∈Rb

pj



 (1− pk)





∏

i∈Tb,i6=k

pi



×

[1 + fr(Tb, k, 0)] ; k ∈ Tb. (42)

B. Asymptotic Analysis

The cumbersomeness of the transition probabilities in (33)-
(42) and the large number of states ((L + 1)K) that grows
exponentially with the number of relays motivate the need
for an asymptotic analysis that sheds more light on the design
parameters of the relaying system. The key observation behind
this type of analysis is formulated in the following proposition.

Proposition2: For asymptotically large values of the SNR,
the following closed subset of 4 states can be identified for all
values ofK

S = {(l1, . . . , lK) | lk = lth,k for k = 1, . . . ,K − 2

and lk ∈ {lth,k, lth,k + 1} for k = K − 1,K} , (43)

whereπl1,...,lK → 0 for (l1, . . . , lK) /∈ S and:
{

πlth,1,lth,2,...,lth,K−1,lth,K = 1−qK

2

πlth,1,lth,2,...,lth,K−1,lth,K+1 = 1−pK

2

;

{

πlth,1,lth,2,...,lth,K−1+1,lth,K = pK

2

πlth,1,lth,2,...,lth,K−1+1,lth,K+1 = qK

2

. (44)

Proof: The proof is provided in Appendix B. SettingK =
2 in (44) results in (23).

Replacing (44) in (10) results in the following expression
of the asymptotic OP:

OPAsymp =

[

K−2
∏

k=1

pk(lth,k)qk(lth,k)

]

×

lth,K−1+1
∑

lK−1=lth,K−1

lth,K+1
∑

lK=lth,K

πlth,1,...,lth,K−2,lK−1,lK×

pK−1(lK−1)qK−1(lK−1)pK(lK)qK(lK). (45)

Similar to (27), from (11), (12) and (44), the asymptotic
APD can be determined:

APDAsymp = 2

(

1 +

K
∑

k=1

lth,k

)

. (46)

C. Observations and Conclusion

The following observations follow from inspecting the ex-
pressions in (45) and (46).

Observation 1: Selecting the threshold levels
(lth,1, . . . , lth,K) from the set {1, . . . , L − 2}K allows to
achieve the smallest possible asymptotic OP value of:
OPAsymp =

∏K
k=1 pkqk.

Proof: For lth,k ∈ {1, . . . , L − 2}, (3)-(4) imply that
pk(lth,k) = pk(lth,k + 1) = pk and qk(lth,k) = qk(lth,k +
1) = qk for k = 1, . . . ,K. In this case, (45) simplifies to
OPAsymp = [

∏K
k=1 pkqk][

∑

l∈S πl] =
∏K

k=1 pkqk. Any value
of lth,k outside the designated set will either increasepk(lth,k)
or pk(lth,k+1) from pk to 1 or increaseqk(lth,k) or qk(lth,k+1)
from qk to 1, thus, incurring an increase in the OP.

Observation2: There is no interest in increasing any of the
threshold levels beyond 1.

Proof: Since all elements oflth,k ∈ {1, . . . , L − 2}
contribute equally to the OP following from observation 1,
the choicelth,k = 1 is the most adequate among all elements
of the designated set since it results in the smallest APD value
following from (46).

Observation3: Following from observation 1 and observa-
tion 2, the threshold levels must be confined to the set{0, 1}K.

Observation4: For(lth,1, . . . , lth,K) ∈ {0, 1}K, the proposed
BA relaying scheme allows to the achieve the following
diversity order (d) and asymptotic APD:

d = K +N ; APDAsymp = 2 (N + 1) , (47)

whereN is the number of threshold levels that are equal to
1: N =

∑K
k=1 δlth,k=1.

Proof: Let K = {k | lth,k = 1 for k = 1, . . . ,K − 2}.
For the threshold levels in{0, 1}K, following from (3)-(4),
pk(lth,k) = pk(lth,k + 1) = pk for k ∈ {1, . . . ,K}, qk(lth,k) =
qk(lth,k + 1) = qk for k ∈ K and qk(0) = 1. Consequently,
(45) can be written as:

OPAsymp =

[

K
∏

k=1

pk

][

∏

k∈K

qk

]

S, (48)

where the asymptotic values of the summationS
and its diversity order dS are equal to (S, ds) =
(1/2, 0), (qK, 1), (qK−1/2, 1) and (qK−1qK , 2) for
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Fig. 2. OP for the asymmetrical case withL = 8. Solid lines with hollow
marker, dashed pink lines and solid red lines correspond to the theoretical,
simulation and asymptotic values, respectively.

(lth,K−1, lth,K) equal to (0, 0), (0, 1), (1, 0) and (1, 1),
respectively. Therefore, from (48),δ = K+|K|+dS = K+N
sincedS is equal to the number of terms among(lth,K−1, lth,K)
that are equal to 1. Finally, the asymptotic value of the APD
in (47) follows directly from (46).

Following from the above observations, the following con-
clusions can be reached:

- All buffer sizesL ≥ 3 achieve the same OP, APD and
diversity order (this follows fromL − 2 ≥ 1 so that
{1, . . . , L − 2} is not empty following from observation
1). Therefore, for practical systems, the buffer size of 3
is sufficient for reaping the totality of the performance
gains in the asymptotic regime.

- Setting all threshold levels to 0 constitutes the most
adequate choice when the delay is considered the most
critical performance metric. This allows to achieve the
smallest asymptotic APD value of 2 at the expense of
the lowest diversity order ofK.

- Setting all threshold levels to 1 constitutes the most
adequate choice when the outage is considered the most
critical performance metric. This allows to achieve the
highest diversity order of2K at the expense of the largest
asymptotic APD value of2(K + 1).

- Other values of the threshold levels in{0, 1}K allow to
achieve different levels of tradeoff between outage and
delay. From (47), each threshold level of 0 will favor a
lower delay at the expense of a higher outage.

VI. N UMERICAL RESULTS

In what follows,r0 is fixed to 1 BPCU in (1). We define
lth , [lth,1, . . . , lth,K ]. We also define theK-dimensional
vectors Ω and Ω

′ as Ω = [Ω1, . . . ,ΩK ] and Ω
′ =

[Ω′
1, . . . ,Ω

′
K ], respectively. From (1)-(2), it can be observed

that the knowledge of the parametersr0, Ωk and Ω′
k is

sufficient for determining the outage probabilitiespk and qk
(for k = 1, . . . ,K). These outage probabilities will further
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Fig. 3. APD for the asymmetrical case withL = 8. Solid lines with hollow
marker, dashed pink lines and solid red lines correspond to the theoretical,
simulation and asymptotic values, respectively.

determine the values of the OP and APD. Assuming a path
loss exponent of2 and a loss of 30 dB at a reference distance
of 1 km, the average channel gains can be related to the
link distances by10 log10(Ωk) = 30 − 20 log10(dk) and
10 log10(Ω

′
k) = 30 − 20 log10(d

′
k) wheredk and d′k stand

for the lengths of the links S-Rk and Rk-D, respectively.
We assume that the middle relay R⌈K/2⌉ is aligned with S
and D so that the distance between these nodes is equal to
d⌈K/2⌉ + d′⌈K/2⌉. In the simulations, we distinguish between
(i): asymmetrical networks with[d1, . . . , dK ] = [d′K , . . . , d′1],
(ii): quasi-symmetrical networks withd1 = · · · = dK and
d′1 = · · · = d′K and (iii): symmetrical networks with
d1 = · · · = dK = d′1 = · · · = d′K .

Fig. 2 and Fig. 3 show the OP and APD, respectively, for
3-relay and 4-relay networks withL = 8. Asymmetrical net-
works are considered withΩ = [4, 2.5, 1] andΩ′ = [1, 2.5, 4]
for K = 3 whereasΩ = [4, 3, 2, 1] andΩ

′ = [1, 2, 3, 4] for
K = 4. In Fig. 2 and Fig. 3, even though the asymptotic
curves are not plotted over the entire SNR range for the sake of
clarity, yet results show that (45) and (46) yield very accurate
results for average-to-large values of the SNR. In fact, a perfect
match is observed between the exact and asymptotic OP and
APD curves for average-to-large values of the SNR for all
values of the vectorlth. Results also demonstrate the validity
of the performed theoretical analysis where the theoretical
OP and APD curves, from (10) and (11) respectively, match
their numerical counterparts that were obtained through Monte
Carlo simulations. The following observations can be made by
comparing the different OP and APD curves corresponding to
the same number of relaysK. (i): The choicelth = [0, . . . , 0]
results in the highest OP, lowest diversity order and lowest
APD. In this case, once a relay receives a packet, it will
give preference for transmission in the next time slot which
leads to small queuing delays. (ii): Selecting all components
of lth to be different from zero results in the lowest OP
and highest diversity order regardless of the specific values
of these nonzero components (as long as they are different
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Fig. 4. OP for the quasi-symmetrical case. Solid and dashed lines correspond
to the SNR values of 3 dB and 15 dB, respectively.

from L − 1). For example, for the caseK = 3, the choices
lth = [1, 1, 1] and lth = [3, 2, 6] result in exactly the same
OP performance for large SNR values while the latter choice
suffers from excessively large values of the APD in coherence
with (46). (iii): Selecting one or more components oflth to be
zero will penalize the OP and diversity order. For example,
from Fig. 2 forK = 4, the choicelth = [1, 2, 0, 2] results in
a higher OP compared to the choicelth = [1, 1, 1, 1] where
the corresponding diversity orders are 7 and 8, respectively.
Unlike all APD curves in Fig. 3 that are decreasing, the APD
in the scenariolth = [3, 2, 6] is decreasing for SNRs below
2 dB and increasing for SNRs above 2 dB. This behavior is
justified by the large valuelth,3 = 6 at the third relay and by
the fact that the link S-R3 is the weakest among all S-R links.
As such, for low SNRs, the link S-R3 is highly unavailable
and the number of stored packets at R3 will rarely exceed the
hight threshold level of 6 where, for example,l̄3 = 1.92 at
2 dB. Consequently, in this low SNR regime, R3 is almost
excluded from the relaying effort where almost all of the
traffic is flowing through R1 and R2. As such, increasing the
SNR in this regime will improve the data flow through R1

and R2 thus reducing the APD. On the other hand, for SNR
values exceeding 2 dB, the link S-R3 becomes more available
implying that more packets will reach R3 since the link S-
R3 is given preference over the other S-R links where, for
example,l̄3 = 5.91 at 4 dB. However, sincelth,3 is large,
transmissions from R3 are less frequent (compared to the other
relays) implying that the incoming packets will be queued in
the buffer of R3 for a longer time thus increasing the APD.
While threshold values exceeding two were considered in Fig.
2 and Fig. 3 for the sake of demonstrating the accuracy of
the theoretical analysis for any value oflth, threshold values
below two will be considered in the next simulation setups
following from the conclusions reached in Section V-C.

Fig. 4 and Fig. 5 show the theoretical OP and APD,
respectively, for a quasi-symmetrical network withΩk = 1
and Ω′

k = 2 for k = 1, . . . ,K. These figures target the
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Fig. 5. APD for the quasi-symmetrical case. Solid and dashedlines corre-
spond to the SNR values of 3 dB and 15 dB, respectively.

impact of the buffer sizeL on the performance for different
number of relaysK and for different values oflth ∈ {0, 1}K.
Results in Fig. 4 and Fig. 5 show that the OP and APD do
not practically vary withL for L ≥ 3. Such observation
holds not only for large SNR values as predicted by (45)
and (46), but it also holds for small SNR values in the order
of 3 dB. Therefore, increasing the buffer size beyond three
does not improve the system performance in coherence with
the conclusion reached in Section V-C. This demonstrates
the capability of the proposed scheme in extracting the full
capabilities of the network with small buffer sizes.

Figures 6-9 present a comparison between the proposed
scheme and the schemes in [8], [9], [14] and [15] denoted by
“Max-Link”, “ Pref Tx”, “ Buffer state” and “Largest weight”,
respectively. In Fig. 6 and Fig. 7, we consider a symmetrical
4-relay network withL = 5 and Ωk = Ω′

k = 1 for k =
1, . . . ,K. In Fig. 8 and Fig. 9, we consider an asymmetrical
6-relay network withL = 3, Ω = [4, 3.4, 2.8, 2.2, 1.6, 1]
and Ω

′ = [1, 1.6, 2.2, 2.8, 3.4, 4]. As in (47), we denote by
N the number of components oflth that are equal to one.
Figures 7 and 9 show that “Max-Link” and “Largest weight”
achieve the same asymptotic APD value as well as comparable
APD values for small SNRs. However, from figures 6 and 8,
“Largest weight” outperforms “Max-Link” in terms of the OP
performance for all SNR values. From figures 6 and 8, it can
be observed that the best OP performance is shared by the
“Buffer state”, “ Largest weight” and the proposed scheme for
N = K.

The OP results in Fig. 6 and Fig. 8 show that, by controlling
the values of the threshold levels, the proposed scheme is
capable of achieving a broad range of OP levels ranging from
the best OP performance forN = K and the worst OP
performance forN = 0. This constitutes a distinctive feature
that differentiates the proposed scheme from the benchmark
schemes. The best OP performance is shared with the “Buffer
state” and “Largest weight” schemes while the worst OP
performance is the same as that of the “Max-Link” scheme.
The APD results in Fig. 7 and Fig. 9 show that, by controlling
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Fig. 6. OP for the symmetrical case withK = 4 andL = 5.
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Fig. 7. APD for the symmetrical case withK = 4 andL = 5.

the values of the threshold levels, the proposed scheme is
unique in its capability of achieving a broad range of APD
levels ranging from the best APD performance forN = 0 and
the worst APD performance forN = K. In this context, the
proposed scheme achieves smaller APD levels compared to the
“Max-Link”, “ Buffer state” and “Largest weight” schemes for
all values ofN . Fig. 7 shows that the proposed scheme with
N = 0 slightly outperforms “Pref Tx” in terms of APD for
all values of the SNR. Fig. 9 shows that the APD gains with
respect to the “Pref Tx” scheme are more pronounced but only
for average-to-large values of the SNR. As such the following
conclusions can be reached. (i): Compared to the “Pref Tx”
scheme, the proposed scheme withN = 0 achieves the same
OP performance with slightly smaller asymptotic APD values.
On the other hand, the proposed scheme withN > 0 allows
to decrease the OP at the expense of increasing the APD as
expected from (47). (ii): Compared to the “Max-Link” scheme,
the proposed scheme allows to achieve smaller APD values
for all values ofN ranging from0 to K. These APD gains
are associated with OP gains for large enough values ofN .
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Fig. 8. OP for the asymmetrical case withK = 6 andL = 3.
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Fig. 9. APD for the asymmetrical case withK = 6 andL = 3.

For example, from Fig. 6, the proposed scheme outperforms
the “Max-Link” scheme in terms of both outage and delay for
N = 2, 3, 4. (iii): Compared to the “Buffer state” and “Largest
weight” schemes, the proposed scheme withN = K allows to
achieve the same minimal OP performance (whose asymptotic
value is

∏K
k=1 pkqk) while profiting from reduced APD levels.

In this context, the achievable APD levels are much smaller
than those of the “Largest weight” scheme as highlighted
in Fig. 7 and Fig. 9 for all values of the SNR. Moreover,
the achievable asymptotic APD values are the same as those
of the “Buffer state” scheme while the APD gains are more
prominent for smaller values of the SNR especially with large
number of relays. On the other hand, settingN < K allows
the proposed scheme to further reduce the delay compared to
the “Buffer state” and “Largest weight” schemes at the expense
of increasing the OP.

VII. C ONCLUSION

We proposed a novel threshold based BA relaying scheme
for cooperative networks with an arbitrary number of relays.
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Through an asymptotic Markov chain analysis, we highlighted
how the selection of the threshold levels impacts the achievable
outage probability, queuing delay and diversity order. The
analysis highlighted on the different levels of tradeoff between
outage and delay that can be achieved by adjusting the thresh-
old levels. The simulation results supported the theoretical
analysis and demonstrated the high performance gains that can
be reaped from the proposed relaying scheme with relatively
small buffer sizes not exceeding three.

APPENDIX A

We first prove that the setS given in (22) is asymptotically
closed witht(l1,l2),(l′1,l′2) → 0 for all (l1, l2) ∈ S and(l′1, l

′
2) /∈

S. As such, after a certain number of transitions, the MC
will move to a state insideS and remains confined to this
subset since the probability of leaving this subset tends tozero.
As such, in the asymptotic regime, instead of considering all
(L+ 1)K states of the MC, the analysis can be simplified by
focusing only on the four states insideS with:

∑

(l1,l2)∈S

πl1,l2 → 1 for γ̄ ≫ 1. (49)

From (1), the outage probabilitiespk andqk scale asymp-
totically as γ̄−1. Therefore, the product ofn terms among
{p1, p2, q1, q2} scales asymptotically as̄γ−n implying that
such products can be neglected compared to{pk, qk, 1−pk, 1−
qk}

2
k=1 for n ≥ 2 at high SNR.

We consider the four states inS separately. (i): Consider
the state(lth,1, lth,2) where the transitions from this state are
given in (13)-(17). Sincelth,1 6= L and lth,2 6= L from (7),
then (pk(lk), qk(lk)) = (pk, qk) for k = 1, 2. Replacing
these probabilities along with∆1 = ∆2 = 0 in (13),
(14), (15), (16) and (17) results int(lth,1,lth,2),(lth,1,lth,2) =
p1p2q1q2 → 0, t(lth,1,lth,2),(lth,1+1,lth,2) = (1 − p1)p2 ≈ p2,
t(lth,1,lth,2),(lth,1,lth,2+1) = 1 − p2, t(lth,1,lth,2),(lth,1−1,lth,2) =
p1p2(1 − q1) → 0 and t(lth,1,lth,2),(lth,1,lth,2−1) = p1p2q1(1 −
q2) → 0, respectively. As such, the possible transitions from
the state((lth,1, lth,2) are limited asymptotically to:

t(lth,1,lth,2),(lth,1+1,lth,2) = p2 ; t(lth,1,lth,2),(lth,1,lth,2+1) = 1− p2.
(50)

(ii): Consider the state(lth,1, lth,2 + 1). The corresponding
transition probabilities are given in (18) where the non-zero
asymptotic probabilities are given by:

t(lth,1,lth,2+1),(lth,1+1,lth,2+1) = q2

; t(lth,1,lth,2+1),(lth,1,lth,2) = 1− q2. (51)

(iii): For the state(lth,1 + 1, lth,2), the non-zero transition
probabilities in (19) are given by:

t(lth,1+1,lth,2),(lth,1+1,lth,2+1) = q1

; t(lth,1+1,lth,2),(lth,1,lth,2) = 1− q1. (52)

(iv): Finally, for the state(lth,1 + 1, lth,2 + 1), the transition
probabilities are given in (20)-(21). Replacing∆1 = ∆2 = 1
in these equations results in:

t(lth,1+1,lth,2+1),(lth,1+1,lth,2) = q1

; t(lth,1+1,lth,2+1),(lth,1,lth,2+1) = 1− q1. (53)

Equations (50)-(53) imply that the transitions from any state
of S are always confined within the same setS. Therefore,
MC cannot exit the setS implying that this set is closed
asymptotically.

The balance equations are given byπlth,1,lth,2 =
(1 − q1)πlth,1+1,lth,2 + (1 − q2)πlth,1,lth,2+1,
πlth,1,lth,2+1 = (1 − p2)πlth,1,lth,2 + (1 − q1)πlth,1+1,lth,2+1,
πlth,1+1,lth,2 = p2πlth,1,lth,2 + q1πlth,1+1,lth,2+1 and
πlth,1+1,lth,2+1 = q1πlth,1+1,lth,2 + q2πlth,1,lth,2+1. Solving
any three of these equations along with (49) results in the
steady-state probabilities provided in (23).

APPENDIX B

As in A, the asymptotic analysis revolves around
neglecting the product of two or more terms in{pk, qk}Kk=1.
From (7), (pk(lk), qk(lk)) = (pk, qk) for k = 1, . . . ,K.
For simplicity, the four states of the setS in (43)
will be denoted by: l1 , (lth,1, lth,2, . . . , lth,K−1, lth,K),
l2 , (lth,1, lth,2, . . . , lth,K−1, lth,K + 1), l3 ,

(lth,1, lth,2, . . . , lth,K−1 + 1, lth,K) and l4 ,

(lth,1, lth,2, . . . , lth,K−1 + 1, lth,K + 1).
Consider the statel1. This state belongs to case 1 in Section

V-A1 where all relays are in the Rx mode with∆k = 0
for k = 1, . . . ,K. Following from (33), and since all∆k

are equal, then the farthest relay from S will be chosen
to receive a packet. Therefore, whenever the S-RK link is
available (with probability1 − pK), RK is chosen to receive
a packet. If the link S-RK is not available, then the previous
relay RK−1 will be chosen to receive a packet if the link S-
RK−1 is available with a probability ofpK(1− pK−1) ≈ pK .
The selection of any of the remaining relays to receive will
require the unavailability of both links S-RK and S-RK−1 with
probabilitypKpK−1 that tends to zero asymptotically. On the
other hand, the selection of a relay to transmit a packet will
require the unavailability of all S-R links with probability of
∏K

k=1 pk → 0 as shown in (36). Therefore, for large SNR, the
possible transitions froml1 are given by:

tl1,l2 = 1− pK ; tl1,l3 = pK , (54)

while the probabilities of the remaining transitions will tend
to zero.

Consider the statel2. This state belongs to case 3 in Section
V-A3 where only RK is in Tx mode (Tb = {K}) while all
remaining relays are in Rx mode (Rb = {1, . . . ,K − 1}). In
this case, the first priority is given for RK to transmit when
the link RK-D is available with probability1 − qK . Since
∆1 = · · · = ∆K−1 = 0, the second priority is given for
RK−1 to receive (relay inRb that is the farthest from S) with
probability qK(1− pK−1) ≈ qK . Therefore:

tl2,l1 = 1− qK ; tl2,l4 = qK , (55)

while the probability of selecting any other transition will
include the termqKpK−1 → 0 following from (41) and (42).

Consider the statel3 where Tb = {K − 1} and Rb =
{1, . . . ,K − 2,K}. Interchanging the roles of relays RK and
RK−1 in the analysis of statel2 results in the following
possible transitions:

tl3,l1 = 1− qK−1 ; tl3,l4 = qK−1. (56)
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Consider the statel4. This state belongs to case 3 in Section
V-A3 with Tb = {K − 1,K} and Rb = {1, . . . ,K − 2}.
Following from (39), the highest probability is given for
transmission from RK−1 followed by the transmission from
RK :

tl4,l2 = 1− qK−1 ; tl4,l3 = qK−1(1 − qK) ≈ qK−1. (57)

On the other hand, the probabilities in (40), (41) and (42)
will tend to zero since the products

∏

j∈Tb
qj and

∏

j∈Rb
pj

involve two or more terms and, hence, can be neglected.
Equations (54)-(57) show that the statesl1, l2, l3 and

l4 form a closed subset. Therefore, the MC analysis can
be limited asymptotically to this subset that encompasses
the self-contained transitions with the highest probabilities.
Solving the obtained balance equations along with the relation
∑4

i=1 πli = 1 results in the solution provided in (44).
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