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Towards a Better Comprehension of
Decode-and-Forward Buffer-Aided Relaying: Case

Study of a Single Relay
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Abstract—This work considers the problem of decode-and-
forward (DF) buffer-aided (BA) relaying with a single relay. For
this scenario, a Markov chain analysis is tractable resulting in
closed-form performance measures that can shed more light on
the capabilities of the more general BA networks. In particular,
a novel generic relaying scheme is proposed and this scheme
encompasses many of the existing single relay schemes as special
cases. The proposed scheme is controlled by a single parameter
and the paper highlights on the impact of this parameter on the
triad of diversity gain, coding gain and queuing delay that can
be contemplated.

Index Terms—Relaying, buffer, dual-hop, outage probability,
diversity order, coding gain, queuing delay, asymptotic analysis.

I. I NTRODUCTION

Cooperative relaying has been extensively studied where in-
formation sources (S) communicate with their destinations(D)
through relays (R). In this context, equipping the relays with
buffers constitutes an additional degree of freedom capable of
leveraging the reliability and throughput of wireless networks
[1]. The literature on buffer-aided (BA) relaying is extensive
and revolves mainly around the relay selection strategies in
half-duplex (HD) networks [2] with amplify-and-forward (AF)
relaying [3] and decode-and-forward (DF) relaying [4]–[10].

The max-link DF BA scheme was proposed in [4] where
the strongest link among all available S-R and R-D links is
selected. For infinitely large buffer sizes, the max-link scheme
achieves a diversity order of2K with K relays. This enhanced
diversity gain comes at the expense of an average packet delay
(APD) of KL+ 1 whereL is the buffer size. These findings
hold for symmetrical networks where all links are independent
and identically distributed (iid). A priority-based max-link
scheme was proposed in [5] where three classes of priority
were considered; namely relays with full, empty and neither
full nor empty buffers. The diversity order was also proven to
be equal to2K for large values ofL in the case of symmetrical
networks. [5] results in reduced outage probabilities (OP)
compared to the max-link scheme especially in the case of
asymmetrical networks. In an attempt to reduce the APD of the
max-link protocol, priority was given to the R-D links in [6].
This resulted in reducing the APD to 2 for quasi-symmetrical
networks where the S-R links are iid and the R-D links are
iid. This enhancement in the APD came at the expense of
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a deteriorated OP performance in the cases of symmetrical
networks and quasi-symmetrical networks where the R-D links
are stronger than the S-R links. A BA relay selection scheme
taking into account both the channel quality and buffer state
was proposed in [7]. For symmetrical networks, this scheme
achieves a diversity order of2K with finite buffer sizes along
with an improved APD of2K+2. A two-stage relay selection
strategy was advised in [8]. For symmetrical networks, [8]
demonstrated the capability of achieving the diversity order of
2K for L ≥ 3. Finally, a balancing BA scheme was analyzed
in [9] targeting to keep the number of packets at each buffer
the closest possible toL/2 in symmetrical networks. Three-
node DF BA relaying was considered in [11], [12] with the
objective of maximizing the throughput over a communication
session that extends over an infinite number of time slots.
The analysis in [11], [12] targeted mainly infinite-size buffers
and, for finite-size buffers, extremely large buffer sizes were
considered in order to avoid buffer overflow.

Surveying the extensive literature on DF BA relaying [4]–
[9], the following observations can be made. (i): For networks
with an arbitrary number of relays, no relaying scheme is
unconditionally better than the others. (ii): For single-relay
networks, many of the existing schemes will become equiva-
lent. (iii): Except for [6], the diversity order analysis isoften
carried out for the symmetrical networks which, in some cases,
might be misleading since the performance of the BA schemes
is highly dependent on the network topology [5]–[7], [9].

Motivated by the above observations, this work targets a
comprehensive analysis of DF BA systems. In order to reach
insightful results, this paper considers the special case of one
relay where the mathematical analysis is more tractable. In
fact, the complexity of the analysis with an arbitrary number
of relays inflicted some assumptions on the system model and
restrained the number of performance measures that were de-
rived in closed-form. For example, the diversity order analysis
was limited to symmetrical networks in many references [4],
[5], [7]–[9] while the APD expressions were not provided
for many relaying protocols [5], [8], [9]. Finally, unlike [11],
[12], the presented relaying scheme and performance analysis
hold for any value of the buffer size and, in particular, for
practically small sizes. Moreover, the theoretical analysis in
[11], [12] is valid for infinitely long transmission sessions
where the transient effects resulting from filling the buffer
at the beginning of transmission and emptying it at the end
of transmission are negligible. In this context, the proposed
slot-by-slot relaying scheme takes the aforementioned tran-
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TABLE I
SELECTION STRATEGIES WITH ONE RELAY FOR0 < l < L WHEN THE S-RAND R-D LINKS ARE NOT IN OUTAGE.

Scheme [4], [5] [6], ThBA(0) [7], ThBA(1) [8], [9], ThBA(L/2)

Selection Strategy

{

|hSR|
2 > |hRD|

2, Rx;
|hSR|

2 < |hRD|
2, Tx.

Tx

{

l ≤ 1, Rx;
l > 1, Tx.

{

l ≤ L/2, Rx;
l > L/2, Tx.

sient effects into consideration since these effects cannot be
neglected when the buffer size is not very large.

The contributions of this work are twofold. First, a novel DF
BA scheme for single-relay networks is proposed. Second, the
achievable OP and APD are derived in closed-form followed
by an asymptotic analysis that is culminated by evaluating the
diversity gain, coding gain and asymptotic delay. A special
emphasis in the presented performance analysis is dedicated to
the effect of the network topology on the previously delineated
performance metrics. Unlike [4]–[9] where the relaying rule is
invariable, the proposed scheme is parameterized by a single
variable and it encompasses these schemes as special cases.
This paper highlights how this parameter can be selected to
minimize the OP, minimize the APD or achieve adequate
tradeoffs between OP and APD.

II. SYSTEM MODEL AND RELAYING STRATEGY

Consider a three node network composed of a source (S),
destination (D) and relay (R) equipped with a single antenna
each. We assume that no direct link is available between S
and D and, hence, S communicates with D through R that is
equipped with a buffer of sizeL. The relay operates in HD
mode and, hence, can not transmit and receive simultaneously.

Consider a Rayleigh block fading channel model wherehSR

andhRD denote the channel coefficients of the S-R and R-D
links, respectively. These channel coefficients are assumed to
be circularly symmetric complex Gaussian distributed random
variables with zero mean and variancesΩSR andΩRD, respec-
tively [7]. Finally, it is assumed that the signals receivedat
R and D are corrupted by an additive white Gaussian noise
(AWGN) with zero mean and unit variance.

For a fixed target rater0 (in bits per channel use (BPCU)),
the S-R link is in outage with the following probability [7]:

pSR = Pr

{

1

2
log2

(

1 + γ̄|hSR|
2
)

≤ r0

}

= 1− e
−

22r0−1
ΩSRγ̄ , (1)

where γ̄ is the average transmit signal-to-noise ratio (SNR).
Similarly, the outage probability along the R-D link is given

by pRD = 1− e
−

22r0−1
ΩRDγ̄ .

We denote byl the number of packets stored in the buffer.
Irrespective of the implemented relaying strategy, whenl = 0
(resp.l = L), the buffer is empty (resp. full) and no packets
can be transmitted along the R-D (resp. S-R) link. When
0 < l < L, both the S-R and R-D links are available and
the protocol needs to select the link to be activated resulting
in the following cases. (i): If both the S-R and R-D links
are in outage, then no packets can be transmitted or received.
(ii): If the S-R link is in outage while the R-D link is not
in outage, R switches to the transmission mode. (iii): If the
S-R link is not in outage while the R-D link is in outage,
R switches to the reception mode. (iv): When both the S-R

and R-D links are not in outage, a selection strategy among
these links must be implemented. The first three cases remove
any uncertainty pertaining to the link selection. Consequently,
the differentiation among the relaying protocols arises inthe
way they handle the fourth case. In this paper, we propose the
following threshold-based BA strategy that is a function ofa
buffer occupancy threshold levellth as follows:

ThBA(lth) :

{

l ≤ lth, Rx;
l > lth, Tx.

; lth ∈ {0, . . . , L}, (2)

where “Rx” means that R chooses to receive and “Tx” means
that R chooses to transmit. The rationale behind (2) is to
incentivize R to receive when the number of stored packets
is small and to transmit otherwise.

In the special case of one relay with0 < l < L when
both the S-R and R-D links are not in outage, many of the
existing selection schemes will become equivalent to each
other while other schemes will follow as special cases of the
proposed scheme as summarized in Table I. In particular, [6]
is equivalent to ThBA(0), [7] is equivalent to ThBA(1) while
[8], [9] are equivalent to ThBA(L/2) (whenL is even).

III. PERFORMANCEANALYSIS

In this section, a Markov chain analysis is carried out for
evaluating the steady-state distribution, OP and APD. A state
of the Markov chain is defined as the number of stored packets
resulting inL+1 possible states. Denote bytl,l′ the transition
probability of going from statel to statel′. For all considered
schemes [4]–[9] (with one relay) as well as the proposed
scheme, the following relations hold:

{

t0,0 = pSR,
t0,1 = 1− pSR.

;

{

tL,L = pRD,
tL,L−1 = 1− pRD.

, (3)

where an empty (resp. full) buffer remains empty (resp. full)
if the S-R (resp. R-D) link is in outage since no transmission
can take place along the R-D (resp. S-R) link; otherwise, the
number of packets will increase (resp. decrease) by one.

The steady-state probability distribution is determined by
{πl}

L
l=0 whereπl stands for the probability of havingl packets

in the buffer at steady-state. The system is in outage when no
packets can be communicated along its links [4]–[9]:

Pout = π0pSR+
L−1
∑

l=1

πlpSRpRD + πLpRD, (4)

since when the buffer is empty (resp. full), no packets can be
transmitted if the S-R (resp. R-D) link is in outage. Otherwise,
the outage of the S-R and R-D links will incur a system outage.

Following from [6], the APD can be calculated as follows:

APD = 1 +
2L̄

1− Pout

, (5)
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whereL̄ =
∑L

l=0 lπl stands for the average queue length.
The cases of an empty or full buffer were considered in

(3) since R can only receive or transmit, respectively. The
subsequent analysis considers the case where the buffer is
neither empty nor full. In this case, R has the option to receive
or transmit according to the implemented relaying strategy.

A. [4]–[6], ThBA(0) and ThBA(L):

This paper defines a birth-death Markov process with birth
probability λ and death probabilityµ, denoted by BD(λ, µ),
as a discrete Markov chain where (3) is satisfied forl = 0
and l = L while (tl,l+1, tl,l−1) = (λ, µ) for l = 1, . . . , L− 1.
The schemes in [4]–[6] and the proposed scheme forlth = 0
(preferred Tx) andlth = L (preferred Rx) all correspond to
birth-death processes where only the parametersλ andµ vary
from one scheme to another.

Proposition1: The steady-state distribution of the process
BD(λ, µ) is given by:














π0 = λ(r−1)(1−pSR)
−1

(rL−1)+(r−1)
[

λ
1−pSR

−1+ µ
1−pRD

rL
] ,

πl =
1−pSR

λ
rlπ0 ; l = 1, . . . , L− 1,

πL = 1−pSR

1−pRD
rL−1π0,

; r ,
λ

µ
. (6)

Proof: The proof follows from solving the following bal-
ance equations while taking into consideration that

∑L

l=0 πl =
1. (i): (1−pSR)π0 = µπ1. (ii): (λ+µ)π1 = (1−pSR)π0+µπ2.
(iii): (λ + µ)πl = λπl−1 + µπl+1 for l = 2, . . . , L − 2. (iv):
(λ+ µ)πL−1 = λπL−2 + (1− pRD)πL.

1) [4], [5]: From Table I, for the max-link scheme [4], [5],
λ = (1− pSRpRD)α andµ = (1− pSRpRD)(1−α) whereα ,

Pr
(

|hSR|
2 > |hRD|

2
)

= ΩSR
ΩSR+ΩRD

through direct calculations.
Replacing the values ofλ andµ in (6) results in the following
asymptotic value ofπ0 as the SNR tends to infinity:

π0 =
α(r − 1)

(rL − 1) [1 + (1− α)(r − 1)]
; r =

α

1− α
, (7)

where the probabilities1 − pSR, 1 − pRD and1 − pSRpRD all
tend to1 asymptotically.

For the symmetrical case (ΩSR = ΩRD), α = 1
2 implying

thatr = 1. Taking the limit of (7) asr tends to 1 and replacing
in (6) results in:

π0 = πL =
1

2L
; π1 = · · · = πL−1 =

1

L
, (8)

in coherence with [4]. Replacing (8) in (4)-(5) results in:

Pout =
1

2L
pSR+

L− 1

L
pSRpRD +

1

2L
pRD ; APD = L+ 1.

(9)
Equation (9) shows that the APD of the max-link scheme

increases linearly withL in coherence with the existing
literature. Moreover, forL → +∞, Pout → pSRpRD that
behaves asymptotically as̄γ−2 implying that the diversity
order is doubled in this case unlike the case whereL is finite.

The new findings correspond to the asymmetrical case
where the replacement of (7) in (6) results inπ0 =

2α−1
2(1−α)(rL−1) , πL = rL−1π0 andπl =

rl

α
π0 for l = 1, . . . , L−

1. Sinceα and r do not depend on the SNR asymptotically,
this result shows that the Markov chain can be in any of the

L+1 states with a probability not tending to zero and, hence,
no dominant states can be observed in this case. Replacing the
above probabilities in (4) results in:

Pout=
2α−1

2(1−α)(rL−1)

[

pSR+
rL−1 − 1

2α− 1
pSRpRD+rL−1pRD

]

.

(10)
For finite values ofL, (10) behaves asymptotically as̄γ−1

showing that there is no improvement in the diversity order.
Consider now the caseL → +∞. If R is closer to S, then
ΩSR > ΩRD implying that α > 1

2 and r > 1. Therefore,
Pout →

2α−1
2α pRD (sincerL → ∞ and rL−1 → ∞) implying

that the diversity order is equal to 1. If R is closer to D, then
α < 1

2 and r < 1 implying that rL and rL−1 will tend to
zero. Consequently,Pout → 2α−1

2(α−1)pSR implying a diversity
order of 1. As a conclusion, it has been proven that [4], [5]
can not improve the diversity order in asymmetrical networks
even with infinite buffer sizes. In this context, the max-link
scheme is capable of doubling the diversity order only for
symmetrical networks with infinite buffer sizes. Evidently, the
above findings hold for the special case of one relay, but it is
excepted that they will hold in the general case as well.

Carrying out a similar analysis to evaluate the asymptotic
APD results in:

APD =

{

2
[

L− 1−α
2α−1

]

, R is closer to S;

2 1−α
1−2α , R is closer to D.

. (11)

Equation (11) shows that the APD increases linearly with
L only if R is closer to S since the arrival rate will exceed
the departure rate resulting in a more congested buffer in this
case. On the other hand, when R is closer to D, the packets
arriving at R’s buffer will have a higher chance of exiting this
buffer resulting in an APD that is independent ofL. It can be
easily proven that the APD is always smaller in the second
case where the buffer is not congested. These conclusions are
novel and were not reported before.

2) [6], ThBA(0): For these schemesλ = (1 − pSR)pRD

and µ = 1 − pRD where R chooses to transmit whenever
the R-D link is not in outage. In this case,r = λ

µ
→ pRD

asymptotically. SincerL will tend to zero forL ≥ 2, then the
probabilityπ0 in (6) will tend asymptotically to:

π0 =
pRD

rL−1
r−1 + (pRD − 1)

→
1

2
, (12)

implying that πl → 1
2p

l−1
RD for l = 1, . . . , L − 1 and

πL → 1
2p

L−1
RD from (6). Consequently,π0 → 1

2 andπ1 → 1
2

while all other probabilities will tend to zero asymptotically.
This scheme that privileges transmission from R will relax the
buffer occupancy resulting in a buffer that is either empty or
has one packet all of the time where these two states dominate
at equilibrium. Replacing in (4)-(5) results in:

Pout =
1

2
pSR(1 + pRD) →

1

2
pSR ; APD = 2. (13)

Equation (13) shows that [6] and ThBA(0) are not capable
of enhancing the diversity order neither in symmetrical nor
in asymmetrical networks even with infinite buffer sizes. The
advantage of these schemes resides in the appealing APD value
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of 2 independently from the network topology and the buffer
size in coherence with [6].

3) ThBA(L): For this preferred-reception scheme,λ = 1−
pSR andµ = pSR(1 − pRD) implying that r → 1

pSR
. Carrying

out an asymptotic analysis with large values ofr shows that
πL−1 → 1

2 and πL → 1
2 while all other probabilities will

tend to zero. Hence, the statesL − 1 and L will dominate
asymptotically and this scheme results in a congested buffer.
Replacing in (4)-(5) results in:

Pout =
1

2
pRD(1 + pSR) →

1

2
pRD ; APD = 2L, (14)

rendering the choicelth = L not appealing neither from a
diversity order nor from a delay point of view. From (13) and
(14), the only advantage of ThBA(L) resides in a smaller OP
where R is closer to D.

B. [7]–[9] and ThBA(lth) for 0 < lth < L:

When lth 6= 0 and lth 6= L, the Markov chain is not
equivalent to a birth-death process. Following from (2), for
l ≤ lth, tl,l+1 = 1−pSR , λ1 andtl,l−1 = pSR(1−pRD) , µ1

following from an analysis similar to that presented in Section
III-A3. For l > lth, tl,l+1 = (1 − pSR)pRD , λ2 and
tl,l−1 = 1 − pRD , µ2 following from an analysis similar
to that presented in Section III-A2.

Proposition2: The steady-state probability distribution of
the Markov chain is given by:

πl=rlπ0×















1
pl

SR
, l = 1, . . . , lth;

1

p
lth
SR

, l = lth + 1;

p
l−(lth+1)

RD

p
lth
SR

, l = lth + 2, . . . , L.

; r ,
1−pSR

1−pRD
,

(15)
where:

π0 =






1 +

r
pSR

−
(

r
pSR

)lth+1

1− r
pSR

+
rlth+1

plthSR

+

1

pRD(pSRpRD)lth
(rpRD)

lth+2 − (rpRD)
L+1

1− rpRD

]−1

. (16)

Proof: The solution in (15)-(16) follows from solving
the following balance equations while taking into consider-
ation that

∑L

l=0 πl = 1. (i): (1 − pSR)π0 = µ1π1. (ii):
(λ1 + µ1)πl = λ1πl−1 + µ1πl+1 for l = 1, . . . , lth − 1. (iii):
(λ1+µ1)πlth = λ1πlth−1+µ2πlth+1. (iv): (λ2+µ2)πlth+1 =
λ1πlth + µ2πlth+2. (v): (λ2 + µ2)πl = λ2πl−1 + µ2πl+1 for
l = lth + 2, . . . , L− 1.

Since for large SNRsr
pSR

≫ 1 andrpRD ≪ 1, (16) tends to
the following asymptotic value:

π0 =
plthSR

plthSR + rlth [1 + r + r2pRD]
. (17)

From (15),πl =
(

r
pSR

)l

π0 for l = 1, . . . , lth implying,
from (17), thatπlth−1 is proportional topSR, πlth tends to
a constant while the other probabilities (forl = 1, . . . , lth −
2) will be proportional to higher powers ofpSR and, hence,

can be neglected. Similarly,πlth+1 tends to a constant,πlth+2

is proportional topRD while {πl}
L
l=lth+3 are proportional to

higher powers ofpRD.
For APD calculations, it’s sufficient to consider onlyπlth

andπlth+1 that will tend to1/2 resulting, from (5), in:

APD = 2(lth + 1) ; lth ∈ {1, . . . , L− 1}. (18)

Regarding the OP, replacing the highest four probabilities
{πl}

lth+2
l=lth−1 in (4) results in:

Pout =















pSRpRD + 1
2p

2
SR, lth = 1;

pSRpRD, lth = 2, . . . , L− 3;
pSRpRD + 1

2p
2
RD, lth = L− 2;

1
2pRD, lth = L− 1.

. (19)

Equations (13), (14) and (19) show that ThBA(lth) is
capable of doubling the diversity order for all values oflth
in {1, . . . , L− 2} and, in particular, [7]–[9] are all efficient in
maximizing the diversity gain. Among these values, the choice
lth = 1 minimizes the APD following from (18). The choice
lth = 2 is also viable since, compared withlth = 1, it reduces
the OP at the expense of increasing the APD. Any other choice
of lth in {3, . . . , L − 2} will suffer from an increased APD
compared to both ThBA(1) and ThBA(2) while achieving an
OP that is, at best, the same as ThBA(2). As a conclusion,
the best diversity-enhancing relaying solutions are ThBA(1)
and ThBA(2). While the first choice minimizes the APD to 4,
the second alternative minimizes the OP with an APD smaller
than that of ThBA(lth) for all values oflth exceeding 2.

Direct calculations following from (1) and (19) show that
the coding gain of ThBA(2) over ThBA(1) is:

G = 5 log10

(

1 +
ΩRD

2ΩSR

)

[dB], (20)

and, hence, this gain is higher when R is closer to D.

IV. N UMERICAL RESULTS

In what follows,r0 andL are fixed tor0 = 1 BPCU and
L = 8. Figures 1 and 2 show the OP and APD, respectively, for
(ΩSR,ΩRD) = (4, 1) (R is closer to S). Fig. 3 and Fig. 4 target
the case where R is closer to D with(ΩSR,ΩRD) = (1, 4). All
presented results highlight on the accuracy of the provided
theoretical analysis and on the validity of the derived OP and
APD asymptotic expressions.

Fig. 1 shows that, among the considered schemes, only
ThBA(1) and ThBA(2) achieve a diversity order of 2 with
a slight advantage for ThBA(2) that outperforms ThBA(1)
by 0.25 dB in coherence with (20). Comparing ThBA(0) and
ThBA(L) shows that the former scheme achieves a smaller
OP, in coherence with (13)-(14), sincepSR < pRD in this case.
Results in Fig. 2 validate (11), (13), (14) and (18). The APD
advantage of ThBA(lth) for small values oflth over the max-
link scheme is evident in this scenario where the max-link
scheme selects the S-R link more often thus contributing to
increasing the number of stored packets and, hence, the APD.

Similar OP trends can be observed in Fig. 3 but now
ThBA(L) outperforms ThBA(0) (since pRD < pSR) while
ThBA(2) outperforms ThBA(1) by a significant coding gain of
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Fig. 1. OP forΩSR = 4 andΩRD = 1. Solid and dashed lines correspond
to the exact and asymptotic values, respectively.
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Fig. 2. APD forΩSR = 4 andΩRD = 1. Solid and dashed lines correspond
to the exact and asymptotic values, respectively.

2.38 dB in coherence with (20) whereG increases withΩRD
ΩSR

.
From Fig. 4, ThBA(0) and ThBA(L) achieve the best and
worst APD performance, respectively, while the asymptotic
APD of the max-link scheme assumes an acceptable value of
2.67 in coherence with (11) whereα = 1

5 . The coding gain of
ThBA(2) over ThBA(1) is associated with an increase in the
asymptotic APD from 4 to 6.

V. CONCLUSION

This paper proposed and analyzed a novel threshold-based
relaying scheme for HD BA systems with a single relay.
This work studied the impact of the threshold parameter on
the diversity order, outage probability and queuing delay and
suggested convenient choices of this parameter. While this
work sheds more light on the performance of DF BA networks,
future work must consider the extension of the proposed
scheme to the general case of an arbitrary number of relays.
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