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Optical Spatial Modulation for FSO IM/DD
Communications with Photon-Counting Receivers:
Performance Analysis, Transmit Diversity Order

and Aperture Selection
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Abstract—This paper investigates two pulse-based Optical
Spatial Modulation (OSM) schemes as cost-efficient solutions for
multi-aperture Free-Space Optical (FSO) communications with
Intensity-Modulation and Direct-Detection (IM/DD). Namely, we
consider Optical Space Shift Keying (OSSK) where information
is encoded in the index of the pulsed optical source and
Spatial Pulse Position Modulation (SPPM) where additionalbits
determine the position of the transmitted optical pulse resulting
in higher transmission rates. A performance analysis is carried
out over gamma-gamma channels with the exact Poisson photon-
counting detection model. Exact Symbol Error Probability (SEP)
expressions, simple upper bounds and the achievable transmit
diversity orders are derived for both the open-loop and closed-
loop scenarios. Based on the presented performance analysis, a
transmit aperture selection scheme capable of maximizing the
transmit diversity order is proposed for OSSK and SPPM in the
closed-loop case. Results show that for open-loop OSSK, open-
loop SPPM and closed-loop OSSK, the transmit diversity order
does not depend on the severity of scintillation unlike the closed-
loop SPPM case.

Index Terms—Free-Space Optics, Multiple-Input-Multiple-
Output, Optical Spatial Modulation, OSM, performance analysis,
diversity order, aperture selection, open-loop, closed-loop.

.

I. I NTRODUCTION

Spatial Modulation (SM) is attracting an increased interest
as a low-complexity energy-efficient Multiple-Input-Multiple-
Output (MIMO) solution [1], [2]. By activating a single trans-
mit antenna at a time, SM avoids inter-channel interference
at the receiver and alleviates the need for inter-antenna syn-
chronisation at the transmitter thus circumventing many ofthe
complexity and cost drawbacks often associated with the other
MIMO techniques. On the other hand, by mapping a part of the
information bits to the antenna index, attractive multiplexing
gains can be achieved compared to single-antenna systems
[1], [2]. SM can be implemented either in the open-loop or
closed-loop setups. While the open-loop scenario does not
result in any transmit diversity gains [3], [4], such gains can be
achieved by implementing the closed-loop alternative [5]–[8].
The Euclidean Distance optimized Antenna Selection (EDAS)
constitutes an appealing solution that has been investigated
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extensively in the literature [5]–[8]. For Radio Frequency(RF)
systems subject to Rayleigh fading and corrupted by Additive
White Gaussian Noise (AWGN), it has been proven that the
EDAS scheme increases the transmit diversity order from 1 in
the open-loop scenario [3], [4] to(P − Ps + 1) whereP is
the total number of transmit antennas andPs is the number of
selected transmit antennas [5]. The research targeting theRF-
SM-EDAS systems revolved around the complexity reduction
of the antenna selection scheme in the contexts of conventional
[7] and large-scale [8] MIMO systems.

On the other hand, the ever-increasing demand for band-
width motivated researchers to investigate the optical spectrum
as a means to complement the crowded RF spectrum. In this
context, Optical Wireless Communications (OWC) emerged
as a promising technology for the next generation high-speed
wireless communications for both the indoor and outdoor sce-
narios. Consequently, a new direction of research has surfaced
corresponding to the extension of the RF-SM techniques to
the context of OWC which is also referred to as Optical-
SM (OSM) in the literature [9]. As such, recent research
revolved around the application of OSM for indoor Visible
Light Communications (VLC) [9]–[14] and for outdoor Free-
Space Optical (FSO) communications [15]–[20]. In [9], the bit
error rate (BER) analysis of OSM was carried out over indoor
optical channels highlighting the impact of the channel correla-
tion on the achievable performance levels. OSM was compared
with Spatial Multiplexing (SMux) and Repetition Coding (RC)
in [10] showing that OSM is more robust against channel
correlation compared to SMux while enhancing the spectral
efficiency compared to RC. Adaptive VLC-OSM solutions
were proposed in [11] and [12] based on adapting the Pulse
Amplitude Modulation (PAM) modulation-orders at the light-
emitting diodes (LEDs) and on implementing channel-adaptive
bit mapping, respectively. Finally, an adaptive power allocation
strategy was proposed in [13] for solving the mobility problem
in VLC-OSM systems. More recently, the effect of inter-
symbol interference on the performance of OSM over indoor
multi-path channels was investigated in [14]. In [14], two
variants of OSM were considered; namely, the Optical Space
Shift Keying (OSSK) and Spatial Pulse Position Modulation
(SPPM). OSSK constitutes an OWC-adapted extension of
the RF-SSK solution that constitutes a special form of RF-
SM where the information is conveyed only in the antenna
space with no modulation. In other words, in OSSK, the
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information is conveyed in the index of the pulsed LED thus
transmittinglog2(P ) bits per symbol duration. On the other
hand, for SPPM, the bits are mapped to the LED index and
to the position index of anM -ary PPM constellation thus
transmittinglog2(M) additional bits compared to OSSK.

Compared to the indoor VLC channels, the outdoor FSO
channels do not suffer from excessive delay spreads (multi-
path propagation) or pronounced channel correlation. On the
other hand, FSO systems suffer from scintillation resulting
in the random fluctuation of the received signal power in a
phenomenon that is analogous to fading over RF wireless
channels. Consequently, the MIMO techniques found direct
application in FSO systems where RC [21] and SMux [22]
constitute the most commonly adopted solutions. To lever-
age the limited spectral efficiency of RC (that transmits at
the same rate as single-aperture systems) and the decoding
complexity associated with SMux (where theP transmitted
independent data streams need to be jointly detected), there
has been a growing interest in studying FSO-OSM sys-
tems [15]–[20]. Open-loop OSSK with Intensity-Modulation
and Direct-Detection (IM/DD) constitutes the most widely
investigated OSM scheme [15]–[17]. Multiple-Input-Single-
Output (MISO) FSO-OSSK systems were analyzed in [15]
over gamma-gamma channels with pointing errors. MIMO
FSO-OSSK systems were studied in [16] over gamma-gamma
channels with no pointing errors and in [17] over gamma-
gamma, lognormal and negative exponential channels with
pointing errors. The works in [15]–[17] revolved around
evaluating the distribution of the difference between two path
gains and were culminated by deriving the transmit diversity
order that was found to be equal to1/2 independently from
the scintillation and pointing error conditions. Open-loop
FSO-OSM with joint PAM-PPM constellations and IM/DD
was investigated in [18] over gamma-gamma and lognormal
scintillation. Jointly encoding the positions and amplitudes of
the transmitted optical pulses enhances the spectral efficiency
compared to OSSK. While in [18] a theoretical framework
for deriving bounds on the error probability was developed,
the so-called type-IV error that involves the difference be-
tween two gamma-gamma random variables was evaluated
numerically with the consequence that the achievable diversity
order was not ascertained theoretically. While the solutions in
[15]–[18] considered non-coherent IM/DD communications,
the work in [19] considered open-loop FSO-OSSK systems
with coherent heterodyne receivers over H-K atmospheric
turbulence channels. In [19], it was proven that a transmit
diversity order of1 can be achieved independently from the
fading severity. Finally, the performance of subcarrier intensity
modulation OSM systems was evaluated numerically in [20]
over lognormal outdoor channels.

This work targets the performance analysis of MISO FSO-
OSSK and FSO-SPPM IM/DD systems over gamma-gamma
atmospheric turbulence channels in the open-loop and closed-
loop scenarios. Unlike all existing works on VLC-OSM [9]–
[14] and FSO-OSM [15]–[20] that consider the AWGN model,
this work adopts the exact Poisson photon-counting detection
model where the number of photons generated by the optical
signal and by the background radiation is modeled by a Pois-

son point process [21]–[24]. This constitutes the major novelty
of this work since the performance of OSM systems with
Poisson noise was never considered before in the literature.
It is worth noting that the Poisson model constitutes the exact
noise model describing the performance of IM/DD systems
while the simpler AWGN model constitutes an approximation
that holds when the shot noise caused by background radiation
is dominant with respect to the other noise components such
as thermal noise and dark currents [21]–[24].

This work differentiates itself from all previous works on
FSO-OSM [15]–[20] by the following. i): Unlike [15]–[20]
that consider the approximate AWGN model, this work consid-
ers the more general Poisson model. ii): Unlike [15]–[20] that
all consider the open-loop scenario, this work addresses the
open-loop as well as the closed-loop scenarios. iii): Consider-
ing the pervious FSO-OSM works examining gamma-gamma
scintillation [15]–[17], this work analyzes not only OSSK but
SPPM as well. iv): While [18] evaluates the performance of
FSO-OSM with joint PAM-PPM over gamma-gamma channels
numerically, a closed-form theoretical evaluation is carried out
in this paper. Moreover, unlike [18], the achievable transmit
diversity orders are handily quantified.

The contributions of this paper are fourfold:
- We derive exact SEP expressions and simple bounds for

OSSK and SPPM. The derived expressions are novel
and the bounds are useful for offering clear and intuitive
insights on the performance of FSO OSM systems.

- We prove that the transmit diversity order achieved by
OSSK in the open-loop scenario is equal to1/2. This
result, obtained under the Poisson noise model, matches
the result obtained in [15]–[17] under the AWGN model.
For SPPM, we prove that the diversity order is equal
to min{β, 12} whereβ is the parameter of the gamma-
gamma distribution. For practical values of the link
distance and scintillation severity, this latter quantity
simplifies to1/2 as in the case of OSSK. The novelty in
evaluating the diversity order in the open-loop scenario
revolves around adopting a recent technique based on ap-
proximating the gamma-gamma distribution by a mixture
gamma distribution over the entire range of irradiances.

- We evaluate the transmit diversity order that can be
achieved in the closed-loop scenario based on the
strengths of the channel irradiances. This evaluation fol-
lows from analyzing the distribution of the difference
between the square-roots of two order statistics among
the sorted gamma-gamma random variables. As in the
open-loop scenario, the novelty of the adopted calculation
methodology yielded conclusive closed-form results.

- We propose a novel diversity-maximizing transmit aper-
ture selection scheme for the closed-loop scenario.
For OSSK, the proposed scheme achieves a trans-
mit diversity order of 1

2

⌊

P−1
Ps−1

⌋

when activatingPs

apertures out of theP available transmit apertures.
For SPPM, the achievable transmit diversity order is
equal tomax

{

1
2 k̃, [P − (k̃ + 1)(Ps − 1)]β

}

wherek̃ =
⌊

2Pβ
1+2(Ps−1)β

⌋

. The proposed aperture selection scheme
is completely novel and adapted to FSO IM/DD systems.
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Fig. 1. P × 1 FSO OSM system model. (a): Open-Loop scenario and (b): Closed-Loop scenario.

II. SYSTEM MODEL

A. Basic Parameters

Consider aP × 1 FSO communication system where the
transmitter is equipped withP transmit apertures (lasers) while
the receiver is equipped with a single receive aperture (photo-
detector). The system model is better depicted in Fig. 1 in
the open-loop and closed-loop scenarios. We assume that the
P optical channels are independent and identically-distributed
according to the gamma-gamma distribution whose probability
density function (pdf) is given by [16]:

fI(I) =
2(αβ)

α+β
2

Γ(α)Γ(β)
I

α+β
2 −1Kα−β

(

2
√

αβI
)

; I ≥ 0, (1)

where Γ(·) is the Gamma function andKc(·) is the
modified Bessel function of the second kind of orderc.
In (1), the channel parametersα and β are the effec-
tive numbers of small-scale and large-scale eddies that
can be expressed, for spherical wave propagation, as

α =
[

exp
(

0.49σ2
R/(1 + 1.11σ

12/5
R )7/6

)

− 1
]−1

and β =
[

exp
(

0.51σ2
R/(1 + 0.69σ

12/5
R )5/6

)

− 1
]−1

[15]. The param-
etersα andβ depend on the link distanced through the Rytov
varianceσ2

R = 1.23C2
nk

7/6d11/6 wherek is the wave number
andC2

n denotes the refractive index structure parameter. For
terrestrial FSO links,C2

n ranges from10−17 m−2/3 for weak
turbulence to10−12 m−2/3 for strong turbulence. In this work,
unless stated otherwise, we fixC2

n = 1.7× 10−14 m−2/3

corresponding to the scenario of average turbulence [15].
The receiver is an IM/DD photon-counting receiver. Denote

by λs andλb the average numbers of electrons generated by
the information-carrying signal, in the absence of scintillation,
and by the background radiation and dark currents, respec-
tively. These quantities are given by [22]:

λs = η
Es

hf
; λb = η

Eb

hf
, (2)

where η is the detector’s quantum efficiency,h is Planck’s
constant andf is the optical center frequency corresponding
to a wavelength of 1550 nm. In (2),Es andEb denote the

received optical energies resulting from the light signal and
background radiation, respectively.

We denote byM the number of time slots per symbol
duration. For SPPM,M corresponds to the number of PPM
positions while, for OSSK,M = 1 reflecting the fact that the
transmitted optical pulse occupies the entire symbol duration.
For SPPM, one of theP transmit apertures is pulsed in a single
PPM slot (out of theM available slots) resulting in the trans-
mission rate oflog2(MP ) bits per channel use (bpcu). In this
case, the transmitted constellation is given by the set{sp,m ∈
{0, 1} ; p = 1, . . . , P , m = 1, . . . ,M} where sp,m = 1
(resp.sp,m = 0) indicates that thep-th transmit aperture is
pulsed (resp. not pulsed) in them-th PPM position. One of
the elements of the vector[s1,1, . . . , s1,M · · · sP,1, . . . , sP,M ]
is equal to 1 while the remainingMP − 1 elements are
equal to 0. For OSSK, the information is completely conveyed
by the index of the pulsed transmit aperture resulting in the
rate of log2(P ) bpcu. In what follows, for the sake of a
unified notation, OSSK will be handled as a special case of
SPPM obtained by settingM = 1. Following from the unified
notation, the energies in (2) can be expressed asEs = Ps

Ts

M

andEb = Pb
Ts

M whereTs stands for the symbol duration while
Ps andPb stand for the incident optical power and the power
of background noise, respectively. In this work, all reported
error rates will be plotted as a function of the signal energy
per information bit given by Es

log2(MP ) for the sake of fairness
when comparing systems with different rates. Moreover, we
setEb = −185 dBJ for all of the presented numerical results.

Considering the generic exact Poisson photon-counting de-
tection model [21]–[24], the detection at the receiver is based
on theM decision variables{Rm}Mm=1 whereRm stands for
the number of photo-electrons detected in them-th slot1. The
random variableRm follows the Poisson distribution with the
following parameter [22]:

E [Rm] =





P
∑

p′=1

sp′,mIp′



 λs + λb ; m = 1, . . . ,M, (3)

1For OSSK, a single decision variableR1 is needed corresponding to the
number of photo-electrons detected overTs.
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where E[·] stands for the averaging operator whileIp stands
for the channel irradiance from thep-th transmit aperture to
the receive aperture. For OSM where a single transmit aperture
is pulsed per symbol duration, only one term in the summation
in (3) will be different from zero. In other words, when the
transmit aperturep is pulsed in them-th slot (i.e.sp,m = 1),
Rm will have a mean ofIpλs+λb while the remainingM−1
decision variables{Rm′ ; m′ 6= m}Mm′=1 will have a mean
of λb showing that the only source of photo-electrons in these
empty slots is background radiation2.

B. Maximum-Likelihood (ML) Detection

Denote by [r1, . . . , rM ] the actual numbers
of photo-electrons detected in the M slots.
The ML decoder decides in favor ofsp̂,m̂ =
argmaxp=1,...,P ; m=1,...,M Pr(R1 = r1, . . . , RM = rM |sp,m)
that, from (3), results in:

sp̂,m̂ =

= argmax
p=1,...,P
m=1,...,M











e−(Ipλs+λb)(Ipλs + λb)
rm

rm!

M
∏

m′=1
m′ 6=m

e−λbλ
rm′
b

rm′ !











(4)

= argmax
p=1,...,P
m=1,...,M

{

e−Ipλs

(

1 +
Ipλs
λb

)rm M
∏

m′=1

e−λbλ
rm′
b

rm′ !

}

.

(5)

Removing the last term from (5) that does not depend onp
or m while taking the logarithm of the probability results in
the following equivalent ML decision rule:

sp̂,m̂ = arg max
p=1,...,P ; m=1,...,M

{

rm log

(

1 +
Ipλs
λb

)

− Ipλs

}

.

(6)
Given that the decision metric in (6) is a strictly increasing

function of rm, the decision rule in (6) can be broken down
into two simpler rules as follows:

m̂ = arg max
m=1,...,M

{rm} ;

p̂ = arg max
p=1,...,P

{

rm̂ log

(

1 +
Ipλs
λb

)

− Ipλs

}

, (7)

where the first rule indicates that, most probably, an optical
signal has been transmitted in the slot having the maximum
photo-electron count while the second rule solves for the
specific transmit aperture that has been pulsed in this slot.

For OSSK, (7) simplifies to:

p̂ = arg max
p=1,...,P

{

r1 log

(

1 +
Ipλs
λb

)

− Ipλs

}

, (8)

wherer1 stands for the number of photo-electrons collected
over the entire symbol duration.

Assuming, without loss of generality, that the channel gains
are sorted in an ascending orderI1 ≤ · · · ≤ IP , then the
decision rule in (8) is equivalent to:

p̂ = p if r1 ∈ [γp γp+1 − 1], (9)

2For OSSK, there are no empty slots (M − 1 = 0).

where, through direct calculations, it can be proven that
the decision threshold between levelsp − 1 and p can be
determined from:

γp =









(Ip − Ip−1)λs

log
(

Ipλs+λb

Ip−1λs+λb

)









; p = 2, . . . , P, (10)

with γ1 = 0 andγP+1 → ∞ while ⌈x⌉ ceilsx to the smallest
integer larger than or equal tox.

Given that the parameters{Ip}Pp=1, λs andλb do not depend
on the transmitted OSM symbols, the implementation of the
ML SPPM decoder in (7) requires carrying outM+P compar-
isons,P multiplications andP additions per symbol duration.

In this context, the values
{

log
(

1 +
Ipλs

λp

)

, Ipλs

}P

p=1
need

to be calculated only once per fading block that extends
over several thousands of symbol durations in the context
of FSO communications. Consequently, the complexity as-
sociated with evaluating these2P values can be neglected
compared to the other operations that need to be carried out on
a symbol-by-symbol basis. Similarly, the symbol-level opera-
tions associated with the ML OSSK decoder in (8) correspond
to P comparisons,P multiplications andP additions. In this
context, the advantage of the simplified ML OSSK decoding
rule in (9) resides in requiring onlyP comparisons (with no
time-consuming multiplication operations) since the threshold
levels in (10) do not vary over a fading block duration.

III. PERFORMANCEANALYSIS IN THE OPEN-LOOP

SCENARIO

In this section, we evaluate the performance of OSSK and
SPPM in the open-loop scenario in the absence of channel state
information (CSI) at the transmitter side. In this scenario, OSM
will involve all P transmit apertures rather than a selection of
these apertures.

A. Exact Symbol Error Probability (SEP)

1) OSSK: For OSSK, following from (9), a correct decision
is made when the random variableR1 falls betweenγp and
γp+1 − 1 when the p-th transmit aperture is pulsed (i.e.
sp,1 = 1) for p = 1, . . . , P . Since, for sp,1 = 1, R1 is
a Poisson random variable with parameterIpλs + λb from
(3), and assuming all OSSK symbols to be equally likely,
the conditional symbol error probability (SEP) of the OSSK
scheme can be calculated as follows:

P
(OSSK)
e|I = 1− 1

P

P
∑

p=1

γp+1−1
∑

k=γp

e−(Ipλs+λb)(Ipλs + λb)
k

k!
, (11)

whereI , {I1, . . . , IP } while the conditioning is performed
over theP channel irradiances.

2) SPPM: For SPPM, following from (7), the wrong recon-
struction of the slot index̂m will directly result in an OSM
symbol error. Consequently, the conditional SEP of the SPPM
scheme can be determined as follows:

P
(SPPM)
e|I = P

(SPPM)
e|I (S) + P

(SPPM)
e|I (A,S), (12)
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where P (SPPM)
e|I (S) stands for the probability of the event

S corresponding to a slot index error. On the other hand,
P

(SPPM)
e|I (A,S) stands for the probability of an aperture index

error (eventA) when the slot index is reconstructed correctly
(S stands for the complement of the eventS).

The probabilityP (SPPM)
e|I (S) can be determined from:

P
(SPPM)
e|I (S) = 1

MP

P
∑

p=1

M
∑

m=1

Pr(m̂ 6= m|sp,m = 1)

=
1

P

P
∑

p=1

Pr(m̂ 6= 1|sp,1 = 1), (13)

where the second equality follows from the symmetry of the
PPM constellation. Next, we derive the probability Pr(m̂ 6=
1|sp,1 = 1) = 1 − Pr(m̂ = 1|sp,1 = 1). The relationm̂ = 1
(whensp,1 = 1) suggests that the maximum count is observed
in slot-1 following from (7). However, the maximum count
can be observed in other slots as well where, when this case
arises, the best that the ML decoder can do is to break the tie
randomly. In other words, whenm slots, in addition to slot-1,
contain the maximum count, the tie can be broken in favor of
the correct slot-1 with probability 1

m+1 . Consequently:

Pr(m̂ 6= 1|sp,1 = 1) = 1−
M−1
∑

m=0

1

m+ 1
×

∑

C⊂{2,...,M}
|C|=m

∏

i∈C
Pr(RCi

= R1)
∏

j∈C

Pr(RCj
< R1), (14)

whereC , {2, . . . ,M}\C while Cn stands for then-th element
of the setC. Since sp,1 = 1 implies thatR2, . . . , RM are
identically-distributed Poisson random variables with parame-
ter λb following from (3), then(14) simplifies to:

Pr(m̂ 6= 1|sp,1 = 1) = 1−
M−1
∑

m=0

1

m+ 1
×

(

M − 1

m

)

[Pr(Rm′ = R1)]
m
[Pr(Rm′′ < R1)]

M−1−m
, (15)

wherem′ and m′′ are integers in{2, . . . ,M}. Finally, ex-
panding the probabilities in (15) and replacing in (13) results
in:

P
(SPPM)
e|I (S) = 1− 1

P

P
∑

p=1

M−1
∑

m=0

1

m+ 1

(

M − 1

m

)

×

+∞
∑

k=0

e−(Ipλs+λb)(Ipλs + λb)
k

k!
×

[

e−λbλkb
k!

]m




k−1
∑

j=0

e−λbλjb
j!





M−1−m

. (16)

On the other hand, P
(SPPM)
e|I (A,S) =

(

1− P
(SPPM)
e|I (S)

)

P
(SPPM)
e|I (A|S) where the conditional

probabilityP (SPPM)
e|I (A|S) can be determined as follows:

P
(SPPM)
e|I (A|S)= 1

MP

P
∑

p=1

M
∑

m=1

Pr(p̂ 6= p|m̂ = m, sp,m = 1)

=
1

P

P
∑

p=1

Pr(p̂ 6= p|m̂ = 1, sp,1 = 1), (17)

where the second equality follows from the symmetry of the
M slots. The conditionŝm = 1 and sp,1 = 1 in (17) imply
that the erroneous slots2, . . . ,M − 1 are excluded from the
decision process whileR1 is a Poisson random variable with
parameterIpλs+λb. Therefore, an error will occur ifR1 falls
outside the interval[γp γp+1−1] implying thatP (SPPM)

e|I (A|S)
is equal to the probabilityP (OSSK)

e|I in (11). Consequently:

P
(SPPM)
e|I (A,S) =

(

1− P
(SPPM)
e|I (S)

)

P
(OSSK)
e|I , (18)

whereP (OSSK)
e|I and P (SPPM)

e|I (S) are given in (11) and (16),
respectively. Finally, the conditional SEP of SPPM is obtained
by replacing (16) and (18) in (12).

B. Upper-Bounds on the Symbol Error Probability

While the expressions derived in (11) and (16) are use-
ful in evaluating the conditional SEP in an exact manner,
these expressions are complicated and, hence, fail in offering
clear and intuitive insights on the performance of OSSK and
SPPM systems. In particular, the aggregation of the derived
conditional SEP expressions, for the sake of determining the
SEPs, is very involved. Driven by the intractability of the
exact analysis, this section tackles an approximate analysis
that is useful in studying the asymptotic behavior of FSO-
OSM systems.

Proposition1: The conditional probabilities in (11) and (16)
can be upper-bounded as follows:

P
(OSSK)
e|I ≤ 1

2P

P
∑

p=1

P
∑

p′=1

p′ 6=p

e−
1
2 (
√

Ipλs+λb−
√

Ip′λs+λb)
2

(19)

P
(SPPM)
e|I (S) ≤ M − 1

2P

P
∑

p=1

e−(
√

Ipλs+λb−
√
λb)

2

. (20)

Proof: The proof is based on the Bhattacharyya bound
[25], [26] and is provided in Appendix A.

Following from the fact that the channel irradiances
{I1, . . . , IP } are identically-distributed, then the average SEPs
can be derived from (19)-(20) as follows:

P (OSSK)
e ≤ P − 1

2

∫ +∞

0

∫ +∞

0

e−
1
2 (

√
λsx+λb−

√
λsy+λb)

2

×

fX(x)fY (y)dxdy (21)

P (SPPM)
e (S) ≤ M − 1

2

∫ +∞

0

e−(
√
λsx+λb−

√
λb)

2

fX(x)dx,

(22)

where the gamma-gamma pdffI(I) is given in (1).
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C. Asymptotic Analysis and Diversity Order

In this section, we carry out an asymptotic analysis that is
useful for deriving the transmit diversity order of open-loop
FSO-OSM systems under gamma-gamma scintillation.

Proposition 2: For λs ≫ λb, the average SEP in (21)

behaves asymptotically asλ
− 1

2
s implying a transmit diversity

order of1/2.
Proof: The proof is based on approximating the gamma-

gamma distribution by the versatile mixture gamma distribu-
tion over the entire range of irradiances [27], [28]. This proof
is provided in Appendix B.

Proposition 3: For λs ≫ λb, the average SEP in (22)
behaves asymptotically asλ−β

s implying a transmit diversity
order ofβ.

Proof: The proof is based on performing the power series
expansion of the gamma-gamma pdf near the origin [29]. This
proof is provided in Appendix C.

The reason for adopting the mixture gamma distribution and
the series expansion for proving proposition 2 and proposition
3, respectively, is as follows. The SEP in (21) is dominated by
small values of

√
λsx+ λb−

√
λsy + λb. This quantity can be

small even ifx andy are large necessitating an approximation
to the gamma-gamma pdf that holds for all values of the
irradiance. This makes the mixture gamma distribution an ap-
propriate option for evaluating the diversity order. On theother
hand, the integral in (22) is dominated exclusively by small
values ofx rendering the simpler approach of performing a
power series expansion near the origin sufficient for evaluating
the asymptotic behavior of the SEP.

D. Analysis and Conclusions

From proposition 2, the transmit diversity order of the open-
loop OSSK scheme isδ(OSSK) = 1

2 . On the other hand, from
(12) and (18),:

P (SPPM)
e = P (SPPM)

e (S) +
(

1− P (SPPM)
e (S)

)

P (OSSK)
e (23)

≈ P (SPPM)
e (S) + P (OSSK)

e , (24)

where the approximation holds for large values ofλs.
Therefore, following from proposition 2 and proposition 3,

the transmit diversity order of the open-loop SPPM scheme is
given byδ(SPPM) = min

{

β, 12
}

. A simple numerical analysis
shows thatβ ≥ 1 for different link distances (d) and for
different values of the refractive index structure parameterC2

n

resulting in:

δ(OSSK) = δ(SPPM) =
1

2
; ∀ d , ∀ C2

n , ∀ P, (25)

since proposition 2 shows that the diversity order ofP
(OSSK)
e

does not depend onP .
Therefore, the following conclusions regarding the open-

loop scenario can be drawn:

- Equation (25) shows that the diversity orders of OSSK
and SPPM do not depend neither on the channel param-
eters nor on the number of transmit aperturesP . This
result, obtained under the Poisson model, is coherent

with the previously reported results in the context of RF-
SM [3], [4] and FSO-OSM [15]–[17] systems under the
AWGN model. Moreover, the value of1/2 is in coherence
with [15]–[17]. This result can be interpreted as follows.
For both schemes, the error performance is dominated
by the aperture index errors (with probabilityP (OSSK)

e ).
This type of errors is related to the receiver’s capability
of distinguishing between theP channel irradiances and,
consequently, is small (resp. large) when the channel
gains assume remarkably different (resp. comparable) val-
ues. Now, as the link distance increases, theP identically-
distributed channel gains will all decrease on average
(and vice versa) implying that all of the channel gains
will move in the same direction, thus not affecting the
receiver’s ability to differentiate between the channel
gains. This is better clarified in (19) that shows that the
SEP involves the quantity

√

Ip −
√

Ip′ (for λb ≪ 1)
where this quantity is small if the valuesIp andIp′ are
close to each other (even if they are both large). On
the other hand, the slot index error probability in (20)
depends onIp implying that increasingIp (by decreasing
the link distance) will reduce this type of error.

- The diversity orders achieved by the two considered open-
loop OSM schemes are the same.

- For average-to-large values ofλs, the slot index errors
can be neglected compared to the aperture index errors.

- The diversity order of the OSM schemes is smaller than
the diversity order of SISO systems (that is equal toβ).
Therefore, unlike RF-SM systems (with Rayleigh fading)
where the extension from the SISO to the MISO scenarios
involves an increase in the bit rate with no reduction in the
transmit diversity order [3], [4], the extension of SISO-
FSO systems to MISO-FSO systems incurs a reduction
in the transmit diversity order.

E. Numerical Validation

Next, we present some numerical results that validate the
conclusions of the previous section. The numerical resultsare
obtained through Monte Carlo simulations over a total of104

channel realizations. A block fading model was considered
with each block extending over103 symbol durations where
the channel irradiances vary independently from one block to
another. For each block, after generating theP -ary (resp.MP -
ary) uniform OSSK (resp. SPPM) symbols, theP channel
iradiances are generated according to the pdf in (1). At a
second stage, the Poisson-distribued decision variables are
generated according to (3). Finally, the ML decison rule in (7)
is applied and the reconstructed symbols are compared with
the information symbols for the sake of determining the SEP.
The theoretical results were generated based on equations (11),
(12), (16) and (18). In this context, truncating the summation
in (16) at105 terms is sufficient for generating accurate results
over the entire considered range of values ofEs.

The performance of SPPM for a link distance of 3 km is
shown in Fig. 2 and Fig. 3 where we set(P,M) = (4, 4) and
(P,M) = (8, 8), respectively. This way, each OSM symbol
encompasses 4 bits and 6 bits, respectively. The error rates
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Fig. 2. Performance of SPPM withP = 4 andM = 4 for a link distance
of 3 km. The error rates of the aperture indexP (SPPM)

e (A,S), slot index
P

(SPPM)
e (S) and OSM symbolP (SPPM)

e are shown. The theoretical results
are obtained by numerically aggregating the conditional SEPs in (11) and
(16) while the bounds are given in (21) and (22).

of the aperture indexP (SPPM)
e (A,S), slot indexP (SPPM)

e (S)
and OSM symbolP (SPPM)

e are explicitly shown in Fig. 2
and Fig. 3. Results show the extremely close match between
the theoretical and numerical results thus highlighting onthe
accuracy of the SEP expressions derived in Section III-A.
Results in Fig. 2 and Fig. 3 also highlight on the usefulness
of the bounds provided in (21)-(22) for predicting the error
performance for average-to-large values of the signal energy
Es. In particular, the proposed upper-bounds have the same
slopes as the exact SEPs since the corresponding curves are
practically parallel to each other for large values ofEs. This
shows that the proposed bounds are particularly convenient
for determining the diversity orders of the OSSK and SPPM
schemes. Results also validate proposition 2, proposition3
and (25) whereP (SPPM)

e (S) has a diversity order ofβ (that
is equal to1.53 in this scenario) whileP (SPPM)

e (A,S) and
P

(SPPM)
e have a diversity order of1/2. In this context, the

OSM performance is dominated byP (SPPM)
e (A,S) and results

in Fig. 2 and Fig. 3 show thatP (SPPM)
e ≈ P

(SPPM)
e (A,S) for

the values of Es

log2(MP ) exceeding -175 dBJ. Finally, results
underscore the significant performance gap between SISO and
OSM systems where the additionallog2(P ) bits encoded in
the index of the pulsed transmit aperture incur high SEP
degradations especially for large value ofEs.

Fig. 4 shows the impact of the turbulence strength on the
performance of open-loop OSSK and SPPM (withM = 4)
systems for a link distance of 3 km. In particular, we com-
pare the strong turbulence and weak-to-average turbulence
scenarios withC2

n = 10−12 m−2/3 and C2
n = 5 × 10−16

m−2/3, respectively. Results validate the finding in (25) where
the diversity order is equal to1/2 regardless of the values
of C2

n and P . Moreover, for both OSSK and SPPM, the
SEP increases withP where the achieved multiplexing gains
are associated with performance losses. Results in Fig. 4
highlight the central finding that OSM systems are more
suitable for severe turbulence conditions where the SEP is
smaller under strong turbulence. This behavior, that contra-
dicts the conventional behavior of single-aperture systems, is
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Fig. 3. Performance of SPPM withP = 8 andM = 8 for a link distance
of 3 km. The error rates of the aperture indexP (SPPM)

e (A, S), slot index
P

(SPPM)
e (S) and OSM symbolP (SPPM)

e are shown. The theoretical results
are obtained by numerically aggregating the conditional SEPs in (11) and
(16) while the bounds are given in (21) and (22).

justified by the fact that the Rytov variance increases with
C2

n. Therefore, the variability of theP channel irradiances
is higher under strong turbulence implying that the OSM
receiver will have better chances for accurately predicting the
index of the pulsed aperture. For example, under the extreme
hypothetical assumption of zero variability (no turbulence), the
P identically-distributed channel irradiances will be the same
implying that the receiver will not be able to recognize which
transmit aperture was pulsed.

Results in Fig. 4 also show that SPPM performs better than
OSSK where the additionallog2(M) bits transmitted by SPPM
are associated with an appealing improvement in the SEP. In
this context, the interest of OSSK resides in its remarked sim-
plicity rendering this simple solution an appealing alternative
to SPPM. Finally, it is worth highlighting that the need to
study OSSK stems from the fact that deriving the SEP of
SPPM (P (SPPM)

e ) requires the derivation of the SEP of OSSK
(P (OSSK)

e ) sinceP (SPPM)
e is related toP (OSSK)

e according to (23).

IV. PERFORMANCEANALYSIS IN THE CLOSED-LOOP

SCENARIO

A. Preliminaries

In this section, we analyze closed-loop OSM systems where
partial CSI is assumed to be available at the transmitter side.
In this scenario, we prove that combined multiplexing gains
and diversity gains can be achieved and we propose a trans-
mit aperture selection scheme that maximizes the achievable
diversity order for a target data rate.

The transmit aperture selection scheme revolves around
limiting the transmission toPs transmit apertures out of the
P available apertures withPs ≤ P . This selection reduces
the data rate tolog2(MPs) bpcu (with M indicating the
number of PPM positions for SPPM whileM = 1 for
OSSK). In general,Ps is taken to be a power of two so that
log2(MPs) is an integer (in generalM is a power of two as
well for M -ary PPM constellations). This way, each one of
the MPs OSM symbols can be mapped into a sequence of
log2(MPs) bits. The selection scheme will be based on the
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Fig. 4. Performance of OSSK and SPPM (withM = 4) with P = 4 and
P = 8 for a link distance of 3 km under different turbulence conditions.

values of theP channel irradiances that, without any loss of
generality, are assumed to be arranged in an increasing order:
I1 ≤ I2 ≤ · · · ≤ IP .

The proposed selection scheme does not entail the knowl-
edge of the exact values of the path gains{I1, . . . , IP } at the
transmitter side where this full-CSI availability is not practical.
Contrariwise, only the indices of thePs selected apertures are
fed back from the receiver to the transmitter where this selec-
tion is carried out at the receiver based simply on sorting the
P channel irradiances. In this context, a quantized feedback
link of P bits is sufficient for the considered aperture selection
scheme where, for example, thep-th transmit aperture will be
included (resp. not included) in the pool of selected apertures
if the p-th feedback bit is equal to 1 (resp. 0). Given the very
large coherence time of FSO channels, this limited feedback
of P bits is not resource-consuming since these bits need to be
communicated to the transmitter only once per fading block
that extends over thousands of symbol durations.

In what follows, we assume that the selection scheme limits
the transmission to the apertures whose indices belong to the
setC whereC ⊂ {1, . . . , P} with |C| = Ps.

B. Asymptotic Analysis and Diversity Order

Since the conditional probability in (19) does not change if
the values ofIp and Ip′ are interchanged, the corresponding
average error probability can be written as:

P
(OSSK)
e|I =

1

P

∑

p∈C

∑

p′∈C
p′>p

∫ +∞

0

∫ y

0

e−
1
2 (

√
λsy+λb−

√
λsx+λb)

2

fIp,Ip′ (x, y)dxdy, (26)

wherefIp,Ip′ (x, y) (with 0 ≤ x ≤ y) stands for the joint pdf
of the ordered random variablesIp and Ip′ (with Ip ≤ Ip′ )
where this expression can be obtained based on order statistics
[30, 2.3.2].

Similarly, integrating (20) results in:

P
(SPPM)
e|I (S) = M − 1

2P

∑

p∈C

∫ +∞

0

e−(
√
λsx+λb−

√
λb)

2

fIp(x)dx,

(27)
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Fig. 5. Performance of OSSK withPs = 2 selected transmit apertures for a
link distance of 3 km.

where fIp(x) (x ≥ 0) stands for the pdf of thep-th order
statistic given in [30, 2.2.2].

Proposition4: For λs ≫ λb, the integral in (26) behaves

asymptotically asλ
− p′−p

2
s implying a transmit diversity order

of p′−p
2 (wherep ≤ p′).
Proof: The proof is based on approximating the gamma-

gamma distribution by the mixture gamma distribution [27],
[28]. This proof is provided in Appendix D.

Proposition5: For λs ≫ λb, the integral in (27) behaves
asymptotically asλ−pβ

s implying a transmit diversity order of
pβ.

Proof: The proof is based on the power series expansion
of the gamma-gamma pdf [29]. This proof is provided in
Appendix E.

Proposition 4 and proposition 5 imply the following ex-
pressions for the optimal transmit diversity orders that can be
achieved when aperture selection is associated with the closed-
loop OSSK and SPPM schemes:

δ(OSSK)= max
C⊂{1,...,P}

|C|=Ps

{

min
p,p′∈C
p<p′

Cp′ − Cp
2

}

;

δ(SPPM)= max
C⊂{1,...,P}

|C|=Ps

{

min

{

min{C}β, min
p,p′∈C
p<p′

Cp′ − Cp
2

}}

,

(28)

whereCp stands for thep-th element of the setC. Equation
(28) shows that, as in the open-loop scenario with no aperture
selection, the diversity order of the OSSK scheme does not
depend on the properties of the underlying FSO channel in
the closed-loop scenario as well.

Finally, it is worth noting that when all transmit apertures
are selected,C = {1, . . . , P} implying that the diversity
orders in (28) will simplify toδ(OSSK) = 1

2 and δ(SPPM) =
min{β, 12} = 1

2 which correspond to the values obtained in
(25) in the open-loop scenario.

In order to validate proposition 4 and (28), Fig. 5 shows the
impact of the selected aperture setC on the performance for the
casePs = 2. Simulations are performed with OSSK for a link
distance of 3 km. For comparison purposes, the performance
of open-loop systems is shown as well. Following from (28),
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the diversity order for a given setC whenPs = 2 is equal
to max{C}−min{C}

2 . Consequently, we compare the suboptimal
sets{3, P}, {2, P − 1} and {1, P − 2} that all result in the
same diversity order ofP−3

2 where the comparison is carried
out for the two cases ofP = 6 and P = 10. We also
show the performance with the set{1, P} that achieves the
highest diversity order ofP−1

2 whenPs = 2. Results in Fig. 5
validate all of the previous findings where the SEP curves
corresponding to the sets{3, 6}, {2, 5} and {1, 4} (when
P = 6) are practically parallel to each other for large values of
Es and where the obtained diversity order is confirmed to be
3/2. In this scenario, the set{1, 6} increases the diversity order
to 5/2 which is validated in Fig. 5 where the associated SEP
curve is steeper. This results in significant performance gains
especially for large values ofEs. For example, comparing
the sets{1, 6} and {3, 6} shows that the former selection
outperforms the latter one by8.5 dB at a SEP of10−3. The
same holds for the caseP = 10 where the three considered
sets{3, 10}, {2, 9} and{1, 8} result in the same diversity order
that is increased to the value of7/2. In fact, the corresponding
SEP curves are parallel to each other for large values ofEs

and the diversity order of7/2 is validated numerically. In
this case, increasing the number of transmit apertures from
6 to 10 enhances the diversity order by a factor of7/3
while transmitting at the same rate of 1 bpcu. Finally, unlike
open-loop systems where the performance deteriorates when
P increases, the SEP of closed-loop systems decreases with
P . This is justified by the fact that the diversity order in
(28) increases withP for a fixed value ofPs. In this case,
as in space-time coded systems, increasing the value ofP
contributes to increasing the diversity order.

In coherence with (28), the same values of the diversity
order were obtained for other values of the link distance but
the results are not presented here for the sake of brevity. The
justification is similar to the one presented in Section III-D.
Results in Fig. 5 also show that, among the three considered
suboptimal sets, the set{3, P} results in the highest coding
gain. In fact,IP ≥ IP−1 ≥ IP−2 while I3 ≥ I2 ≥ I1 implying
that the transmission takes place along two channels that have
stronger irradiances compared to the channels of the two other
suboptimal options. Finally, results show the huge performance
gap between the suboptimal selection strategies and the set
{1, P} that achieves the highest diversity gain. For example,
at a SEP of10−3, pulsing one of the apertures1 or P rather
than pulsing one of the apertures3 or P results in performance
gains in the order of8.2 dB and2.6 dB forP = 6 andP = 10,
respectively. Evidently, this performance gap will increase for
smaller values of the SEP.

C. Proposed Aperture Selection Scheme and Conclusions

In this section, we solve for the setC that maximizes the
diversity order in (28) for OSSK and SPPM. Denoting byp
the smallest integer inC, (28) can be written as:

δ(OSSK) = max
p=1,...,P

{

1

2

⌊

P − p

Ps − 1

⌋}

;

δ(SPPM) = max
p=1,...,P

{

pβ,
1

2

⌊

P − p

Ps − 1

⌋}

. (29)

In fact, the quantitymin p,p′∈C
p<p′

(Cp′−Cp) is maximized if the

aperture indices are selected to be uniformly spaced along the
interval [min{C} max{C}] = [p max{C}]. This separation is
further maximized ifmax{C} is selected to be equal toP .
Now, if the smallest aperture index is selected to bep and
the largest aperture index is selected to beP , then selecting
the Ps − 2 remaining indices (i.e. the remaining elements of
C) equidistantly betweenp and P results in the maximum
possible separation of

⌊

P−p
(Ps−2)+1

⌋

=
⌊

P−p
Ps−1

⌋

that appears in

the expression ofδ(OSSK) in (29). Therefore, it follows directly
that:

δ(OSSK) =
1

2
kopt ; kopt ,

⌊

P − 1

Ps − 1

⌋

, (30)

if the setC is selected as:

C = {P − kopt(Ps − 1), P − kopt(Ps − 2), . . . , P} , (31)

where this choice ofC results in the maximum possible
separation ofkopt between any two consecutive elements of
C implying a maximum diversity order of12kopt.

It is worth noting that other choices of the selected set
under the formC′ = {x− p′ ; x ∈ C} will result in the
same separation ofkopt (and in the same diversity order of
1
2kopt) wherep′ is any integer such thatmin{C} − p′ ≥ 1.
However, unlikeC′, the setC encompasses the apertures with
the highest channel irradiances resulting in an enhanced coding
gain based on the findings drawn from Fig. 5. For example,
for P = 9 andPs = 4, kopt = 2 implying thatC = {3, 5, 7, 9}
from (31) where this set results in the maximum achievable
diversity order of 1 following from (30). Now, the other
optionsC′ = {2, 4, 6, 8} and C′ = {1, 3, 5, 7} will result in
the same value of the diversity order; however,Ci > C′

i for
i = 1, . . . , 4 implying that the setC will result in higher coding
gains since the involved path gains are stronger.

Finally, it is worth noting that with no aperture selection
(Ps = P ), (30) and (31) imply thatkopt = 1, δ(OSSK) = 1

2 and
C = {1, . . . , P} where this value ofC is expected while the
achievable transmit diversity order is coherent with (25).

Similar to the analysis presented in the case of OSSK, the
following proposition holds for SPPM.

Proposition6: For closed-loop SPPM, the highest transmit
diversity order that can be achieved whenPs apertures are
selected out ofP apertures is given by:

δ(SPPM) , max
{

δ
(SPPM)
1 , δ

(SPPM)
2

}

= max

{

1

2
k̃, [P − (k̃ + 1)(Ps − 1)]β

}

, (32)

where:

k̃ =

⌊

2Pβ

1 + 2(Ps − 1)β

⌋

. (33)

This maximum diversity order is achieved if the setC is
selected as:

C = {P − kopt(Ps − 1), P − kopt(Ps − 2), . . . , P} , (34)

where:

kopt =

{

k̃, δ
(SPPM)
1 ≥ δ

(SPPM)
2 ;

k̃ + 1, δ
(SPPM)
1 < δ

(SPPM)
2 .

(35)
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Fig. 6. The impact of the number of selected apertures (Ps) on the
performance of OSSK with16 transmit apertures for a link distance of 3
km.

Proof: The proof is provided in Appendix F.
Consider the special casePs = P . If β < 1

2 , then k̃ = 0

and(δ(SPPM)
1 , δ

(SPPM)
2 ) = (0, β) implying thatδ(SPPM) = β and

kopt = 1. If β ≥ 1
2 , then k̃ = 1 and (δ

(SPPM)
1 , δ

(SPPM)
2 ) =

(12 , (2 − P )β) implying that δ(SPPM) = 1
2 and kopt = 1.

Therefore,δ(SPPM) = min{ 1
2 , β} in coherence with the results

in Section III-D. Finally,kopt = 1 ⇒ C = {1, . . . , P}.
Based on the above analysis, the following conclusions can

be drawn:

- Equations (30) and (32) show that, unlike the case of
open-loop systems, the closed-loop FSO-OSM solutions
are capable of increasing both the bit rate and diversity
order with respect to single-aperture systems. The smaller
Ps is compared toP , the higher the diversity gain that
can be reaped from the FSO-OSM solutions.

- As in the case of open-loop systems, the diversity order
achieved by closed-loop OSSK does not depend on the
channel parameters and severity of scintillation.

- The last observation does not hold for closed-loop SPPM.
In fact, from (32), depending on the values ofP , Ps

and β, the channel-independent quantityδ(SPPM)
1 might

be smaller or larger than the channel-dependent quantity
δ
(SPPM)
2 .

- For both OSSK and SPPM, increasing the value ofPs

increases the bit rate at the expense of decreasing the
diversity gain until it reaches the minimum value of1

2
whenPs = P .

It is worth noting that the presented performance analysis
and aperture selection scheme can be readily extended toP×Q
MIMO systems withQ > 1 in the case where equal gain com-
bining (EGC) is applied at the receiver. For this suboptimal
detection scheme, all of the previously presented derivations
hold where the channel irradiances{Ip}Pp=1 and noise param-
eter λb need to be simply replaced by{

∑Q
q=1 Ip,q}Pp=1 and

Qλb, respectively, whereIp,q stands for the channel irradiance
between thep-th laser andq-th photo-detector. However, with
ML detection, the decision rule can not be decoupled as in (7)
thus significantly altering the associated SEP analysis. While
this paper initiated the investigation of OSM MISO techniques

-185 -180 -175 -170 -165 -160

E
s
 per information bit (dBJ)

10-6

10-5

10-4

10-3

10-2

10-1

100

S
E

P

P=1
P=10, P

s
=8, Exact

P=10, P
s
=8, Bound

P=10, P
s
=4, Exact

P=10, P
s
=2, Bound

P=10, P
s
=4, Exact

P=10, P
s
=2, Bound

Fig. 7. The impact of the number of selected apertures (Ps) on the
performance of SPPM with10 transmit apertures and 8-PPM for a link
distance of 3.2 km.

with photon-counting receivers, future research can buildon
this work for tackling the more general MIMO case.

D. Numerical Validation

Fig. 6 shows the impact of aperture selection with OSSK
for P = 16 and a link distance of3 km. The scenarios
Ps = 2, 4, 8 are considered achieving the diversity orders
of 15/2, 5/2 and 1 at the data rates of 1 bpcu, 2 bpcu
and 3 bpcu, respectively. The selected apertures are based
on (31) that results inC = {1, 16}, C = {1, 6, 11, 16} and
C = {2, 4, 6, 8, 10, 12, 14, 16} for the values ofPs equal to 2,
4 and 8, respectively. We also compare the closed-loop systems
with the open-loop system that achieves a diversity order of
1/2 while transmitting at the rate of 4 bpcu. The results in
Fig. 6 validate the diversity orders given in (30). As indicated
above, increasingPs increases the data rate at the expense of
reducing the diversity order and hence the SEP performance.
Comparing the casesPs = 2 andPs = 4, transmitting one
additional bpcu incurs a performance loss of about 10 dB at
a SEP of10−3. In practice,Ps must be selected to be neither
very large nor very small resulting in an acceptable level of
compromise between the data and error rates. In this context,
comparing the closed-loop and open-loop scenarios shows that
the latter case results in the highest data rate and smallest
diversity order. Results in Fig. 6 also highlight on the huge
SEP gap between open-loop and closed-loop systems having
small values ofPs. Finally, as in the open-loop case, results in
Fig. 6 validate the accuracy of the proposed upper-bounds in
predicting the diversity order of closed-loop systems as well.

Fig. 7 shows the impact of aperture selection with SPPM
for P = 10, M = 8 and a link distance of3.2 km.
The scenariosPs = 2, 4, 8 are considered resulting in the
data rates of4 bpcu, 5 bpcu and6 bpcu, respectively. As
a benchmark, we also show the performance of the 8-PPM
SISO system that transmits at the rate of 3 bpcu. For the
considered link distance,β = 1.46 implying that the diversity
order of the SISO system is equal to1.46. From (32)-(33),
for Ps = 2, δ(SPPM)

1 = 3.5 ≥ δ
(SPPM)
2 = 2β = 2.92 and,

for Ps = 8, δ(SPPM)
1 = 0.5 ≥ δ

(SPPM)
2 = −4β = −5.84.
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Fig. 8. Performance of OSSK and SPPM (withM = 8) with P = 12 for a
link distance of 3 km under different turbulence conditions.

From (34)-(35), this implies thatkopt = k̃ that is equal to
7 (C = {3, 10}) and 1 (C = {3, . . . , 10}) for Ps = 2 and
Ps = 8, respectively. The opposite relation holds forPs = 4

where δ(SPPM)
1 = 1 < δ

(SPPM)
2 = β = 1.46 implying that

kopt = k̃ + 1 = 3 resulting inC = {1, 4, 7, 10}. Therefore,
the achievable diversity orders are equal to3.5, 1.46 and0.5
for the values ofPs equal to 2, 4 and 8, respectively. This
analysis shows that, unlike open-loop systems, the parameter
β has an impact on the achievable diversity orders with closed-
loop SPPM. In this case, the SPPM scheme withPs = 4
profits from the same diversity order of the SISO system while
transmitting 2 additional bpcu. This achievable diversityorder
is validated in Fig. 7 where the corresponding SEP curves are
practically parallel to each other for large values ofEs. Results
also show that this enhanced transmission rate is associated
with a performance loss in the order of 3 dB. Finally, as
in the case of OSSK, the scenarioPs = 2 results in the
best performance. This scheme transmits one additional bpcu
compared to SISO systems while profiting from a diversity
gain that is2.18 times higher resulting in a performance gain
of about9.5 dB at a SEP of10−3.

Fig. 8 compares the performance of closed-loop systems
with OSSK and SPPM (withM = 8) under different turbu-
lence conditions. We consider a link distance of 3 km with
P = 12 andPs ∈ {2, 8}. We also compare the scenarios of
strong turbulence (C2

n = 10−12 m−2/3) and weak-to-average
turbulence (C2

n = 5 × 10−16 m−2/3). As in the open-loop
scenario in Fig. 4, results in Fig. 8 highlight on the suitability
of OSM to the strong turbulence conditions in the closed-
loop scenario as well. ForPs = 8, results in Fig. 8 highlight
that OSSK and SPPM achieve the same diversity order of
1/2 for the two considered values ofC2

n in coherence with
(30) and (32). For this large value ofPs that privileges higher
multiplexing gains at the expense of reduced diversity gains,
SPPM manifests better performance compared to OSSK in
analogy with the findings in the open-loop scenario in Fig. 4.
For Ps = 2, SPPM maintains its superiority under weak-to-
average turbulence where the diversity orders of both SPPM
and OSSK are equal to 5.5. However, under strong turbulence,
OSSK maintains the same diversity order of 5.5 (since the

diversity order of OSSK depends only onP andPs from (30))
while the diversity order of SPPM drops to 4 (in coherence
with (32)). This reduction in the SPPM diversity order is
reflected by the superiority of OSSK compared to SPPM under
strong turbulence forPs = 2.

V. CONCLUSION

OSM constitutes a viable option for FSO IM/DD com-
munications under weather turbulence. An error probability
analysis demonstrated that the diversity order does not depend
on the severity of scintillation in the open-loop scenario.
Moreover, significant diversity gains can be reaped from the
proposed transmit aperture selection scheme in the closed-loop
scenario. In this case, a tradeoff exists between the achievable
multiplexing gains and diversity gains thus offering a leeway
in the design of practical multi-aperture FSO systems. Two
OSM schemes, namely OSSK and SPPM, were advised and
contrasted under different turbulence conditions. While SPPM
always manifests better performance in the open-loop scenario,
the superiority of one of the two schemes depends on the
turbulence conditions and number of activated apertures in
the closed-loop scenario. Future research directions include
the extension of this work to the case where the receiver is
equipped with more than one aperture.

APPENDIX A

The aperture index error in (11) can be upper-bounded as
follows:

P
(OSSK)
e|I ≤ 1

P

P
∑

p=1

P
∑

p′=1

p′ 6=p

Pr(sp,1 → sp′,1), (36)

where Pr(sp,1 → sp′,1) is the pairwise error probability of
pulsing aperturep (i.e. sp,1 = 1) and deciding in favor of
aperturep′ 6= p (i.e. sp′,1 = 1). Based on the Bhattacharyya
bound, this pairwise error probability can be bounded as
follows [25], [26]:

Pr(sp,1 → sp′,1) ≤
1

2

+∞
∑

r=0

√

Pr(R1 = r|sp,1 = 1)Pr(R1 = r|sp′,1 = 1), (37)

where the factor1/2 follows from the improvement proposed
in [26]. Following from the Poisson statistics whose parame-
ters are given in (3), equation (37) can be written as:

Pr(sp,1 → sp′,1)

≤ 1

2

+∞
∑

r=0

√

e−(Ipλs+λb)(Ipλs+λb)r

r!

e−(Ip′λs+λb)(Ip′λs+λb)r

r!

=
1

2
e−λbe−

(Ip+I
p′)λs

2

+∞
∑

r=0

1

r!
[(Ipλs+λb)(Ip′λs+λb)]

r
2 , (38)

which, following from ex =
∑+∞

n=0
xn

n! and after straightfor-
ward derivations, results in:

Pr(sp,1 → sp′,1) ≤
1

2
e−

1
2 (
√

Ipλs+λb−
√

Ip′λs+λb)
2

. (39)
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Finally, replacing (39) in (36) results in the expression given
in (19).

On the other hand, given that the slot index pairwise error
probability is the same for any pair of slots following from
the symmetry of the PPM constellation, the probability in (13)
can be upper-bounded as follows:

P
(SPPM)
e|I (S) ≤ M − 1

P

P
∑

p=1

Pr(sp,m → sp,m′) ∀ m′ 6= m,

(40)
where Pr(sp,m → sp,m′) stands for the pairwise error proba-
bility of deciding in favor of slotm′ when the light signal
is in slot m conditioned that the aperturep was pulsed
(following from the conditioning imposed in (13)). Applying
the Bhattacharyya bound [25], [26]:

Pr(sp,m → sp,m′) ≤ 1

2

+∞
∑

r1=0

· · ·
+∞
∑

rM=0
√

√

√

√

M
∏

i=1

Pr(Ri=ri|sp,m=1)

M
∏

j=1

Pr(Rj=rj |sp,m′ =1), (41)

where, from (3), the conditionsp,m = 1 implies thatRm has
a mean ofIpλs + λb while the remaining random variables
R1, . . . , Rm−1, Rm+1, . . . , RM have a mean ofλb. Conse-
quently, (41) can be written as:

Pr(sp,m → sp,m′) ≤ 1

2

+∞
∑

r1=0

· · ·
+∞
∑

rM=0
√

√

√

√

√

e−(Ipλs+λb)(Ipλs + λb)rm

rm!

M
∏

i=1
i6=m

e−λbλrib
ri!

×

√

√

√

√

√

e−(Ipλs+λb)(Ipλs + λb)rm′

rm′ !

M
∏

j=1

j 6=m′

e−λbλ
rj
b

rj !
. (42)

The last expression can be further simplified as follows:

Pr(sp,m → sp,m′) ≤ 1

2

+∞
∑

r1=0

· · ·
+∞
∑

rM=0

M
∏

i=1
i6=m ; i6=m′

e−λbλrib
ri!

×

√

e−(Ipλs+λb)(Ipλs + λb)rm

rm!

e−λbλ
rm′
b

rm′ !
×

√

e−(Ipλs+λb)(Ipλs + λb)rm′

rm′ !

e−λbλrmb
rm!

. (43)

Observing that the summations overri for i 6=m andi 6=m′

are equal to 1, (43) simplifies to:

Pr(sp,m → sp,m′) ≤ 1

2
e−λbe−(Ipλs+λb)

+∞
∑

rm=0

1

rm!
[λb(Ipλs+λb)]

rm
2

+∞
∑

rm′=0

1

rm′ !
[λb(Ipλs+λb)]

r
m′
2 ,

(44)

which, following from ex =
∑+∞

n=0
xn

n! and after straightfor-
ward derivations, results in:

Pr(sp,m → sp,m′) ≤ 1

2
e−(

√
Ipλs+λb−

√
λb)

2

. (45)

Finally, replacing (45) in (40) results in the expression given
in (20).

APPENDIX B

For large values ofλs andλb → 0, the upper-bound in (21)
can be determined from:

P (OSSK)
e =

P−1

2

∫ +∞

0

∫ +∞

0

e−
λs
2 (

√
x−√

y)2fX(x)fY (y)dxdy

=
P−1

2

∫ +∞

0

e−
λs
2 zf(

√
X−

√
Y )2(z)dz. (46)

Since the integral in (46) is dominated by small values
of z, we next determine the distributionf(

√
X−

√
Y )2(z) for

z ≪ 1 whereX andY are two independent and identically-
distributed gamma-gamma random variables according to (1).

First, we evaluate the distributionf√X−
√
Y (z). Using stan-

dard random variable transformation techniques, the cumula-
tive distribution function (cdf) of the random variableZ =√
X −

√
Y is FZ(z) = Pr(Z ≤ z) = Pr(

√
X −

√
Y ≤

z) = Pr(
√
Y ≥

√
X − z). This cdf can be evaluated us-

ing FZ(z) =
∫ +∞
−∞

∫ +∞
x−z

f√X(x)f√Y (y)dydx. Differentiating
with respect toz using the Leibniz integral rule results in
fZ(z) = dFZ(z)

dz =
∫ +∞
−∞ f√X(x)f√Y (x − z)dx. Given that

the random variables
√
X and

√
Y assume positive values,

then f√X(x)f√Y (x − z) is nonzero forx ≥ max{0, z}. As
will be explained later,fZ(z) needs to be evaluated only for
z ≤ 0:

f√X−
√
Y (z) =

∫ +∞

0

f√X(x)f√Y (x− z)dx ; z ≤ 0. (47)

In order to be able to solve the challenging integral in (47),
the gamma-gamma pdf in (1) will be written under the form
of a mixture gamma (MG) distribution based on [27], [28]:

fX(x) = xβ−1
N
∑

i=1

aie
−bix ; x ≥ 0, (48)

where the constantsai andbi can be determined from equation
(4) in [28] while the number of termsN determines the level
of accuracy of the approximation [27]. The reason behind
adopting the MG distribution stems from the fact that (47)
calls for the multiplication of two shifted versions of the square
root gamma-gamma pdf, thus necessitating an approximation
that holds for all values of the irradiance rather than for small
values only.

Since f√X(x) = 2xfX(x2), then replacing (48) in (47)
results in:

f√X−
√
Y (z) = 4

N
∑

i=1

N
∑

j=1

aiaj×

∫ +∞

0

x2β−1e−bix
2

(x−z)2β−1e−bj(x−z)2dx ; z ≤ 0, (49)
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f√X−
√
Y (z) = 4

N
∑

i=1

N
∑

j=1

+∞
∑

k=0

aiaj

(

2β − 1

k

)

e−bjz
2

(−z)k[4(bi + bj)]
k+1−4β

2 Γ(4β − k − 1)
√
π





1

Γ
(

4β−k
2

)Φ

(

4β − k − 1

2
,
1

2
;

b2j
bi + bj

z2

)

+
2bjz

√

bi + bjΓ
(

4β−k−1
2

)Φ

(

4β − k

2
,
3

2
;

b2j
bi + bj

z2

)



 . (51)

which, following from the generalized binomial theorem, can
be expanded as follows:

f√X−
√
Y (z) = 4

N
∑

i=1

N
∑

j=1

+∞
∑

k=0

aiaj

(

2β − 1

k

)

e−bjz
2

(−z)k×

∫ +∞

0

x4β−2−ke−(bi+bj)x
2

e2bjzxdx ; z ≤ 0. (50)

Solving the integral in (50) using [31, 3.462.2] while relat-
ing the obtained parabolic cylinder function to the confluent
hypergeometric function using [31, 9.240] results in (51)
shown on top of the page.

For small values of|z|, Φ(α, γ; z) → 1 following from [31,
9.210.1]. Therefore, settingk = 0 in (51) while ignoring the
higher powers ofz for |z| ≪ 1 results in:

f√X−
√
Y (z) ≈ 4

Γ(4β − 1)
√
π

Γ(2β)
×

N
∑

i=1

N
∑

j=1

aiaj([4(bi + bj)]
1−4β

2 e−bjz
2

,
∑

l

χle
−ζlz

2

; z ≤ 0. (52)

On the other hand, f(
√
X−

√
Y )2(z) =

1
2
√
z

[

f√X−
√
Y (

√
z) + f√X−

√
Y (−

√
z)
]

. Since the function
f√X−

√
Y (z) is even following from the fact thatX

and Y are identically-distributed, then the last relation
simplifies to f(

√
X−

√
Y )2(z) = 1√

z
f√X−

√
Y (−

√
z). Now,

since −√
z ≤ 0, then (52) can be applied resulting in

f(
√
X−

√
Y )2(z) = 1√

z

∑

l χle
−ζlz for z ≥ 0. Therefore, the

SEP in (46) can be evaluated as follows:

P (OSSK)
e =

P − 1

2

∑

l

χl

∫ +∞

0

1√
z
e−(

λs
2 +ζl)zdz

=
P − 1

2

∑

l

χl

√

π
λs

2 + ζl
, (53)

where the second equality follows from [31, 3.361.2]. For large

values ofλs, P
(OSSK)
e → (P − 1)

√

π
2 (
∑

l χl)λ
− 1

2
s implying

that the diversity order is equal to1/2.

APPENDIX C

For large values ofλs andλb → 0, the upper-bound in (22)
can be determined from:
P

(SPPM)
e (S) = M−1

2

∫ +∞
0

e−λsxfX(x)dx. Approximating the
gamma-gamma pdf in (1) by the first term of the power series
expansion near the origin results infX(x) ≈ axβ−1 where

a = Γ(α−β)
Γ(α)Γ(β) (αβ)

β [29]. Solving the obtained integral results

in P
(SPPM)
e (S) = (M−1)aΓ(β)

2 λ−β
s implying that the diversity

order is equal toβ and completing the proof of proposition 3.

APPENDIX D

For λs ≫ 1 and λb → 0, the integral in (26) can be
calculated from:

I ,

∫ +∞

0

∫ y

0

e−
λs
2 (y−x)2f√

Ip,
√

Ip′
(x, y)dxdy, (54)

where the joint pdf of thep-th andp′-th order statistics (p <
p′) is given by [30, 2.3.2]:

f√
Ip,

√
Ip′

(x, y) =
P !

(p− 1)!(p′ − p− 1)!(P − p′)!
×

f√X(x)f√Y (y)
[

F√
X(x)

]p−1 [
F√

Y (y)− F√
X(x)

]p′−p−1 ×
[

1− F√
Y (y)

]P−p′
; 0 ≤ x ≤ y, (55)

wheref√X(x) = 2xfX(x2) andF√
X(x) = FX(x2) corre-

spond to the pdf and cdf of the square-root of a gamma-gamma
random variable whose pdffX(x) is given in (1).

Now, consider the random variable
√

Ip′ −
√

Ip that as-
sumes only positive values sinceIp ≤ Ip′ . In terms of this
random variable, (54) can be evaluated as follows:

I =

∫ +∞

0

e−
λs
2 z2

f√
Ip′−

√
Ip
(z)dz. (56)

The cdf of the random variableY −X with Y =
√

Ip′ and
X =

√

Ip can be calculated fromFY−X(z) = Pr(Y −X ≤ z)
which, when combined with the relation0 ≤ X ≤ Y , results
in FY−X(z) =

∫ +∞
0

∫ x+z

x
fX,Y (x, y)dydx. Differentiating

with respect toz using the Leibniz integral rule results in
fY−X(z) =

∫ +∞
0

fX,Y (x, x+z)dx. Therefore, the pdf needed
for the evaluation of (56) can be determined from (55) as:

f√
Ip′−

√
Ip
(z)=

∫ +∞

0

f√
Ip,

√
Ip′

(x, x + z)dx ; z ≥ 0. (57)

Since the small values ofz contribute the most to the
integral in (56), we next evaluate the pdf in (57) for small
values ofz. Replacingy by x + z in (55), a key point in
the proof consists of observing thatF√

Y (y) − F√
X(x) =

z
F√

X
(x+z)−F√

X
(x)

z → z
dF√

X
(x)

dx = zf√X(x) as z → 0.
Therefore, for small values ofz:

f√
Ip,

√
Ip′

(x, x+ z) = czp
′−p−1

P−p′
∑

l=0

(

P − p′

l

)

(−1)l×

[

f√X(x)
]p′−p

f√X(x+ z)
[

F√
X(x)

]p−1 [
F√

X(x+ z)
]l
,

(58)
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f√
Ip,

√
Ip′

(x, x+ z) = c2p
′
−p+1[Γ(β)]p−1

z
p′−p−1

P−p′
∑

l=0

(

P − p′

l

)

[−Γ(l)]l
N
∑

i1=1

· · ·

N
∑

i
p′−p

=1

N
∑

i′=1

N
∑

i′′1 =1

· · ·

N
∑

i′′
p−1

=1

N
∑

i′′′1 =1

· · ·

N
∑

i′′′
l

=1

+∞
∑

k1=0

· · ·

+∞
∑

kp−1=0

+∞
∑

k′
1=0

· · ·

+∞
∑

k′
l
=0

[ai1 · · · aip′−p
]ai′ [ai′′1

· · · ai′′
p−1

][ai′′′1
· · · ai′′′

l
]

[

b
k1

i′′1
· · · b

kp−1

i′′
p−1

] [

b
k′
1

i′′′1
· · · b

k′
l

i′′′
l

]

[Γ(β + k1 + 1) · · ·Γ(β + kp−1 + 1)] [Γ(β + k′

1 + 1) · · ·Γ(β + k′

l + 1)]
x
2

[

(p′−1)β+(k1+···+kp−1)+
p−p′+1

2

]

−1

e
−

[

(bi1+···+bi
p′−p

)+(b
i′′1

+···+b
i′′
p−1

)

]

x2

(x+ z)2[(l+1)β+(k′
1+···+k′

l)]−1
e
−

[

bi′+(b
i′′′
1

+···+b
i′′′
l

)

]

(x+z)2

. (62)

wherec , P !
(p−1)!(p′−p−1)!(P−p′)! .

As in Appendix B, the versatile mixture gamma (MG)
distribution will be used to approximate the gamma-gamma
distribution [27], [28]:

fX(x) = xβ−1
N
∑

i=1

aie
−bix

⇒ FX(x) =

N
∑

i=1

ai

bβi
γ(β, bix) ; x ≥ 0, (59)

whereγ(s, x) stands for the lower incomplete gamma function
while the constantsai andbi can be determined from equation
(4) in [28]. Equation (59) implies that (forx ≥ 0):

f√X(x) = 2x2β−1
N
∑

i=1

aie
−bix

2

(60)

F√
X(x) =

N
∑

i=1

ai

bβi
γ(β, bix

2)

= Γ(β)x2β
N
∑

i=1

aie
−bix

2
+∞
∑

k=0

(bix
2)k

Γ(β + k + 1)
, (61)

where the last relation follows from the power series expansion
of the lower incomplete gamma function. Replacing (60) and
(61) in (58) results in (62) shown on top of the page:

For simplicity of notation, (62) can be written under the
following form:

f√
Ip,

√
Ip′

(x, x+ z) = zp
′−p−1×

∑

m

χmx
2µm−1(x+ z)2νm−1e−γmx2

e−ζm(x+z)2 . (63)

Applying the binomial theorem on (63) and replacing in
(57) results in:

f√
Ip′−

√
Ip
(z)=

+∞
∑

k=0

∑

m

(

2νm−1

k

)

χmz
p′−p−1+ke−ζmz2

∫ +∞

0

x2(µm+νm−1)−ke−(γm+ζm)x2

e−2ζmzxdx ; z ≥ 0. (64)

The integral in (64) has the same form as the integral
in (50). Therefore, following a similar analysis as the one
presented in Appendix B (in particular (51) and the subsequent
approximations), it can be proven that the former integral

behaves like a constant as a function ofz for z ≪ 1. Denoting
this constant byψm while approximating the summation in
(64) by the smallest termk = 0 (corresponding to the smallest
power ofz) results in:

f√
Ip′−

√
Ip
(z) ≈ zp

′−p−1
∑

m

χmψme
−ζmz2

; z ≥ 0. (65)

Replacing (65) in (56) results in: I =
∑

m χmψm

∫ +∞
0

zp
′−p−1e−(

λs
2 +ζm)z2

dz. This integral
can be solved using [31, 3.462.9]:

I =
1

2
Γ

(

p′ − p

2

)

∑

m

χmψm

(

λs
2

+ ζm

)− p′−p
2

→ 2
p′−p

2 −1Γ

(

p′ − p

2

)

λ
− p′−p

2
s

∑

m

χmψm, (66)

showing that the diversity order is equal top
′−p
2 (for p < p′).

APPENDIX E

For λs ≫ 1 andλb → 0, the integral in (27) can be written
asI ,

∫ +∞
0

e−λsxfIp(x)dx. Based on order statistics, the pdf
of p-th smallest random variableIp is given by [30, 2.2.2]:

fIp(x)=
P !

(p−1)!(P−p)!fX(x) [FX(x)]p−1 [1−FX(x)]P−p ,

(67)
where fX(x) corresponds to the gamma-gamma pdf in (1)
while FX(x) stands for the corresponding cdf. Approximat-
ing these functions by the first term of their corresponding
power series expansions near the originfX(x) = axβ−1 and
FX(x) = a

βx
β (wherea is given in Appendix C) results in:

fIp(x) ≈
P−p
∑

k=0

(

P − p

k

)

(−1)k×

P !

(p− 1)!(P − p)!

ap+k

βp−1+k
x(p+k)β−1 ; x≪ 1, (68)

where this expression can be further approximated by the
first term of the summation (corresponding tok = 0):
fIp(x) ≈ P !

(p−1)!(P−p)!
ap

βp−1x
pβ−1. Replacing this expression

in the integralI results inI ≈ P !
(p−1)!(P−p)!

ap

βp−1Γ(pβ)λ
−pβ
s

completing the proof.
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APPENDIX F

From (29), writing the integerp under the formp = P −
k(Ps−1), we observe that thePs−1 integersp, p−1, . . . , p−
(Ps − 2) all result in the same value of

⌊

P−p
Ps−1

⌋

= k. Since,
among these integers, the integerp results in the largest value
of pβ, then the diversity order in (29) can be written under
the form:

δ(SPPM) = max
k

{

[P − k(Ps − 1)]β,
1

2
k

}

, max
k

{δk} .
(69)

As in the case of OSSK from (31), selecting the aperture
indices equidistantly betweenp = P−k(Ps−1) andP results
in the candidate set:

Ck = {P − k(Ps − 1), P − k(Ps − 2), . . . , P} . (70)

Solving for the smallest integerk satisfying:

1

2
k ≤ [P − k(Ps − 1)]β, (71)

results in the solutionk = k̃ given in (33). In this context,
δk̃ = 1

2 k̃ , δ
(SPPM)
1 and δk̃+1 = [P − (k̃ + 1)(Ps − 1)]β ,

δ
(SPPM)
2 .
For k < k̃, δk = 1

2k <
1
2 k̃ = δk̃. Similarly, for k > k̃ + 1,

δk = [P − k(Ps − 1)]β < [P − (k̃ + 1)(Ps − 1)]β = δk̃+1.
Therefore, the values ofk that maximize (69) are eitherkopt =

k̃ with δ(SPPM) = δ
(SPPM)
1 or kopt = k̃ + 1 with δ(SPPM) =

δ
(SPPM)
2 proving equations (32) and (35). Finally, replacingk

by kopt in (70) results in the solution given in (34).
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