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Abstract—This paper investigates two pulse-based Optical extensively in the literature [5]—[8]. For Radio FrequeliRy)
Spatial Modulation (OSM) schemes as cost-efficient solutis for ~ systems subject to Rayleigh fading and corrupted by Adalitiv
multi-aperture Free-Space Optical (FSO) communications \th White Gaussian Noise (AWGN), it has been proven that the

Intensity-Modulation and Direct-Detection (IM/DD). Namely, we - o . .
consider Optical Space Shift Keying (OSSK) where informaton EDAS scheme increases the transmit diversity order from 1 in

is encoded in the index of the pulsed optical source and theé open-loop scenario [3], [4] t&” — Ps + 1) where P is
Spatial Pulse Position Modulation (SPPM) where additionabits the total number of transmit antennas andis the number of

determine the position of the transmitted optical pulse reslting  selected transmit antennas [5]. The research targetingfae
in higher transmission rates. A performance analysis is cared SM-EDAS systems revolved around the complexity reduction

out over gamma-gamma channels with the exact Poisson photon fh ¢ lecti h inth texts of e
counting detection model. Exact Symbol Error Probability (SEP) of the antenna selection scneme In the contexts or con 10

expressions, simple upper bounds and the achievable transm [7] and large-scale [8] MIMO systems.
diversity orders are derived for both the open-loop and closd- On the other hand, the ever-increasing demand for band-

loop scenarios. Based on the presented performance analysia width motivated researchers to investigate the opticattspen
transmit aperture selection scheme capable of maximizinghe as a means to complement the crowded RF spectrum. In this

transmit diversity order is proposed for OSSK and SPPM in the . . .
closed-loop case. Results show that for open-loop OSSK, ope context, Optical Wireless Communications (OWC) emerged

loop SPPM and closed-loop OSSK, the transmit diversity orde @S a promising technology for the next generation high-gpee
does not depend on the severity of scintillation unlike thelosed- wireless communications for both the indoor and outdoor sce

loop SPPM case. narios. Consequently, a new direction of research hascadfa
Index Terms—Free-Space Optics, Multiple-Input-Multiple- ~ corresponding to the extension of the RF-SM techniques to
Output, Optical Spatial Modulation, OSM, performance analysis, the context of OWC which is also referred to as Optical-
diversity order, aperture selection, open-loop, closedsbp. SM (OSM) in the literature [9]. As such, recent research
revolved around the application of OSM for indoor Visible

Light Communications (VLC) [9]-[14] and for outdoor Free-

. INTRODUCTION Space Optical (FSO) communications [15]-[20]. In [9], tlie b

Spatial Modulation (SM) is attracting an increased intere€/T" raté (BER) analysis of OSM was carried out over indoor
as a low-complexity energy-efficient Multiple-Input-Migle- qptlcal channel_s highlighting the impact of the channetelar
Output (MIMO) solution [1], [2]. By activating a single tran thn on th_e achleyable_ performance levels. OSM was compared
mit antenna at a time, SM avoids inter-channel interferenf¥4th Spatial Multiplexing (SMux) and Repetition Coding (RC
at the receiver and alleviates the need for inter-antenna sif' [10] _showmg that OSM is more robust ggamst channel
chronisation at the transmitter thus circumventing mantnef correlation compared to SMux while enhancing the spectral
complexity and cost drawbacks often associated with therotf¢fficiency compared to RC. Adaptive VLC-OSM solutions
MIMO techniques. On the other hand, by mapping a part of ti{§"e Proposed in [11] and [12] based on adapting the Pulse
information bits to the antenna index, attractive multiie Amplitude Modulation (PAM) modulation-orders at the light

gains can be achieved compared to single-antenna syst&futting diodes (LEDs) and on implementing channel-adapti
[1], [2]. SM can be implemented either in the open-loop it mapping, respectively. Finally, an adaptive powereakon

closed-loop setups. While the open-loop scenario does FRedy was proposed in [13] for solving the mobility pel

result in any transmit diversity gains [3], [4], such gaigmde N VLC-OSM systems. More recently, the effect of inter-
achieved by implementing the closed-loop alternative [j— symbol interference on the performance of OSM over indoor

The Euclidean Distance optimized Antenna Selection (EDA8)Ulti-path channels was investigated in [14]. In [14], wo

constitutes an appealing solution that has been investgayiants of OSM were considered; namely, the Optical Space
Shift Keying (OSSK) and Spatial Pulse Position Modulation
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information is conveyed in the index of the pulsed LED thuson point process [21]-[24]. This constitutes the majoreftyv
transmittinglog, (P) bits per symbol duration. On the otherof this work since the performance of OSM systems with
hand, for SPPM, the bits are mapped to the LED index ambisson noise was never considered before in the literature
to the position index of an\/-ary PPM constellation thus It is worth noting that the Poisson model constitutes theeexa
transmittinglog, (M) additional bits compared to OSSK.  noise model describing the performance of IM/DD systems
Compared to the indoor VLC channels, the outdoor FS®hile the simpler AWGN model constitutes an approximation
channels do not suffer from excessive delay spreads (muthiat holds when the shot noise caused by background radliatio
path propagation) or pronounced channel correlation. @n tis dominant with respect to the other noise components such
other hand, FSO systems suffer from scintillation resgltiras thermal noise and dark currents [21]-[24].
in the random fluctuation of the received signal power in a This work differentiates itself from all previous works on
phenomenon that is analogous to fading over RF wireleSO-OSM [15]-[20] by the following. i): Unlike [15]-[20]
channels. Consequently, the MIMO techniques found direittat consider the approximate AWGN model, this work consid-
application in FSO systems where RC [21] and SMux [2&rs the more general Poisson model. ii): Unlike [15]-[2@]tth
constitute the most commonly adopted solutions. To leveall consider the open-loop scenario, this work addresses th
age the limited spectral efficiency of RC (that transmits apen-loop as well as the closed-loop scenarios. iii): Giersi
the same rate as single-aperture systems) and the decodiggthe pervious FSO-OSM works examining gamma-gamma
complexity associated with SMux (where thie transmitted scintillation [15]-[17], this work analyzes not only OSSKitb
independent data streams need to be jointly detectede th8PPM as well. iv): While [18] evaluates the performance of
has been a growing interest in studying FSO-OSM syBSO-OSM with joint PAM-PPM over gamma-gamma channels

tems [15]-[20]. Open-loop OSSK with Intensity-Modulatiomumerically, a closed-form theoretical evaluation is ieatrout
and Direct-Detection (IM/DD) constitutes the most widelyn this paper. Moreover, unlike [18], the achievable traitsm
investigated OSM scheme [15]-[17]. Multiple-Input-Siegl diversity orders are handily quantified.

Output (MISO) FSO-OSSK systems were analyzed in [15] The contributions of this paper are fourfold:

over gamma-gamma channels with pointing errors. MIMO -
FSO-OSSK systems were studied in [16] over gamma-gamma
channels with no pointing errors and in [17] over gamma-
gamma, lognormal and negative exponential channels with
pointing errors. The works in [15]-[17] revolved around -
evaluating the distribution of the difference between tvedhp
gains and were culminated by deriving the transmit diversit
order that was found to be equal tg2 independently from

the scintillation and pointing error conditions. Opengoo
FSO-OSM with joint PAM-PPM constellations and IM/DD
was investigated in [18] over gamma-gamma and lognormal
scintillation. Jointly encoding the positions and ampliés of

the transmitted optical pulses enhances the spectralesfigi
compared to OSSK. While in [18] a theoretical framework
for deriving bounds on the error probability was developed,
the so-called type-1V error that involves the difference be
tween two gamma-gamma random variables was evaluated
numerically with the consequence that the achievable siiyer -
order was not ascertained theoretically. While the sohstim
[15]-[18] considered non-coherent IM/DD communications,
the work in [19] considered open-loop FSO-OSSK systems
with coherent heterodyne receivers over H-K atmospheric
turbulence channels. In [19], it was proven that a transmit
diversity order ofl can be achieved independently from the
fading severity. Finally, the performance of subcarri¢eisity
modulation OSM systems was evaluated numerically in [20] -
over lognormal outdoor channels.

This work targets the performance analysis of MISO FSO-
OSSK and FSO-SPPM IM/DD systems over gamma-gamma
atmospheric turbulence channels in the open-loop anddlose
loop scenarios. Unlike all existing works on VLC-OSM [9]-
[14] and FSO-OSM [15]-[20] that consider the AWGN model,
this work adopts the exact Poisson photon-counting detecti
model where the number of photons generated by the optical
signal and by the background radiation is modeled by a Pois-

We derive exact SEP expressions and simple bounds for
OSSK and SPPM. The derived expressions are novel
and the bounds are useful for offering clear and intuitive
insights on the performance of FSO OSM systems.

We prove that the transmit diversity order achieved by
OSSK in the open-loop scenario is equal it(2. This
result, obtained under the Poisson noise model, matches
the result obtained in [15]-[17] under the AWGN model.
For SPPM, we prove that the diversity order is equal
to min{z, %} where 3 is the parameter of the gamma-
gamma distribution. For practical values of the link
distance and scintillation severity, this latter quantity
simplifies to1/2 as in the case of OSSK. The novelty in
evaluating the diversity order in the open-loop scenario
revolves around adopting a recent technique based on ap-
proximating the gamma-gamma distribution by a mixture
gamma distribution over the entire range of irradiances.
We evaluate the transmit diversity order that can be
achieved in the closed-loop scenario based on the
strengths of the channel irradiances. This evaluation fol-
lows from analyzing the distribution of the difference
between the square-roots of two order statistics among
the sorted gamma-gamma random variables. As in the
open-loop scenario, the novelty of the adopted calculation
methodology yielded conclusive closed-form results.

We propose a novel diversity-maximizing transmit aper-
ture selection scheme for the closed-loop scenario.
For OSSK, the proposed scheme achieves a trans-

mit diversity order of %i when activating P,
apertures out of theP available transmit apertures.
For SPPM, the achievable transmit diversity order is

equal tomax {%l%, [P — (k+1)(Ps — 1)]6} wherek =

2P8 |J The proposed aperture selection scheme

1+2(Ps—1)3
is completely novel and adapted to FSO IM/DD systems.
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Fig. 1. P x 1 FSO OSM system model. (a): Open-Loop scenario and (b): Glbsep scenario.
Il. SYSTEM MODEL received optical energies resulting from the light signadl a
A Basic Parameters background radiation, respectively.

] o We denote byM the number of time slots per symbol
Consider aP x 1 FSO communication system where they, ation. For SPPMM corresponds to the number of PPM
transmitter is equipped witR transmit apertures (lasers) Wh'lepositions while, for OSSK)M = 1 reflecting the fact that the
the receiver is equipped with a single receive aperturet(hoyansmitted optical pulse occupies the entire symbol émat
detector). The system model is better depicted in Fig. 1 {f, sppm, one of the transmit apertures is pulsed in a single
the open-loop and closed-loop scenarios. We assume that g giot (out of thels available slots) resulting in the trans-
P optical channels are independent and identically-distéd isqion rate ofog, (M P) bits per channel use (bpcu). In this
according to the gamma-gamma distribution whose promﬁb"base, the transmitted constellation is given by the{sgt,,

density function (pdf) is given by [16]: (01}:p=1,...,P, m=1,... M} wheres,,, = 1
2((15)# s (resp.s,,m = 0) indicates that the-th transmit aperture is
fil) =S —5—=1"7 'Ka_p(2V/aBl) ; 1>0, (1) pulsed (resp. not pulsed) in the-th PPM position. One of
L(a)I(8)

the elements of the vectd, 1,...,81.0 - Sp1,s---,SP.M]
where T'(-) is the Gamma function andK.(-) is the is equal to 1 while the remaining/P — 1 elements are
modified Bessel function of the second kind of order equal to 0. For OSSK, the information is completely conveyed
In (1), the channel parameters and 3 are the effec- by the index of the pulsed transmit aperture resulting in the
tive numbers of small-scale and large-scale eddies thate of log,(P) bpcu. In what follows, for the sake of a
can be expressed, for spherical wave propagation, @sfied notation, OSSK will be handled as a special case of
0 - [exp (0.490%/(1 n 1.110}1%2/5)7/6) _ 1}71 and 3 = SPPM obtained by settin/ = 1. Following from the unified
-l notation, the energies in (2) can be expressed as- PS%
exp (0-510%/(1 + 0-6901132/5)5/6) - 1} [15]. The param- andE, = P, 2 whereT, stands for the symbol duration while
etersae and 8 depend on the link distaneéthrough the Rytov P, and P, stand for the incident optical power and the power
varianceo?, = 1.23C2k7/64'1/6 wherek is the wave number of background noise, respectively. In this work, all repdrt
and C? denotes the refractive index structure parameter. Ferror rates will be plotted as a function of the signal energy
terrestrial FSO linksC? ranges froml0~'7 m~2/3 for weak per information bit given b}{% for the sake of fairness
turbulence tol0~'2 m~2/2 for strong turbulence. In this work, when comparing systems with dhzferent rates. Moreover, we
unless stated otherwise, we fix? = 1.7 x 107 m~2/3  setE, = —185 dBJ for all of the presented numerical results.
corresponding to the scenario of average turbulence [15].  Considering the generic exact Poisson photon-counting de-
The receiver is an IM/DD photon-counting receiver. Denotiection model [21]-[24], the detection at the receiver isdzh

by \s and \, the average numbers of electrons generated by the M decision variable§ R,,}»_, where R,,, stands for
the information-carrying signal, in the absence of sdatiitn, the number of photo-electrons detected in theh slot. The
and by the background radiation and dark currents, respeandom variabler,,, follows the Poisson distribution with the

tively. These quantities are given by [22]: following parameter [22]:
. ES ) o Eb P
As =g 5 A =T @ ER,) = S spamly | A+ X 5 m=1,....M, (3)
p'=1

where 7 is the detector's quantum efficiency, is Planck’s

constant aan is the optical center frequency corresponding 1For OSSK, a single decision variable; is needed corresponding to the
to a wavelength of 1550 nm. In (2}, and E;, denote the number of photo-electrons detected of&r



where E.] stands for the averaging operator whilg stands where, through direct calculations, it can be proven that
for the channel irradiance from theth transmit aperture to the decision threshold between levels— 1 and p can be
the receive aperture. For OSM where a single transmit agertdetermined from:

is pulsed per symbol duration, only one term in the summation

in (3) will be different from zero. In other words, when the | _Up = Tp1)As Cp—o. P (10)
transmit aperture is pulsed in then-th slot (i.e.s,.., = 1), P 1Og( IpXstXe ) ’ B
R,, will have a mean of,\; + A\, while the remaining\/ —1 Tp—1Xs A

decision variableg R, ; m' # m}}|_, will have a mean with v, = 0 andyp; — co while [z] ceilsz to the smallest
of A, showing that the only source of photo-electrons in thegsteger larger than or equal ta

empty slots is background radiatfon Given that the parametefg, }.;, A, and\, do not depend
on the transmitted OSM symbols, the implementation of the
B. Maximum:-Likelihood (ML) Detection ML SPPM decoder in (7) requires carrying aut+ P compar-
Denote by [ri,...,rv] the actual numbers isons, P multiplications andP additions per symb(I)DI duration.
of  photo-electrons detected in the M slots. In this context, the valueglog (1 + 1,;25) s pAs " need
The ML decoder decides in favor ofs;;m = o be calculated only once per fading block that extends
argmMaxXp=1,..pP ; m=1,....M Pr(Ry =r1,...., Rm = rumlspm) over several thousands of symbol durations in the context
that, from (3), results in: of FSO communications. Consequently, the complexity as-

sociated with evaluating theseP values can be neglected

SH.m — . .
P compared to the other operations that need to be carriedhout o
e Unhet M) (LN, 4 \y)"m M e AT a symbol-by-symbol basis. Similarly, the symbol-level @pe
= argmax 1 H N tions associated with the ML OSSK decoder in (8) correspond

Tm- T .
m=1,....M m m/=1 m

m! #m

to P comparisonsP multiplications andP additions. In this

(4) context, the advantage of the simplified ML OSSK decoding
AN M ox T rule in (9) resides in requiring only? comparisons (with no

= arg max {e‘fpks (1 + ﬁ) H 717} ) time-consuming multiplication operations) since the shiedd

oM Ab Tms! levels in (10) do not vary over a fading block duration.
(5)
Removing the last term from (5) that does not depengpon  IIl. PERFORMANCEANALYSIS IN THE OPEN-LOOP
or m while taking the logarithm of the probability results in SCENARIO

the following equivalent ML decision rule: In this section, we evaluate the performance of OSSK and

IpAs SPPM in the open-loop scenario in the absence of channel stat

Spm A {rm log (1 + /\—b) B I”)‘S} " information (CSI) at the transmitter side. In this scenaBi6M

(6) will involve all P transmit apertures rather than a selection of
Given that the decision metric in (6) is a strictly increa@sinthese apertures.
function of r,,,, the decision rule in (6) can be broken down
into two simpler rules as follows: .
A. Exact Symbol Error Probability (SEP)

1) OSXK: For OSSK, following from (9), a correct decision
. I is made when the random variahig falls betweerny, and
p=arg max {Tm log <1+ m > —Ip)\s}, (") 4,1 — 1 when the p-th transmit aperture is pulsed (i.e.

where the first rule indicates that, most probably, an optic‘;f)’é,oi_ss(l)?] frc:;ngo; \}éﬁéélswsitlr? Cr?ér;onré?glhs_Jr 1/\’17}?:0:751'

signal has been transmitted in the slot having the maX|mu(r§5, and assuming all OSSK symbols to be equally likely,

photo-electron count while the second rule solves for thgq -ongitional symbol error probability (SEP) of the OSSK
specific transmit aperture that has been pulsed in this SlOt'scheme can be calculated as follows:

For OSSK, (7) simplifies to:
P Yp+1—1

—(IpAs+Xs) k
A I (ossy _ ;1 e (IpAs + Ab)
p = arg max {7’1 log <1 + i\b > - Ip/\s} . (8 Fur T =1- P g E il , (11)

p=1,..., p=1 k=v,

m= argm_rrllaxM{rm} ;

where ry sta_nds for the number of photo-electrons CO”eCtev(\j/hereI 2 {1, Ip} while the conditioning is performed
over the entire symbol duration.

Assuming, without loss of generality, that the channel gair?ver theP ?hannel |rrad|ances_,.
are sorted in an ascending ordBr < --- < Ip, then the 2) SPPM: For SPPM, following from (7), the wrong recon-
decision rule in (8) is equivalent to: - struction of the slot indexn will directly result in an OSM

' symbol error. Consequently, the conditional SEP of the SPPM

p=p if r1 € Ypt1 —1], (9) scheme can be determined as follows:
2For OSSK, there are no empty slots/(— 1 = 0). Pe(EZ_PPND = Pe(|SIPPND (S) + Pe(EIPPND (A,S), (12)



where P(‘SIPPN”(S) stands for the probability of the eventprobablhtyP(SPPND (A|S) can be determined as follows:

S corresponding to a slot index error. On the other hand,

Pe(|SIPPM) (A, S) stands for the probability of an aperture index p(SPPM (AIS) = 1 & i PH - pliin = . 5y = 1)
error (event4) when the slot index is reconstructed correctly €|z “MP (b #p pym =
(S stands for the complement of the eveijt p=lm=1

The probabilit P(SPPM’ S) can be determined from: 1 & R .
P YPz (5 = S PG £l =1, =1), (A7)

p=1
Pe(‘szPFM Z Z Pr(m # ml|spm = 1) where the second equality follows from the symmetry of the
p 1m=1 M slots. The conditionsi = 1 ands,; = 1 in (17) imply
that the erroneous slots ..., M — 1 are excluded from the
== Z Prim # 1|sp1 = 1), (13) decision process whil&; is a Poisson random variable with

parameteti, \; + \,. Therefore, an error will occur i, falls

(SPP
where the second equality follows from the symmetry of thutside the intervaly, ., —1] implying thatP (AlS)
PPM constellation. Next, we derive the probability(#r+# is equal to the probablllt)P(OSSK) in (11). Consequently:
llsp1 = 1) =1 —Pr(th = 1[s,1 = 1). The relationin = 1
(whens, ; = 1) suggests that the maximum count is observed P(SPPM’(A S) = ( Pe(fIPP’VD (8)) Pe(l(%SSK),
in slot-1 following from (7). However, the maximum count
can be observed in other slots as well where, when this caggere p(ESSK) and p<SPPV9(5) are given in (11) and (16),
arises, the best that the ML decoder can do is to break theﬁé%pectlvely Finally, the conditional SEP of SPPM is atxai
randomly. In other words, whem slots, in addition to slot-1, py replacing (16) and (18) in (12).

contain the maximum count, the tie can be broken in favor of
the correct slot-1 with probabilitynl—ﬂ. Consequently:

(18)

B. Upper-Bounds on the Symbol Error Probability

M-Lo While the expressions derived in (11) and (16) are use-

Prim # 1lsp1=1) =1 - p— ful in evaluating the conditional SEP in an exact manner,
m=0 these expressions are complicated and, hence, fail inirdfer

Z H Pr(Rec, = R1) Pr(Rg, < Ri1), (14) clear and intuitive insights on the performance of OSSK and

ccfz..M} ieC jec SPPM systems. In particular, the aggregation of the derived

conditional SEP expressions, for the sake of determinieg th
whereC £ {2,..., M}\C while C,, stands for the:-th element SEPs, is very involved. Driven by the intractability of the

of the setC. Sinces,; = 1 implies thatR,,..., Ry, are €xact analysis, this section tackles an approximate asalys
identically-distributed Poisson random variables withapae- that is useful in studying the asymptotic behavior of FSO-
ter \, following from (3), then(14) simplifies to: OSM systems.
Propositionl: The conditional probabilities in (11) and (16)
M-y can be upper-bounded as follows:
Pr(m # 1lspn = 1) =1 — —
m

Mot - PO < L3 5 VIRV rg

( m ) [Pr(Ry = Ry)|™ [PH( R < Ry))M ™™, (15) p=t 5’;;

—(VTprs+rp— \ﬁ) (20)

wherem’ and m” are integers in{2,..., M}. Finally, ex- P(‘SIPPM(S) g
panding the probabilities in (15) and replacmg in (13) fssu

”M“

in: Proof: The proof is based on the Bhattacharyya bound

P M-1 [25], [26] and is provided in Appendix A. |
Pe(‘szppm (S)=1- 1 Z Z b (M B 1) X Following from the fact that the channel irradiances
—im—o Mt L\ m {Ii,...,Ip} are identically-distributed, then the average SEPs

400 e,([pASJFAb)(Ip/\S ) . can be derived from (19)-(20) as follows:
k=0 M POSSK < —1 /+OO +OO€—% VAEFR VA FR) o
M—1—m
_ m | k=1 _ j
B { ‘ W} s @)y @D
k! ! +o0 5
= 7 P(SPPI\ID(S) < M — 1/ o~ (VATFX— V) fx (z)d
e = 2 o
On the other hand, P(SPPM) (A,5) = (22)

(1 — P(‘SIPPM(S)) P(SPFM(A|S) Where the conditional where the gamma-gamma pdif(7) is given in (1).



C. Asymptotic Analysis and Diversity Order

In this section, we carry out an asymptotic analysis that is
useful for deriving the transmit diversity order of opemjo
FSO-OSM systems under gamma-gamma scintillation.

Proposition2: For A >>1)\b, the average SEP in (21)
behaves asymptotically ag * implying a transmit diversity
order of1/2.

Proof: The proof is based on approximating the gamma-
gamma distribution by the versatile mixture gamma distribu
tion over the entire range of irradiances [27], [28]. Thisqdr
is provided in Appendix B. [ |

Proposition3: For As > )\, the average SEP in (22)
behaves asymptotically as # implying a transmit diversity
order of 5.

Proof: The proof is based on performing the power series
expansion of the gamma-gamma pdf near the origin [29]. This
proof is provided in Appendix C. |

The reason for adopting the mixture gamma distribution and
the series expansion for proving proposition 2 and projasit
3, respectively, is as follows. The SEP in (21) is dominated b
small values of/A;z + A\, — /Ay + Xp. This quantity can be
small even ifxr andy are large necessitating an approximation
to the gamma-gamma pdf that holds for all values of the
irradiance. This makes the mixture gamma distribution an ap _
propriate option for evaluating the diversity order. On tltleer
hand, the integral in (22) is dominated exclusively by small _
values ofx rendering the simpler approach of performing a
power series expansion near the origin sufficient for evalga
the asymptotic behavior of the SEP.

D. Analysis and Conclusions

From proposition 2, the transmit diversity order of the open
loop OSSK scheme i§(°SSK = 1. On the other hand, from
(12) and (18),:

PSPPM _ p(SPPM (g (1 _ p(sPPM (8)) POSSK  (23)

with the previously reported results in the context of RF-
SM [3], [4] and FSO-OSM [15]-[17] systems under the
AWGN model. Moreover, the value df/2 is in coherence
with [15]-[17]. This result can be interpreted as follows.
For both schemes, the error performance is dominated
by the aperture index errors (with probabilili’éoss'()).
This type of errors is related to the receiver’s capability
of distinguishing between thE channel irradiances and,
consequently, is small (resp. large) when the channel
gains assume remarkably different (resp. comparable) val-
ues. Now, as the link distance increases,Rhdentically-
distributed channel gains will all decrease on average
(and vice versa) implying that all of the channel gains
will move in the same direction, thus not affecting the
receiver’s ability to differentiate between the channel
gains. This is better clarified in (19) that shows that the
SEP involves the quantity/7, — /I, (for A, < 1)
where this quantity is small if the valuds and I, are
close to each other (even if they are both large). On
the other hand, the slot index error probability in (20)
depends or,, implying that increasind,, (by decreasing
the link distance) will reduce this type of error.

- The diversity orders achieved by the two considered open-

loop OSM schemes are the same.

For average-to-large values of, the slot index errors
can be neglected compared to the aperture index errors.
The diversity order of the OSM schemes is smaller than
the diversity order of SISO systems (that is equab}o
Therefore, unlike RF-SM systems (with Rayleigh fading)
where the extension from the SISO to the MISO scenarios
involves an increase in the bit rate with no reduction in the
transmit diversity order [3], [4], the extension of SISO-
FSO systems to MISO-FSO systems incurs a reduction
in the transmit diversity order.

E. Numerical Validation

~ PSPPM(§) 4 pLOSSK, (24)

where the approximation holds for large values\of

Next, we present some numerical results that validate the
conclusions of the previous section. The numerical resuks
obtained through Monte Carlo simulations over a total @f
channel realizations. A block fading model was considered

Therefore, following from proposition 2 and proposition 3with each block extending ovel0? symbol durations where

the transmit diversity order of the open-loop SPPM scheme

given by §PPM = min {3, 11. A simple numerical analysis
shows thats > 1 for different link distancesd) and for
different values of the refractive index structure paramét
resulting in:
1

5(OSSK — 5(SPPM 5 vd,V C? v P, (25)
since proposition 2 shows that the diversity orderFé?SSK)
does not depend oR.

the channel irradiances vary independently from one block t
another. For each block, after generating thary (resp.M P-

ary) uniform OSSK (resp. SPPM) symbols, tlie channel
iradiances are generated according to the pdf in (1). At a
second stage, the Poisson-distribued decision variabikes a
generated according to (3). Finally, the ML decison rule7in (

is applied and the reconstructed symbols are compared with
the information symbols for the sake of determining the SEP.
The theoretical results were generated based on equatid)s (
(12), (16) and (18). In this context, truncating the sumorati

Therefore, the following conclusions regarding the opefyy (16) at10° terms is sufficient for generating accurate results

loop scenario can be drawn:

over the entire considered range of valuegdif

- Equation (25) shows that the diversity orders of OSSK The performance of SPPM for a link distance of 3 km is
and SPPM do not depend neither on the channel parasihown in Fig. 2 and Fig. 3 where we gdt, M) = (4,4) and

eters nor on the number of transmit apertufeésThis

(P, M) = (8,8), respectively. This way, each OSM symbol

result, obtained under the Poisson model, is coheresricompasses 4 bits and 6 bits, respectively. The error rates
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Fig. 2. Performance of SPPM witR = 4 and M = 4 for a link distance Fig. 3. Performance of SPPM witR = 8 and M = 8 for a link distance
of 3 km. The error rates of the aperture indr‘-}éspp'vn (A,S), slot index of 3 km. The error rates of the aperture indEﬁSPPM(A,E), slot index

PFESPPM(S) and OSM symbolPe(SpFWo are shown. The theoretical resultsPe(SPPM(S) and OSM symbolPe(SpFWo are shown. The theoretical results

are obtained by numerically aggregating the conditionaPSkh (11) and are obtained by numerically aggregating the conditionaPSkh (11) and
(16) while the bounds are given in (21) and (22). (16) while the bounds are given in (21) and (22).

of the aperture index?S"*™ (A, 3), slot index P(S7PM (s) lustified by the fact that the Rytov variance increases with
and OSM symboIPe(SPPND are explicitly shown in Fig. 2 C2. Therefore, the variability of the” channel irradiances

and Fig. 3. Results show the extremely close match betwd&nhigher under strong turbulence implying that the OSM
the theoretical and numerical results thus highlightingttun  "€Ceiver will have better chances for accurately predictire

accuracy of the SEP expressions derived in Section |11-A1dex of the pulsed aperture. For example, under the extreme
Results in Fig. 2 and Fig. 3 also highlight on the usefulnefyPothetical assumption of zero variability (no turbulepehe

of the bounds provided in (21)-(22) for predicting the errof’ |de_nt|caIIy—d|str|butgd chqnnel irradiances will be.thime.
performance for average-to-large values of the signalgg/ner‘mply'”g that the receiver will not be able to recognize whic
E,. In particular, the proposed upper-bounds have the safffd'Smit aperture was pulsed.

slopes as the exact SEPs since the corresponding curves afsults in Fig. 4 also show that SPPM performs better than
practically parallel to each other for large values/af This OSSK where the additionalg, (1) bits transmitted by SPPM
shows that the proposed bounds are particularly conveni@hg @ssociated with an appealing improvement in the SEP. In

for determining the diversity orders of the OSSK and SPPMIS context, the interest of OSSK resides in its remarked si
schemes. Results also validate proposition 2, proposionPliCity rendering this simple solution an appealing altive

and (25) whereP(SPP'v”(S) has a diversity order of (that to SPPM. Finally, it is worth highlighting that the need to
is equal to1.53 in this scenario) WhiIePe(SPPM’(A,E) and study OSSK stems from the fact that deriving the SEP of

. . . SPPM P SPPMY requires the derivation of the SEP of OSSK
PE(SPPND have a diversity order of/2. In thli context, the (P(ossm(isince%(sgpm is related to? 5P according to (23)
OSM performance is dominated kRéSPPW(A,S) and results ‘" ¢ € ¢ 9 '

in Fig. 2 and Fig. 3 show thaPs""™ ~ PSPPM (4, S) for
the values ofﬁ exceeding -175 dBJ. Finally, results
underscore the significant performance gap between SISO and
OSM systems where the additioniak,(P) bits encoded in A. Preliminaries
the index of the pulsed transmit aperture incur high SEP In this section, we analyze closed-loop OSM systems where
degradations especially for large value fof. partial CSl is assumed to be available at the transmittes. sid
Fig. 4 shows the impact of the turbulence strength on tte this scenario, we prove that combined multiplexing gains
performance of open-loop OSSK and SPPM (with = 4) and diversity gains can be achieved and we propose a trans-
systems for a link distance of 3 km. In particular, we conmit aperture selection scheme that maximizes the achievabl
pare the strong turbulence and weak-to-average turbulemibeersity order for a target data rate.
scenarios withC? = 1072 m=2/3 and C? = 5 x 10716 The transmit aperture selection scheme revolves around
m~2/3, respectively. Results validate the finding in (25) wherémiting the transmission taP, transmit apertures out of the
the diversity order is equal ta/2 regardless of the valuesP available apertures wittP;, < P. This selection reduces
of C2 and P. Moreover, for both OSSK and SPPM, thehe data rate tdog,(M Ps) bpcu (with M indicating the
SEP increases witl? where the achieved multiplexing gainshnumber of PPM positions for SPPM whil@/ = 1 for
are associated with performance losses. Results in FigO8SK). In generalP; is taken to be a power of two so that
highlight the central finding that OSM systems are moreg,(M P;) is an integer (in general/ is a power of two as
suitable for severe turbulence conditions where the SEPwsll for M-ary PPM constellations). This way, each one of
smaller under strong turbulence. This behavior, that eentthe M P, OSM symbols can be mapped into a sequence of
dicts the conventional behavior of single-aperture system log,(M Ps) bits. The selection scheme will be based on the

IV. PERFORMANCEANALYSIS IN THE CLOSED-LOOP
SCENARIO
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Fig. 4. Performance of OSSK and SPPM (with = 4) with P = 4 and Fig. 5. Performance of OSSK witFs = 2 selected transmit apertures for a
P = 8 for a link distance of 3 km under different turbulence coiodis. link distance of 3 km.

values of theP channel irradiances that, without any loss ofvhere f;,(z) (z > 0) stands for the pdf of the-th order
generality, are assumed to be arranged in an increasing: ordeatistic given in [30, 2.2.2].
L < <--- < Ip. Proposition4: For A\, > X, the integral in (26) behaves
The proposed selection scheme does not entail the know]- . sy . - .
edge of the exact values of the path gajds, ..., [p} at the %ﬂto(wﬁélé;@;p,) Implying a transmit diversity order
transmitter side where this full-CSl availability is noggtical. 2Proof' The pr_oof i.s based on approximating the gamma-
Contrariwise, only the indices of the, selected apertures are amma distribution by the mixture gamma distribution [27]
fed back from the receiver to the transmitter where thiscselef28] This proof is provided in Appendix D - '
tionrils car:i_ed %I.Jt at thel reche_iver based simply on jofrt"?bt P;opositionS: For As > Ay, the integralnin (27) behaves
P channel irradiances. In this context, a quantized feedba i B ! - .
link of P bits is sufficient for the considered aperture seIectio%ﬁymptoucaIIIy as\;” implying a transmit diversity order of
scheme where, for example, thah transmit aperture will be " Proof: The proof is based on the power series expansion
included (resp. not included) in the pool of selected apestu of the ga'mma-gamma pdf [29]. This proof is provided in
if the p-th feedback bit is equal to 1 (resp. 0). Given the very pendix E ' -
large coherence time of FSO channels, this limited feedbac ropositic;n 4 and proposition 5 imply the following ex-

of P bits is not resource-consuming since these bits need to ®ssions for the optimal transmit diversity orders that ba

communicated to the transmitter only once per fading blo hieved when aperture selection is associated with tisedio
that extends over thousands of symbol durations. loop OSSK and SPPM schemes:

In what follows, we assume that the selection scheme limits

the transmission to the apertures whose indices belongeto th _

tC whereC C {1,..., P} with [C| = P. PICCS I B il 2 g

S€ wherec { e } wi | | — s CC‘éT’-'Is’P} p,p’€C )
=PFs p<p’

B. Asymptotic Analysis and Diversity Order C., —C
(SPPM) _ . . by P
Since the conditional probability in (19) does not change ifs Tecn X min{C}5, pee 2 ’

IC|=Ps p<p’

the values ofl, and I,, are interchanged, the corresponding (28)
average error probability can be written as: )
where(C, stands for thep-th element of the sef. Equation
Pe(\%SSK) _ 1 Z Z (28) shows that,_ as i|_’1 the open-loop scenario with no apertur
P peC wec selection, the diversity order of the OSSK scheme does not
»'>p depend on the properties of the underlying FSO channel in

+oo ry ;
/ / ef%(mf\/&z—mff[ 1 (z,y)dedy, (26) the closed-loop scenario as well. _
o o Pr'p Finally, it is worth noting that when all transmit apertures
where f; 1, (z,y) (ith 0 < z < y) stands for the joint pdf &€ sel_ectedC = {_1, ) .:,P} implying that the diversity
of the ordéred random variablds and I, (with I, < I,,) ©°rders in (28) will simplify t04(O5%9 = 3 and 95PN —

where this expression can be obtained based on orderisgatistin {3, 3} = 5 which correspond to the values obtained in
[30, 2.3.2]. (25) in the open-loop scenario.

Similarly, integrating (20) results in: In order to validate proposition 4 and (28), Fig. 5 shows the
oo impact of the selected aperture ain the performance for the
PPPM (5) — M-1 Z/ e*(\/AsI—‘i’)\b*\/)\_b)sz (z)de, CasePs = 2. Simulations are performed with OSSK for a link
ez 2P /0 ! distance of 3 km. For comparison purposes, the performance
(27) of open-loop systems is shown as well. Following from (28),




the diversity order for a given s&t when P, = 2 is equal In fact, the quantitynin, ,vec (C,y —Cp) is maximized if the

to M Consequently, we compare the suboptimglperture indices are selected to be uniformly spaced atmng t
sets{3, P}, {2, P — 1} and {1, P — 2} that all result in the interval [min{C} max{C}] = [p max{C}]. This separation is
same diversity order of 7 where the comparison is carriedfyrther maximized ifmax{C} is selected to be equal tB.
out for the two cases o> = 6 and P = 10. We also Now, if the smallest aperture index is selected tozband
show the performance with the st, P} that achieves the the |argest aperture index is selected to/hethen selecting
highest diversity order of - when P, = 2. Results in Fig. 5 the p, — 2 remaining indices (i.e. the remaining elements of
validate all of the preViOUS findingS where the SEP CUrV%% equidistant'y betweem) and P results in the maximum
corresponding to the set§3,6}, {2,5} and {1,4} (when possible separation fPP:Qp 1J _ U’D:le that appears in
P = 6) are practically parallel to each other for large values of ) (0ss (Ps—2)+ T )
E, and where the obtained diversity order is confirmed to BB® expression of in (29). Therefore, it follows directly
3/2. In this scenario, the sét, 6} increases the diversity orderthat (ossiy 1 Ll P=1
to 5/2 which is validated in Fig. 5 where the associated SEP s = Shopt ; Kopt = {ﬁJ : (30)
curve is steeper. This results in significant performanéesga ) ?
especially for large values of,. For example, comparing if the setC is selected as:
the sets{1,6} and {3,6} shows that the former selection ¢ _ (p_ kopt(Ps — 1), P — kopt(Ps — 2),.... P}, (31)
outperforms the latter one 8.5 dB at a SEP ofl0~3. The
same holds for the case = 10 where the three consideredWhere this choice ofC results in the maximum possible
sets{3,10}, {2,9} and{1, 8} result in the same diversity orderseparation ofko,r between any two consecutive elements of
that is increased to the value Bf2. In fact, the corresponding C implying a maximum diversity order of kopt.
SEP curves are parallel to each other for large valueg,of It is worth noting that other choices of the selected set
and the diversity order of /2 is validated numerically. In under the formC’ = {z —p'; z € C} will result in the
this case, increasing the number of transmit apertures fr&®me separation dfoy (and in the same diversity order of
6 to 10 enhances the diversity order by a factor7g 3kop) Wherep' is any integer such thahin{C} —p' > 1.
while transmitting at the same rate of 1 bpcu. Finally, umlikHowever, unlikeC’, the setC encompasses the apertures with
open-loop systems where the performance deteriorates wiH® highest channel irradiances resulting in an enhanagidgo
P increases, the SEP of closed-loop systems decreases @i based on the findings drawn from Fig. 5. For example,
P. This is justified by the fact that the diversity order ifor P =9 and P = 4, kopt = 2 implying thatC = {3,5,7, 9}
(28) increases withP for a fixed value ofP,. In this case, from (31) where this set results in the maximum achievable
as in space-time coded systems, increasing the valug ofdiversity order of1 following from (30). Now, the other
contributes to increasing the diversity order. optionsC’ = {2,4,6,8} andC’ = {1,3,5,7} will result in

In coherence with (28), the same values of the diversitpe same value of the diversity order; howew&r> C’; for
order were obtained for other values of the link distance but 1. ..., 4 implying that the se€ will result in higher coding
the results are not presented here for the sake of brevity. T#RINs since the involved path gains are stronger.
justification is similar to the one presented in Sectiondil-  Finally, it is worth noting that with no aperture selection
Results in Fig. 5 also show that, among the three considefdd = P), (30) and (31) imply thatop = 1, 555K = £ and
suboptimal sets, the séB, P} results in the highest codingC = {1,..., P’} where this value ot is expected while the
gain. InfactIp > Ip_1 > Ip_, while Iy > I, > I, implying achievable transmit diversity order is coherent with (25).
that the transmission takes place along two channels tivat ha Similar to the analysis presented in the case of OSSK, the
stronger irradiances compared to the channels of the twer otfPllowing proposition holds for SPPM.
suboptimal options. Finally, results show the huge perforce ~ Propositioné: For closed-loop SPPM, the highest transmit
gap between the suboptimal selection strategies and the @¥grsity order that can be achieved whéh apertures are
{1, P} that achieves the highest diversity gain. For examplgelected out of” apertures is given by:
at a SEP ofl0—3, pulsing one of the aperturdsor P rather 5(SPPM 2 max{g(sppwp 5(sppwp}
than pulsing one of the aperturgésr P results in performance B ! 2
gains in the order 0§.2 dB and2.6 dB for P = 6 andP = 10,
respectively. Evidently, this performance gap will insedor
smaller values of the SEP.

1- -
= max {Ek, [P — (k+1) (P — 1)]5} . (32)

where:
. : ; 2pPp
C. Proposed Aperture Selection Scheme and Conclusions k= T2 -5 (33)
In this section, we solve for the sétthat maximizes the This maximum diversity order is achieved if the sbfis
diversity order in (28) for OSSK and SPPM. Denoting by ) y
. . . ] selected as:
the smallest integer i, (28) can be written as:
o880 1| P—p C={P —kop(Ps —1),P — kopt(Ps — 2),..., P}, (34)
1) = max < — ;
p=1,..P |2 | P, —1 ' where:

_ = SPP SPPM).
§SPPM o {pﬁ,lr P J} (29) kopt = k, DT (35)
e M2 [P Rl olSPPM o slsPPm.
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Fig. 6. The impact of the number of selected aperturés) (on the Fig. 7. The impact of the number of selected apertur€s) (on the
performance of OSSK with 6 transmit apertures for a link distance of 3performance of SPPM with0 transmit apertures and 8-PPM for a link
km. distance of 3.2 km.

Proof: The proof is provided in Appendix F. ~ ® with photon-counting receivers, future research can baiid
Consider the special cage, = P. If g < % thenk = 0 this work for tackling the more general MIMO case.
and (6{5°PM s(SPPMy — (0, B) implying that5(SPPM = 3 and
7 SPP SPP
kot = 1. If 3 > L thenk = 1 and (6{°™ 65™) = b Numerical Validation
(1,(2 — P)B) implying that §PPM = L and key = 1.
(SPPM — indl B -

Therefore min{ 3, 7} in coherence with the resultsfor P = 16 and a link distance o8 km. The scenarios

) :aescélgl’:):]“{r?e- gllanoa\lllgfr?gtl:sils :t>hg ;)Il{olv;/ir.l.’(i)}n.clusions cg = 2,4,8 are considered achieving the diversity orders
be drawn: ysis, 9 op 15/2, 5/2 and 1 at the data rates of 1 bpcu, 2 bpcu

) . and 3 bpcu, respectively. The selected apertures are based
- Equations (30) and (32) show that, unlike the case gf, (31) that results i€ = {1,16}, C = {1,6,11,16} and
open-loop systems, the closed-loop FSO-OSM solutiops_ {2,4,6,8,10,12, 14, 16} for the values ofP, equal to 2,
are capable of increa_sing both the bit rate and diversify,ng 8, respectively. We also compare the closed-loopragste
order with respect to single-aperture systems. The smaligfy, the open-loop system that achieves a diversity order of
P, is compared taP, the higher the diversity gain thaty /5 while transmitting at the rate of 4 bpcu. The results in
can be reaped from the FSO-OSM solutions. Fig. 6 validate the diversity orders given in (30). As indezh
- As in the case of open-loop systems, the diversity ordghove, increasing, increases the data rate at the expense of
achieved by closed-loop OSSK does not depend on g, cing the diversity order and hence the SEP performance.
channel parameters and severity of scintillation. Comparing the caseB, = 2 and P, = 4, transmitting one
- The last observation does not hold for closed-loop SPPMyqitional bpcu incurs a performance loss of about 10 dB at
In fact, from (32), depending on the valggs Bt Ps a3 SEP ofl0~3. In practice,P, must be selected to be neither
and 8, the channel-independent quantity®”"" might very large nor very small resulting in an acceptable level of
b(espspr’\r/lpaller or larger than the channel-dependent quanigympromise between the data and error rates. In this context
03 . comparing the closed-loop and open-loop scenarios shaitss th
- For both OSSK and SPPM, increasing the valuerdf the latter case results in the highest data rate and smallest
increases the bit rate at the expense of decreasing #igersity order. Results in Fig. 6 also highlight on the huge
diversity gain until it reaches the minimum value §f SEP gap between open-loop and closed-loop systems having
when P = P. small values ofP;. Finally, as in the open-loop case, results in
It is worth noting that the presented performance analyd$tsg. 6 validate the accuracy of the proposed upper-bounds in
and aperture selection scheme can be readily extendee @ predicting the diversity order of closed-loop systems al. we
MIMO systems with@ > 1 in the case where equal gain com- Fig. 7 shows the impact of aperture selection with SPPM
bining (EGC) is applied at the receiver. For this suboptimér P = 10, M = 8 and a link distance o0f3.2 km.
detection scheme, all of the previously presented deomati The scenariosP; = 2,4,8 are considered resulting in the
hold where the channel irradianc{eﬁ,}ff:l and noise param- data rates off bpcu, 5 bpcu and6 bpcu, respectively. As
eter \, need to be simply replaced bﬁE(f:l Ip,q}ff:l and a benchmark, we also show the performance of the 8-PPM
Q\y, respectively, wheré, , stands for the channel irradianceSISO system that transmits at the rate of 3 bpcu. For the
between the-th laser and;-th photo-detector. However, with considered link distancet = 1.46 implying that the diversity
ML detection, the decision rule can not be decoupled as in @)der of the SISO system is equal tol6. From (32)-(33),
thus significantly altering the associated SEP analysisilévhfor P, = 2, 61> = 3.5 > 65" = 25 = 2,92 and,
this paper initiated the investigation of OSM MISO techrggu for P, = 8, 6§SPPND =05 > 5§SPPND = —4p = —5.84.

Fig. 6 shows the impact of aperture selection with OSSK
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diversity order of OSSK depends only é¢hand P, from (30))
while the diversity order of SPPM drops to 4 (in coherence
with (32)). This reduction in the SPPM diversity order is
reflected by the superiority of OSSK compared to SPPM under
strong turbulence foP, = 2.

V. CONCLUSION

OSM constitutes a viable option for FSO IM/DD com-
munications under weather turbulence. An error probabilit

-©-c=10"? m??, ossK, P =8
—%—C2=5x10"° m??, sPPM, P =2

|- X - CEzsa0 ™ osi .22 E analysis demonstrated that the diversity order does nagraep

—k—C2=5x10"° m?°, sPPM, P =8

- —CE-5010 %, Ossk,pre on the severity of scintillation in the open-loop scenario.
s 200 75 = 260 Moreover, significant diversity gains can be reaped from the

E_ per information bit (dBJ)

proposed transmit aperture selection scheme in the closgd-
Fig. 8. Performance of OSSK and SPPM (witth = 8) with P = 12 for a Scen.ano'. In thls. case, a Frade.Oﬁ eX.ISts between .the aabley
link distance of 3 km under different turbulence conditions _multlplexm_g gains and_ d|Ver5|t¥ gains thus offering a legw
in the design of practical multi-aperture FSO systems. Two
OSM schemes, namely OSSK and SPPM, were advised and
From (34)-(35), this implies thakep; = i that is equal to contrasted under different turbulence conditions. WhixPS!
7€ ={310)and1C = {3,...,10}) for P, = 2 and always manifests better performance in the open-loop sitcena

P, =8, respectlvely The opposite relation holds féy = 4 the superiority of one of the two schemes depends on the
where 5! (SPPM_ 1 ~ 5 (SPPM _ 3 — 146 implying that turbulence conditions and number of activated apertures in

Eopt = k: +1=3 resultlng inC = {1,4,7,10}. Therefore, the closed-loop scenario. Future research directionsidecl
thg achievable diversity orders are equaBtb 1.46 ando.5 the extension of this work to the case where the receiver is

for the values ofP, equal to 2, 4 and 8, respectively. Thi€duipped with more than one aperture.

analysis shows that, unlike open-loop systems, the pasmet

(3 has an impact on the achievable diversity orders with closed APPENDIXA

loop SPPM. In this case, the SPPM scheme with= 4 The aperture index error in (11) can be upper-bounded as
profits from the same diversity order of the SISO system whifg|lows:

transmitting 2 additional bpcu. This achievable diversitgier

P P
is validated in Fig. 7 where the corresponding SEP curves are Pe(\%SSK) Z Z Pr(sp.1 — Spr1), (36)
practically parallel to each other for large valuedff Results =1y
also show that this enhanced transmission rate is assdciate P

with a performance loss in the order of 3 dB. Finally, aghere P¢s,;1 — s, 1) is the pairwise error probability of
in the case of OSSK, the scenaria, = 2 results in the pulsing aperturep (i.e. s, = 1) and deciding in favor of
best performance. This scheme transmits one additional bpgerturep’ + p (i.e. s,,; = 1). Based on the Bhattacharyya
compared to SISO systems while profiting from a diversityound, this pairwise error probability can be bounded as
gain that is2.18 times higher resulting in a performance gaiffollows [25], [26]:

of about9.5 dB at a SEP ofl0—>.

Fig. 8 compares the performance of closed-loop systemspr(spJ = spa) <
with OSSK and SPPM (with\/ = 8) under different turbu- I
lence conditions. We consider a link distance of 3 km with 5 > \/Pr(Rl =7lsp1 = 1)PH(Ry = rlsp 1 =1), (37)
P =12 and P, € {2,8}. We also compare the scenarios of r=0
strong turbulence@? = 1072 m~2/3) and weak-to-average where the factoi /2 follows from the improvement proposed
turbulence ¢2 = 5 x 107'¢ m~2/3). As in the open-loop in [26]. Following from the Poisson statistics whose parame
scenario in Fig. 4, results in Fig. 8 highlight on the suiliabi ters are given in (3), equation (37) can be written as:
of OSM to the strong turbulence conditions in the closed-
loop scenario as well. FaP, = 8, results in Fig. 8 highlight Prisp1 = sp1)
that OSSK and SPPM achieve the same diversity order of ; +oo \/e(IpASHb)(Ip)\SJF)\b)T e—(Ip/ks-ﬁ-)\b)(Ip/)\s_’_/\b)r

1/2 for the two considered values @f? in coherence with < -

(30) and (32). For this large value &t that privileges higher =0 r "
multiplexing gains at the expense of reduced diversity gjain 1 _ Uty = ”
SPPM manifests better performance compared to OSSK i~ 5° Z—, [(TpAs+20) (Ip As+A0)] 2, (38)
analogy with the findings in the open-loop scenario in Fig. 4. r=0

For P, = 2, SPPM maintains its superiority under weak-towhich, following from e* = ::O% r| and after straightfor-

average turbulence where the diversity orders of both SPRMrd derivations, results in:
and OSSK are equal to 5.5. However, under strong turbulence, ) 5
OSSK maintains the same diversity order of 5.5 (since the Pr(s,1 — sp1) < e 2 (VI t =T As 4 h)" (39)

1
2



Finally, replacing (39) in (36) results in the expressiovegi
in (19).

On the other hand, given that the slot index pairwise error
probability is the same for any pair of slots following from
the symmetry of the PPM constellation, the probability i8)(1

can be upper-bounded as follows:

M—-1

p(SPPM
P

el

P
Z Pr(sp.m = Spm) ¥ m' #m,
p=1
(40)

(8) <

12

+oo g™
n=0 n!

which, following from e¢*
ward derivations, results in:

Pr(sp,m = spm') < %ei(\/mf\/rb)2.

and after straightfor-

(45)

Finally, replacing (45) in (40) results in the expressiovegi
in (20).

APPENDIX B
For large values oA, and )\, — 0, the upper-bound in (21)

where Pts, ,, — s, /) Stands for the pairwise error proba<an be determined from:

bility of deciding in favor of slotm’ when the light signal
is in slot m conditioned that the aperture was pulsed
(following from the conditioning imposed in (13)). Applyan
the Bhattacharyya bound [25], [26]:

1 +oo +oo
Pr(spm — Spms) < 5 Z Z

r1=0 =0
M M
[ PrRi=rilspm=1) [[ PR =rjlspm =1), (41)
i=1 j=1

where, from (3), the conditios,, ,,, = 1 implies thatR,, has

a mean off,\; + A, while the remaining random variablesVX — VY is Fy(z)

Ry,...,Rm_1,Rmy1,--., Ry have a mean ofy,. Conse-
quently, (41) can be written as:

1 +oo +oo
Pr(spm — Spms) < 5 Z Z

r1=0 =0

ef(IpAer)\b)(Ip/\S_’_)\b)rm ﬁ e*Ab)\Zi, y
Tom! el
itm
e~ UpAst2e) ([N + \p)"m! M X, \Td
- I —7 @
T ! 7!
m j=1 J
j#m!

The last expression can be further simplified as follows:

1 <X R M e AN
Pilspn > spm) <53 >0 JI =5
r1=0 rar=0 i;émi;:1i¢m/ 7
e~ UpAstX0) ([N + Ap)Tm e~ e\ "
T Ty !

S ' (43)

Tm!- T'm:

\/e—(lpksﬁ-)\b)(jp/\s + Ap) T =R\

Observing that the summations overfor i #£m andi #m/
are equal to 1, (43) simplifies to:

1
Pr(Sp,m N Sp,m’) < 56—)\b€—(1p)\5+>\b)

- 1 X1 -
> e EA AT Y A
Tm=0 ror=

m

(44)

P-1 +oo ptoo e (mo 2
PpLossK _ T/ / e~ 5 (Va—v) [x (@) fy (y)dzdy
o Jo

P—1 [T .
_ T/o L e ().

Since the integral in (46) is dominated by small values
of z, we next determine the d_istributioﬂ VX-VY)? (2) _for
z < 1 whereX andY are two independent and identically-
distributed gamma-gamma random variables according to (1)

First, we evaluate the distributiof +_ -(2). Using stan-
dard random variable transformation techniques, the camul
tive distribution function (cdf) of the random variablé =
PrZ < z) = PVX — VY <
z) = Prv/Y > VX — 2). This cdf can be evaluated us-
ing Fz(z) = [72° [7°° f < (2) f 5 (y)dydz. Differentiating
with respect toz using the Leibniz integral rule results in

fo(z) = 2l — [T ¢ —(2)f 5 (z — z)dz. Given that
the random variables/X and v/Y assume positive values,
then f < (x)f v (z — 2) is nonzero forr > max{0, z}. As
will be explained later,fz(z) needs to be evaluated only for

2z <0:

(46)

“+oo
fux_vy(?) :/o fux(@)fy(x—2)dz 5 2 <0. (47)

In order to be able to solve the challenging integral in (47),
the gamma-gamma pdf in (1) will be written under the form
of a mixture gamma (MG) distribution based on [27], [28]:

N
fx(z) =21 Z aie ¥ 1 >0, (48)

i=1
where the constants andb; can be determined from equation
(4) in [28] while the number of term&/ determines the level
of accuracy of the approximation [27]. The reason behind
adopting the MG distribution stems from the fact that (47)
calls for the multiplication of two shifted versions of thgusre
root gamma-gamma pdf, thus necessitating an approximation
that holds for all values of the irradiance rather than foam
values only.

Since f z(x) = 2zfx(x*), then replacing (48) in (47)

results in:

N N
fux_yv(2) = 42 Zaiajx

i=1 j=1

—+oo
/ armflefb””z(a:—z)m*le*bj(zfz)zda: ; 2<0, (49)
0
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TUB —k—1)V7

1 B-k—11 b 2b;2 AB—k 3 b3 I
48—k ® 2 2 b+ b, 48—k—-1 ® 2 27 b;+b; - 1)
r(45E) h )T o1 (25=2)

which, following from the generalized binomial theoremncaa = F(f;;;(ﬁﬁ)) (a3)? [29]. Solving the obtained integral results

be expanded as follows: in PSPPM(8) = (MZal(B) )\ -6 implying that the diversity
N N 400 order is equal tg and completing the proof of proposition 3.

28 -1\ _, .
frz o7 () ZZZMLJ< ) bi2* (—z)kx APPENDIXD

Too , For \s > 1 and A\, — 0, the integral in (26) can be
/ gtP 2k o= (bitb)am 2 ze gy o 5 < 0. (50) calculated from:
0

A
775( —

+o0 2
Solving the integral in (50) using [31, 3.462.2] while relat 1 = / / y==) f\/gﬂ\/g(ﬂf,y)dfﬂdya (54)

ing the obtained parabolic cylinder function to the confluen -
hypergeometric function using [31, 9.240] results in (51\erhere the Jcl>)|nt ggf gfstg@ -th andp’-th order statistics( <
shown on top of the page. P') is given by [ I

For small values ofz|, ®(«,; z) — 1 following from [31, P!
9.210.1]. Therefore, setting = 0 in (51) while ignoring the f\/Z,\/I—p/(I’y) (p—DI(p —p— 1P =) x

higher powers ot for |z| < 1 results in: ‘o
. Fx @ ) [P @] [Fu) - Fug(@]” ™" x

T8 - 1)V7 i
Fuxovi(?) m 4= (2‘5) ) L-Fr@] " 0<e<y, (55)
, where f ~(z) = 2xfx(2®) and F ~(x) = Fx(z*) corre-
Z Z a;a;([4(b; + b, )] 3% spond to the pdf and cdf of the square-root of a gamma-gamma
i=1 j=1 random variable whose pdfx (x) is given in (1).
N lee—sz2 . 2<0, (52)  Now, consider the random variabl¢’T,, — /I, that as-

sumes only positive values sindg < I,,. In terms of this

random variable, (54) can be evaluated as follows:
On the other hand, f(ﬁ_ﬁ)2(z)

“+o00o
7= [fux_ v (V3) + fux_yr(=v73)]. Since the function I= [ e T e e (56)
fux_yv(2) is even following from the fact thatX 0
and Y are identically- drstrrbuted then the last relation The cdf of the random variablg — X with Y = /I, and
simplifies to f x () = f\/— s (=vZ). Now, X = /T, can be calculated fromy _x(z) = P(Y — X < 2)
since —y/z < 0, then (52) can be applied resulting inwhich, when combined with the relatidh< X </, results

fovxvip(?) = 2= X e for z > 0. Therefore, the in Fy—x(z) = Jm J fxv(z,y)dyds. Differentiating

SEP in (46) can be evaluated as follows: with respect toz using the Leibniz integral rule results in
too fr—x( fo fx.y(z, z+2)dz. Therefore, the pdf needed
poss _ - — 1 le/ %ef(A—;Jrcz)de for the evaluatlon of (56) can be determined from (55) as:
z
P-1 = \/—\/Z / f\/ﬂ7\/—l‘1‘+2)d ; 2>0. (57)
=— -, 53
2 ; X % + ¢ 3) Since the small values of contribute the most to the

integral in (56), we next evaluate the pdf in (57) for small

where the second equality follows from [31, 3. 361 2]. Fogéa values ofz. Replacingy by « -+ z in (55), a key point in

values of ), PLOSS0 (P~ 1)/F (2 x)As * implying the proof consists of observing thét 5-(y) — F (z) =
that the diversity order is equal ty/2. F\/—(erz) Fue@) ZdF\é;( 7)) _ 2fe(e) asz - 0.

Therefore for small values of:
APPENDIXC

For large values of, and\, — 0, the upper-bound in (22) 42) = e Pl <P p> 1!
ca}gpga determined from: Fym @ e +2) = e Z AR
P; (8) = ML [T 72" fx (x)dz. Approximating the o p1 ;
gamma-gamma pdf in (1) by the first term of the power series/vx(@)] Fux (@ +2) [Fx(2)] [Fx(@+2)]

expansion near the origin results jix (z) ~ az”~! where (58)

=0
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S i 0 2) = 2 TP Z<P p)[ DM IPY

i1=1 p=lil=1

N N N N +oo “+oo +oo
IR DD SEED DD SRS BED DEND 3) I N I PR
if=1 i =1i'=1 i)' =1k1=0 kp—1=0k[=0 kj=0

k 1 k! k!
|:bz’} - b, /F/’ |:b,L-llll e b,L-/l//
1

1 "p—1 L

B+ +1) - T(B+ ko + DT+ R+ DT+ A+ D]

e* {(bil +"'+bip’—p)+(bi/1/+"'+bi/p/71)] z2 (:C n Z) [(l+l)[1‘+(k1+ +k )] 1 — {b 1+(b; ///+ ~+b. ///)] (z42)? .

2 [(p/71)ﬁ+(k1+---+kp71)+%'“] —1

(62)

wherec £ Sy 5' TR behaves like a constant as a functioredbr z < 1. Denoting
As in Appen ix B, the \versatile mixture gamma (MG}his constant byy,, while approximating the summation in
distribution will be used to approximate the gamma-gamnté4) by the smallest terrh = 0 (corresponding to the smallest

distribution [27], [28]: power of z) results in:
N ’ 2
) =a" Y ae Sy ) = Ty Xatbme™ 522 0. (65)
i=1 "

N Replacing (65) in (56) results in: [ =
= Fx(z) = Z b—g’y(ﬂ,bix) ; x>0, (59) > Xmtm f0+°° 1o~ (¥+6n)"q, This  integral
i=1 " can be solved using [31, 3.462.9]:
where~(s, ) stands for the lower incomplete gamma function -
while the constants; andb; can be determined from equation [ < > Z " ( b > 2
(4) in [28]. Equation (59) implies that (far > 0): o Xm¥m m

N /
fux(x) = 9261 Z ae b (60) — 2 ( ) Z XmWm, (66)
N /
a; showing that the diversity order is equal #82 (for p < p’).
F — Z _B v (B, bix ) g y q Q%_ (for p < p')
=1 z

+o0o (b-xz)k APPENDIXE

2,8 —bjz?
Z i€ Z F(ﬂ +k+1) (61) For A\; > 1 and \, — 0, the integral in (27) can be written

. , asI 2 |7 e~ f; (x)dz. Based on order statistics, the pdf
where the Ias_t relatlon foIIows from the_ power Series eX{Bms o . 1h'smallest random variablg, is given by [30, 2.2.2]:
of the lower incomplete gamma function. Replacing (60) and

(61) in (58) results in (62) shown on top of the page: _ P! p—1lpq P—p
For simplicity of notation, (62) can be written under theflp ()= (p—l)!(P—p)!fX(x) [Fx (@) 1= Fx ()] '
following form: (67)
, where fx(z) corresponds to the gamma-gamma pdf in (1)
f\/— \/—(x,x +2)=2P P7lx while Fx(z) stands for the corresponding cdf. Approximat-

ing these functions by the first term of their corresponding
power series expansions near the origip(x) = a2z”~! and
Fx(x) = %xﬁ (wherea is given in Appendix C) results in:
Applylng the binomial theorem on (63) and replacing in

ZX x2#m =g 4 2)2m— lg=7ma® o =Cm(242)° (63)

(57) results in: P—p
P—p
2 B Z( k )(_1)kx
Vm — p/—p—1+k _C7nz2 k=0
Iyt kzz( s ’ P

pPHE)E—1 s x <1, (68)

(p = DUP —p)! o1tk
where this expression can be further approximated by the
The integral in (64) has the same form as the integrifst term of tPh'e summatlonl(correspondmg to = 0):
in (50). Therefore, following a similar analysis as the onér, (¥) = G—ip—p 5r=T2" PP=1. Replacing this expression
presented in Appendix B (in particular (51) and the subseguén the integrall results in/ ~ %ﬂp T'(pB)A;P?
approximations), it can be proven that the former integrabmpleting the proof.

—+o0
/ 22 Fvm =)=k o= (Ym+Cm)a o =2Cmzz . ; 2>0. (64)
0



APPENDIXF

From (29), writing the integep under the formp = P —
k(Ps—1), we observe that th®, — 1 integersp,p—1,...,p—

(Ps
among these integers, the integeresults in the largest value
of ps, then the diversity order in (29) can be written und

= k. Since,

—2) all result in the same value gf>—2

the form:

5(SPPM _ mgx{[P — k(P, —1)]8, %k} = max {3} .
(69)

(11]

[12]

G

[14]

As in the case of OSSK from (31), selecting the apertubl

ind

ices equidistantly between= P —k(P;—1) and P results
in the candidate set:
Cr={P—-kPs—1),P—k(Ps—2),...,P}. (70)
Solving for the smallest integér satisfying:
Sk <[P = k(P ~ 1), (1)

results in the solutiork = &k given in (33). In this context,

k
58

Fork <k, o, = 3k <

Ok

= 2k & 07 ando, = [P (k+ (P - 18 £

1k = o;. Similarly, for k& > k + 1,

[P — k(P —1)]B < [P — (k+1)(Ps — 1) = &,

Therefore, the values df that maximize (69) are eithég, =
ke with §(SPPM — §SPPM o o —  + 1 with 5(SPPM —

58
by

(1]

(2]
(3]
(4]
(5]

(6]
(7]

(8]

El

[20]

PPM proving equations (32) and (35). Finally, replacihg
kopt in (70) results in the solution given in (34).
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