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Abstract. In the past decade, there has been an increasing need for semantic-aware data search and indexing 
in textual (structured and NoSQL) databases, as full-text search systems became available to non-experts 
where users have no knowledge about the data being searched and often formulate query keywords which 
are different from those used by the authors in indexing relevant documents, thus producing noisy and 
sometimes irrelevant results. In this paper, we address the problem of semantic-aware querying and provide 
a general framework for modeling and processing semantic-based keyword queries in textual databases, i.e., 
considering the lexical and semantic similarities/disparities when matching user query and data index terms. 
To do so, we design and construct a semantic-aware inverted index structure called SemIndex, extending the 
standard inverted index by constructing a tightly coupled inverted index graph that combines two main 
resources: a semantic network and a standard inverted index on a collection of textual data. We then provide 
a general keyword query model with specially tailored query processing algorithms built on top of 
SemIndex, in order to produce semantic-aware results, allowing the user to choose the results’ semantic 
coverage and expressiveness based on her needs. To investigate the practicality and effectiveness of 
SemIndex, we discuss its physical design within a standard commercial RDBMS allowing to create, store, 
and query its graph structure, thus enabling the system to easily scale up and handle large volumes of data. 
We have conducted a battery of experiments to test the performance of SemIndex, evaluating its 
construction time, storage size, query processing time, and result quality, in comparison with legacy 
inverted index. Results highlight both the effectiveness and scalability of our approach. 

 

Keywords: Semantic Queries, Inverted index, NoSQL indexing, Semantic Network, Semantic-aware data 
processing, Textual databases. 

 

 

1. Introduction 
Processing keyword-based queries is a fundamental problem in the domains of Information Retrieval (IR) and 
more recently textual DataBase (DB) search, where several studies have been conducted to develop effective 
keyword-based search techniques, e.g., [10, 31]. In most existing approaches, standard containment keyword 
queries are supported by a full-text index, namely an inverted index which is considered as one of the most 
useful full-text indexing techniques for large textual collections [8], supported by many DB Management 
Systems (i.e., DBMSs) [2, 58], and recently extended toward semi-structured [1, 10] and NoSQL data [37, 93].  

Inverted indexes associate each term (word/expression) in the text with a list of pointers to the data objects 
(e.g., data records, or documents) that contain the term, in the form of a list of (term, objectIDs[]). Then when an 
enquiry is performed, the index is queried with every term within the user’s request, identifying all data objects 
that contain the query terms in just one search operation [52, 60]. Nonetheless, the standard inverted index, only 
supports exact term matching and cannot deal with cases of lexical and/or semantic similarities/relationships 
among query/data terms (despite the use of basic language pre-processing capabilities, like stemming or stop 
word removal, which only help support basic lexical disparities among terms). 

 

1.1.  Motivation Scenarios 

To illustrate this, consider a dataset Δ from a movie database, as shown in  Table 1. Each movie in Δ, identified 
with an id, is described with some text, including the movie title, year and plot. An extract of Δ’s inverted index 
is shown in  Fig. 2.a. For queries “sprint car racer” and “sound of music”, the search results are movies O2 and 
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O3 respectively, which texts contain occurrences of each of the corresponding query’s terms. However, if the 
user wants to search for a particular movie but cannot recall its exact title or plot description, she will likely use 
her own terminology in choosing query terms which (we naturally assume) are lexically and/or semantically 
similar to the movie’s description terms, e.g., “voice of melody” or “auto rallying”. Such terms might not 
exactly match those used to describe (and index) the movie objects (which is the case in our example), and thus 
will miss movies O2 and O3 as relevant results. In addition, the movies might not be extensively described or 
well-tagged in the database, or might not be described using the same attributes (e.g., in a NoSQL or semi-
structured database), which would also result in missing relevant search results. Similar scenarios and needs can 
be identified in various areas, e.g.: 

 

• A database storing research proposals granted by different funding agencies (describing the research itself, 
the granting institutions, and the involved researchers' expertise): Could a scientist user easily retrieve 
information related to her own research? Could a non-scientist user, e.g., a company manager, with a 
specific production problem, find the projects, institutions, or researchers able to solve her problem?  

• A database storing information related to airline disasters (describing airplanes, crashes, investigations, 
findings, and so on): Could an investigator efficiently retrieve information related to a given new case 
investigation path?  

 

Table 1. Sample Movie data collection extracted from IMDB1. 
 

ID Textual content 

O1 
 

Street Kinds (2008): Tom Ludlow is a ruthless undercover cop. Locating his stolen car at a 
gang's hideout, Tom storms in to find thugs getting high on Zen. He hears a light voice…  
 

O2 Days of Thunder (1990): Cole Trickle is a young racer from California with years of 
experience in open-wheel racing winning championships in sprint car racing…  

O3 Sound of Music, The (1965): Maria had longed to be a nun since she was a young girl, yet 
when she became old enough discovered that it wasn’t at all what she thought... 

 

1.2.  Challenges 

In the above scenarios, the textual descriptions may involve terms with multiple meanings (homonymy, e.g., 
term “paper” could mean scientific publication or paper sheet), terms implied by other terms (metonymy, e.g., 
term “wings” implies airplane, “suit” implies a business person), several terms having the same meaning 
(synonymy, e.g., terms “plane”, “airplane”, and “aircraft”), or terms related by some semantic relation (e.g., 
hypernymy (isA), holonymy (partOf), such as plane-isA-machine, or wing-partOf-plane). Hence, when the user 
needs to search for information using traditional keyword queries based on typical inverted indexes, she will 
have to manually and iteratively formulate multiple keyword combinations to be evaluated through the inverted 
index, verifying the results and re-formulating the query accordingly at each iteration, in the hope of finally 
retrieving relevant results, which is naturally time and effort consuming, as well as error prone.  

Solving this issue has been the main motivation for developing so-called semantic-aware or knowledge-
aware (keyword) query systems, which have emerged since the past decade as a natural extension to traditional 
containment queries, encouraged by (non-expert) user demands. Most existing works in this area (cf. 
Background in Section  8) have incorporated semantic knowledge at the query processing level, to: i) pre-
process queries using query rewriting/relaxation and query expansion [19, 29, 62], ii) disambiguate queries 
using semantic disambiguation and entity recognition techniques [19, 54, 70], and/or iii) post-process query 
results using semantic result organization and re-ranking [70, 81, 95]. Yet, various challenges remain unsolved, 
namely: i) time latencies when involving query pre-processing and post-processing [29, 62], ii) complexity of 
query rewriting/relaxation and query disambiguation requiring context information (e.g., user profiles or query 
logs) which is not always available [33, 56], and iii) limited user involvement, where the user is usually 
constrained to providing feedback and/or performing query refinement after the first round of results has been 
provided by the system [21, 67]. 

In this work, we adopt another alternative: having an adapted index structure able to integrate and extend 
textual information with domain knowledge (not only at the querying level, but rather) at the most basic data 
indexing level, providing a semantic-aware inverted index capable of supporting semantic-based querying, and 
allowing to answer most challenges identified above.  
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1.3. Index Design Strategy 

In short, our proposal consists in combining two resources, a textual data collection (represented as a traditional 
inverted index), and a semantic knowledge base (represented as a traditional semantic network), in order to build 
a stand-alone semantic-aware inverted index structure, called SemIndex. Yet, this can be performed following 
three different strategies: 
 

1) Including semantic knowledge into an inverted index. The main idea consists in adding an additional entry in 
the index structure to designate semantic concepts [50] or to link related concepts together [101]. In other 
words, the traditional (term, objectIDs[]) index is extended toward some form of (term, context, objectIDs[]) 
structure where contexts designate the semantic meanings of terms (expressed as: concepts, senses, or 
references) extracted from the knowledge base. While this approach seems simple and straightforward, it can 
nonetheless lead to a potential explosion in the index size depending on the number of concepts in the 
knowledge base, thus worsening querying capabilities and system performance. 

2) Including full-text information into the semantic knowledge base, i.e., adding textual terms to the knowledge 
base as concept instances, linked using dedicated semantic relationships [11, 92]. For instance, adding new 
triples of the form term_occurs-in-context_concept to the knowledge base, such that each term can be related 
to a certain ontological concept, when used in a certain context. Yet, one can clearly realize this approach 
risks exploding the knowledge base size, depending on the number of terms in the text corpus being 
semantically enhanced. Moreover, extra processing overhead is required to link terms with concepts using 
meaningful semantic relationships in the knowledge base. 

3) Building an integrated hybrid structure, i.e., somehow combining the powerful functionalities of inverted 
indexing with semantic processing capability to allow semantic aware querying, while avoiding the above 
mentioned limitations of alternative semantic indexing strategies. In our current study, we investigate the 
latter approach to fully and efficiently support full-text semantic search. Enclosing semantic knowledge 
directly into the inverted index, and doing it offline – prior to online query execution, underlines major 
potential benefits over existing methods namely: i) providing more opportunities toward both speed-ups and 
semantic-based filtering, thus minimizing the need for sophisticated (and time/effort consuming) query pre- 
and post-processing, ii) finding semantically relevant results without having to perform expensive query 
disambiguation, iii) allowing end-users to be involved in the whole process: during initial query writing 
while manipulating the semantic-aware index, and then performing query rewriting (if needed). 

 

1.4.  Overall Architecture and Organization 
 

 

 
 

 

Fig. 1.  Overall architecture of SemIndex framework. 
 

This paper describes how to design and construct SemIndex, and how to use it to process semantic-aware 
queries. An extended query model with different levels of semantic awareness is also defined, so that both 
semantic-aware queries and standard containment queries are processed within the same framework.  Fig. 1 
depicts the overall framework of our approach and its main components. Briefly, the Indexer manages the index 
generation and maintenance, while the Query Processor processes and answers semantic-aware (or standard) 
queries issued by the user using SemIndex component.  

A summary description of SemIndex’s architecture was given in [23]. This paper adds: i) an extended 
mathematical description of SemIndex’s logical design and dedicated graph model, ii) an extended description of 
SemIndex’s algorithms for index construction and query processing, iii) SemIndex’s physical design using an 
extension of SQL used within a standard commercial Relational DBMS (i.e., RDBMS), iv) detailed complexity 
analyses covering index construction and querying algorithms, v) extensive experimental results evaluating 
SemIndex’s build time, storage size and characteristics, query processing time, and quality of returned results in 
comparison with legacy inverted index, as well as vi) an extended discussion of the state of the art solutions. 



The rest of this paper is organized as follows. Section  2 described input resources required to build 
SemIndex. Section  3 introduces SemIndex’s the logical design and data graph model, and develops the index 
construction process. Section  4 describes SemIndex’s physical design and implementation within a standard 
RDBMS. Section  5 presents our query model for designing and processing semantic-aware queries. Our 
algorithms’ complexity analysis is provided in Section  6. Experimental results evaluating the different aspects of 
SemIndex construction and querying are presented in Section  7. Section  8 briefly reviews the related works in 
semantic full text search, with special emphasis on semantic indexing techniques, before concluding the paper 
with ongoing works and future directions in Section  9. 

 

2. Input Resources 

2.1. Textual Data Collection 
In our study, a textual data collection can be a set of documents, or tuples in a relational or NoSQL database, as 
shown in  Table 1. More formally: 
 

Definition 1 - Textual Data Collection: A textual data collection Δ (i.e., textual collection for short) is 
represented as a relation defined over a set of attributes A = {A1, …, Ap} where each Aj is associated with a set of 
values (such as strings, numbers, BLOB, etc.) called the domain of Aj and denoted by dom(Aj). Thus, given a 
relation Δ defined over attributes A, each data object (record) Oi ∈ Δ having a unique identifier id(Oi) is denoted 
as Oi a1, …, ap1, where aj ∈ dom(Aj). Each aj from Oi is denoted as Oi.aj • 
 

Given a textual data collection Δ, an inverted index (also referred to as a posting file, or inverted list) built 
upon Δ, in its simplest form, is a sorted list of index terms and object identifiers from Δ, as shown in  Fig. 2.a. 
More formally: 

 

Definition 2 - Inverted Index: Given a textual data collection Δ, an inverted index built on Δ, designated 
as InvIndex(Δ), is a structure of the form (dom(A), IDs, f) where: 
 

- dom(A) designates the set values within the domains of all attributes A ∈ Δ. Considering text-only domains, 
values come down to textual tokens, i.e., terms (words/expressions). 

- IDs designates the set of identifiers of the objects in Δ, i.e., IDs = {id(Oi)} ∀ Oi ∈ Δ 
- f is a function mapping each term ∈ dom(A) to a list of object identifiers IDs[] designating the term’s 

occurrence locations in Δ, i.e., IDs[] = id(Oi) / term ∈ any Oi .aj  
 

A term used as textual token in the inverted index is referred to as index term, whereas the list of data object 
identifiers, i.e., IDs[], mapping to each index term is referred to as the term’s posting list • 
 

 
 
 
 
 

Term  Object IDs[ ] 
“car”  O1, O2 
“light”  O1 

“sound”  O3 
“steel” O1 
“zen”  O1 
…  …  

 

 

a. Inverted index InvIndex(Δ). 

 

 

b. SemIndex graph GΔ


 representing InvIndex(Δ). 
 

 

Fig. 2. Sample inverted index (a) and corresponding SemIndex graph (b), based on the textual collection Δ in  Table 1. 
 

 Fig. 2 shows an extract from an inverted index built on the sample movie database in  Table 1, where data 
objects O1, O2, and O3 have been indexed using index terms extracted from the database, sorted in alphabetic 
order. It is important to note that this simple index is typically used to answer containment queries [99], aiming 
at finding data objects that contain one or more terms. When a keyword query mapping two or more index terms 
must be processed, the corresponding posting lists are read and merged. The index terms and their mappings 
with the data objects can be generated using classical Natural Language Processing (NLP) techniques (including 
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stemming, lemmatization, and stop-words removal) [65], which could be either embedded in the DBMS or 
supplied by a third-party provider. 

In its more elaborated form [8, 17], a posting list may also store along with each object identifier: the term 
frequency (tf), a list of positions where the given term appears (e.g., the element/attribute in which the term 
appears in semi-structured text, such as XML [71, 88]), and/or other features including whether the term is 
capitalized, is part of a title, is in the URL, etc. These extra data are kept for advanced functionality like phrase 
searching and result ranking, which we will address in an upcoming study.  
 

2.2. Semantic Knowledge Base 
In the Natural Language Processing (NLP) and Information Retrieval (IR) fields, semantic knowledge bases 
(i.e., ontologies, thesauri and/or taxonomies, such as WordNet [64], Roget’s thesaurus [98], and Yago [42]) 
provide a framework for organizing words/expressions into a semantic space [18]. A knowledge base1 usually 
can be represented as a semantic network made of a set of entities representing semantic concepts or groups of 
words/expressions, and a set of links between the entities, representing semantic relationships (synonymy, 
hyponymy, etc.). In this study, we adopt a structure based on graphs to model semantic knowledge bases. In such 
a structure, entities are represented as vertices, and the semantic relationships between entities are modeled as 
directed edges. Formally:  
 

Definition 3 - Semantic knowledge base: A semantic knowledge base KB (i.e., knowledge base for short) 
can be represented as a semantic network graph, also known as knowledge graph, GKB(V, E, L, fV, fE) where: 

− V is a set of vertices (nodes), denoting entities in the knowledge base. To illustrate this with WordNet for 
example, V includes both: i) sense nodes, representing semantic senses (synsets) with glosses, and ii) term 
nodes, representing literal words/expressions 

− E is a set of directed edges, an edge consisting of an ordered pair of vertices in V.  
− L is a set of edge labels designating semantic/lexical relationships. For WordNet, L includes: 

o Semantic relationships between concepts, e.g., hyponymy, hypernymy, meronymy, etc. 
o Semantic relationships between concepts and terms, namely has-sense and has-term (e.g., in  Fig. 3, 

word “Zen” has-sense S1, and S1 has-term “Zen”)  
o Lexical relationships between terms, namely derivation (e.g., term “Zen” derives term “Buddhist 

Zen”, and “Buddhist Zen” is-derived-from “Zen”) 
− fV is a function defined on V, representing the string value of each node in V. For WordNet, string values 

include: i) glosses/definitions, when dealing with sense nodes, and ii) and literal words/expressions,  
− fE is a function defined on E, assigning a label from L to each edge in E. Multiple edges may exist 

between the same pair of vertices when dealing with term nodes, which makes GKB a multi-graph • 
 

 

 

 

a. Sample GKB graph representing a KB extract from WordNet. 
 

 

 

Term Sense IDs[] 
“acid” S1, S3 

“clean” S2 
“light” S2 
“lsd” S3 

“lysergic” S1, S3 
… … 

 

b. Extract of inverted index 
InvIndex(GKB) connecting terms in 
GKB with corresponding senses (to 

speed up term/synset lookup) 
 

 

Fig. 3.  Extract from the knowledge graph of WordNet, with corresponding inverted index. 
 

An extract from the WordNet ontology is shown in  Fig. 3, where S1, S2 and S3 represent senses (i.e., 
synsets), and their string values (i.e., the synsets’ glosses/definitions), and T1, T2, …, T11 represent terms, and 
their string values (i.e., literal words/expressions) shown alongside the nodes. Given that most semantic/lexical 
relationships are symmetrical (hyponymy/hypernymy, meronymy/holonymy, has-sense/has-term, etc.), and given 
that a relationship cannot exist without its symmetrical counterpart, we simplify our graph model by 
representing each couple of symmetrical relationships between senses and/or terms with one edge having 
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opposite directions (instead of two edges), labeled with the names of the symmetrical relationships. For 
instance, if one meaning of a term belongs to a synset, it is represented with one edge between the 
corresponding sense (synset) node and the term node with opposite directions, labeled has-sense/has-term. 

An inverted index InvIndex(GKB) can be subsequently built for the textual tokens of each GKB entity (i.e., 
string values of term nodes and sense nodes, cf.  Fig. 3.b) to speed up term/sense lookup when creating and then 
querying the integrated SemIndex structure (cf. Section  3). 
 

3. SemIndex Logical Design 
In this section, we introduce the logical design techniques of SemIndex. As mentioned previously, SemIndex 
adapts tight coupling techniques to index the textual data collection and the semantic knowledge base in one 
single index structure, creating a single set of posting lists for all searchable content in both input resources. In 
the following, we first present SemIndex’s graph model, and then describe its construction process. 
 

3.1. SemIndex Graph Model 
To combine the resources, we define SemIndex as an extended knowledge graph: 
 

Definition 4 -  SemIndex graph: Given an input textual collection Δ and an input knowledge base KB, we 

define SemIndex(Δ, KB) as an extended knowledge graph S IG


 (Vi, Vd, Ei, Ed, L, fV, fE, fW) where:  
− Vi is a set of index nodes, denoting i) entities (senses and terms) from KB, and ii) index terms from Δ: 

o iV + ⊆ Vi designates the subset of term nodes designating searchable terms1 in S IG


, i.e., nodes 
referring to terms from KB and index terms from Δ (represented visually as circle nodes) 

o #
iV ⊆ Vi designates the subset of sense nodes in S IG


referring to senses from KB (represented 

visually as double circle nodes) 
Naturally, Vi = iV + ∪ #

iV  

− Vd is a set of data nodes, denoting data objects from Δ (represented visually as square shaped nodes2) 
− Ei is the set of edges between index nodes, called index edges, defined as ordered pairs of index nodes in 

Vi (represented visually as straight arrows) 
− Ed is the set of edges linking index nodes with data nodes, called data edges (represented visually as 

dashed arrows) 
− L is a set of edge labels including: 

o Index edge (Ei) labels which represent semantic/lexical relationships between index nodes (e.g., 
hyponymy, meronymy, has-sense, etc.) 

o A single data edge (Ed) label: contained, designating the containment relationship between term 
nodes in iV + and data nodes in Vd 

− fV is a function defined on Vi 
 
∪

  
Vd, representing the string value of each node in Vi 

 
∪

  
Vd 

− fE is a function defined on Ei ∪ Ed, assigning a label from L to each edge in Ei ∪ Ed 
− fW is a weighting function defined on the nodes in Vi 

 
∪

  
Vd  and the edges in Ei ∪ Ed. The weights will be 

used in selecting and ranking semantic-aware query results, described in Section  5 • 
 

A sample SemIndex graph is shown in  Fig. 6 (cf. Section  3.3), built based on the textual collection Δ from  Table 

1 (where GΔ


 is reported in  Fig. 4.a) and the KB extract in  Fig. 3 (where KBG


 is provided in  Fig. 4.b). It comprises 
3 data nodes (O1 – O3), 3 index sense nodes (S1 – S3), and 11 index term nodes (T1 – T11) along with data and 
index edges. The SemIndex graph construction process is described in detail in the following subsections. 
 

3.2. Indexing Input Resources 
Building our SemIndex graph comes down to: i) generating two separate graph representations, for each of the 
input resources (textual collection and knowledge base) following our SemIndex graph model, and then ii) 
combining the resulting graphs into a single SemIndex graph structure. 

Given an input textual collection Δ, we use a simple conversion function noted SemIndex(Δ) to produce a 

SemIndex graph representation of Δ designated G Δ


= SemIndex(Δ). It comes down to first generating Δ’s 

inverted index InvIndex(Δ) (cf.  Definition 2 -), which is straightforwardly represented as a SemIndex graph (cf. 

 Definition 4 -) G Δ


 where: i) the set of index nodes Vi represents index terms in Δ (searchable term nodes), i.e., 
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Vi  = iV + (since Δ does not contain senses, i.e., #
iV = φ), ii) the set of data nodes Vd represent data objects in Δ, 

and iii) the set of edge labels L includes one single label: contained, underlining the containment relationship 
between index nodes in Vi and data nodes in Vd. The weighting function fW assigns weights to data nodes and 

data edges in G Δ


 based on certain strategies (related to the importance/frequency/diversity of terms, cf. Section 

 3.3) within the textual collection. A sample G Δ


 graph representing our running example inverted index based 
on the textual collection in  Table 1 is shown in  Fig. 4.a.  

 
 

 
 
   

a. Textual collection 

SemIndex graph: GΔ


 
 
 
 
 
 
 
 
 
 
 
 

 
b. Knowledge SemIndex 

graph: KBG
  

 

 

Fig. 4.  SemIndex graph representations of input resources. 1 
 

Similarly, given a semantic knowledge base KB, represented as a knowledge graph GKB, we use a simple 

conversion function noted SemIndex(GKB) to produce a SemIndex graph representation of GKB designated: KBG


= 
SemIndex(GKB). GKB’s inverted index InvIndex(GKB) is generated and then straightforwardly represented as a 

SemIndex graph KBG


 which inherits the properties of GKB, in such a way that: i) the set of index nodes Vi 
represents all nodes in GKB, and includes term nodes (

iV + ) and sense nodes ( #
iV ), ii) the set of data nodes Vd is 

empty (since KB does not contain data objects), and iii) the set of edge labels L includes all index edge labels 
designating semantic/lexical relationships in GKB (e.g., hyponymy, meronymy, has-sense, derivation, etc.). The 

weighting function fW assigns weights to index nodes and index edges in KBG


 based on node/edge properties in 

the semantic graph (e.g., based on the type of the semantic/lexical relationship, cf. Section  3.3). A sample KBG


 
graph representing our running example knowledge base in  Fig. 3.a is shown in  Fig. 4.b. 

 

3.3. Coupling Resources to Build SemIndex 
Producing the combined SemIndex graph structure SIG


 comes down to coupling both GΔ


 and KBG


, noted as: SIG



= GΔ


 ⊕ KBG


, in such a way that: i) the set of index nodes SIG


.Vi  =  GΔ


.Vi ∪ KBG


.Vi, including corresponding 

index edges from KBG


 such that2 SIG


.Ei ≅ KBG


.Ei, ii) the set of data nodes SIG


.Vd  = GΔ


.Vd, including 

                                                 
1 The missing term problem is discussed in Section  3.4.  
2 The set of index edges in SIG


 is not exactly equivalent to that in KBG


 since it might contain additional index edges connected with 

index terms in GΔ


 which do not map to any term node in KBG


. This is discussed as the missing terms problem in Step 4 of 
algorithm SemIndex_Construction (cf.  Fig. 5). 

Data node Term 
Index node

Synset 
index node

Contained data/ 
edge relationship

Lexical/semantic 
index edge relationship

Missing 
term1 



corresponding data edges from GΔ


such that SIG


.Ed  = GΔ


.Ed, and iii) the set of edge labels SIG


.L = GΔ


.L ∪ KBG


.L 
including all index node semantic/lexical relationships as well as the contained data edge label. The weighting 
function fW compiles weights for all nodes and edges in the graph, as described in the following. 

 
 

Algorithm SemIndex_Construction 
 
Input:  Δ         // Textual data collection  

 KB       // Semantic knowledge base  
 W          // Weighting function parameters                 

Ouput: SIG


  // SemIndex graph  
 
Begin 

Step 1: Build InvIndex(∆) to construct GΔ


                                                               

Step 2: Build InvIndex(GKB) to construct KBG


                                                         

Step 3: Coupling GΔ


 and KBG


 into SIG


 by:                                                            

3    1. Mapping & Merging searchable term nodes in . iG V +Δ


and .KB iG V +


          

4    2. Including sense nodes from #.KB iG V


                                                           

5    3. Including data nodes from GΔ


.Vd                                                                 
Step 4: Run MissingTerms_Linkage algorithm    
                    // Connect Missing terms in SIG

  

Step 5: Assign weights to edges & data nodes in SIG


  
             - According to parameters W and weighting function  fW                                   

 Step 6: Aggregate edges between each pair of nodes in SIG


                              

Step 7: Remove from SIG


:                                                                                      

    1. Labels from all edges: SIG


.E                                                                   

    2. String values from all nodes except searchable terms: .SI iG V +


               

Return SIG


                                                                                                                                    
3 

End 
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a. Pseudocode of SemIndex_Construction algorithm.  
 

Fig. 5.  Pseudocode of SemIndex_Construction algorithm. 
 

The pseudo-code of the algorithm to construct SIG


 consists of 7 main steps as shown in algorithm 
SemIndex_Construction in  Fig. 5.a. Each step is detailed as follows: 

 

− Step 1: Given an input textual collection Δ, build the corresponding inverted index InvIndex(Δ), and 

generate the corresponding GΔ


 graph as previously defined. 
 

− Step 2: Receiving a semantic knowledge graph GKB representing the semantic knowledge base KB 
provided as input, build an inverted index InvIndex(GKB) for the string values of each KB entity (i.e., 
sense nodes and term nodes, in order to access them more efficiently during resource coupling, and later 

during query execution), and then construct the corresponding KBG


 graph as illustrated previously. 
 

− Step 3: Combine the two SemIndex graphs into a single graph structure SIG


. To do so, we map and then 

merge all searchable term nodes in GΔ


, i.e., GΔ


. iV + , with searchable term nodes in KBG


, i.e., KBG


. iV + , as 
follows: 

1. For each pair of searchable term nodes in GΔ


. iV +
 and KBG


. iV + , if their string values are equal, then 

remove one of them and merge all the connected edges.  

2. Sense nodes in KBG


 are kept the same in SIG


, i.e., SIG


. #
iV  = KBG


. #

iV , but are connected with the 

corresponding searchable term nodes SIG


. iV +  

3. Data nodes in GΔ


 are kept the same in SIG


, i.e., SIG


.Vd  = GΔ


.Vd, but are connected with the 

corresponding searchable term nodes SIG


. iV +
 using the contained data edge relationship.  

 

 Fig. 6 shows the result of combining the two SemIndex graphs of the sample textual collection and the 
WordNet extract used in our running example. 

 



− Step 4: Searchable terms from GΔ


. iV +
 which do not map to any searchable term in KBG


. iV +

 can exist, 
which we identify as missing terms (e.g., term “steel” in  Fig. 4). To solve the missing terms problem, we 
create links from each missing term to one or more closely related terms, connecting the missing and 
related terms using new index edges labeled related-to. The process is described in detail in Section  3.4. 

 

 
 

 

 

 

 

  

a. SemIndex graph before removing edge labels and string values. 
 

b. Final SemIndex graph representation. 
 

Fig. 6.  SemIndex graph SIG


obtained after coupling the data collection and the knowledge base graphs in  Fig. 4. 
 

− Step 5: Assign weights to edges and textual objects, according to fW. The weights will be used to select 
and rank query results. Different weighting functions can be used, adopted from string indexing in IR [8, 
50], similarity queries [57, 80], XML and graph-based processing [69, 89], and semantic processing [62, 
84], which we briefly describe in the Appendix1.  

 

− Step 6: If an ordered pair of vertices is connected by two or more edges, it merges the edges and 

aggregates the weights. This means that SIG


 becomes a graph, when generating SemIndex, rather than a 
multi-graph, in order to simplify query processing. 

 

− Step 7: Finally, remove edge labels and string values of all nodes in SIG


 except for iV + (searchable term 
nodes), since all other nodes are not required for processing semantic queries. Removing node string 
values helps improve SemIndex’s scalability in terms of size, construction time, and query processing 
time (cf. experiments in Section  7).  

 

 Fig. 6 illustrates two instances of our running example SIG


: including edge and node labels (preliminary 
version, cf.  Fig. 6.a), and excluding edge and node labels except for searchable term nodes (final version, cf. 
 Fig. 6.b). Edge and node weights were omitted for clearness. 
 

3.4. Handling Missing Terms 
Connecting unmapped searchable term nodes between GΔ


. iV + and KBG


. iV + , which we identify as missing terms 

in SIG


, can be handled using an adaptation of distributional thesauri construction methods, e.g., [75, 94], to 
allow mining the syntactic/lexical relatedness between the missing terms and index terms. Note that a 
distributional thesaurus is a thesaurus generated automatically from a given textual corpus (such as the Brown 
corpus2 [36], COCA [32], or even the textual collection Δ being indexed), by finding words that co-occur 
together or that have similar contexts in the corpus.  

To that end, we introduce algorithm MissingTerms_Linkage in  Fig. 7. It accepts as input: the SemIndex 

graph SIG


 , a reference text corpus C, as well as two input parameters: c1 and c2 designating respectively the co-
occurrence window size and the number of top-ranked terms needed to identify related terms. For each missing 

term ti in SIG


 (cf.  Fig. 7, line 1), the algorithm creates a relatedness vector RV(ti) (line 3) to store the co-
occurrence frequencies of surrounding terms. It identifies a window of size c1, consisting of c1 terms occurring 

                                                 
1  We report the detailed description and evaluation of the weighting scheme and its different variants to a dedicated study. 
2  We use the Brown text corpus in our current study since it is general purpose and widely known in the literature. 



to the left and right of the missing term in the reference corpus and which also exist among the index terms of 

SIG


 (line 4), and adds all window term frequencies to the relatedness vector (line 5). For example, suppose 
“steel” is a missing term, i.e., it does not appear in the WordNet lexicon extract but appears in object O1 of the 
data collection (cf.  Fig. 4). Considering window size c1 = 21, using the data collection itself Δ as reference 
corpus, then terms “cop”, “locate”, “car” and “gang” would be in the surrounding window of “steel”, and hence 
the relatedness score between “steel” and all these terms is increased. Once the vector has been obtained, we 
normalize vector scores w.r.t.2 overall maximum term co-occurrence frequency (line 6), and identify the c2 top-

ranked terms of the missing term ti, which are considered as the most related terms to ti in SIG


 (line 7). Then, a 

link is created to connect ti’s term node with each top-ranked term tk node in SIG


. These links are represented as 

index edges in SIG


.Ei labeled: occurs-with (cf.  Fig. 6 where term “steel” links with “car”, considered as its most 
related – top-ranked, i.e., highest co-occurrence frequency – term3).  
 

 

Algorithm MissingTerms_Linkage 
 

Input:  SIG


         // SemIndex graph 
              C            // Reference text corpus 

 c1, c2       // Input parameters: window size and top-ranked terms                 

Ouput: SIG


      // SemIndex graph with missing term links 
 

Begin 

For each missing term ti in SIG


                           
 {                                                                                                  

       Create RV(ti) from C given SIG


    // Relatedness vector for term ti      
  

       For each term tj in window(ti, c1, C)                        
 

       { Add Freq(tj) to RV(ti)  }                                                         
              
       RV(ti) = RV(ti) / Max(RV(ti))   // Normalizing RV(ti) scores       
             
       Ti = set of c2 top-ranked terms in RV(ti)                                  
      
       For each term tk in Ti                                                                  

       {   Create link between term nodes ti and tk in SIG


                
            Label the link “occurs-with” }                                                 

}                                                                                                       

Return SIG


                                                                                          
End 
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Fig. 7.  Pseudocode of MissingTerms_Linkage algorithm. 
 
The effectiveness of algorithm MissingTerms_Linkage depends on the number of missing terms, which in 

turn depends on the semantic coverage and expressiveness of the knowledge base used and its relatedness with 
the input textual collection (e.g., using a medical knowledge base to semantically map terms in a textual 
collection describing sports events will obviously lead to a substantial number of missing terms in the resulting 
SemIndex graph, thus negatively affecting index construction performance, cf. experiments in Section  7). [9, 91] 
 

4. SemIndex’s Physical Design and Implementation in a Standard RDBMS 

In this section, we show how to extend SQL in order to easily setup the graph of SemIndex on disk as a set of 
relational tables4, and then formulate corresponding queries. The aim of building SemIndex on an off-the-shelf 
RDBMS, although it can be built directly on top of the file system, is to take advantage of the fact that RDBMSs 
are capable of efficiently storing and handling large volumes of data. This also allows us to benefit from other 
RDBMS features including concurrency control, as well as index and memory management on the database. 
 
 
 

                                                 
1  A window size of 2 (or 3) is often utilized in the word context analysis and disambiguation literature [9, 91], and is considered to 

produce good results, compared with larger window sizes which include noisy terms thus lowering performance. 
2   with respect to 
3   A missing term can link with more than one (top-ranked) related terms, if more than one related terms were ranked with the same 

maximum co-occurrence frequency with the missing term.  
4    Note that SemIndex can be created using legacy SQL, without the use of our extended SQL specification commands, which we 

introduce to simplify the set-up of the index structure. 



4.1. Extending SQL 
 

To simplify creating SemIndex, we propose three specification commands1, following the DDL (Data Definition 
Language) command style: WEIGHTING MODEL, KNOWLEDGE MODEL, and SEMANTIC INDEX.  
 

4.1.1. Weighting Model 
 

A weighting model allows to store and handle SemIndex edge and node weights (cf. Section  3.3) and can be 
defined using the following statement: [46] 
 

<Define weighting model statement>::= 
[CREATE | ALTER] WEIGHTING MODEL <weighting name> 
ON DATA EDGE 

[CONTAINMENT [<alg name>] [({<param list>})] [DEF <value>][,]] 
ON INDEX EDGE 

[SYNONYMY [<alg name>] [({<param list>})] [DEF <value>][,]] 
[HYPONYMY [<alg name>] [({<param list>})] [DEF <value>][,]] 
[MERONYMY [<alg name>] [({<param list>})] [DEF <value>][,]] 
[HYPERNYMY [<alg name>] [({<param list>})] [DEF <value>][,]] 
[HOLONYMY [<alg name>] [({<param list>})] [DEF <value>][,]] 
[SENSE [<alg name>] [({<param list>})] [DEF <value>][,]] 
[SENSEINV [<alg name>] [({<param list>})] [DEF <value>][,]] 
[DERIVATION [<alg name>] [({<param list>})] [DEF <value>][,]] 
[OTHERS [<alg name>] [({<param list>})] [DEF <value>]] 

ON INDEX|DATA NODE 
[<alg name>] [({<param list>})] [DEF <value>] 

 
# Creating a sample weighting model: 
 
CREATE WEIGHTING MODEL myweighting 
ON DATA EDGE 

CONTAINMENT tfidf 
ON INDEX EDGE 

SYNONYMY alg1(0.5), 
HYPONYMY alg1(1), HYPERNYMY alg1(1),
MERONYMY alg1(2), HOLONYMY alg1(2),
OTHERS alg1(2.5) 

ON DATA NODE 
DEF 1 

ON INDEX NODE 
DEF 1 

 

This command creates and/or updates a weighting scheme called <weighting name>, based on the different 
weighting algorithms associated to data/index edges and nodes. Each algorithm indicated in the <alg name> 
clause must be individually developed and integrated into the SemIndex stored procedures. The parameters of 
each algorithm are optional and depend on the particular algorithm specified. All required parameters are 
included in the <param list> nested in the <alg name> clause. The optional <DEF value> allows to assign an edge 
or a node a given default parameter value. For instance, the above command (to the right) could be issued by a 
user to create a sample weighting scheme considering that: i) all movies are equally important, ii) synonymy is 
more important in weighting index edges than all other semantic relationships, and iii) hypernymy/hyponymy 
relations are more important in weighting index edges than holonymy/meronymy relations. Here, tfidf and alg1 
are two predefined algorithms to compute statistical and structural information related to data edges and index 
edges respectively, such that alg1 takes different input parameters whose increasing values produce decreasing 
weight scores, and def 1 assigns default weight value 1 to data and index nodes. An existing weighting model, 
named <weighting name>, can be dropped as follows: 
 

<Drop weighting model statement>::= DROP [WEIGHTING MODEL] <weighting name> 
 

4.1.2. Semantic Knowledge Model 
 

A semantic knowledge model allows to store and handle the semantic knowledge base in the RDB, and can be 
defined using the following command statement. This command allows to create and/or update a knowledge 
base model called <knowledge name>, based on a set of relations or a given SQL script. For instance, in order 
to use WordNet as the reference knowledge base, the user can issue the following statement (to the right). 
 
 

<Define knowledge model statement>::= 
[CREATE | ALTER] KNOWLEDGE MODEL <knowledge name> 
USING [{<relations list>} | <script filename>] 

# Creating a sample knowledge model: 
CREATE KNOWLEDGE MODEL wordnet 
USING ’C:\WORDNET\script.sql’ 

 

Similarly, an existing semantic knowledge model, named <knowledge name>, can be dropped as follows: 
 

<Drop knowledge model statement>::= DROP [KNOWLEDGE MODEL] <knowledge name> 

 

4.1.3. Semantic Index Model 
Similarly to the traditional SQL CREATE INDEX statement syntax, creating and/or altering SemIndex on one or 
several attributes can be issued using the following statement. The optional HASH/BTREE clause allows to create 

                                                 
1  Syntax in is EBNF (Extended Backus-Naur Form) notation [46]. 



SemIndex nodes using hash-based or B-Tree indexing techniques to speed-up data look-up. The following 
example (to the right) shows how to create SemIndex based on our MOVIES relation, considering two of its 
attributes title and plot using the weighting scheme and WordNet semantic model defined above: 
 

<Define SemIndex statement>::= 
[CREATE | ALTER] [HASH | BTREE] SEMANTIC INDEX <index name> 
ON <relation name> [({<att list>})] 
[WHERE <predicate>] 
USING 
WEIGHTING <weighting model>, 
KNOWLEDGE <knowledge name> 

# Creating a sample semantic index: 
 
CREATE SEMANTIC INDEX mysemindex 
ON MOVIES (Title, Plot) 
USING WEIGHTING myweighting, 
KNOWLEDGE wordnet 

 

In order to drop an existing SemIndex structure or rebuild it (after modifying its weighting scheme and/or 
knowledge base), the following statement can be used: 
 

<Rebuilding SemIndex statement>::= [DROP | REBUILD] [SEMANTIC INDEX] <index name> 

 

4.2. SemIndex Physical Design 
 Fig. 8.a shows the ER conceptual diagram of the SemIndex data graph, whereas  Fig. 8.b depicts the data 
coverage of each relation in the resulting RDB schema. The relations are described separately in the following 
subsections. 
 

 

a. Conceptual ER model describing SemIndex 
physical design. 

 

 

                                                                

 

    

b. Data representation of each relation in the resulting RDB schema. 
 

 

Fig. 8. SemIndex physical design. 
 

4.2.1. Data Index 
 

The DDL1 statements for creating relation DataIndex is shown below: 
 

CREATE TABLE DataIndex(objectid INT PRIMARY KEY, weight DECIMAL); 
 

Relation DataIndex stores (in attribute DataIndex.objectid) the identifiers of data objects from the data 

collection (Δ), represented as data nodes in SemIndex, i.e., SIG


.Vd (cf.  Fig. 8) along with data node weights (e.g., 
an object rank score, stored in attribute DataIndex.weight, which is computed and then updated during query 
processing, cf. Section  5). An extract of DataIndex’s content, following our running example SemIndex graph 
(from  Fig. 6) is shown in  Fig. 9.a. Other information, such as the publication date or the original full text of a 
data object, may also be stored in this relation, depending on the output requirements and on the system 
environment. 
 

4.2.2. Lexicon 
The DDL statement for creating the Lexicon relation is shown below: 
 

     CREATE TABLE Lexicon (nodeid INT PRIMARY KEY, value VARCHAR, weight DECIMAL); 
 

                                                 
1 Data Definition Language. 

Entity Relationship Attribute 

DataIndex

Lexicon

Posting List

Neighbors



Relation Lexicon stores the lexicon of the knowledge base (KB) used to index the data collection (Δ), i.e. the set 

of all index nodes in SemIndex, i.e., SIG


. iV (cf.  Fig. 8). Searchable term nodes, i.e., SIG


. iV + , are stored in their 
lemmatized form (in attribute Lexicon.value) along with corresponding node identifiers (e.g., WordNet node 

identifiers, stored in Lexicon.nodeid), whereas sense nodes, i.e., SIG


. #
iV , have null values (in attribute 

Lexicon.value). Note that Lexicon also includes missing terms (as briefly described in Section  3.4) stored in their 
lemmatized form (in attribute Lexicon.value) along with special system generated node identifiers (different 
from WordNet’s, stored in Lexicon.nodeid). Index node weights are then computed and dynamically updated 
during query processing, stored in attribute Lexicon.weight. An extract of Lexicon’s content, following our 
running example SemIndex graph (from  Fig. 6) is shown in  Fig. 9.b. 

In some commercial keyword search engines, the lexicon is generally kept in memory for fast response 
time, since its size is not related to the size of the indexed dataset and is generally much smaller than the term 
posting lists. In SemIndex, we adopt the same idea by allowing relation Lexicon to be kept in memory, when 
supported by the DBMS. 

 
 

objectid weight 
O1 WDataNode(T1) 
O2 WDataNode(T2) 
O3 WDataNode(T3) 

 

a. DataIndex 
 
nodeid objectid weight 

T1 O1 wDataEdge( 1
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T1 O2 wDataEdge ( 2
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T4 O1 wDataEdge ( 1
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… … … 
 

c. PostingList 
 

nodeid value weight 
T1 “car” wIndeNode(T1) 
T2 “window” wIndeNode(T2) 
T3 “clear” wIndeNode(T3) 
T4 “zen” wIndeNode(T4) 
T5 “light” wIndeNode(T5) 
… … …

 

b. Lexicon 
 

id1 node1id node2id relationship2 weight 

0 T1 T11 PartOf/
HasPart wIndexEdge( 11

1

T
Te ) 

1 T2 T6 Derivation wIndexEdge ( 6

2

T
Te ) 

2 T3 S2 HasWord/
HasSense wIndexEdge ( 2

3

S
Te ) 

3 T4 S1 HasWord/
HasSense wIndexEdge ( 1

4

S
Te ) 

… … … … … 
 

d. Neighbors
 

Fig. 9. Extracts of SemIndex’s RDB relations’ contents, based on the running example SemIndex graph (cf.  Fig. 6). 
 
4.2.3. Posting List 
The DDL statement for creating the PostingList relation is shown below: 
 

     CREATE TABLE PostingList(nodeid INT, objectid INT, weight DECIMAL, PRIMARY KEY(nodeid, objectid) ); 
 

Relation PostingList stores the inverted index of the textual collection (Δ), which comes down to data edges in 

SemIndex, i.e., SIG


.Ed  (cf.  Fig. 8). PostingList results from joining relations Lexicon with DataIndex, linking 

data nodes SIG


.Nd (PostingList.objectid) with corresponding searchable term nodes SIG


. iV + (PostingList.nodeid), 
each with its corresponding data edge weight (e.g., term frequency score). PostingList is clustered on attribute 
nodeid, and for each nodeid, the posting list is sorted on objectid to optimize search time. An extract of 
PostingList’s content, following our running example SemIndex graph (from  Fig. 6) is shown in  Fig. 9.c. 

 

4.2.4. Concepts/Terms Links 
The DDL statement for creating the links between terms and concepts, in a Neighbors relation, is shown below: 
 

   CREATE TABLE Neighbors(id INT PRIMARY KEY, node1id INT, node2id INT, relationship VARCHAR, weight DECIMAL); 
 

Relation Neighbors stores all index edges in SemIndex, i.e., SIG


.Ei (cf.  Fig. 8) linking index nodes SIG


.Ni (stored 
as pairs of index node identifiers in attributes Neighbors.node1id and Neighbors.node2id), including: term-to-

                                                 
1 We include an artificial identifier since multiple index edges (i.e., multiple semantic relationships) may exist between the same pair of 

index nodes in our SemIndex graph, which comes down to a multi-graph. 
2 Relationships are only required in evaluating the weights of index edges (cf. Appendix), and can be removed after index edge weights 

have been computed (cf. Step 5 of SemIndex_Contruction algorithm in  Fig. 5), since they are not needed in the query evaluation process. 
 



term, term-to-sense and sense-to-sense relationships, along with index edge labels (stored in 
Neighbors.relationship) and corresponding index edge weights (stored in Neighbors.weight). When using 
WordNet, the label of the relationship includes 28 possible lexical/semantic relationship types (e.g., hypernym, 
hyponym, meronym, related-to, etc.), as well as the has-sense/has-term introduced to explore WordNet term 
nodes relations. An id attribute is added since several edges can exist between two index nodes. An extract of 
Neighbors’ content, following our running example SemIndex graph (from  Fig. 6) is shown in  Fig. 9.d. Note that 
we design our query processor to follow each edge on its direction from node1id, thus relation Neighbors is 
clustered on node1id but not on node2id. Also note that relation Neighbors remains unused (un-accessed) when 
executing standard containment queries (i.e., semantic-free queries, as shown in the following section). 
 

5. Query Processing with SemIndex 

In this section, we define our query model and present a processing algorithm to perform semantic-aware search 
with the help of SemIndex. 
 

5.1. Query Model 
 

 

Definition 5 - Semantic-aware query: Given SemIndex(Δ, KB) and its graph representation SIG


, we define 
a semantic-aware query as a projection selection query of the form q = πAi σP l (Δ), defined over data collection Δ, 

where Ai ∈ A is a string-based attribute, l ∈ ℕ represents a link distance threshold designating different levels of 

semantic awareness in query execution on SIG


, and P is a selection predicate of the form (Ai θ s), where s is a 

user-given string value (e.g., a selection term/keyword), and θ ∈ {=, like} whose evaluation against values in 
dom(Ai) is previously defined •  

 

Following the value of link distance threshold l, we consider four query types: 
 

− Standard Query: When l = 1, the query is a standard containment query, involving only data edges 
(connecting data nodes with searchable term nodes using the contained relationship), such that no 
semantic information is involved.  

− Lexical Query: When l = 2, the link distance threshold is increased by 1 to include (in addition to data 
edges), first level index edges. They designate lexical relationships between searchable term nodes (namely 

the derivation relationship, where one term derives another term), such that basic lexical information is 
involved. 

− Synonym-based Query: When l = 3, the senses (synsets) are also involved. Here, link distance threshold 
covers the second level index edges: connecting searchable term nodes with corresponding sense nodes 
(via the has-sense and has-term semantic relationships), such that synonymous terms corresponding to the 
sense nodes are involved. Note that there is no direct edge between data nodes and sense nodes. 

− Extended Semantic Query: When l ≥ 4, the data graph of SemIndex can be explored in all possible ways, 
covering index edges designating all kinds of semantic relationships (hyponymy, meronymy, etc.) between 
index nodes, to reach even more semantically relevant results. 

 
Regarding SemIndex’s physical design, relation Neighbors is completely disregarded when executing 

standard containment queries (l = 1) which are semantic-free. The Neighbors relation is required to execute the 

remaining semantic-aware queries (l > 1) in order to explore lexical/semantic relationships. 
 
5.2. Query Answer 
The answer to a query q= πX σP l (Δ) in SemIndex(Δ, KB), noted q(Δ), is defined as follows. 
 

Definition 6 - Query answer: Given SemIndex(Δ, KB) and its graph representation SIG


, a query answer 

q(Δ) is the set of distinct root nodes of all answer trees in SIG


, retrieving data objects in Δ. We define an answer 

tree as a connected sub-graph T ⊆ SIG


satisfying the following conditions: 
 

− Tree structure: For each node n ∈ T, there exists exactly one directed path from n to T’s root node R(T), 

− Root node: T’s root is a data node, i.e., R(T) ∈ SIG


.Nd, and it is the only data node in T, designating the 
corresponding textual object in Δ to be returned to the user, 

− Conjunctive selection: When q consists of a multi-valued predicate P: (Ai ∈ S), the index node matching 
every query term (keyword) in S occurs in the answer tree T, 



− Leaf nodes: All leaf nodes in the answer tree T are searchable term nodes mapping to query terms 
(keywords). When q consists of a single-valued predicate P: (Ai θ s), the answer tree T would contain one 
single leaf node designating the index node matching s, 

− Height boundary: The height T, i.e., the maximal number of edges between the root and a leaf node, is not 
greater than the link distance threshold l, 

− Minimal tree: No node can be removed from T without violating some of the above conditions. 
 

It can be proven that the maximal in-degree of all nodes in T is at most k, where k is the number of query terms 
(keywords). Hence, the answer tree comes down to a conjunction of paths starting at leaf nodes designating each 
a query term, and ending at a common root designating the textual data object to be returned as result • 

 
 
 

 

 

 

 
a. Answer tree for a standard query (l = 1). 

 

b. Answer tree for a lexical query (l = 2)1. 
 

  

 

c. Answer tree for a synonym-based query (l = 3). 
 

d. Answer tree for an extended semantic query (l =4). 

 

Fig. 10.  Sample answer query trees2 with different link distance threshold values l, extracted from our running 

example SemIndex graph ( Fig. 6). 
 

According to the value of the link distance threshold l which serves as an interval radius in the SemIndex 
graph, various answer trees can be generated for a number of query types: 

 

− Standard Query: When l = 1, the root of the answer tree is linked directly to all leaves, representing the 
fact that the result data object contains all query terms directly. A sample answer tree is shown in  Fig. 10.a 
for query q = πA σA ∈ (“car”, “light”) l =1(Δ) considering our running example data collection Δ ( Table 1) and the 
corresponding SemIndex(Δ, KB) ( Fig. 6), 

                                                 
1   Node S2 does appear in the answer tree since it’s not a searchable term node: it is a synset index node (designating a concept meaning, 

and not a textual term). Recall that user queries start only from searchable term nodes (e.g., node T11 in  Fig. 10.b), and navigate their way 

toward the closes data nodes within the query’s link distance threshold l (e.g., O1 is at distance ≤ 2 from T11).  
2  While all edge and node labels are removed from the SemIndex graph except for searchable term nodes (cf. Section  3.3), we show synset 

node glosses here for the sake of presentation. 

Data node 
Term  
index node 

Contained data/  
edge relationship 

Lexical/semantic index 
edge relationship 

Synset  
index node 



− Lexical Query: When l = 2, the answer tree includes lexical connections between query term nodes and 

other index term nodes.  Fig. 10.b is an example answer tree for query q = πA σA ∈ (“race car”,“light”)l = 2 (Δ), 

− Synonym-based Query: When l = 3, the answer tree includes sense nodes, in addition to the two previous 

cases. Note that due to the minimal tree restriction ( Definition 6 -), a sense node cannot be a leaf node of 
an answer tree. Thus, if an answer tree contains a sense node, the height of the tree is not less than 3. A 
sample answer tree is shown in  Fig. 10.c for query q = πA σA ∈ (“pane”,“clean”) l = 3 (Δ). The synonyms of the two 
query terms, “zen” and “light” are also contained in the answer tree rooted at the data node of object O1, 

− Extended Semantic Query: When l = 4, the answer tree contains additional index nodes connected via 
index edges designating different semantic relationships, according to the provided input selection terms. 
An example answer tree is shown in  Fig. 10.d for query q= πA σA ∈ (“lsd”,“clean”) l = 4 (Δ). 

 

Note that it is possible to have more than one path from a query term node to a data node in the SemIndex 
graph (through different semantic links), which will naturally result in more than one answer tree.  

 
5.3. Query Processing 
 

The pseudo-code for our SemIndex query processing algorithm is shown in  Fig. 11. It takes as input a SemIndex 

graph SIG


, a set of query selection terms (keywords) S, and a link distance threshold l, and produces as output 
the set of data nodes Nd_Out  (the answer trees’ root nodes) designating the data objects returned as the query 
answer. The overall process can be described as follows: 

− Step 1: The algorithm starts by identifying in SIG


 the index (searchable term) nodes mapping to each query 
term (using function getNodeID( ), line 4). At the physical level, this is performed by invoking relation 
Lexicon (e.g., SendSQL(“SELECT nodeid FROM Lexicon WHERE value = si”), 

− Step 2: Then, for each of the selected index nodes, it identifies the minimum distance paths at distance l, i.e., 
using Dijkstra’s shortest path algorithm (performed by function findShortestPaths( ), line 5). At the physical 
level, this is performed by invoking relation Neighbors (e.g., SendSQL(“SELECT node2id FROM Neighbors 
WHERE node1id = ni_In”),  

− Step 3. Of these shortest paths, the algorithm then identifies those which contain data edges linking to data 
nodes (using function getDataNodeIDs(), line 6), and then adds the resulting data nodes to the list of output 
data nodes Nd_Out. At the physical level, this is done by querying the PostingList relation with the index nodes 
returned from findShortestPaths( ) (e.g., SendSQL(”SELECT objectid FROM PostingList WHERE nodeid = SP.ni”), 

− Step 4: Consequently, we merge the resulting data nodes with the list of existing answer data nodes. At the 
physical level, this is done by computing node intersection using PostingList (e.g., SendSQL(”SELECT objectid 
FROM PostingList WHERE objectid = nd_si”). Each answer node is then assigned a score by adding its distance 
from every query term index node (using mergeAndRank( ), line 7). The algorithm finally returns the list of 
answer data nodes ranked by order of path scores in ascending order. 

 
 

Algorithm SearchTerms 
 

Input:  SIG


          // SemIndex graph  
             S             // A set of query selection terms  
                l               // A link distance value, designating query-type 
 

Ouput: Nd_Out    // A list of ranked data nodes from SIG
  designating query answers  

 
Begin 
 

Nd_Out = φ                                                                                                                        
For each term si ∈ S               // For each selection term                                                        
{                                                                                                                                       

Step 1: ni_In = getNodeID(si, SIG
 )          // Identify index node                4 

Step 2: SP = findShortestPaths(ni_In, l, SIG
 )       // Identify shortest path within distance lfrom ni_In    

Step 3: Nd_si = getDataNodeIDs(SP, SIG
 )          // Identify the set data (root)  nodes in each shortest path    

Step 4: Nd_Out = mergeAndRank(Nd_si , Nd_Out)                                                        7 
}                                                                                                                                  8 

    

Return Nd_Out                                                                                                                                        9 
End 
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Fig. 11.  Pseudo-code of algorithm SearchTerms. 
 
Note that the scores of data nodes returned as query answers (i.e., answer tree root nodes) are 

computed/updated dynamically while executing function findShortestPaths() based on typical Diskstra-style 
shortest distance computations [30]. Basically, findShortestPaths() explores the SemIndex graph with Dijkstra’s 



algorithm from multiple starting index nodes ni_In (multiple query terms si ∈ S). For each visited node nj, it 
stores its shortest distances from all starting nodes (query terms). The path score of an index node nj to a starting 
node (query term) ni_In is the sum of all weights on index edges along the path between ni_In and nj (cf. examples 
hereunder). Similarly, the path score of a data node nd to a starting node ni_In adds, to the sum of all index edge 
weights in the path, the weight of the data edge connecting nd to the path. In other words, the shortest distances 
of ni (nd) from ni_In are also the minimal path scores of ni (nd) to all query terms.  

For example in  Fig. 10.c, given query terms “pane” and “clean”, the algorithm starts to expand from index 

nodes T7 and T3. The weight score of T7 is initialized to be a vector of path scores <0, ∞>1, since the shortest 
distance from T7 to “pane” is 0, but the node is not reachable from “clean”. Similarly, the weight score of T3 is 
initially <∞, 0>. The weights of all other index nodes are initialized to <∞, ∞>13. The minimal path scores are 
then updated when each edge is explored in the graph. For example, starting from T7, the weight of index node 
S1, which was initialized to <∞, ∞> becomes <1,∞> when the node is reached, considering unit (=1) edge 

weight scores2. Likewise, the weights of nodes T4 and O1 become <2, ∞> and <3, ∞> respectively when the 
nodes are reached from T7, and so forth. On the other hand, starting from T4, the weights of nodes S2, T5, and O1 
become <∞, 1>, <∞, 2>, <∞, 3> respectively.  

Consequently, given that a data node nd can be reached from multiple starting nodes Ni_In (i.e., multiple 
leafs in the answer tree), function mergeAndRank() computes the combined path score of a data node (i.e., 
answer tree root node) as the aggregate path score from each starting node (each answer tree leaf node). As for 
the aggregation function, various mathematical formulations for combining path scores can be used [4, 89], 
among which the maximum, minimum, average and weighted sum functions. Here, we utilize the maximum 
aggregation function to account for the maximum distance (i.e., minimum semantic relatedness) between the 
query answer root node and all tree leaf nodes: 
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For instance, considering the example in  Fig. 10.c, the vector path score of data node O1 would be <3, 3>, and 
thus its combined path score becomes 3. Considering the example in  Fig. 10.b, starting from query terms “race 
car” and “light”, the vector path score of data node O1 would be <2, 1> (assuming unit edge weights as in the 
previous example), and thus its combined path score becomes 2. A data node which is not reachable from all 
query term nodes will have at least one infinite path score (i.e., zero semantic relatedness), along one (or more) 
of its path score vector dimensions. 

Note that while we currently focus on relaxing “strict” conjunctive querying by increasing link distances 
between query and data nodes, yet our query model and processing approach can also incorporate different 
kinds of “weak AND” operators such as fuzzy predicates [45, 100] (which we are currently investigating). 
 

6. Complexity Analysis 
 

 Table 2 summarizes the list of parameters and symbols used to explain the time complexity of our algorithms 
for building SemIndex and executing semantic-aware queries. 
 

6.1.  Building SemIndex 
 

6.1.1. Time Complexity 
 

Building SemIndex using algorithm SemIndex_Construction (cf.  Fig. 5) is done in quadratic time and simplifies 
to O(N2) since: 
 

− Step 1: Building the inverted index, and consequently the SemIndex graph for the textual collection Δ, i.e., 

GΔ


, is of typical O(|Δ| × |A| × NΔ) complexity, which simplifies to O(|Δ| × NΔ) since |A| is usually limited, 

− Step 2: Also, building the SemIndex graph for the knowledge base KB, KBG


, is of O(|KB| × NKB), 
− Step 3: Coupling both Δ and KB’s SemIndex graphs by mapping and merging searchable term nodes in 

both GΔ


 and KBG


can be performed in O(NΔ + NKB) time, given that both underlying structures are sorted, 
− Step 4: Connecting missing terms with the merged index, using algorithm MissingTerms_Likage (cf.  Fig. 

7) can be performed in worst case O(Nmiss × Nterm). Note that building the distributional thesaurus (to 
identify term relativeness vectors, based on their co-occurrences in the reference corpus) is conducted 
offline prior to SemIndex building and thus does not affect its complexity. 

                                                 
1  Instead of ∞, we could have an initial weight value computed based on a given weight scheme. 
2   Any other edge weight function can be considered here, as discussed in the Appendix. 



− Step 5: The complexity of the weighting process varies according the weight functions used. It amounts to 
O(1) when assigning equal weights, or can vary as follows: 

 

• Data edges: performing typical term frequency computations to assign data edge weights simplifies 
to O((Nterm) × |Δ|) time, 

• Data nodes: assigning an object rank score to compute data node weights simplifies to O (|Δ|), 
taking into account one or several data object features (e.g., source, format, date, etc.) each feature 
being processed in typical constant time. 

• Index edges: computing index edge weights can be done in O(NKB 
2
 × |L|), which simplifies to 

O(NKB 
2) since |L| is usually small, 

• Index node weights are computed during query processing, and thus do not affect SemIndex 
construction time. 
 

 

− Step 6: Edge aggregation between each pair of index nodes in the SemIndex graph can be performed in 
O((Nterm + Nsyn)

2 /2) time, which is the time needed to go through all pairs of index nodes in SemIndex, 
− Step 7: Removing edge labels and string values from non-searchable (i.e., sense) nodes in SemIndex can be 

executed in O (NE + Nsyn). 
 

Hence, the overall complexity of our SemIndex building process is bounded by O(N2) > 

1...7

 ( )
i

iComplexity Step
=
  since  N ≥ param, ∀ param ∈ complexity parameters.   

 

It is to be noted that building the inverted indexes and SemIndex graph for each of the input resources (i.e., 
Steps 1 and 2 of the algorithm), can be handled using multi-threading. 
 

Table 2.  Set of complexity symbols and related descriptions. 
 

Symbol Parameter 

|Δ| Cardinality, in number of objects (table rows), of the textual data collection Δ 
|A| Degree, number of attributes, of Δ 
NΔ Number of searchable terms from Δ, which comes down to: |G Δ

 . iV + | 

|KB| Cardinality, number of entities (senses and terms), of the knowledge base 
NKB Number of searchable term nodes from KB, which comes down to: | KBG


. iV + | 

|L| Number of distinct lexical/semantic relationships in the knowledge base 
Nmiss Number of missing terms: those searchable terms from Δ’s SemIndex graph G Δ

 which are 

not connected to those from KBG


.  
Nterm Number of term index nodes in the SemIndex graph: | SIG


. iV + | (= |G Δ

 . iV + ∪ KBG


. iV + |) 

Nsyn Number of sense index nodes in the SemIndex graph: | SIG


. #
iV | (= | KBG


. #

iV |) 

N Number of index and data nodes in the SemIndex graph: | SIG


. iV | + | SIG


. dV | 

NE Number of index and data edges in the SemIndex graph: | SIG


.Ei| +  | SIG


.Ed| 
 

Query-related symbols: 
 

k Number of terms (keywords) in a query 
Nterm hom Number of homonymous terms in SemIndex, for a given query term, 

l Link distance threshold in a query 

Ni_acc Number of accessed index nodes in SemIndex, when executing a query 
Nd acc Number of accessed data nodes in SemIndex, when executing a query 
NE acc Number of accessed edges in SemIndex, when executing a query 

 
6.1.2.  Space Complexity 

As for space complexity, our approach requires space to store the final SemIndex graph SIG


, which is also 
bounded by O(N2) space. In fact, SemIndex is physically broken down into a set of 4 relations in a RDB schema 
(cf. Section  4) such that: 

− DataIndex: stores data nodes, and thus requires O(|Δ|) space, 
− PostingList: stores data edges connecting data nodes with searchable term nodes, and thus requires in the 

worst case O(|Δ| + NΔ) space, 
− Lexicon: stores index nodes, and thus requires O(Nterm + Nsyn) space, 



− Neighbors: stores index edges connecting pairs of index nodes, and thus requires O((Nterm + Nsyn)
2 /2) space 

(recall that only one edge exists between two nodes in SemIndex). 
 

Note that these relations, whose total size is bounded by O(N2), can be stored on disk or in memory according to 
the size of the input textual collection and knowledge base used. 
 
6.2. Executing Queries 

 

The complexity of our SearchTerms algorithm (cf.  Fig. 11) which performs query execution on SemIndex, 
comes down to O(N2). In fact, the complexity of SearchTerms comes down to the sum of the complexities of its 
underlying functions, such that for each query term:  

 

− getNodeID( ) identifies the IDs of term nodes in the Lexicon corresponding to the query term, and thus 
requires in the worst case O(Nterm + Nsyn ) time, 

− findShortestPaths( ) identifies the minimum paths at distance l from each of the starting term node, which 

comes down to running Dijkstra’s algorithm within distance lfrom the starting node. Given that Dijkstra’s 

algorithm requires O(NE_acc × l) = O(Ni_acc
2 × l) when applied from one starting node, it would require 

O(Ni_acc
2 × l× Nterm_hom) when applied on Nterm_hom starting nodes, given that one single query term could 

map to multiple starting term nodes (i.e., homonyms), 
− getDataNodeIDs( ) identifies the IDs of data nodes in PostingList for the each shortest path, and thus 

requires worst case O(|Δ| + NΔ) time, 
− mergeAndRank( ) merges and ranks data nodes with existing query answer nodes, by comparing the latter 

with node IDs in the PostingList, thus requiring at most O(|Δ| × Nd_acc). 
 

Hence, the SearchTerms algorithm’s complexity comes down to that of function findShortestPaths( ) which 
requires O(Ni_acc

2 × l× Nterm_hom), which is bounded by O(N 2) time in the worst case scenario (covering the 

whole SemIndex graph). 
When considering multiple query terms k, the complexity comes down to O(N 2

 ×k). Yet, given that k is 

usually limited (e.g., keyword queries on the Web are usually 2-3 words long [48, 82]), thus overall complexity 
simplifies to O(N2). 
 

7. Experimental Evaluation 

We first start by describing our prototype and experimental scenario, and then we present, compare, and assess 
empirical results. 
 

7.1. Prototype 
 

To validate our approach, we have implemented our SemIndex framework using Java. We also have used 
MySQL 5.6 as an RDBMS, and WordNet 3.0 as a knowledge base. In addition to the two basic SemIndex 
components (cf. architecture in  Fig. 1) consisting of: i) the indexer (including our SemIndex_Construction and 
MissingTerms_Linkage algorithms, cf.  Fig. 7), and ii) the query processor (including our SearchTerms 
algorithm, cf.  Fig. 11), our implementation also includes: iii) a lemmatizer1 used to transform index terms into 
their lemmas, as well as iv) extensible weight computation components which are called upon within the indexer 
and/or query processor to compute edge/node weights as needed (recall that weights are computed initially 
during indexing cf. Section  3.3, and are then updated dynamically during querying, cf. Section  5).  

The RDBMS initially holds the input textual data collection and the knowledge base in the form of native 
RDBs2. Java is used to send SQL queries to the RDBMS in the following order required to build SemIndex:  
 

1. Import the predefined SemIndex RDB schema (cf.  Fig. 8). 
2. Build the Lexicon table by importing the words table from WordNet.  
3. Build the Neighbors table by importing the senses (term-to-synset), semlinks (synset-to-synset), and lexlinks 

(term-to-term) tables from WordNet. This is followed by computing index edge weights, and initializing 
index node weights. 

4. Build the DataIndex table by processing all rows from the input textual database. Every row is tokenized 
and every token is lemmatized and inserted into DataIndex, along with corresponding data node weights.  

                                                 
1  We used the University of Washington’s Morpha lemmatizer available on the university’s projects page: 

http://mvnrepository.com/artifact/edu.washington.cs.knowitall/morpha-stemmer/1.0.5 
2   WordNet 3.0’s RDB is available from   http://wordnet.princeton.edu/wordnet/download/ 



5. Identify all missing terms in Lexicon, by finding all terms in DataIndex that are not in Lexicon (using here a 
left join), and then include the latter in Lexicon (following Step 4 of our SemIndex_Construction algorithm). 

6. Build the PostingList table by joining Lexicon with DataIndex. This is followed by computing term 
frequency weights of data edges.  
The RDBMS will finally hold SemIndex’s RDB representation which will be processed for querying. Note 

that during the SemIndex building phase, Java is primarily used to lemmatize tokens and to create the textual 
database’s inverted index. Yet, during SemIndex querying, Java is mainly used to run Dijkstra’s shortest path 
algorithm on every query term, and consequently find the intersection between the returned paths (as described 
in our SearchTerms algorithm). The usage of Java in our implementation is not mandatory and can be replaced 
by stored-procedures and triggers when supported by the DBMS. The SemIndex prototype is available online1. 
 

7.2. Experimental Scenario and Test Data 
 

We evaluated the practical usability of our indexing approach by assessing four main criteria: i) index building 
time, ii) index size and characteristics, iii) query processing time, and iv) the number and quality of returned 
results, comparing in each experiment our SemIndex with the legacy Inverted Index solution. To do so, we 
started by varying the size of the input textual collection Δ by generating different extracts with respect to 
(w.r.t.) its total size (considering 10%, 20%, …, or 100% of Δ). We also vary the size of the input knowledge 
base by generating different extracts w.r.t. its total size (considering 10%, 20%, …, or 100% of KB). Then, for 
each doublet <Δ chunk ; KB chunk>, we evaluated each of the above four criteria by varying related parameters. 
User feedback tests are not detailed here. 

We used the IMBD movies table2 as an average-scale3 input textual collection, including the attributes 
movie_id and (title, plot) concatenated in one column (cf.  Table 1) with a total size of around 75 MBytes 
consisting  of more than 140k rows and including more than 7 million terms. WordNet 3.0 had a total size of 
around 26 Mbytes, including more than 117k synsets (senses). The characteristics of the IMBD and WordNet 
chunks used in our experiments are summarized in  Table 3 and  Table 4. 
 

Table 3. Characteristics of IMDB’ movies table chunks. 
 

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Size (in MBs) 7.6293 15.0629 22.5192 30.0098 37.5452 44.9528 52.5214 59.9325 67.4239 74.8902 

N# of Rows 14,304 28,608 42,912 57,217 71,521 85,825 100,130 114,434 128,738 143,043 

N# of Terms 724,294 1,422,158 2,125,498 2,834,189 3,547,900 4,247,061 4,959,681 5,661,835 6,378,205 7,086,079 

Size (in MBs)  
of InvIndex 

25.5781 49.625 73.6719 98.7188 122.7656 147.8125 171.8594 195.8906 220.9375 244.9844 

 
Table 4. Characteristics of WordNet chunks. 

 

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Size (in MBs) 2.7707 3.9466 7.6498 9.5691 12.1641 13.8941 18.2191 19.9491 23.4091 26.0041 

N# of Senses 
(Synsets) 

11,738 23,475 35,212 46,949 58,686 70,423 82,160 93,897 105,634 117,371 

Avg. Branch 1.4533 1.6257 1.7553 1.9236 2.0697 2.2259 2.3736 2.5285 2.6677 2.8223 

Avg. Span 2.1035 2.2299 2.3665 2.5213 2.8849 3.5362 3.7411 4.1947 5.9852 7.5119 

Size (in MBs) 
 of InvIndex 

3.2031 4.5625 8.8437 11.0625 14.0625 16.0625 21.0625 23.0625 27.0625 30.0625 

 

 
 Table 3 provides the IMDB movies’ table chunk size percentage and actual size (in MBytes), the number of 

rows and number of terms (e.g., textual tokens) per chunk, as well as the size of the resulting inverted index 
(i.e., InvIndex(Δ)).  Table 4 provides the WordNet chunk size percentage and actual size (in MBytes), the 
number of senses (i.e., synsets) per chunk, the average branch factor4 and average span factor5 per chunk, as 
well as the size of the resulting inverted index (i.e., InvIndex(GKB)). Note that chunking the IMDB movies table 
was performed w.r.t. to the number of rows in the table, whereas chunking WordNet was performed w.r.t. the 

                                                 
1   Available at: http://sigappfr.acm.org/Projects/SemIndex/ 
2    Internet Movie DataBase raw files are available from online http://www.imdb.com/. We used a dedicated data extraction tool (at 

http://imdbpy.sourceforge.net/) to transform IMDB files into a RDB.  
3  Tests using large-scale TREC data collections and the Yago ontology as a reference KB are underway within an dedicated 

comparative evaluation study. 
4   The branch factor designates the number of outgoing edges per synset node, i.e., synset node fan-out [64]. 
5   The span factor designates the length of the path from a root (most abstract) synset node to a leaf (most specific) synset node in the 

WordNet taxonomy (considering hierarchical relations only, e.g., hypernym/hyponym and meronym/holonym, to avoid loops). 



number of senses (synsets), which was more coherent in generating WordNet extracts than using the number of 
rows in WordNet’s RDB representation (made of multiple joined tables representing different entities), with 
slight variations due to varying synset gloss sizes, varying number of synonyms per synset, and varying number 
of neighboring nodes (branch factor) per synset.  

 
 

 
 

Fig. 12.  Total SemIndex build time variation w.r.t. input IMBD and WordNet chunk sizes. 
 

Tests were carried out on a PC with an Intel I7 system with 2.9 GHz CPU, 8GB RAM memory, and a 500 
GB built-in NTFS disk drive. The database (IMDB), knowledge graph (WordNet), and index files were stored 
on the disk drive’s main partition. 

 
7.3. Index Building Time 
 

7.3.1.  SemIndex Build Time 
 

The 3D chart in  Fig. 12 shows the total time required to build SemIndex while varying both IMBD and WordNet 
chunks. SemIndex construction tests were performed 5 times each, retaining average processing time. One can 
realize that the building time is linear in the size of the IMDB chunks on one hand (x axis), and linear on the size 
of the WordNet chunks on the other hand (y axis), which underlines quadratic time dependency w.r.t. both of 
them (which complies with our complexity analysis in Section  6.1).  

We also note two additional observations. First, one can see that time variation w.r.t. IMDB chunk size 
(along the x axis) is greater than the variation w.r.t. WordNet chunk size (along the y axis). This is due to: i) the 
sheer size of IMDB chunks which are at least twice as big as their WordNet counterparts (and thus require at 
least twice as much processing time), and ii) due to running the time expensive lemmatization process on the 
database chunks, which is not required with WordNet chunks, thus inducing additional processing time. A 
breakdown of the tasks required to build SemIndex in  Fig. 13.a and b shows the significant impact of 
lemmatization on the overall building time: the time to lemmatize index terms from IMDB (and term nodes 
from WordNet, when needed1) in order to be stored as searchable terms in SemIndex amounts to almost 1/3rd of 
the total building time of SemIndex. 

Second, one can also realize that while SemIndex building time slightly increases w.r.t. WordNet chunks 
varying from 50% to 100%, yet it also increases (rather than decreasing) with WordNet chunks varying from 
50% to 10%. While the latter observation might seem counterintuitive (since we would expect build time to 
decrease when WordNet chunk size decreases), nonetheless the reason for the time increase is also inherent: the 
smaller the WordNet chunk, the higher the number of missing terms, and thus the more time is required to 
process them (mapping and linking them to WordNet terms). This is also shown in  Fig. 13 where the time 
needed to process missing terms jumps from 1/10th of the total building time, with WordNet chunk = 100% (i.e., 
when using the whole of WordNet in  Fig. 13.a), to almost 1/3rd of total time, with WordNet chunk = 10% (i.e., 
when using only a small portion of WordNet,  Fig. 13.b). 

                                                 
1   Most terms nodes in WordNet are handled in their lemmatized form, and need not be processed for lemmatization. 
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a. Build time with WordNet chunk = 100% b. Build time with WordNet chunk = 10% 
 

Fig. 13. Breakdown of SemIndex build timing. 
 
 Fig. 13.a and b also show that the building time of the WordNet part of SemIndex remains almost constant 

regardless of the IMDB chunk size. This is justified since building the SemIndex representation of the 
knowledge base is performed independently of the data collection. Furthermore, for a given knowledge base 
(like WordNet), the SemIndex representation can be produced once, stored in memory, and then made available 
for coupling with any new data collected to be indexed. Note that updating SemIndex incrementally or partially 
will be explored in a dedicated future study. 

 

7.3.2.  Comparison with Legacy Inverted Index Build Time 
 

 
 
 
 

 
 
 
 

a. Brakedown of traditional InvIndex build time. 
 

b. Comparing traditional InvIndex total build time, 
with SemIndex build time using WordNet chunk = 100% 

   

Fig. 14. Comparison with traditional InvIndex build time. 
 
To put things into perspective, we have also measured the total time required to build the legacy inverted index 
(which we note InvIndex) while varying IMDB chunk size1 (cf.  Fig. 14.a) and compared results with SemIndex’s 

                                                 
1  Recall that InvIndex does not incorporate semantic knowledge and thus is not affected by WordNet chunk size variations. 
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(cf.  Fig. 14.b). While both indices require linear building time, yet SemIndex requires almost twice (×2) as much 
build time as InvIndex. Furthermore, by disregarding the lemmatization phase in building InvIndex (which can 
be ignored following the database manager’s preference: storing words in their actual rather than their original 
form), then SemIndex build time becomes almost four times (×4) greater than that of InvIndex. This is 
encouraging since even the fastest legacy inverted index creation time is only (at best) four times lesser than the 
creation time of SemIndex. The reasons for this are: i) the lightweight physical design of SemIndex which can be 
easily created using fast legacy database technology, as well as ii) the sheer difference in size between the 
textual database (IMBD) and the reference knowledge graph (WordNet), which renders the build time of 
SemIndex mostly dependent on IMDB size rather than WordNet size.   

Regardless of the above, note that the index building process is done offline, prior (in preparation) to the 
system usage (query evaluation process), and thus does not affect (online) query execution time.   

 

7.4. Index Size and Characteristics 
 

7.4.1.  SemIndex Size and Characteristics 
Regarding SemIndex size,  Fig. 15 shows that the SemIndex graph size (which, at the physical layer, comes down 
to the total size of all SemIndex relations following the adopted RDB schema), varies linearly with the size of 
the IMDB chunks (x axis) and WordNet chunks (y axis), which underlines quadratic size dependency w.r.t. both 
of them (conforming with our complexity analysis in Section  6.1.2). The detailed characteristics of SemIndex 
chunks are shown in  Table 5 and  Fig. 16, where each chunk is generated by merging the corresponding            
<Δ chunk ; KB chunk> doublet (for instance, the 10% SemIndex chunk is generated by merging the 10% Δ 
chunk with the 10% KB chunk, and so forth, cf. Δ and KB chunk characteristics in Section  7.2). 

 
 

 

Fig. 15. SemIndex size variation. 
 
 Table 5 provides SemIndex’ chunk size percentage and actual size (in MBytes); the total number of nodes in 

the SemIndex graph ( SIG


) including: data nodes (Nd), index nodes (
iV + , including those corresponding to missing 

terms), and sense (synset) nodes ( #
iV ); the average branch factor: including and excluding data nodes (which 

represent leaf nodes in SIG


), as well as the average span factor. SemIndex characteristics are also visualized in 
 Fig. 16. Three main observations can be made. 

First, while the number of nodes in the SemIndex graph increases almost linearly w.r.t. SemIndex (and thus 
IMDB and WordNet) chunks size (cf.  Fig. 16.a), one can realize that the number of index nodes resulting from 
missing terms is almost twice that of matching index terms. That is due to the fact that the IMDB movies table 
includes many textual tokens which are not part of the general purpose English language and thus do not appear 
in WordNet (e.g., terms like “advogado”, “advon”, “adyeri”, “aeer”, “moustafa”, etc.). Note that we are 
currently investigating ways to alleviate the missing terms problem, using dedicated language processors and 
multilingual dictionaries, which will be covered in an upcoming study. 
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Table 5. Characteristics of SemIndex chunks. 
 

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Size (in MBs) 36.9219 68.2188 100.2813 133.3281 158.3594 202.4063 237.4688 273.5156 306.5938 339.625 

N# of Data Nodes 14304 28608 42912 57217 71521 85825 100130 114434 128738 143043 

N# of (Matching) 
Index Term Nodes 

19090 36396 52388 67511 82370 96231 108828 122119 134258 146625 

N# of (Missing) 
Index Terms Nodes 

54165 79174 101594 121078 141534 158663 174111 186930 195897 210279 

N# of Sense Nodes 
(Synsets) 

11738 23475 35212 46949 58686 70423 82160 93897 105634 117371 

Total N# of Nodes 99297 167653 232106 292755 354111 411142 465229 517380 564527 617318 

Avg. Branch 
(without data nodes) 

10.0087 14.4015 15.3758 17.0408 17.4348 17.2604 17.4159 17.5771 17.5184 17.4495 

Avg. Branch 
(with data nodes) 

1.7746 4.2493 5.8399 7.5746 8.6564 9.2882 9.9577 10.575 10.9745 11.3173 

Avg. Span 2.3886 2.5189 2.7408 3.0089 3.2661 3.6299 4.0109 4.2848 5.9962 7.6178 

 
  

 

a. Distribution of the number of nodes in the SemIndex graph. 
 

b. Average node branching factor, with and without data (leaf) 
nodes.data (leaf) nodes. 

 

  

 
 

 

c. Average spanning factor considering hierarchical             
relations in SemIndex. 

 

 
 

Fig. 16.  Characteristics of SemIndex chunks. 
 
A second observation concerns SemIndex’s branching factor, i.e., the average number of outgoing edges per 

node (cf.  Fig. 16.c). Here, we measure the branching factor with and without data nodes (which represent leaf 
nodes in the SemIndex graph, with no outgoing edges). One can realize that the average branch factor with data 
nodes (when considering the whole of IMDB and WordNet, i.e., 100% SemIndex chunk size) amounts to 11.3, 
whereas it drastically increases to 17.5 when disregarding data nodes. The reason is that SemIndex contains a 
huge number of data nodes (i.e., leaf nodes) which considerably decrease the average branch factor score when 
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considered. Thus we chose to also measure average branching without data nodes, in order to more precisely 
reflect SemIndex’s rich inner (index) node connectivity (e.g., averaging around 17.5 outgoing edges per node). 
Here, one can realize that the branching factor varies logarithmically with increasing SemIndex – and thus 
IMDB and WordNet – chunk size, and almost stabilizes (at around 17.5 outgoing edges) with chunk sizes larger 
than 50%. This means that SemIndex node branching becomes more or less uniform when considering more 
than half of the IMDB and WordNet input sources. 

A third observation can be made regarding SemIndex’s average spanning factor, i.e., the average length of 
the path from a root (abstract sense) node to a leaf (data) node in the SemIndex graph considering hierarchical 
relations only (to avoid loops), namely hyponymy/hypernymy (i.e., IsA/HasA) and meronymy/holonymy (i.e., 
partOf/hasPart, memberOf/ hasMember, and substanceOf/hasSubstance). One can realize that the average span 
of the SemIndex graph (following each hierarchical relation) increases in an almost quadratic manner w.r.t. the 
size of SemIndex chunks (namely with the IsA/Has/A relationship) since SemIndex’ structure maps to that of the 
adopted reference knowledge base: i.e., WordNet in our case (cf. WordNet’s average span factor in  Table 4 
which is quadratic w.r.t. its chunk size). Note that SemIndex’ spanning factor is marginally affected by IMDB 
chunk size since the database does not include hierarchical (semantic/lexical) relations1. 
 

7.4.2.  Comparison with Legacy Inverted Index Size and Characteristics 
 

In addition, we have also measured the characteristics and size of legacy InvIndex (cf.  Table 6) in comparison 
with SemIndex (cf.  Fig. 17). 
 

Table 6. Characteristics of InvIndex (w.r.t. IMDB) chunks. 
 

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Size (in MBs) 25.5781 49.6250 73.6719 98.7188 122.7656 147.8125 171.8594 195.8906 220.9375 244.9844 

N# of Data Objects 14304 28608 42912 57217 71521 85825 100130 114434 128738 143043 

N# of Index Terms 73255 115570 153982 188589 223904 254894 282939 309049 330155 356904 

 
 

 
 

 

Fig. 17.  Comparing SemIndex size with InvIndex size. 
 
Results show that SemIndex’s size is larger only by (almost) 1/3rd of the size of InvIndex. This increase in 

size is less pronounced than the increase in build time of SemIndex w.r.t. InvIndex (which was 4 times larger, cf. 
Section  7.3.2), which follows the difference in sizes between the textual database (IMBD) and the knowledge 
graph (WordNet) used: WordNet (≈ 26 MBytes) is almost 1/3rd the size of IMDB (≈ 75 MBytes), which reflect 
in the sizes of SemIndex (coupling IMDB with WordNet) and InvIndex (referencing IMDB only). 
 
7.5.  Query Processing Time 

 

To test the performance of SemIndex, we formulated different kinds of queries organized in two categories: i) 
unrelated queries, and ii) expanded queries, as shown in  Table 7.  
 
 
       

                                                 
1    Including the data contained-in relation, which originates from the database (e.g., IMDB) index graph (GΔ

 ), would increase the average 
SemIndex span score by one (i.e., including one additional hierarchical level to access data nodes), regardless of the database chunk size. 
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Table 7. Test queries. 
 

Query group Q1 – Unrelated queries Query group Q2 – Expanded queries 

ID Terms ID Terms 
Q1_1 “time” Q2_1 “car” 
Q1_2 “love”, “date” Q2_2 “car”, “muscle” 
Q1_3 “fly”, “power”, “man” Q2_3 “car”, “muscle”, “classic” 
Q1_4 “robot”, “human”, “war”, “world” Q2_4 “car”, “muscle”, “classic”, “speed” 
Q1_5 “mafia”, “kill”, “mob”, “hit”, “family” Q2_5 “car”, “muscle”, “classic”, “speed”, “thrills” 

 
The first category consists of queries with varying numbers of selection terms (keywords), e.g., from 1 

(single term query) to 5, where all terms are different and all queries are unrelated (i.e., queries with no common 
selection terms, cf. sample query group Q1 in  Table 7). The second category consists of queries with varying 
numbers of selection terms, where terms are different yet queries are related: such that each query expands its 
predecessor by adding an additional selection term to the latter (cf. sample query group Q2 in  Table 7).  

We considered 5 groups of queries (made of 5 queries each) within each category (e.g., Q1 is one of the 5 
groups of queries considered within the category of unrelated queries). Each query was tested on every one of 
the 100 combinations of SemIndex generated by combining the different chunks of the IMDB movies table 
(10%,20%,30%, …, 100%) with every chunk of WordNet (10%, 20%, 30%, …, 100%), at link distance 
threshold values varying from  l= 1 to 5. All queries were processed 5 times each, retaining average processing 

time. Hence, all in all, we ran an overall of: 2 (categories) × 5 (groups) × 5 (queries) × 100 (SemIndex chunks) × 
5 (lvalues) × 5 (runs) = 125000 query execution tasks. Hereunder, we present and discuss the results obtained 

with two sample query groups, Q1 and Q2, corresponding to each category as shown in  Table 7, compiled in 
 Fig. 18 and  Fig. 19 (remaining query groups show similar behavior, cf. technical report in [85], and thus were 
omitted here for ease of presentation). 
 

 

 

 
 

Fig. 18.  Query execution time on queries of group Q1, considering k = 5 and l= 5, while varying IMDB and 

WordNet chunk sizes. 
 

7.5.1.  SemIndex Query Processing Time 
 

On one hand, the graph in  Fig. 18 plots query execution time on queries of group Q1 w.r.t. IMBD and WordNet 
chunk sizes, while considering a fixed number of query terms k  and a fixed link distance threshold l. Here, 25 

tests (×5 runs) were conducted covering every combination of k (1-to-5) and l (1-to-5), yet we only show the 

graph plotted with maximum k = 5 and l= 5, since remaining graphs highlight a similar behavior (with different 
time amplitudes, cf. technical report in [85]). We omitted here results obtained with queries of groups Q2 since 
they show a similar behavior to those of group Q1 (details can be found in [85]). This shows that query 
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execution time is linear in both IMBD and WordNet chunk sizes, and thus is quadratic w.r.t. both of them 
(verifying our complexity analysis in Section  6.2). 

On the other hand, the graphs in  Fig. 19 highlight the effects of varying the number of query terms k and 
varying link distance lw.r.t. fixed IMDB and WordNet chunk sizes. Here, 100 tests (×5 runs) were conducted 

for each query group, covering every combination of IMDB chunk size (10% to 100%) and WordNet chunk size 
(10% to 100%). We only show the graph plotted with maximum size chunks =100%, since remaining graphs 
highlight a similar behavior (with different time amplitudes, cf. [85]). One can see that processing time is linear 
w.r.t. the number of query terms, and quadratic w.r.t. link distance, which corresponds to the time complexity of 
Dijkstra’s algorithm in navigating the edges (i.e., pairs of nodes) of the SemIndex graph (cf. Section  6.2).  

 
  

 

a. Tests performed on queries  
of group Q1(unrelated queries) 

 

b. Tests performed on queries  
of group Q2(expanded queries) 

 

Fig. 19. Query execution time when running queries of groups Q1 and Q2, considering IMDB chunk = 100% and 
WordNet chunk = 100%, while varying the number of query terms k and link distance threshold l. 

 

Note that with queries of group Q1 ( Fig. 19.a), at k=3, query time seems “strangely” high, in comparison 
with the overall behavior of the chart, and compared to the charts of query groups Q2 ( Fig. 19.b). This is due to 
the fact that terms in query Q1_3 (i.e., “fly”, “power”, “man”) happen to have more neighbors in their SemIndex 
graph (i.e., higher branch factor) than remaining query terms in group Q1, which exploration requires more time 
(as shown in the following section). As for the time results of query group Q2, the time slope increases regularly 
since the processing time of a given query Q2_i covers the processing time of Q2_i-1 plus the time needed to 
process the additional term in Q2_i, given that larger queries in Q2 expand smaller ones. 
 

7.5.2.  Breakdown of SemIndex Query Processing Time 
 

Similarly to SemIndex building time experiments, we broke down query execution time in order to better 
understand the system’s behavior (and identify potential time optimization strategies to be investigated in the 
future).  Fig. 20 and  Fig. 21 plot CPU time versus SQL time (I/O) while: i) varying IMBD and Wordnet chunk 
sizes, with fixed query size k and link distance l ( Fig. 20), and ii) varying query size k and link distance l, with 
fixed IMDB and Wordnet chunk sizes ( Fig. 21).  

Here, 25 tests (×5 runs) were first conducted for each query group covering every combination of k (1-to-5) 
and l (1-to-5), yet we only show the graph plotted with maximum k = 5 and l= 5 ( Fig. 20), since remaining 

graphs highlight a similar behavior (cf. [85]). Likewise, 100 tests (×5 runs) graphs were then conducted for each 
query group covering every combination of IMDB chunk size (10% to 100%) and Wordnet chunk size (10% to 
100%), yet we only show the graph plotted with maximum size chunks =100% (cf.  Fig. 21), since remaining 
graphs highlight a similar behavior. Also, we omit results obtained with queries of group Q2 since they show a 
similar behavior to those of Q1 (cf. [85]). 

At this point, in addition to the quadratic time dependency w.r.t. IMDB and WorldNet chunk sizes ( Fig. 
20), as well as quadratic time dependency w.r.t. the number of query terms k and link distance l ( Fig. 21, which 
were highlighted in the previous section), one can clearly realize that the bulk of execution time goes to SQL 
processing (executing SQL statements in order to fetch information from IMBD and WordNet, at the MySQL 
database server side) which takes up to 96% of total query processing time, whereas CPU processing (running 
non-SQL instructions at the Java software side) requires less than 4% of total execution time. 
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Fig. 20. CPU versus SQL time on queries of group Q1, considering k = 5 and l= 5, while varying IMDB and 

Wordnet chunk sizes. 
 

 
Fig. 21. CPU versus SQL query execution time on queries of group Q1, considering IMDB chunk = 100% and 

Wordnet chunk = 100%, while varying the number of query terms k and link distance threshold l. 
 

7.5.3.  Comparison with Legacy Inverted Index Query Processing Time 
 

We ran the same querying tasks through the legacy InvIndex built on top of IMDB, and compared the obtained 
query time results with those of SemIndex.  Fig. 22 and  Fig. 23 provide results obtained when running queries of 
group Q1 (unrelated), plotted by varying the number of query terms k ( Fig. 22) and SemIndex link distance 
threshold l in ( Fig. 23). Similar results were obtained with queries of group Q2 (expanded) and have been 
omitted here for clarity of presentation (they are provided in [85]). 

On one hand, results in  Fig. 22 and Fig. 22 show that SemIndex and InvIndex have very close query time 
levels when link distance is small (l = 1 and l = 2), such that SemIndex time increases as link distance increases, 

reaching its highest levels with l = 5 (i.e., almost 8 times higher than InvIndex time levels, with SemIndex 
reaching 5 hops into the semantic graph structure to identify more semantically related results). On the other 
hand,  Fig. 22 shows that both SemIndex and InvIndex query time levels slightly increase when increasing the 
number of query keywords k with small link distances (l = 1 and l = 2), such that the pace of increase tends to 

augment with k when reaching higher link distance thresholds (l =3-to-5).  
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a. SemIndex query execution time 
(reported from  Fig. 19.a) 

 

b. InvIndex versus SemIndex at l = 1 c. InvIndex versus SemIndex at l = 2 

 

 

  

 

d. InvIndex versus SemIndex at l = 3 
 

e. InvIndex versus SemIndex at l = 4 
 

f. InvIndex versus SemIndex at l = 5 
 

Fig. 22. Comparison with legacy InvIndex query execution time, considering queries of group Q1 (unrelated queries),  
while varying the number of query terms k and fixing link distance threshold l (the latter affecting SemIndex). 
 

 
 

 

 

 

 

 

a. SemIndex query execution time 
(reported from  Fig. 19.a) 

 

b. InvIndex versus SemIndex at k = 1 c. InvIndex versus SemIndex at k = 2

 

 

  

 
 

d. InvIndex versus SemIndex at k = 3 
 

e. InvIndex versus SemIndex at k = 4 
 

f. InvIndex versus SemIndex at k = 5 
 

 

Fig. 23.  Comparing SemIndex and legacy InvIndex query execution time, considering queries of group Q1 (unrelated 
queries), while varying link distance threshold l (affecting SemIndex) and fixing the number of query terms k. 
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In other words, the time to navigate the semantic graph, following the allowed link distance l, remains the 
foremost determining factor in query execution time. Also, results in  Fig. 23 show that InvIndex query time is 
invariant w.r.t. variations in link distance l (since it does not navigate the semantic graph, and thus does not 
perform semantic-aware processing). 

 

7.6. Query Results Evaluation 
 

7.6.1. Number of Returned Results using SemIndex 
 

To better evaluate query execution time, we also measured the number of neighboring nodes visited in the 
SemIndex graph when running each query, and the number of results (n# of data objects = n# of IMDB movies 
table rows) returned per query. 
 

  

 
 

a. Tests performed on queries of group Q1         
(unrelated queries). 

 

 

b. Tests performed on queries of group Q2 
(expanded queries). 

 

Fig. 24. Number of neighbors visited when running queries of groups Q1 and Q2, using fixed IMDB chunk = 100% 
and WordNet chunk = 100%, while varying the number of query terms k and link distance threshold l. 

 
 

 

 
 

a. Results for query group Q1 
(unrelated queries) 

 

b. Results for query group Q2 
(expanded queries) 

 

Fig. 25. Number of returned results when running queries of groups Q1 and Q2, using fixed IMDB chunk = 100%   
and WordNet chunk = 100%, while varying the number of query terms k and link distance threshold l. 

 

On one hand, the neighbors’ charts in  Fig. 24.a, b, and c are directly proportional to time charts in  Fig. 19.a, 
b, and c respectively. In other words, the amount of neighboring nodes visited in the SemIndex graph (which 
depends on the graph’s connectivity, and the query terms used: the starting index nodes used when exploring the 
SemIndex graph) shows a direct and proportional impact on query execution time: the more neighbors to be 
explored, the more time it will require our SearchTerms (Dijkstra-based) algorithm to explore the SemIndex 
graph. This explains the steep increase in query time when running queries Q1-3 ( Fig. 19.a, at k = 3) in 
comparison with the overall behavior of the chart, and compared with the charts of query group Q2 ( Fig. 24.b).  

On the other hand, the query result charts in  Fig. 25 are proportional to the time charts in  Fig. 19 along the l 
(link distance) axis, while inversely proportional along the k (number of query terms) axis. In other words, the 
number of results increases as link distance l increases, yet decreases as the number of query terms k increases. 
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The behavior regarding link distance l  can be justified since: increasing l  would increase the shortest path 
length per query term, which would increase the number of potential shortest path intersections in the SemIndex 
graph, i.e., returning a higher number of potential results. An extreme case occurs when processing query Q1_1 
and Q1_2, with k = 1 (single term query: “time”) and l = 5 (maximum link distance in our test, cf.  Fig. 25) 
which returns around 90% of the IMDB movies table rows. 

The behavior regarding the number of query terms k is due to processing a higher k, which means 
identifying the intersection between a higher number of shortest paths in the SemIndex graph, yielding a lesser 
number of potentially successful intersections, i.e., a lesser number of returned results. In other words, 
processing a more selective query (with a higher number of terms) means producing more selective (yet lesser) 
results. Extreme cases occur with extremely selective queries: i.e., Q1_4 and Q1_5 (k = 4 and 5 respectively), 
run with reduced link distance thresholds: l = 1, 2 and 3, which produce zero results (i.e., zero path intersections 
starting from multiple index terms mapping to each of the keywords). 

 

7.6.2. Comparing with  Number of Returned Results obtained using Legacy Inverted Index 
 

Similarly, we measured and compared the number of results returned per query when using legacy InvIndex, 
with the number of results obtained using SemIndex.  Fig. 26 and  Fig. 27 showcase the huge impact of SemIndex 
in retrieving (4 to 7 times) more results than legacy InvIndex (here, we only show a set of select result graphs, 
the complete set being provided in [85]). 

 
 

 

 

 
 

f. InvIndex versus SemIndex at l = 5, with query 

group Q1 (unrelated queries) 

 

f. InvIndex versus SemIndex at l = 5,with 

query group Q2 (expanded queries) 
 

Fig. 26. Comparing the number of returned results using InvIndex versus SemIndex, by varying the number of 
query terms k while fixing SemIndex’s link distance threshold l. 

 
 

 

 

 
a. InvIndex versus SemIndex with query Q1_1 
consisting of single term: “time” (n# of query 

keywords k = 1) 

c. InvIndex versus SemIndex with Q1_2 
consisting of two terms: “love”, “date”         

(i.e., n# of query keywords k = 2). 
 

Fig. 27. Comparing the number of returned results using InvIndex versus SemIndex, by varying SemIndex’s link 
distance threshold lwhile fixing the number of query terms k. 

 

On one hand, Fig. 25 shows that the number of results returned by SemIndex decreases with the increase in 
the number of keywords k, yet remains far greater than the number of results obtained with InvIndex, the latter 
producing no results with queries made of k=3, 4, and/or 5 keywords. On the other hand, Fig. 26 shows that the 
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number of results returned by SemIndex increases significantly with the increase of link distance l, while it 

stagnates with InvIndex which is not affected by l(since it does not navigate the semantic graph to produce 

more semantically related results). 
 

7.6.3. Quality of Returned Results using SemIndex versus Legacy InvIndex 
 

In addition to evaluating SemIndex’ efficiency (processing time), we also evaluated its effectiveness (result 
quality), i.e., evaluating the interestingness of semantic-aware answers from the user’s perspective. To do so, we 
collected the results of our test queries obtained with and without semantic indexing, i.e., querying using the 
legacy InvIndex (which is equivalent to executing queries as standard containment queries (l = 1) in SemIndex), 

and performing semantic-aware queries (l = 2-to-5) with SemIndex. Results were mapped against user feedback 
(user judgments, utilized as golden truth) evaluating the quality of the matches produced by the system by 
computing precision and recall metrics commonly utilized in IR evaluation [8]. Precision (PR) identifies the 
number of correctly returned results, w.r.t. the total number of results (correct and false) returned by the system. 
Recall (R) underlines the number of correctly returned results, w.r.t. the total number of correct results, 
including those not returned by the system. In addition to comparing one approach’s precision improvement to 
another’s recall, it is a widespread practice to consider the f-value, which represents the harmonic mean of 
precision and recall, such that high precision and recall, and thus high f-value characterize good retrieval 
quality [63]. Ten test subjects (six master students, and four doctoral students, who were not part of the system 
development team) were involved in the experiment as human judges. Testers were asked to evaluate the quality 
of the top 1000 results (movie objects returned) per query (since manually evaluating the tens of thousands of 
obtained results – cf.  Fig. 25 – is practically infeasible) obtained with l = 6 (as an upper bound of l =5, including 

potentially more results than l =1-to-5). These were randomized before being shown to testers. Manual relevance 

ratings (in the form of integers ∈ {-1, 0, 1}, i.e., {not relevant, neutral, relevant}) were acquired for each query 
answer. Then, we quantified inter-tester agreement, by computing pair-wise correlation scores1 among testers 
for each of the rated query answers, and subsequently selected the top 500 hundred answers per query having 
the highest average inter-tester correlation scores2, which we utilized as the experiment’s golden truth.  Results 
for queries of groups Q1 (unrelated queries) and Q2 (expanded queries) are shown in  Fig. 28 and  Fig. 29 
respectively, whereas overall f-value results are provided in  Fig. 30. Results highlight several observations. 
 

1) Precision and link distance: One can realize that precision levels computed with both query groups Q1 
(unrelated queries,  Fig. 28.a) and Q2 (expanded queries,  Fig. 29.a) generally increase with link distance (l), 

until reaching l= 3 (with Q2) or l = 4 (with Q1) where precision starts to slightly decrease toward l = 5. On one 

hand, this shows that the number of correct (i.e., user expected) results increases as more semantically related 
terms are covered in the querying process (with l  > 1). On the other hand, this also shows that over-navigating 

the SemIndex graph to link terms with semantically related ones located as far as l  ≥ 3 hops away might include 
results which: i) are somehow semantically related to the original query terms, but which ii) are not necessarily 
interesting for the users. For instance, term “congo” (meaning: black tea grown in China) is linked to term 
“time” through l  = 5 hops in SemIndex (“time” >> “snap” >> “reception” >> “tea” >> “congo”). Yet, results 
(movie objects) containing term “congo” (e.g., movies about the country Congo, or its continent Africa) were 
not judged to be relevant by human testers when applying query “time” (testers were probably expecting 
movies about the passage of time or time travel instead, etc.). 

 

2) Precision and number of query terms: Here, one can realize that precision levels with queries of group 
Q1 (unrelated queries,  Fig. 28.a) do not seem to largely vary w.r.t. the number of terms (k) per query, whereas 
precision levels with queries of group Q2 (expanded queries,  Fig. 29.a) clearly increase with k. These seemingly 
different results are due to the human testers’ expectations, where testers were required to judge the quality of 
each query’s results given the user’s supposed intent. On one hand, given that queries in group Q1 are unrelated, 
result quality was evaluated separately for each query, based on the query’s own keyword terms (e.g., the intent 
of query Q1_1 is identifying movies that have to do with time, and the intent of Q1_3 is movies that have to do 
with a flying power man, etc.). On the other hand, given that queries in group Q2 are expanded versions of one 

                                                 
1  Using Pearson Correlation Coefficient (PCC), producing scores ∈ [-1, 1] such that: -1 designates that one tester’s ratings is a decreasing 

function of the other tester’s ratings (i.e., answers deemed relevant by one tester are deemed irrelevant by the other, and vice versa), 1 
designates that one tester’s ratings is an increasing function of the other tester’s ratings (i.e., answers are deemed relevant/irrelevant by 
testers alike), and 0 means that tester ratings are not correlated. 

2  Having average inter-tester PCC score ≥ 0.4. 



another, result quality was evaluated based on the user’s intent: which would be naturally expressed with the 
most expanded (i.e., most expressive) query: Q2_5. One can realize that using fewer query terms here produces 
lower precision levels, which is due to the system returning more results which are (semantically related to the 
query terms but which are) not necessary related to the user’s intent (e.g., query “car” might return movies that 
have to do with trains or taxi cabs, whereas the user is apparently searching for movies that have to do with 
muscle cars with speed driving and thrills, cf. Q2_5). In other words, with query group Q2: the lesser the 
number of query terms used, the lesser the query’s expressiveness w.r.t. user’s intent, and thus the larger the 
number of returned results which are not necessarily related to the user’s intent: producing lower precision.  

 
  

 

a. Precision results 
 

b. Recall results 
 

 

Fig. 28. Comparing precision (PR) and recall (R) results obtained using SemIndex versus legacy InvIndex, with query 
group Q1 (unrelated queries), varying the number of query terms k and link distance l (the latter affecting SemIndex). 

 
  

 

a. Precision results 
 

b. Recall results 
 

 

Fig. 29. Comparing precision (PR) and recall (R) results obtained using SemIndex versus legacy InvIndex, with query 
group Q2 (expanded queries), varying the number of query terms k and link distance l (the latter affecting SemIndex). 

 
  

a. F-value results with query group Q1 b. F-value results with query group Q2 
 

 

Fig. 30. Comparing f-value levels obtained using SemIndex versus legacy InvIndex, with query group  
Q1 (unrelated queries), and query group Q2 (expanded queries). 
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3) Recall and link distance: As for recall, one can realize that levels obtained with both Q1 and Q2 steadily 
increase with link distance (l) varying from l= 1 (legacy InvIndex) to 5 ( Fig. 28.a and  Fig. 29.b). This maps to 

observation 1, where the number of correct (i.e., user expected) results returned by the system increases as more 
semantically related terms are covered in the querying process. In other words, the more the number of correct 
results which are returned by the system, the fewer the number of correct results which are not returned, and 
thus the higher the recall levels. Note that returning noisy (incorrect) results along with the correct ones does not 
affect recall (but rather affects precision as explained in observation 1). 

 

4) Recall and number of query terms: Recall levels vary in a similar fashion to precision levels when 
varying link distance (l): increasing with the increase of l, which accounts for more semantic coverage 
(returining more semantically related results) in the SemIndex graph ( Fig. 28.b and  Fig. 29.b). However, recall 
levels tend to decrease (rather than increase) with k. This is due to the fact that shorter (less expressive) queries 
(i.e., with smaller k values) will naturally return more (semantically related) results than larger queries made of 
multiple terms (larger k) which will necessarily identify less results (e.g., lesser number of movie objects 
matching the query’s terms). Hence, a decrease in the number of returned results (with increasing k values) 
meant the number of correct (and incorrect) results (naturally) decreased, which lead to a decrease in recall.  

 

5) As for f-value results, levels clearly and significantly increase with the increase of link distance l, 
whereas they slightly decrease with the increase of the number of query keywords k. This naturally confirms the 
precision and recall levels obtained above, where the determining factor affecting retrieval quality remains link 
distance l, whereas an increase in the number of keywords k tends to reduce system recall with higher values of 
k (queries becoming very selective, thus missing some relevant results). Note that f-value levels are consistently 
significantly higher than those obtained with the legacy InvIndex, highlighting a substantial improvement of 
semantic-aware retrieval quality over syntactic retrieval quality.  

 

7.7. Evaluating Query Efficiency/Effectiveness  Ratios 
 

To sum up, and in order to evaluate the benefits of SemIndex querying over legacy InvIndex querying, we 
compute the ratio between improvement in query effectiveness (result quality) and reduction in efficiency 
(query execution time). In other words, we would like to study if the cost (in execution time) of obtaining 
(higher quality) semantic-aware query results using SemIndex is worthwhile, in comparison with the faster yet 
less effective InvIndex. To do so, we first evaluate the ratio (expressed in percentage) of increase in query 
execution time (cf.  Table 8) as well as the ratio (percentage) of increase in query result quality (i.e., f-value 
scores, cf.  Table 9) when using SemIndex versus InvIndex. Both ratios were evaluated for the different 
combinations of link distance thresholds l and number of query terms k, using the following formulas: 
 

SemIndex InvIndex
Efficiency

InvIndex

QueryTime QueryTime

QueryTime
η −=    (2)            

f-value f-value

f-value
SemIndex InvIndex

Effectiveness
InvIndex

η −=   (3) 

 
 
Table 8. Percentage of increase in query execution time, when using SemIndex versus legacy InvIndex.  

 

a. Processing queries of group Q1 (unrelated)                      b. Processing queries of group Q2 (expanded) 
 

 l=1 l =2 l =3 l =4 l =5 l=1 l =2 l =3 l =4 l =5 

Q1_1 (k=1) 12.22% 4.63% 35.74% 50.37% 198.89%  Q2_1 (k=1) 6.34% 6.34% 29.76% 220.00% 607.80% 

Q1_2 (k=2) 2.11% 11.81% 58.02% 70.46% 500.63%  Q2_2 (k=2) 5.52% 14.72% 52.76% 253.99% 1125.15% 

Q1_3 (k=3) 5.04% 21.22% 247.48% 315.13% 1558.40%  Q2_3 (k=3) 2.53% 2.53% 33.84% 215.15% 1200.00% 

Q1_4 (k=4) 1.12% 49.76% 70.56% 94.56% 821.60%  Q2_4 (k=4) 7.92% 15.84% 69.80% 587.13% 1969.80% 

Q1_5 (k=5) 3.89% 21.30% 93.15% 206.85% 1343.33%  Q2_5 (k=5) 1.63% 1.63% 58.54% 439.43% 1701.22% 
 

Table 9. Percentage of increase in query result quality (i.e., f-value) when using SemIndex versus legacy InvIndex.  
 

     a. F-value increase with query group Q1 (unrelated)            b. F-value increase with query group Q2 (expanded) 
 

 l=1 l =2 l =3 l =4 l =5 l=1 l =2 l =3 l =4 l =5 

Q1_1 (k=1) 0.00% 21.78% 39.74% 156.89% 174.74%  Q2_1 (k=1) 0.00% 43.34% 64.74% 154.97% 135.05% 

Q1_2 (k=2) 0.00% 86.96% 104.77% 325.62% 421.30%  Q2_2 (k=2) 0.00% 23.23% 77.69% 405.22% 437.75% 

Q1_3 (k=3) 0.00% 72.58% 99.55% 277.57% 247.63%  Q2_3 (k=3) 0.00% 39.67% 126.88% 612.35% 766.41% 

Q1_4 (k=4) 0.00% 0.00% 0.00% 4968.00% 5922.06%  Q2_4 (k=4) 0.00% 0.00% 0.00% 2546.32% 3913.45% 

Q1_5 (k=5) 0.00% 0.00% 0.00% 5788.08% 4908.13%  Q2_5 (k=5) 0.00% 0.00% 0.00% 466.33% 3649.94% 



On one hand, results in  Table 8 show that querying using SemIndex, under all considered combinations of 
parameters l and k, requires between 6.34% (query Q2_1 of group Q2, with l =1 and k =1)  and up to 1701.22% 

(query Q2_5 of group Q2, with l=5 and k=5)  more processing time than InvIndex. On the other hand,  Table 9 

shows that query result quality levels increase with SemIndex, from 0% (when l =1, where SemIndex performs 

semantic-free standard containment queries) up to 5922.06% (with query Q2_4 of group Q1, with l=5 and k=4) 
w.r.t. the quality levels of InvIndex.  

Consequently, we compute the ratios between improvement in result quality and increase in query 
execution time, when using SemIndex versus InvIndex, for all combinations of link distance l and number of 
query terms k, using formula (4): 

 

/
Effectiveness

Quality Time
Efficiency

ηη
η

=  
(4) 

 

 

Values of the ηQuality/time ratio varies as follows: 
 

- ηQuality/time < 1 means SemIndex’s improvement in result quality did not surpass the increased cost in 
query processing time in comparison with InvIndex. For instance, a 10% improvement in result quality 
which requires a 20% increase in query execution time would yield ηQuality/time = 0.5, such that improving 
result quality requires double the effort in query execution time. 

- ηQuality/time = 1 means SemIndex’s improvement in result quality exactly matches the increased cost in 
query processing time in comparison with InvIndex. In other words, a 10% improvement in result quality 
would require exactly a 10% increase in query execution time to obtain ηQuality/time = 1. 

- ηQuality/time > 1 means SemIndex’s improvement in result quality surpassed the increased cost in query 
processing time in comparison with InvIndex. For instance, a 20% improvement in result quality which 
requires only a 10% increase in query execution time would yield ηQuality/time = 2, such that the effort put 
in query execution time doubled the increase in query result quality. 

 
Table 10. Ratio of improvement of result quality over increase of query execution time,  

when using SemIndex versus legacy InvIndex. 
 

            a. Ratio with query group Q1 (unrelated)                                 b. Ratio with query group Q2 (expanded) 
 

 l=1 l =2 l =3 l =4 l =5 l=1 l =2 l =3 l =4 l =5 

Q1_1 (k=1) 0.00 4.70 1.11 3.11 0.88  Q2_1 (k=1) 0.00 6.84 2.18 0.70 0.22 

Q1_2 (k=2) 0.00 7.36 1.81 4.62 0.84  Q2_2 (k=2) 0.00 1.58 1.47 1.60 0.39 

Q1_3 (k=3) 0.00 3.42 0.40 0.88 0.16  Q2_3 (k=3) 0.00 15.71 3.75 2.85 0.64 

Q1_4 (k=4) 0.00 0.00 0.00 52.54 7.21  Q2_4 (k=4) 0.00 0.00 0.00 4.34 1.99 

Q1_5 (k=5) 0.00 0.00 0.00 27.98 3.65  Q2_5 (k=5) 0.00 0.00 0.00 1.06 2.15 

 
Results in  Table 10 show that in most cases, SemIndex’s improvement in query result quality surpasses the 

cost put into query execution time in comparison with InvIndex, varying from ηQuality/Time = 1.11 with Q1_1 at 
l=3 and reaching as high as ηQuality/Time = 52.54 with query group Q1_4 at l =4 (i.e., improvement in quality is 

equivalent to 51.54 times the increase in query execution cost). We also note that ηQuality/time was less pronounced 
in certain cases, especially with low link distance values (e.g., with l <2 or l <3), and sometimes with certain 
specific queries (e.g., query Q1-3 of group Q1). Computing the average and standard deviation scores 
(considering all queries and link distances) produces avg(ηQuality/Time) = 3.36 and stdev(ηQuality/time) = 8.01, which 
means that: i) SemIndex’s improvement in result quality is on average 3.36 times higher than its increase in 
query time w.r.t. the legacy InvIndex, and ii) the latter average cannot be generalized given the relatively high 
standard deviation of 8.01, reflecting the ratio’s heavy fluctuation among queries (as shown in  Table 10), which 
seems to depend on every query rather on the query category.  

Recall that the above results and observations were obtained based on the feedback of ten test subjects 
(involved in the experiment as human judges), and need to be further investigated and generalized with a larger 
group of testers (using Amazon’s Mechanical Turk for instance1). Note that we are currently conducting an 
extended comparative study comparing SemIndex’ effectiveness with alternative semantic-aware retrieval 

                                                 
1   Available at: https://www.mturk.com/ 



techniques, namely: query expansion and semantic disambiguation methods, where we can evaluate not only the 
relevance of query answers but also the ordering of the results1. 
 
8. Related Works 

8.1. Keyword Search in Textual Databases 

Traditionally, the DB and IR communities have targeted data search and processing mainly independently of 
each other. The DB community has largely focused on structured data providing sophisticated techniques for 
processing complex and exact queries, whereas the IR community has focused on searching unstructured data 
using various techniques for simple keyword-based search and ranking query results [6]. Yet in the past decade, 
there has been an increasing interest in integrating IR and DB search paradigms, namely: integrating keyword-
based search in textual DBs to perform simple and approximate full-text DB querying [25, 58, 97]. 

Early approaches on keyword search queries for RDBs uses traditional IR scores (e.g., TF-IDF) to find 
ways to join tuples from different tables in order to answer a given keyword query [2, 15, 34]. The proposed 
search algorithms focus on enumeration of join networks called candidate networks, to connect relevant tuples 
by joining different relational tables. The result for a given query comes down to a sequence of candidate 
networks, each made of a set of tuples containing the query keywords in their text attributes, and connected 
through their primary-foreign key references, ranked based on candidate network size and coverage. The 
optimal candidate network problem has been shown to be NP-complete w.r.t. the number of relevant tables [34, 
44], and various heuristic algorithms for the enumeration of top-k candidate networks have been proposed, e.g., 
[15, 34]. More recent methods on RDB full-text search in [55, 58] focus on more meaningful scoring functions 
and generation of top-k candidate networks of tuples, allowing to group and/or expand candidate networks based 
on certain weighting functions in order to produce more relevant results. The authors in [61] tackle the issue of 
keyword search on streams of relational data, whereas the approach in [96] introduces keyword search for RDBs 
with star-schemas found in OLAP applications. Other approaches introduced natural language interfaces 
providing alternate access to a RDB using text-to-SQL transformations [53, 72], or extracting structured 
information (e.g., identifying entities) from text (e.g., Web documents) and storing it in a DBMS to simplify 
querying [27, 28]. Keyword-based search for other data models, such as XML [1, 24] and RDF [13, 16] have 
also been studied. 

Our work is complementary to most existing DB search algorithms in that our approach extends syntactic 
keyword-term matching: where only tuples containing exact occurrences of the query keywords are identified as 
results, toward semantic based keyword matching: where tuples containing terms which are lexically and 
semantically related to query terms are also identified as potential results, a functionality which - to our 
knowledge - remains unaddressed in most existing DB search algorithms. 

 

8.2. Extending Syntactic Search toward Semantic Search 

While DB approaches focused on integrating traditional (syntactic) keyword-based search functionality, many 
efforts have been deployed by the IR community to extend syntactic processing toward semantic full-text search 
using dedicated semantic indexing techniques, leading to so-called concept-based IR [7, 11, 12]. The latter is an 
alternative IR approach that aims to tackle the semantic relatedness problems described in this paper (cf. 
motivation scenarios and challenges in Section  1) by transforming both documents and queries into semantic 
representations, using semantic concepts in a reference knowledge base, instead of (or in addition to) 
keywords/terms, such as the retrieval process is undertaken in the concept space [12, 39]. Consequently, an 
adapted IR engine processes the semantically indexed documents and queries, so as to produce more meaningful 
results. Existing concept-based methods, e.g., [7, 11, 12, 39, 50, 51], can be characterized by three parameters: i) 
Semantic indexing: consists of the representation model the concepts are based on, as well as the underlying 
indexing technique used to access the concepts. It attempts to solve the problems of lexical matching by using 
conceptual indices instead of individual word indices for retrieval [50]; ii) Mapping method: the mechanism that 
maps the lexical terms with these semantic concepts. The mapping can be performed using manual mapping 
w.r.t. a handcrafted ontology such as WordNet [64] or Yago [42], or using machine learning [38] or graph 
matching techniques [12], though this would usually imply less accurate mappings, iii) Usage in the retrieval 
process: the stages in which the concepts are used in information retrieval. Concepts would be best used 
throughout the entire process, in both the indexing and retrieval stages [40]. A simpler but less accurate solution 
is to apply concept analysis in one stage only: at the query indexing stage, e.g., performing query expansion 
over the bag of words retrieval model [41] by adding to the query keywords their most related semantic 
concepts in the reference semantic source [5] (e.g., WordNet [64]) or words that co-occur with the query terms 

                                                 
1  The traditional inverted index produces non-ranked results, which is the reason we did not compare result ordering in this study.  



in a corpus (i.e., words that, on a probabilistic ground, are believed to belong to the same semantic domain, e.g., 
France and Paris; car and driver) [19], and then performing syntactic query/data matching/retrieval. 

An alternative approach to handle semantic meaning is to apply automatic word sense disambiguation 
(WSD) to queries, during query execution time. Disambiguation methods usually use knowledge resources such 
as WordNet [56], and/or co-occurrence statistical data in a corpus [78] to find the possible senses of a word and 
map word occurrences to the correct sense. Semantic query analysis in information retrieval usually involves 
two steps: i) WSD to identify the user’s intended meaning for query terms, and ii) semantic query 
representation/enhancement in order to alter the query so that it achieves better (precision and recall) results [5]. 
The disambiguated query terms are then used in query processing, so that only documents that match the correct 
sense are retrieved. Nonetheless, the performance of WSD-based approaches depends on the performance of the 
automated WSD process [35] which generally: i) is computationally complex requiring substantial execution 
time [68], ii) depends on the context of the query/data processed (e.g., surrounding terms) [22, 84, 98] which is 
not always sufficiently available (e.g., keyword queries on the Web are typically 2-to-3 words long [48]), and 
thus iii) do not guaranty correct results [35, 47] as incorrect disambiguation is likely to harm performance rather 
than merely not improve it [35]. 

Our study attempts to extend syntactic keyword search in textual DBs toward concept-based querying, with 
a special emphasis on semantic data indexing using a hybrid-inverted index: SemIndex. In the following, we 
briefly review the varieties and extensions of existing inverted indexes, and compare them with our proposal.  

 

8.3. Inverted Indexes handling Data Semantics 

Various efforts have been recently deployed to extend the inverted index toward handling data semantics. These 
can be organized in three main categories: i) including semantic knowledge into an inverted index, ii) including 
full-text information into the semantic knowledge base, and iii) building an integrated hybrid structure.  

The first approach consists in adding additional entries in the index structure to designate semantic 
information. Here, the authors in [50] suggest extending the traditional (term, docIDs[]) inverted index toward a 
(term, context, docIDs[]) structure where contexts designates senses (synsets) extracted from WordNet, 
associated to each term in the index taking into account the statistical occurrences of concepts in Web document 
[11]. The authors however do not provide the details on how concepts are selected from WordNet and how they 
are associated to each term in the index. Another approach is introduced in [101], extending the inverted index 
structure by adding additional pointers linking each entry of the index to semantically related terms, (term, 
docIDs[], relatedTerms[]). Term links are identified by analyzing term occurrences in Web documents, based on 
Web document Page-Rank linkage analysis. The authors mention that they consider semantic relatedness 
between terms, yet they do not describe: how semantically related words are identified (what kinds of semantic 
relations and processing are used), nor how the index is actually built based on linked Web documents. 

Another approach to semantic indexing is to add words as entities in the ontology [11, 92]. For instance, 
adding triples of the form word occurs-in-context concept, such that each word can be related to a certain 
ontological concept, when used in a certain context. Following such an approach: i) the number of triples would 
naturally explode, given that ii) query processing would require reaching over the entire left and right hand sides 
of this occurs-in-context index, which would be more time consuming [11] than reading on indexed entry such 
as with the inverted index. A possible optimization would be to split the relation into word occurs-in context and 
concept occurs-in context, yet the relations would remain huge and concept occurs-in-context always has to be 
processed entirely [11]. However, a related approach has been used to disambiguate WordNet glosses [92], and 
has been proven useful in enhancing WSD-based query expansion. 

A third approach to semantic indexing consists in building an integrated hybrid structure: combining the 
powerful functionalities of inverted indexing with semantic processing capabilities. To our knowledge, one 
existing method in [11] has investigated this approach, introducing a joint index over ontologies and text. The 
authors consider two input lists: containing text postings (for words or occurrences), and lists containing data 
from ontological relations (for concept relations). The authors tailor their method toward incremental query 
construction with context-sensitive suggestions, and thus use inverted lists for prefixes instead of terms, in order 
to allow fast prefix suggestions for words to be used in building queries. They introduce the notion of context 
lists instead of usual inverted lists, where a prefix contains one index item per occurrence of a word starting with 
that prefix, adding an entry item for each occurrence of an ontological concept in the same context as one of 
these words, producing an integrated 4-tuples index structure (prefix, terms[]) ↔ (term, context, concepts[]). 

The method in [11] seems arguably the most related to our study, with major differences in objectives and 
theoretical/technical contributions: the authors in [11] target semantic full-text search with special emphasis on 
incremental query construction and suggestion based on query term prefixes and result excerpts, whereas we 
target semantic search in textual DBs extending traditional DB-style (SQL based) querying capability toward 
semantic full-text search. Hence, while the authors in [11] focus on the IR aspects of indexing, keyword query 
construction, and query evaluation, we rather present a full-fledged textual DB solution, with structures and 



tools designed for seamless storage and manipulation within a typical RDBMS, allowing to process different 
kinds of DB-style structure queries in a textual DB. 

SemIndex brings full-text DB search from traditional syntactic data retrieval toward semantic concept-based 
retrieval, attempting to benefit from both worlds: allowing i) simple, ii) semantic-aware, and iii) ranked 
keyword search, while: iv) preserving sophisticated DB indexing and v) structured (SQL-based) querying. 

SemIndex can also be extended/adapted toward so-called object (entity)-based retrieval, e.g., [13, 16, 73], 
where the main objective is to retrieve parts of a KB structure (e.g., sets of triples or components of triples in an 
RDF or OWL ontology describing Web resources) that best match a user query. In this context, SemIndex could 
be redesigned to integrate: a reference semantic network with a dedicated inverted index built on top of the 
target KB structure, using dedicated semantic and ontology matching techniques, e.g., [66, 79, 90], which we 
aim to investigate in a future study.  

 

9. Conclusion 
In this paper, we introduce a new semantic indexing approach called SemIndex, creating a hybrid structure using 
a tight coupling between two resources: a general purpose semantic network, and a standard inverted index 
defined on a collection of textual data, represented as dedicated graph structures. In addition to describing the 
logical graph-based design of SemIndex, we also provide its physical design using a standard commercial 
RDBMS, and develop the index construction process. We also provide an extended query model and related 
query processing algorithms, using SemIndex, to allow semantic-aware query processing. Our theoretical study 
and extensive experimental evaluation highlighted the following results: i) our index structure can be built in 
average linear time, and its size is of average linear space, w.r.t. the sizes of the input data and knowledge 
sources used, ii) query processing time is also linear in the size of the SemIndex structure, and varies linearly 
w.r.t. to the number query terms (keywords) as well as the link distance threshold designating the breadth of the 
SemIndex graph to be covered during querying, and iii) our approach allows both traditional (syntactic) queries 
(when using a minimum link distance threshold), as well as semantic-aware queries (when increasing link 
distance) with a significant and impressive increase in the number of neighboring nodes visited in the SemIndex 
graph as well as the number and quality of semantically-related returned results. 

We are currently completing an extended experimental study to evaluate SemIndex’s properties in terms of 
i) genericity: to support different types of textual (structured, semi-structured, NoSQL) data collections1, and 
different semantic knowledge sources (general purpose like: Roget’s thesaurus [98], Yago [42], and Google 
[49], as well as domain specific: like ODP [59] for describing semantic relations between Web pages, FOAF [3] 
to identify relations between persons in social networks, and SSG [76] to describe visual and semantic relations 
between vector graphics)2, ii) effectiveness: evaluating the interestingness of semantic-aware query answers 
considering different query answer weighting and ranking (result ordering) schemes, in comparison with IR-
based indexing, query expansion, and semantic disambiguation methods, and iii) efficiency: to reduce the 
index’s building and query processing costs, using multithreading and various index fragmentation and sub-
graph mining techniques [26]. In the near future, we plan to investigate the different operations, algorithms, 
physical structures, as well as possible optimizations needed to update the index [20], based on changes in the 
textual data collection source as well as changes in the reference knowledge base source. Specifically, we plan 
to evaluate term context window size and its impact on the missing terms problem, and consequently on the 
SemIndex construction process and its usage in query processing. On the long run, we aim to extend SemIndex 
to handle more expressive semi-structured and linked data collections such as domain-specific RDF/OWL 
ontologies (e.g., [14, 77] describing health or biomedical data), building on recent solutions for semi-structured 
semantic analysis [22, 83, 84] and approximate structure mapping [86, 87] to achieve more sophisticated object 
(entity)-based retrieval capability [73]. 
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1    While SemIndex is currently designed to index relational data in the form of key-value tuples, yet indexing NoSQL attribute-value stores 

(or semi-structured document stores) requires extending the index’ logical and physical designs in order to handle a varying number of 
attributes describing every data object (as well as hierarchical relations connecting data objects). 

2  The knowledge base (KB) needs to be first represented following the general graph model adopted in SemIndex (cf. Definition 3), and 
then can be straightforwardly used in the SemIndex construction and querying processes. Here, dedicated semantic mediators or wrappers 
need to be designed to allow the mapping of every KB with SemIndex’s general graph model. 
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Appendix: SemIndex Weighting Scheme 
 

We propose a set of weighting functions to assign weight scores to SemIndex entries, including: index nodes, 
index edges, data nodes, and data edges. The weighting functions are used to select and rank semantically 
relevant results w.r.t. the user’s query (cf. SemIndex query processing in Section  5). Other weight functions 
could be later added to cater to the index designer’s needs.  

 
1. Index Node Weight 
 

Considering an index node ni ∈ .SI iG V


, the weight of ni denoted as WIndexNote(ni), is evaluated as a node degree 
centrality score [69], computed as the node’s in-degree (i.e., number of nodes connected with the target index 

node) over the maximum node in-degree in SIG


, according to the below formula: 
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Rationale: An index node is more important if it receives many links from other indexing nodes1 (cf.  Fig. 30.a).  
 
 

                                                 
1 A future extension would be to consider eigenvector centrality, where node weights are normalized based on centrality scores of 

connected nodes [69]. 



 
 

 
 

 

 
a. An index node with many incoming edges (left) 
will have a higher weight compared with one with 

fewer incoming edges (right) [69]. 

b. An index edge connecting two index nodes having many other incoming/ 
outgoing edges (left) will have a lesser weight compared with one connecting 

index nodes with fewer edges (right, where j
i

e is the only edge connections ni 

and nj, and thus carries all of the descriptive power of ni toward nj) [74].  
 

 

Fig. 30. Visual depictions of index node and index edge weight evaluation. 
 
2. Index Edge Weight 

The weight of an index edge j
ie  ∈ .SI iG E


 outgoing from index node ni and incoming into index node nj is 

determined by the out-degree of ni, considering the corresponding edge label (e.g., semantic relationship, e.g., 
hypernymy, meronymy, etc.) [74], according to the below formula:  
 

WIndexEdge (
j

ie )= 1   ]0,  1]
- ( )Label iout degree n

∈  (6) 

 
Rationale: An index edge designates a stronger connection between two index nodes when it carries most of the 
descriptive power from the source node to the destination node, such that the source node has few other out-
going connections (if any, cf.  Fig. 30.b) 1.  
 
3. Data Node Weight 

The weight of a data node nd ∈ .SI dG V


in the SemIndex graph is defined as: 
 

WDataNode (nd) = 

 .

- ( )
  [0,  1]

Max ( - ( ))
SIq d

d

q
n G V

in degree n
in degree n

∀ ∈

∈


  
(7) 

 

where in-degree(nd) designates the number of foreign key/primary key data links (joins) outgoing from  all data 
nodes (tuples) where the foreign keys reside, toward data node (tuple) nd where the primary key resides.  
 
Rationale: Similarly to index node weight, we consider that a data node is more important (its weight will 
increase) when it received many links from other data nodes (cf.  Fig. 31). 
 

 

 
 

 

Fig. 31. Visual depiction of data node weight evaluation, where data node nd which has a larger number of 
foreign key/primary key connections (high in-degree) will have a higher weight compared with np.   

 

 

 

                                                 
1  A future extension would be to assign higher/lower weights to every semantic relation (e.g., hypernymy could be considered as a stronger 

semantic relation compared with related-to). 



4. Data Edge Weight 

Given a data edge d
ie ∈ .SI dG E


 connecting an index node ni with a data node nd (e.g., data edge connecting index 

node T1 with data node O2 since the term “car” occurs in the textual description of O2, likewise for T1-O2, T4-

O1,…, T12-O1, in  Fig. 6), we compute the weight of d
ie as an adapted tf (term frequency) score where tf 

underlines the frequency (number of occurrences) of the index node string literal within a given data node, 

connected via the data edge in question. Hence, given a data edge d
ie

 

incoming from index node ni toward data 

node nd, where ni.l denotes the string value of ni, we define: 
 [43] 
 

DataEdge

 .   

( )
W ( )     [0, 1]

( ( ))
d

SIi d

i

j

e G E

d
i

NbOcc n .l
e

Max NbOcc n .l
∈

= ∈


  

(8) 

 

 

where NbOcc(nj.l) designates the number of occurrences of a term ni.l in nd’s textual description, normalized 
w.r.t. the maximum number occurrences of any index node string literal nj.l within the target data node nd. 
 

Rationale: Following the IR logic of term frequency [8], a data edge is more important if it connects an 
index term with a data node where the index term occurs many times in the data node’s string value (e.g., index 
term T1 (“car”) occurs many times in data object O2 (“Days of Thunder”)’s full textual description, resulting in a 

high WDataEdge( 2

1

O
Te )). 

 

Note that the user (admin) can also adapt weight functions by tuning their respective weight parameters, 
activating/de-activating certain functions based on her needs. 


