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Abstract—Lexical sentiment analysis (LSA) underlines a family 
of methods combining natural language processing, machine 
learning, or graph navigation techniques to identify the underlying 
sentiments or emotions carried in textual data. In this paper, we 
introduce LISA, an unsupervised word-level knowledge graph-based 
LexIcal Sentiment Analysis framework. It uses different variants of 
shortest path graph navigation techniques to compute and propagate 
affective scores in a lexical-affective graph (LAG), created by 
connecting a typical lexical knowledgebase (KB) like WordNet, with 
a reliable affect KB like WordNet-Affect Hierarchy. LISA was 
designed in two consecutive iterations, producing two main modules: 
i) LISA 1.0 for affect navigation, and ii) LISA 2.0 for affect 
propagation and lookup. LISA 1.0 suffered from the semantic 
connectivity problem shared by some existing lexicon-based methods, 
and required polynomial execution time. This led to the development 
of LISA 2.0, which i) processes affective relationships separately 
from lexical/semantic connections (solving the semantic connectivity 
problem of LISA 1.0), and ii) produces a sentiment lexicon which can 
be searched in logarithmic time (handling LISA 1.0’s efficiency 
problem). Experimental results on the ANEW dataset show that 
LISA 2.0, while completely unsupervised, is on a par with existing 
supervised solutions, highlighting its quality and potential. 

Keywords—Sentiment Analysis, Affect Analysis, Knowledge Base, 
Graph Navigation, Sentiment Lexicon, ANEW. 

I. INTRODUCTION 
 

Lexical sentiment analysis (or LSA) systems are automated tools 
which analyze words and text extracts provided by users, and attempt 
to classify them under different sentiment categories, such as: 
positive, negative, or neutral emotions. Affect analysis is a more 
fine-grained approach of LSA, involving more specific classes of 
affective emotions such as: happiness, sadness, surprise, and anger, 
etc. LSA is becoming increasingly popular in a wide range of Web 
applications covering: blog sentiment analysis [15, 84] (in web 
forums), client feedback analysis [19, 75] (customer opinions on 
products), sentiment analysis on social media [41, 73] (analyzing 
tweets or posts on social media), and therapeutic and social emotion 
analysis [17, 51] (helping autistic children express their emotions).  

Most existing LSA approaches (cf. Section II) have utilized 
supervised learning techniques applied on corpus-based statistics in 
order to match words or textual patterns with sentiments represented 
as labeled categories, e.g., [23, 43]. They usually require extensive 
training data, training time, and large statistical corpora which are not 
always available and require significant manual effort. In addition, 
most methods usually produce discrete sentiment labels (e.g., joy, 
surprise) without however evaluating sentiment intensity (valence) 
scores (e.g., 20% joy, 35% surprise), e.g., [10, 49]. On the other 
hand, other studies have utilized unsupervised and lexicon-based 
approaches, e.g., [22, 86], to match target words with seed words in a 
sentiment lexicon (e.g., LEW list [20], or WNA list [76]), by 
evaluating their semantic similarity or distance in a reference lexical 
knowledge base (KB, e.g., WordNet [48]). The latter usually suffer 
from the limited coverage of manually created sentiment lexicons, 
and the limited or inconsistent connectivity of affective concepts in 
the lexical KB (cf. Section II). Recent efforts have focused on the 
automatic creation of sentiment corpora, e.g., [4, 7, 57]. Yet most 
rely on supervised processes for their construction, thus sharing the 
limitations of supervised method mentioned above. 

In this study, we introduce LISA, a framework for unsupervised 
word-level graph-based LexIcal Sentiment Analysis. Our approach 
utilizes graph navigation techniques applied on a Lexical-Affective 
Graph (LAG), to infer word affect scores. The LAG is created by 
connecting a typical lexical KB graph like WordNet, with a reliable 
and comprehensive affect KB like WordNet-Affect Hierarchy 
(WNAH) [65]. LISA was designed in two consecutive iterations, 
producing two main modules: i) LISA 1.0 for affect navigation, and 
ii) LISA 2.0 for affect propagation and lookup. LISA 1.0 suffered 
from the semantic connectivity problem shared by some existing 
lexicon-based methods, and required polynomial execution time. 
This led to the development of LISA 2.0, which i) processes affective 
relationships separately from lexical/semantic connections (solving 
the semantic connectivity problem of LISA 1.0), and ii) produces a 
sentiment lexicon which can be searched in logarithmic time 
(handling LISA 1.0’s efficiency problem). We have implemented 
LISA 1.0 and 2.0 to test and evaluate their performance. Results on 
the Affective Norms for English Words (ANEW) dataset [5, 63] 
show that LISA 2.0, while completely unsupervised, is on a par with 
existing supervised solutions, highlighting its quality and potential. 

The remainder of the paper is organized as follows. Section II 
reviews the literature on LSA techniques. Our LISA framework is 
developed in Section III. Section IV presents experimental results, 
while Section V concludes with future directions. 

 

II.  LITERATURE REVIEW 

LSA methods can be described and distinguished following a number 
of criteria, including: sentiment categories, text granularity, textual 
features, external resources, and the computation techniques used. 
 

Sentiment categories: Researchers in LSA usually distinguish 
between two kinds of sentiments: i) opinions/polarity such as 
like/dislike, referred to as positive/negative opinions, and ii) 
emotions/feelings such as happy/angry/afraid/etc., referred to as 
affect categories [31]. Accordingly, LSA methods can be 
distinguished as: i) opinion detection (or opinion mining) methods 
[28], and ii) affect analysis methods [66]. Affect analysis involves a 
larger number of affect classes, ranging from a reduced set of six 
basic emotions in [54] (i.e., anger, fear, joy, love, sadness, and 
surprise) to a comprehensive hierarchy of 294 sentiment categories 
introduced in WNAH [65] (cf. Section III.A). 
 

Granularity of LSA: Sentiments can be extracted at different 
text granularity levels: i) word, ii) phrase, iii) sentence, iv) document, 
and v) aspect. Word-level LSA is the most fine-grained approach 
where individual words are associated with sentiment categories [1, 
59]. Phrase-level LSA consists of associating sentiments with 
individual phrases, where a phrase designates an expression made of 
a couple of adjacent words (e.g., “unpredictable steering”) where the 
phrase sentiments are deduced from word-level sentiments [82, 85]. 
Similarly for sentence-level and document-level LSA, allowing to 
associate sentiments with individual sentences/documents, based on 
word-level, phrase-level, or sentence-level LSA [3, 21]. Aspect-level 
LSA consists in extracting the main aspects of a text where aspects 
represent interesting features describing what the text is about (e.g., 
“battery”, “processor”, “touch screen” could be aspects describing 
mobile phones), and then estimating the sentiment scores of the text 
per aspect [2, 61]. In our current study, we focus on word-level LSA. 
 



Features for LSA: Different features can be utilized to perform 
word-level LSA, including: i) lexical form, ii) semantic meaning, and 
iii) part-of-speech tag. Words targeted for LSA are usually matched 
against a set of seed words with associated sentiments, to 
acquire/inherit the corresponding sentiment categories [25, 27]. The 
part-of-speech (POS) feature allows distinguishing between nouns, 
verbs, adjectives, and adverbs which might carry slightly different 
sentiment clues [34, 79]. The semantic meaning feature allows 
matching words based on their meanings, by comparing their 
semantic definitions and relationships w.r.t. a lexical KB like 
WordNet [7, 38]. Other features include: n-gram (word associations) 
[1, 50], syntactic structure (parse tree) [82, 87], valence shifters (e.g., 
“really”, “could” and “should”) [27, 87], and statistical features (e.g., 
contextual and co-occurrence frequencies) [44, 61]. In our study, we 
target word-level LSA and thus focus on word-level features. 

 

Resources for LSA: External resources provide reference data 
which is needed to associate sentiments with text. Here, LSA 
methods can be distinguished as: i) corpus-based or ii) lexicon-based. 
The corpus-based approach, e.g., [44, 80], is data-driven, as it relies 
on processing large text corpora (such as OpenMind [62] and ISEAR 
[60]) to identify the probability of occurrence of textual features, in 
order to enable sentiment predictions for new texts. The lexicon-
based approach, e.g., [7, 39], is knowledge-driven, as it relies on 
acquiring sentiment clues from a readily available sentiment lexicon, 
i.e., a large collection of words or concepts (i.e., word senses) 
associated with sentiment categories. Machine readable lexicons such 
as SentiWordNet [4], WNA [76], and SenticNet [8] are few of the 
most widely used sentiment lexicons in the literature. While corpus-
based methods have been popular in the past few years [24, 42], yet 
they are generally data hungry and require extensive training, huge 
textual corpora, and a considerable amount of manual effort which 
are not always available or feasible in practice.  

Yet, lexicon-based LSA methods suffer in turn from two major 
limitations: i) ambiguity and ii) limited coverage [13, 53]. On the one 
hand, many widely used sentiment lexicons (such as General Inquirer 
[64] and LIWC [55]) associate sentiments with words instead of 
concepts (i.e., word meanings), and thus do not distinguish between 
the different meanings of the same word which might have – each – a 
different sentiment bearing. On the other hand, the limited coverage 
of manually created lexicons (such as the LEW list [20] and the core 
WNA list [76]) is another major concern, due to the substantial effort 
in manually annotating terms or concepts [13]. In our study, we focus 
on lexicon-based LSA, and address both: i) the ambiguity problem by 
using unambiguous word meanings (concepts) to perform LSA, and 
ii) the limited coverage problem by connecting a comprehensive 
affect KB (WNAH) with an expressive lexical KB (WordNet)1. 
 

Techniques for LSA: Existing LSA approaches can be roughly 
categorized as: i) supervised, or ii) unsupervised. Supervised 
methods, e.g., [12, 32, 33], involve the use of supervised-learning 
techniques, using manually annotated samples words/phrases 
provided as training data for a learning algorithm that induces rules 
to be used for assigning sentiments with other occurrences of the 
words/phrases. External knowledge (mainly corpus-based) is used 
and combined with the human expert’s own knowledge of 
word/phrase sentiments when manually annotating the training 
examples. Here, different kinds of classifiers have been used, 
including Support Vector Machines (SVM) [10, 49], Naïve Bayes 
(NB) [37, 81], Maximum Entropy (ME) [46, 58], and Linear 
Regression [27, 83]. While effective, supervised methods suffer from 
several disadvantages. First, they include a learning phase which is 
time-consuming and subject to over-fitting, depending on the training 

                                                           
1  Other lexical and affective KBs sharing similar properties could also be used. 

data set which is not always available. Another shortcoming is that 
legacy supervised classifiers can only deal with discrete class labels 
(e.g., positive, calm, etc.), whereas sentiment intensity (valence) can 
vary along a continuum (e.g., 80% positive, 20% calm, etc.). A third 
shortcoming is that supervised methods train their classifiers to 
recognize different classes separately, as if the produced categories 
are totally unrelated, e.g., [10, 49]. Yet, certain sentiment classes may 
be related [66] (cf. Section III.A). For instance, hate and anger are 
related affects and usually co-occur together.  

Unsupervised methods, e.g., [22, 78, 86], are usually fully 
automated and do not require human intervention or a training phase. 
Most approaches in this category make use of a machine-readable 
sentiment lexicon (e.g., SentiWordNet [4] or WNA [76]) usually 
represented as a set of words/expressions or concepts with their 
sentiment categories or intensity scores. Given a target text to be 
processed, unsupervised LSA consists in assigning each constituent 
textual token (e.g., word or phrase) and consequently the whole 
target text, with a sentiment score. The score is a measurement of the 
intensity of the token w.r.t. to one (or many) sentiment category(ies). 
Scoring methods can be distinguished as: i) statistical, or ii) semantic. 
Statistical scoring methods evaluate word average sentiment 
intensities across the lexicon’s items occurring in a text [45, 66]. 
They assess the intensity of each word based on its co-occurrence 
frequency with a set of core words reflective of a given affect [14, 52, 
74]. The main limitation of this group of methods is the need for a 
large and expressive textual corpus to perform statistical analysis. 
Semantic scoring consists in evaluating the semantic distance 
between the meanings of words in a reference KB [59]. Most 
semantic scoring LSA methods, e.g., [13, 36], utilize WordNet [48] 
as a widely used lexical KB made of a set of word concepts (synsets) 
and their semantic relationships (e.g., synonymy, hyponymy, etc., [9, 
67], cf. Section III). In this context, the authors in [40] expand the 
seed words associated with an affect category by comparing each 
candidate word and its synonymous terms with the seed word list 
[49]. In [36], the authors identify the polarity of an input (source) 
word by measuring its distance in number of synonymy relationships 
(links) from two reference (destination) concepts: good and bad in 
the WordNet graph. Similar approaches were introduced in [13, 26], 
which consider a set of seed concepts (instead of two concepts only: 
good and bad) as references for their distance computations. Note 
that applying the semantic scoring LSA approach requires word 
sense disambiguation (WSD) [68, 69], a computationally expensive 
pre-processing step to assign the word targeted for LSA with its 
semantic concept (meaning) [47], so that the latter concept can then 
be processed for semantic scoring. Another common pitfall of this 
category of methods is the semantic connectivity between reference 
concepts, which might not be accurate. For instance, one can traverse 
the WordNet graph from concepts good to bad in only three hops 
using the synonymy relationship (cf. Fig. 1). This seems “weird” 
since good and bad are opposing sentiments, and one tends to think 
they should be farther away from each other. This problem is shared 
among other lexical knowledge references such as ConceptNet [72] 
and Yago [30], where concepts are defined following their lexical 
meanings, rather than their affective expressiveness.  

 
 

 
 

 

Fig. 1. Extract of synonymy relationship connectivity between words 
good and bad in WordNet [26] 
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In this context, there is a crucial need to distinguish between 
lexical and semantic relationships between concepts in the lexical 
knowledge graph on the one hand, and affective relationships 
between affect categories on the other hand. 

 

III. LISA FRAMEWORK 
 

To address most of the limitations above, we introduce LISA, an 
unsupervised word-level knowledge graph-based LexIcal Sentiment 
Analysis framework. It uses different variants of shortest path graph 
navigation techniques to compute and propagate affective scores in a 
Lexical-Affective Graph (LAG). LISA’s overall architecture is 
depicted in Fig. 2. It is designed in two separate yet interconnected 
modules: LISA 1.0 for affect navigation, and LISA 2.0 for affect 
propagation and lookup, described in the following subsections. 
 

A. Lexical Affective Graph 
The Lexical-Affective Graph (or LAG) is created by connecting a 
typical lexical KB graph like WordNet [48], with a reliable affect 
reference like WordNet-Affect Hierarchy (WNAH) [65] (although 
any other lexical or affective references sharing similar properties can 
be utilized). To our knowledge, WNAH is the most comprehensive 
affect hierarchy to date, consisting of 294 different affect categories 
(e.g., positive emotion, joy, love, apathy, euphoria, etc.), 
hierarchically organized following a hypernymy/hyponymy 
(IsA/HasA) inheritance structure, where every affect category 
matches a lexical concept (synset) in WordNet. A sample LAG 
extract is shown in Fig. 3. Word concepts (synsets) in WordNet 
matching affect categories from WNAH are highlighted with thick 
contours. Hypernymy/hyponymy relationships connecting affect 
concepts from WNAH are highlighted, to distinguish them from 
WordNet lexical relationships (which are labeled in the LAG). 
 
 

 

Fig. 2. Simplified activity diagram describing LISA’s architecture 
 

B. LISA 1.0 – Affect Navigation 
The LISA 1.0 affect navigation module accepts as input a set of user 
words and a set of target affect categories in a LAG, and produces as 
output the target affect scores (intensity weights) for every input 
word located in the LAG. It consists of two main components: i) 
linguistic pre-processing, to process input words, identifying their 
proper word meanings (concepts) in the LAG, and ii) Max_Affect 
which navigates the LAG from the input word concepts to the target 
affect categories, using an adaptation of the shortest path problem. 
 

1. Linguistic Pre-Processing component 
Linguistic pre-processing consists of four main phases: i) 
tokenization, ii) stop word removal, iii) stemming, and iv) word sense 
disambiguation (WSD). Once located in the LAG, word concepts are 
provided as input to Max_Affect to compute their affective weights. 

Note that we utilize the well known simplified LESK algorithm 
[35] to perform WSD, which compares the target word’s context (its 
surrounding words) with the contexts of its different possible 
meanings (concepts) in the lexical KB, and chooses the concept 
whose context is most similar to the target word context as its proper 
(disambiguated) meaning [35]. Simplified LESK is one of the most 
efficient WSD algorithms [77], requiring linear time w.r.t. the 
number of meanings for a given word, and their context sizes.  
 

 

 
 

 

Fig. 3. Sample LAG based on a mapping of WordNet and WNAH 
 

2. Max_Affect Component 
The Max_Affect component’s pseudo-code is described in Fig. 4. It 
accepts as input the users’ disambiguated word concepts and their 
target affective categories (i.e., the emotions they are interested in), 
and then produces as output the corresponding sentiment scores in 
the form of sentiment vectors whose dimensions correspond to the 
user-chosen affective categories. It utilizes an adaptation of Dijkstra’s 
shortest path distance computations [11], applied on the LAG. 

Max_Affect explores the LAG starting from one or multiple 
word concept nodes. From every starting concept node, it attempts to 
identify the closest path to every target affective category node, 
highlighting the target affect’s expressiveness w.r.t. the source 
concept(s). Yet, we altered Dijkstra’s original premise: instead of 
identifying the minimum weight path, Max_Affect seeks to identify 
the maximum sentiment weight of a source concept node ci w.r.t. a 
target affect node aj. We compute node and edge weights as follows: 

 

i. The weight of a source concept node ci w.r.t. a target affect node 
aj, noted w(ci, aj) or waj(ci), is ∈ [0, 1], where 0 means that affect 
category aj is not expressed in ci, whereas 1 means that aj is 
totally expressed in ci,  The weight of ci w.r.t. a set of target affect 
categories A={a1,…,aJ}, consists of a vector of affect weights Vi 
= < w(ci, a1), …, w(ci, aJ) >, of J dimensions, where dimension j 
corresponds to a target affect category aj ∈A, and its vector 
coordinate w(ci, aj) represents the affective weight of aj w.r.t. ci.  

ii. The weight of an edge outgoing from node ci and incoming into 
node cr, noted w(ci, cr), is ∈ [0, 1] and reflects sentiment 
“conductance” where 0 means that the edge does not carry any 
sentiment expressiveness from ci to cj, whereas 1 means that the 
edge carries all the sentiment expressiveness from ci to cj. The 
edge weight is determined firstly based on the edge label (i.e., 
semantic relationship connecting the two nodes, e.g., hypernymy, 
related to, etc.), and secondly based on the out-degree of ci 
(depending on the semantic relationship being processed): 

 

w(ci, cr) = 
i

1      if    
- (c )

              1                  otherwise

reliable
rel

rel R
out degree

 ∉



 
(3) 

 

where rel designates the edge’s label (semantic relationship), and 
Rreliable the set of sentiment reliable relationships. In other words, 
w(ci, cr) = 1 (maximum score) if its edge label corresponds to a 
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sentiment reliable relationship, otherwise, it is determined by the 
out-degree of incoming node ci. The rationale is that an edge 
designates a stronger connection between two (word concept or 
affective category) nodes when it carries most of the descriptive 
power from the source to the destination, such that the source 
node has few other out-going connections (if any, cf. Fig. 4).  

iii. Finally, instead of starting from an initial weight =0 assigned to 
the source lexical node ci, Max_Affect starts with an initial weight 
=1 (maximum sentiment expressiveness), and then multiplies 
(instead of summing) the source node’s weight by the weights of 
every edge on the maximum weight path leading to aj. If all edges 
on the path between ci and aj are of maximum sentiment 
conductance (i.e., they carry all of the sentiment expressiveness), 
then w(ci, aj) = waj(ci) =1 where affect aj is fully expressed in ci. 
Otherwise, if edges have diminishing sentiment conductance, 
then waj(ci) will decrease accordingly. 

 
 

Algorithm: Max_Affect 
 

Input: LAG graph: G                                                        
            Set of source word concept nodes: C                           
            Set of destination affect nodes: A                                  
Ouput: Set of affect vectors:  ∇                                  
 

Begin 
 

Initialize ∇ = {Vi
 } i = 1… |C|   where  Vi = <w(ci, a1)=0,..., w(ci, a|A|)=0>        

Initialize weights of nodes ∈ G to 0 
Processed = ∅                                             
 

For every ci in C                            
{ 

Frontier = ci, Explored = ∅                             
Initialize w(ci) =1, remove from Frontier and add to Explored         
 

While (Explored ≠ A)                                       
{ 

For each node cj ∈ Explored 
For each node cm outgoing from cj  

Add cm to Frontier 
Compute weight vector of cm 

w(cm) = max(w(cm), w(cm, cj) × w(cj))          
 

Compute maximum weight wmax for all nodes in Frontier 
For each node cn in Frontier having w(cn) == wmax 

If cn ∈ Processed  Then  
Compute Vi = Vn × w(cn, ci)       
Add ci to Processed                     
Goto Exit                                      

Else Remove cn from Frontier and add to Explored         
}                                       
 

Exit: 
If (ci ∉

 

Processed) Then 
Compute Vi = <w(a1), …, w(a|A|)>              
Add ci to Processed 

} 
Return ∇ 

End 
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Fig. 4. Pseudo-code of algorithm Max_Affect 
 

 

 
 

Fig. 5. Sample LAG (lexical affective graph) from Fig. 3, with affect 
concepts highlighted in bold, to distinguish them from lexical concepts  

 

 
 

Considering the first source node Compassionate: 
− Initialize weight of source node to: 

w(Compassionate) = 1 
− Initialize affective vector of source node w.r.t. 

both target affect nodes: VCompassionate = <0, 0> 
− Iteration #1: Fill neighbors in Frontier and 

identify maximum weight: w(Compassion) =1 
 

  Include Compassion in Explored set 
 

 

 

− Iteration #2: Fill neighbors in Frontier and identify 
maximum weight:  
w(Sympathy) = w(Care) = w(Commiserate)  
                      = 1× 1/2  = 1/2 

      

 Remove them from Frontier and include them in 
Explored 

 
 

 
− Iteration #3: Fill neighbors in Frontier and 

identify maximum weight: w(Commiseration) = 
w(Condole) = 1/2 × 1 = 1/2 
 

      Remove from Frontier and include in 
Explored

 
− Iteration #4: Fill neighbors in Frontier and identify 

maximum weight: w(Condolent) = 1/2 × 1 = 1/2 
  

       Remove from Frontier and include in Explored 
 

 

 
 
− Iteration #5: Fill neighbors in Frontier and 

identify maximum weight: w(Feeling)= 1/2 × 
1/2 = 1/4 
 

 Remove from Frontier and include in Explored 
 

 

 
 
− Iteration #6: Fill neighbors in Frontier and identify 

maximum weight: w(Liking)= 1/4×1=1/4 
- Include from Frontier and include in Explored 

 

Both targets are now in Explored:  
- VCompassionate  = < w(Sympathy), w(Liking)> 

                     = <1/2, 1/4> 
 

  End processing of first source node 
 

 

Considering the second source node Care: 
− Initialize weight of source to: w(Care)=1 
− Initialize affective vector of source node w.r.t. 

both target affect nodes: VCare = <0, 0> 
 

Iteration #1: Fill neighbors in Frontier and identify 
maximum weight: w(Compassionate) =1/2 

- Since Compassionate ∈ Processed, we compute 
VCare = w(Compassionate) × VCompassionate    

           = 1/2  × <1/2, 1/6>   
                   = <1/4, 1/12>

 

 

Fig. 6. Sample run of Max_Affect, from source words: Compassionate 
and Care, to destination affects: Sympathy and Liking 

 
Consider the sample LAG in Fig. 5, where edge weights are 

computed following their semantic relationship reliability using 
Formula 3. Fig. 6 shows the result of a sample run of Max_Affect, 
considering as source: word concept nodes Compassionate and Care, 
and as destination: affect nodes Sympathy and Liking.  

 

3. Problems with Max_Affect 
While Max_Affect provides a solution to perform LSA in a 
completely unsupervised manner, nonetheless, it suffers from two 
main drawbacks regarding: i) effectiveness and ii) efficiency. 

In terms of effectiveness, we realized that semantic connectivity 
between affect concepts in the LAG does not always accurately 
portray their affective expressiveness. For instance, considering the 
LAG extract of Fig. 5, we can reach affect node liking from affect 
node sympathy through concept node feeling with a higher weight 
compared with the direct link between sympathy and liking, i.e., 
w(feeling, sympathy)=1/2> and w(liking, sympathy)=1/3. In the 
example in Fig. 6, this led to VCompassion = <1/2, 1/4> and VCare = <1/4, 

Feeling 
noun 

Condolent 
adj 

Condole 
verb 

Commiserate
verb 

Care 
verb 

Compassionate 
verb 

Commiseration 
noun 

Compassion 
noun 

Sympathy Fondness Approval 

Liking 

1/3,1 

1/2,1 

1/2,1 1/3,1 
1/3,1 

1/2,1 1/2,1 

1,1 
1,1 

1,1 

1,1

1,1 

1/2,1 

1/2,1 

1,1 

Feeling
noun 

Condolent 
adj 

Condole 
verb 

Commiserate 
verb 

Commiseration
noun 

Compassion 
noun 

Compassionate
verb 

Care
noun 

Sympathy Fondness Approval 

Liking
1/2,1 

1/2,1 1/3,1 1/3,1
1/3,1 

1/2,1 1/2,1
1,1

1,1

1,1

1,1

1,1

1/2,1

1/2,1

1,1

Condole 
verb 

Condolent 
adj 

Feeling
noun Liking 

Approval Fondness Sympathy 

Compassion 
noun 

Commiseration
noun 

Care
noun 

Compassionate
verb 

1,1

1,1

1,1

1,1

1,1

1/2,1

1/2,11,1 

1/2,11/2,1 

1/2,1

1/2,1

1/3,1 
1/3,1 

1/3,1 

Commiserate 
verb 

Feeling
noun 

Condolent 
adj 

Commiserate 
verb 

Care
noun 

Compassionate
verb 

Compassion 
noun 

Commiseration
noun 

Condole 
verb 

Sympathy 

Liking 

Approval Fondness 

1/2,1

1/2,1

1/2,1

1/2,1

1,1 

1,1 

1,1 
1,1 

1,1 

1,1 

1/2,1 1/2,1

1/3,1 
1/3,1 

1/3,1 

Liking 
Feeling

noun 
Condolent 

adj 

Approval Fondness Sympathy 

Compassion 
noun 

Compassionate
verb 

Commiseration
noun Commiserate 

verb 

Care
noun 

Condole 
verb 

1/2,1

1/2,1

1/2,1

1/2,1

1/2,11/2,1

1,1 

1,1 

1,1 

1,1 

1,1 

1,1 

1/3,1
1/3,1

1/3,1

Feeling
noun 

Condolent 
adj 

Condole 
verb 

Commiserate 
verb 

Care
noun 

Compassionate
verb 

Compassion 
noun 

Commiseration
noun 

Sympathy Fondness Approval

Liking 

1/2,1

1/2,1

1/2,1

1/2,1

1/2,1
1/2,1

1/3,1
1/3,1

1/3,1 1,1 

1,1 

1,1 

1,1 

1,1 

1,1 

Condolent 
adj 

Feeling
noun 

Condole 
verb 

Commiserate 
verb 

Commiseration
noun 

Compassionate
verb 

Compassion 
noun 

Care
noun 

Fondness Sympathy Approval 

Liking 

1/2,1

1/2,1

1/2,1

1/2,1

1/2,1 
1/2,1

1/3,1 
1/3,1 

1/3,1 

1,1 

1,1 

1,1 

1,1 

1,1 

1,1 

Care
noun 

Compassionate
verb 

Commiseration
noun 

Compassion 
noun Commiserate 

verb 

Condole 
verb 

Sympathy Fondness Approval 

Liking 
Feeling

noun 
Condolent 

adj 

1/2,1

1/2,1

1/2,11/2,1 

1/2,1

1/2,1

1/3,1 
1/3,1 

1/3,1

1,1 

1,1 

1,1 

1,1 

1,1 

1,1 



1/8> (let us refer to this as result #1). Had we disregarded concept 
node feeling which connects liking with sympathy, and only used the 
direct affective connection between the latter two, we would have 
obtained VCompassion = <1/2, 1/6> and VCare = <1/4, 1/12> (let’s refer to 
this as result #2). At first glance, both results sound reasonable, and 
one cannot really judge which is better and which is worse. Yet, after 
empirically testing Max_Affect on the manually annotated ANEW 
word dataset [5, 63] (cf. Section IV) and investigating Max_Affect’s 
produced scores, we realized that connections between affect 
concepts from WNAH are more reliable in carrying sentiment 
expressiveness compared with lexical and semantic connections from 
WordNet. Yet, the logic tends to break down when propagating 
weight scores between the affect nodes. For instance, crossing from 
sympathy to liking should carry the whole weight of sympathy toward 
liking, w(liking, sympathy)=1, and not the other way around, since 
sympathy-IsA-liking where IsA (hyponymy) is a reliable (sentiment 
conductive) relationship. In other words, reaching affect node 
sympathy from any concept node ci should be enough to identify ci’s 
sentiment weight w.r.t. affect liking, i.e., wliking(ci) = wsympathy(ci) (e.g., 
considering concept node compassionate in Fig. 5, we would expect 
wliking(compassionate) = wsympathy(compassionate) = 
1/2×1×1/2×1=1/4). 

As for efficiency, Max_Affect requires average polynomial 
(quadratic) time w.r.t. the size of the LAG covered in the navigation 
process (from source concept nodes to target affect nodes) which, 
despite LAG navigation optimizations and parallelization, remained 
relatively time consuming. This led us to provide an improved 
solution, considering the above mentioned effectiveness and 
efficiency issues in designing LISA 2.0. 

 

C. LISA 2.0 – Affect Propagation and Lookup 

To address the issues mentioned above, LISA 2.0 includes three main 
components: i) WNAH_Propagation to handle affect score 
computation between affect nodes themselves considering their 
affective connections only, while disregarding word concepts and 
their lexical/semantic connections in the LAG (this allowed solving 
the LAG lexical/semantic connectivity problem of LISA 1.0), ii) 
Back_Propagation which propagates affect scores from user chosen 
affect nodes to all connected concept nodes in the LAG2. The set of 
affect-scored concepts form a sentiment lexicon which can be 
efficiently searched by iii) Affect_Lookup to identify word concept 
affect scores (handling LISA 1.0’s efficiency problem). We describe 
LISA 2.0’s components in following sub-sections. 

 

1. WNAH_Propagation component 
This component computes the sentiment scores of every affect node 
w.r.t. every other affect node in WNAH, such that each affect 
category becomes fully representative of all of the others. In other 
words, every affect node aj in WNAH will be associated with a 
sentiment vector Vj consisting of 294 dimensions, where every 
dimension represents every other affect node in WNAH with its 
corresponding affect score w.r.t. aj. On the one hand, this allows 
disregarding all lexical and sentiment concepts and connections when 
navigating between affect nodes in the LAG. On the other hand, 
instead of computing the maximum weight path between a word 
concept node ci and all 294 affect nodes to get their sentiment scores 
(following Max_Affect, cf. Section III.B), we only need to compute 

                                                           
2               Recall that our approach is different from existing graph-based LSA methods in that 

we distinguish the affect concept hierarchy from the lexical KB, to process affective 
concepts separately following their affective relationships, before mapping them with 
their lexical counterparts with their lexical and semantic connections. To do so, we 
consider affective and lexical/semantic relationships and their weight combinations 
differently as discussed in Section III.B and C. 

the path from ci to the closest affect node aj, where aj would provide 
through its sentiment vector Vj all the scores for all other WNAH 
affect categories. The sentiment vector of ci, Vi would be equal to Vj 
multiplied by the maximum path weight from ci to aj, i.e., Vj = w(ci, 
aj)×Vi. Note that Affect nodes are processed in parallel, where affect 
vectors are computed independently in every iteration. Then, we 
iterate once for every inner node in the hierarchy, processing all 
vectors in parallel in order to update their weights w.r.t. inner node 
connectivity. For instance, a node ai having node aj as its parent (or 
child), will have its affect vector updated w.r.t. the latter’s, by 
multiplying their weights while preserving the maximum weight 
following every vector dimension. Consider for instance the sample 
affective hierarchy in Fig. 4 extracted from WNAH, where edge 
weights are computed following hypernymy/hyponymy affective 
reliability (conductance) following Formula 3. Fig. 7 shows the affect 
vectors resulting from the execution of WNAH_Propagation on the 
LAG in Fig. 5 w.r.t. its affect hierarchy extracted from Fig. 7. 

 

 
 

 

Fig. 7. Extract of the WNAH hierarchy 
 

      

1 1/2 1/2 1/6 1/6

1 1 1/2 1/3 1/3

1 1/2 1 1/6 1/6

1 1 1/2 1 1/3
                              

1 1 1/2 1/3 1

1 1 1/2 1/3 1/3

1 1/2 1 1/6 1/

1 1 1/2 1/3

PosEm

Liking

Joy

Fond

Appr

Symp

Elation

Kind

PosEm Liking Joy Fond Appr Symp Elation Kind

V

V

V

V

V

V

V

V

1/6 1/2 1/6

1/3 1/2 1/3

1/6 1 1/6

1/3 1/2 1/3
                       

1/3 1/2 1/3

1 1/2 1

6 1/6 1 1/6

1/3 1 1/2 1

 
 
 
 
 
 
 
 
 
 
 
  

 

 

Fig. 8. Affect vectors for every lexical node in the LAG of Fig 5 
 

After computing all vectors for all affect nodes in WNAH, every 
affect node becomes fully descriptive of the affective scores of all 
other nodes in WNAH, such that accessing any affect node would 
give away all of WNAH’s sentiment descriptiveness. 

 
2. WNAH_Propagation component 
 

Having computed the affect scores of all affect nodes in WNAH 
(using WNA_Propagation), the Back_Propagation component 
propagates the produced affect scores from user chosen affect nodes 
to all connected concept nodes in the LAG. As a result, all lexical 
concepts connected with any affect node acquires an affect score, 
form a sentiment lexicon. The latter can then be utilized to perform 
sentiment analysis by looking-up the affect vectors of the target 
lexical concepts from the lexicon.  

The Back_Propagation component is a variation of Dijkstra’s 
maximum weight process utilized in Max_Affect, with the following 
modifications: i) a set of source affect nodes A ∈ G along with their 
affect vectors ∇A (pre-computed using WNA_Propagation); it does 
not require a set of lexical concept nodes as input since it will process 
all of them ∈ G, ii) it navigates the LAG starting from all source 
affect nodes in parallel (with a dedicated thread assigned to every 
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source node), where affect vectors are computed independently in 
every iteration, iii) it navigates from every source affect node toward 
its surrounding concept nodes and beyond, back-propagating toward 
all connected concept nodes, iv) affect vectors of lexical nodes are 
computed directly from those of their connected affect node vectors, 
and v) the maximum affect vector weights for all concept nodes 
produced from every source affect node (i.e., from every thread) are 
finally retained. The pseudo-code for Back_Propagation is provided 
in [18]. Consider the same sample LAG example in Fig. 5, Fig. 9 
shows the result of a sample run of Back_Propagation, starting from 
the affective nodes in the LAG and propagating their affective scores 
(in parallel) toward all lexical concept nodes in the graph.  
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b. Final affective weights

Fig. 9.  Input and result of a sample run of WNAH_Propagation 
 

3. Affect_Lookup component 
 

The resulting set of affect-scored concepts forms a sentiment lexicon 
which can be efficiently searched to lookup any word concept affect 
score. For instance, the affect score of concept care w.r.t. affect 
category approval can be directly identified as =1/12 by looking it up 
from ∇C. This is handled by the Affect_Lookup component, which 
makes use of legacy indexing techniques (e.g., B+ Tree [16]) to 
access and efficiently search ∇C. We do not describe Affect_Lookup 
further here since it comes down to a typical data lookup process. 

To sum-up, the LISA 2.0 module, through its Affect_Lookup 
component (which makes use of the sentiment lexicon produced by 
Back-Popagation and WNA_Propagation), allows to transform the 
problem of LSA from a (polynomial) graph navigation problem (with 
LISA 1.0) into a fast (logarithmic) data (lexicon) lookup problem. At 
the same time, LISA 2.0’s lexicon construction process (through 
Back-Popagation and WNA_Propagation) is fully automated and 
does not require any training or manual effort. 

 

IV. EXPERIMENTAL EVALUATION 
 

We first describe the experimental data and pre-processing in Section 
IV.A, before presenting and discussing polarity and affect evaluation 
results in Sections IV.B and IV.C respectively. In summary, results 
show that LISA 2.0 outperforms LISA 1.0 in both LSA quality and 
performance, while being on a par with existing supervised 
approaches (without the need for training or manual effort). 

 

A. Experiemtal Data 

We utilized the ANEW (Affective Norms for English Words) dataset 
[5, 63] to evaluate LISA 1.0 and 2.0. ANEW consists of 1024 words 
in the English language, manually rated in terms of pleasure, 
arousal, dominance in [5] as well as happiness, anger, sadness, fear, 
and dislike/disgust in [63]. Ratings were conducted by a large 
number of psychology students equally distributed between female 
and male candidates. Ratings for every dimension were provided on a 
9-point scale in [5] and on a 5-point scale in [63], which can be 
translated into integers (∈[1, 9] or ∈[1, 5] ) designating [min, max] 
expressiveness. For instance, pleasure was rated from no pleasure 

(=1) to extreme pleasure (=9), and arousal from not aroused (=1) to 
extremely aroused (=9). Here, we normalized ANEW’s ratings to 
obtain scores ∈[0, 1], representing them in a common referential 
which would be easier to compare with LISA and other existing LSA 
methods. As for the afore mentioned dimensions, we considered 
pleasure to describe word polarity (negative-to-positive), and 
happiness, anger, sadness, fear, and dislike/disgust to describe their 
respective affect categories3. Note that certain existing LSA methods, 
e.g., [4, 6, 32], produce polarity scores ∈[-1, 1], varying from 
absolutely negative (score=-1) to absolutely positive (score=1). The 
latter were also normalized to the [0, 1]. As for LISA, sentiment 
scores are inherently ∈[0, 1] following the weight cost model and 
navigation processes adopted in our approach. 

 

B. Polarity Evaluation 

We compared LISA 1.0 and 2.0 with ANEW and two recent polarity 
detection methods available online: SentiWordNet [4], and 
AlchemyAPI [32]. The results of alternative solutions were produced 
based on the sentiment scores extracted from their original studies 
(available online). For the two latter methods, we identified the 
ANEW words matching with the corresponding lexicon entries to 
produce the corresponding polarity scores. A snapshot of the results 
is provided in Fig. 10. The complete set of empirical graphs and data 
is provided online4. Results are summarized Table 1. Fig. 10 shows 
positive polarity scores w.r.t. ANEW, where words have been ranked 
following ANEW’s positive intensities (from highest to lowest). 
Similar graphs were produced for negative polarity scores and are 
provided online. Three main observations can be made. First, one can 
realize that LISA 2.0 produced results which are more consistently 
distributed following ANEW’s ratings compared with LISA 1.0. 
Second, LISA 2.0’s results show concentrations of score points 
around the ANEW reference score line, with clusters of points 
forming around positive polarity scores = 0.8, 0.64, 0.5, 0.37, and 
0.18 (highlighted in Fig. 10.b) following ANEW’s slope. This 
highlights LISA 2.0’s quality in producing scores which correlate 
more closely with ANEW’s manual ratings compared with LISA 1.0. 
Third, most alternative solutions which are supervised produce 
polarity scores which are relatively dispersed in the polarity space 
(cf. Fig. 10.c and d). This reflects their supervised learning nature, 
which produces results that are varied and reflective of the diversity 
of their training data, compared with LISA’s less dispersed and more 
rigorously structured (clustered) results, reflecting the structured 
nature of its LAG reference and graph computation process. 

Pearson Correlation Coefficient (PCC) results compiled in Table 
1 show that LISA 2.0’s performance is on a par with existing 
(supervised learning) approaches. IBM’s AlchemyAPI opinion 
mining engine produced the best results, distinctively surpassing the 
other approaches including LISA. 
 

C. Affect Evaluation 

We also compared LISA 1.0 and 2.0 with ANEW as well as two 
alternative affect analysis methods available online: EmoSenticNet 
[56], and Tone Analyzer [33]. A snapshot of the results is provided in 
Fig. 11. The complete set of empirical graphs and corresponding 
data is provided online5. Results are summarized Table 2. 

Fig. 11 shows dislike/disgust polarity scores w.r.t. ANEW, 
where words have been ranked following ANEW’s dislike intensities 
(from highest to lowest). Similar graphs were produced for the other 
four affective categories (i.e., happiness, anger, sadness, fear) and 

                                                           
3    We disregard arousal and dominance in our current experiments since they reflect 

behavioral rather than affective dimensions [10]. 
4    http://sigappfr.acm.org/Projects/LISA.http://sigappfr.acm.org/Projects/LISA 



are provided online. Results here reflect observations similar to the 
ones made earlier with polarity scores: i) LISA 2.0 produced results 
which are more evenly distributed along ANEW’s ratings compared 
with LISA 1.0, ii) LISA 2.0’s results show concentrations of score 
points around the ANEW score line, with clusters of points forming 
around dislike intensity scores = 0.67, 0.46, 0.32, 0.18, and 0.09 
(highlighted in Fig. 11.b), iii) IBM’s Tone Analyzer, which is a 
supervised learning solution, produced affect scores that are 
relatively dispersed in the affective space (cf. Fig. 11.d), compared 
with LISA’s clustered results, reflecting the former’s supervised 
learning nature and the diversity of the training data, iv) 
EmoSenticNet, which is a semi-supervised sentiment lexicon, 
produced discrete affect category labels (in the form of scores ∈{0, 
1}, where the score of a word that belongs to the category =1, 
otherwise, it is =0). It does not produce affective intensity levels as 
clearly reflected in the binary nature of its results (in Fig. 11.c). 
 

 
a. LISA 1.0 b. LISA 2.0 

 
c. SentiWordNet5 d. AlchemyAPI 

 

Fig. 10. Positive polarity scores w.r.t. the ANEW dataset 
 

Table 1.  Average PCC scores for positive and negative polarity 
 

 

 Positive Negative Avg. 
AlchemyAPI 0.7476 0.7477 0.7477 

SentiWordNet 3 0.4934 0.4934 0.4934 
LISA 2.0 0.4496 0.4496 0.4496 

SenticNet 3 0.4504 0.4343 0.4424 
LISA 1.0 0.2497 0.1872 0.2185 

 
PCC results compiled in Table 2 show that LISA 2.0’s 

performance, is on a par with existing supervised approaches. IBM’s 
Tone Analyzer results, while more varied and dispersed than LISA’s, 
slightly surpassed the latter’s effectiveness w.r.t. the ANEW 
experimental dataset. This highlights LISA’s potential as an 
unsupervised word-level LSA method capable of contending with 
existing supervised solutions. Yet, we clarify that LISA only 
performs word-level analysis at this stage, while Tone Analyzer is 
capable of sentence and document-level analyses.  

The reader can refer to [18] for a more detailed description of 
the experimental results, as well as the whole framework. 

                                                           
5   SenticNet results are close to those of SentiWordNet and are omitted here. 

 
a. LISA 1.0 b. LISA 2.0 

 

 
c. EmoSenticNet d. Tone Analyzer 

 

Fig. 11. Dislike/disgust affective scores w.r.t. the ANEW dataset 
 

Table 2.  Average PCC scores for happiness, anger, sadness, fear, and 
dislike/disgust affective categories 

 

 Happiness Anger Sadness Fear Dislike Avg. 
Tone Analyzer 0.1997 0.1488 0.1299 0.0756 0.1513 0.14106

LISA 2.0 0.2251 0.1667 0.0108 0.0807 0.1669 0.13004
EmoSenticNet 0.1512 -0.0369 0.0394 0.0838 0.0671 0.06092

LISA 1.0 0.1257 0.0697 0.0045 0.0338 0.0698 0.0607 
 

V.  CONCLUSION 

This paper introduces LISA, an unsupervised word-level knowledge 
graph-based LSA solution, which uses different variants of shortest 
path graph navigation techniques to compute and propagate affective 
scores in a lexical-affective graph (LAG). LISA was designed in two 
iterations, producing two modules: i) LISA 1.0 for affect navigation, 
and ii) LISA 2.0 for affect propagation and lookup. LISA 1.0 
suffered from the semantic connectivity problem shared by some 
existing lexicon-based methods, and required polynomial execution 
time. This led to the development of LISA 2.0, which i) processes 
affective relationships separately from lexical/semantic connections 
(solving the semantic connectivity problem of LISA 1.0), and ii) 
produces a sentiment lexicon which can be searched in logarithmic 
time (handling LISA 1.0’s efficiency problem). Experiments on the 
ANEW dataset show that LISA 2.0 outperforms LISA 1.0 in both 
LSA quality and performance, while being on a par with existing 
supervised solutions (without the need for training or manual effort). 

We are currently investigating phrase-level and sentence-level 
LSA, combining LISA’s functionality with context-level features 
such as word associations, valence shifters, and a dedicated emoji 
affect lexicon [22], to perform unsupervised LSA on short social 
media texts. In the near future, we aim to explore implicit semantics 
(a.k.a. latent semantics) [68] which can be inferred from the 
statistical analysis of word/phrase embeddings (feature vectors), 
following their co-occurrence in a corpus [29] (e.g., identifying that 
“failure” is related to “sadness” following their feature vector 
offsets). We aim to investigate the latter considering our LAG 
structure, combined with graph-based indexing approaches, e.g., [70, 
71], toward unsupervised knowledge-based and corpus-based LSA. 
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