
Full-fledged Semantic Indexing and Querying Model designed for
Seamless Integration in Legacy RDBMS

Joe Tekli1*, Richard Chbeir2, Agma J.M. Traina3, Caetano Traina Jr.3, Kokou Yetongnon4,

Carlos Raymundo Ibanez5, Marc Al Assad1, and Christian Kallas1

1 Lebanese American University, ECE Dept., Byblos, Lebanon

2 University of Pau & Pays Adour, LIUPPA Lab., Anglet, France
3 University of Sao Paulo, ICMC, Sao Carlos, Brazil

4 University of Bourgogne, LE2I Lab. UMR-CNRS, 9 Alain Savary, 21000 Dijon, France
5 Universidad Peruana de Ciencias Aplicadas, Lima, Peru

Abstract. In the past decade, there has been an increasing need for semantic-aware data search and indexing
in textual (structured and NoSQL) databases, as full-text search systems became available to non-experts
where users have no knowledge about the data being searched and often formulate query keywords which
are different from those used by the authors in indexing relevant documents, thus producing noisy and
sometimes irrelevant results. In this paper, we address the problem of semantic-aware querying and provide
a general framework for modeling and processing semantic-based keyword queries in textual databases, i.e.,
considering the lexical and semantic similarities/disparities when matching user query and data index terms.
To do so, we design and construct a semantic-aware inverted index structure called SemIndex, extending the
standard inverted index by constructing a tightly coupled inverted index graph that combines two main
resources: a semantic network and a standard inverted index on a collection of textual data. We then provide
a general keyword query model with specially tailored query processing algorithms built on top of
SemIndex, in order to produce semantic-aware results, allowing the user to choose the results’ semantic
coverage and expressiveness based on her needs. To investigate the practicality and effectiveness of
SemIndex, we discuss its physical design within a standard commercial RDBMS allowing to create, store,
and query its graph structure, thus enabling the system to easily scale up and handle large volumes of data.
We have conducted a battery of experiments to test the performance of SemIndex, evaluating its
construction time, storage size, query processing time, and result quality, in comparison with legacy
inverted index. Results highlight both the effectiveness and scalability of our approach.

Keywords: Semantic Queries, Inverted index, NoSQL indexing, Semantic Network, Semantic-aware data
processing, Textual databases.

1. Introduction
Processing keyword-based queries is a fundamental problem in the domains of Information Retrieval (IR) and
more recently textual DataBase (DB) search, where several studies have been conducted to develop effective
keyword-based search techniques, e.g., [10, 31]. In most existing approaches, standard containment keyword
queries are supported by a full-text index, namely an inverted index which is considered as one of the most
useful full-text indexing techniques for large textual collections [8], supported by many DB Management
Systems (i.e., DBMSs) [2, 58], and recently extended toward semi-structured [1, 10] and NoSQL data [37, 93].

Inverted indexes associate each term (word/expression) in the text with a list of pointers to the data objects
(e.g., data records, or documents) that contain the term, in the form of a list of (term, objectIDs[]). Then when an
enquiry is performed, the index is queried with every term within the user’s request, identifying all data objects
that contain the query terms in just one search operation [52, 60]. Nonetheless, the standard inverted index, only
supports exact term matching and cannot deal with cases of lexical and/or semantic similarities/relationships
among query/data terms (despite the use of basic language pre-processing capabilities, like stemming or stop
word removal, which only help support basic lexical disparities among terms).

1.1. Motivation Scenarios

To illustrate this, consider a dataset Δ from a movie database, as shown in Table 1. Each movie in Δ, identified
with an id, is described with some text, including the movie title, year and plot. An extract of Δ’s inverted index
is shown in Fig. 2.a. For queries “sprint car racer” and “sound of music”, the search results are movies O2 and

*1Corresponding author. Tel.: +9619547262; fax: +9619546262; e-mail: joe.tekli@lau.edu.lb

O3 respectively, which texts contain occurrences of each of the corresponding query’s terms. However, if the
user wants to search for a particular movie but cannot recall its exact title or plot description, she will likely use
her own terminology in choosing query terms which (we naturally assume) are lexically and/or semantically
similar to the movie’s description terms, e.g., “voice of melody” or “auto rallying”. Such terms might not
exactly match those used to describe (and index) the movie objects (which is the case in our example), and thus
will miss movies O2 and O3 as relevant results. In addition, the movies might not be extensively described or
well-tagged in the database, or might not be described using the same attributes (e.g., in a NoSQL or semi-
structured database), which would also result in missing relevant search results. Similar scenarios and needs can
be identified in various areas, e.g.:

• A database storing research proposals granted by different funding agencies (describing the research itself,
the granting institutions, and the involved researchers' expertise): Could a scientist user easily retrieve
information related to her own research? Could a non-scientist user, e.g., a company manager, with a
specific production problem, find the projects, institutions, or researchers able to solve her problem?

• A database storing information related to airline disasters (describing airplanes, crashes, investigations,
findings, and so on): Could an investigator efficiently retrieve information related to a given new case
investigation path?

Table 1. Sample Movie data collection extracted from IMDB1.

ID Textual content

O1

Street Kinds (2008): Tom Ludlow is a ruthless undercover cop. Locating his stolen car at a
gang's hideout, Tom storms in to find thugs getting high on Zen. He hears a light voice…

O2 Days of Thunder (1990): Cole Trickle is a young racer from California with years of
experience in open-wheel racing winning championships in sprint car racing…

O3 Sound of Music, The (1965): Maria had longed to be a nun since she was a young girl, yet
when she became old enough discovered that it wasn’t at all what she thought...

1.2. Challenges

In the above scenarios, the textual descriptions may involve terms with multiple meanings (homonymy, e.g.,
term “paper” could mean scientific publication or paper sheet), terms implied by other terms (metonymy, e.g.,
term “wings” implies airplane, “suit” implies a business person), several terms having the same meaning
(synonymy, e.g., terms “plane”, “airplane”, and “aircraft”), or terms related by some semantic relation (e.g.,
hypernymy (isA), holonymy (partOf), such as plane-isA-machine, or wing-partOf-plane). Hence, when the user
needs to search for information using traditional keyword queries based on typical inverted indexes, she will
have to manually and iteratively formulate multiple keyword combinations to be evaluated through the inverted
index, verifying the results and re-formulating the query accordingly at each iteration, in the hope of finally
retrieving relevant results, which is naturally time and effort consuming, as well as error prone.

Solving this issue has been the main motivation for developing so-called semantic-aware or knowledge-
aware (keyword) query systems, which have emerged since the past decade as a natural extension to traditional
containment queries, encouraged by (non-expert) user demands. Most existing works in this area (cf.
Background in Section 8) have incorporated semantic knowledge at the query processing level, to: i) pre-
process queries using query rewriting/relaxation and query expansion [19, 29, 62], ii) disambiguate queries
using semantic disambiguation and entity recognition techniques [19, 54, 70], and/or iii) post-process query
results using semantic result organization and re-ranking [70, 81, 95]. Yet, various challenges remain unsolved,
namely: i) time latencies when involving query pre-processing and post-processing [29, 62], ii) complexity of
query rewriting/relaxation and query disambiguation requiring context information (e.g., user profiles or query
logs) which is not always available [33, 56], and iii) limited user involvement, where the user is usually
constrained to providing feedback and/or performing query refinement after the first round of results has been
provided by the system [21, 67].

In this work, we adopt another alternative: having an adapted index structure able to integrate and extend
textual information with domain knowledge (not only at the querying level, but rather) at the most basic data
indexing level, providing a semantic-aware inverted index capable of supporting semantic-based querying, and
allowing to answer most challenges identified above.

1 Internet Movie DataBase (http://www.imdb.com/).

1.3. Index Design Strategy

In short, our proposal consists in combining two resources, a textual data collection (represented as a traditional
inverted index), and a semantic knowledge base (represented as a traditional semantic network), in order to build
a stand-alone semantic-aware inverted index structure, called SemIndex. Yet, this can be performed following
three different strategies:

1) Including semantic knowledge into an inverted index. The main idea consists in adding an additional entry in
the index structure to designate semantic concepts [50] or to link related concepts together [101]. In other
words, the traditional (term, objectIDs[]) index is extended toward some form of (term, context, objectIDs[])
structure where contexts designate the semantic meanings of terms (expressed as: concepts, senses, or
references) extracted from the knowledge base. While this approach seems simple and straightforward, it can
nonetheless lead to a potential explosion in the index size depending on the number of concepts in the
knowledge base, thus worsening querying capabilities and system performance.

2) Including full-text information into the semantic knowledge base, i.e., adding textual terms to the knowledge
base as concept instances, linked using dedicated semantic relationships [11, 92]. For instance, adding new
triples of the form term_occurs-in-context_concept to the knowledge base, such that each term can be related
to a certain ontological concept, when used in a certain context. Yet, one can clearly realize this approach
risks exploding the knowledge base size, depending on the number of terms in the text corpus being
semantically enhanced. Moreover, extra processing overhead is required to link terms with concepts using
meaningful semantic relationships in the knowledge base.

3) Building an integrated hybrid structure, i.e., somehow combining the powerful functionalities of inverted
indexing with semantic processing capability to allow semantic aware querying, while avoiding the above
mentioned limitations of alternative semantic indexing strategies. In our current study, we investigate the
latter approach to fully and efficiently support full-text semantic search. Enclosing semantic knowledge
directly into the inverted index, and doing it offline – prior to online query execution, underlines major
potential benefits over existing methods namely: i) providing more opportunities toward both speed-ups and
semantic-based filtering, thus minimizing the need for sophisticated (and time/effort consuming) query pre-
and post-processing, ii) finding semantically relevant results without having to perform expensive query
disambiguation, iii) allowing end-users to be involved in the whole process: during initial query writing
while manipulating the semantic-aware index, and then performing query rewriting (if needed).

1.4. Overall Architecture and Organization

Fig. 1. Overall architecture of SemIndex framework.

This paper describes how to design and construct SemIndex, and how to use it to process semantic-aware
queries. An extended query model with different levels of semantic awareness is also defined, so that both
semantic-aware queries and standard containment queries are processed within the same framework. Fig. 1
depicts the overall framework of our approach and its main components. Briefly, the Indexer manages the index
generation and maintenance, while the Query Processor processes and answers semantic-aware (or standard)
queries issued by the user using SemIndex component.

A summary description of SemIndex’s architecture was given in [23]. This paper adds: i) an extended
mathematical description of SemIndex’s logical design and dedicated graph model, ii) an extended description of
SemIndex’s algorithms for index construction and query processing, iii) SemIndex’s physical design using an
extension of SQL used within a standard commercial Relational DBMS (i.e., RDBMS), iv) detailed complexity
analyses covering index construction and querying algorithms, v) extensive experimental results evaluating
SemIndex’s build time, storage size and characteristics, query processing time, and quality of returned results in
comparison with legacy inverted index, as well as vi) an extended discussion of the state of the art solutions.

The rest of this paper is organized as follows. Section 2 described input resources required to build
SemIndex. Section 3 introduces SemIndex’s the logical design and data graph model, and develops the index
construction process. Section 4 describes SemIndex’s physical design and implementation within a standard
RDBMS. Section 5 presents our query model for designing and processing semantic-aware queries. Our
algorithms’ complexity analysis is provided in Section 6. Experimental results evaluating the different aspects of
SemIndex construction and querying are presented in Section 7. Section 8 briefly reviews the related works in
semantic full text search, with special emphasis on semantic indexing techniques, before concluding the paper
with ongoing works and future directions in Section 9.

2. Input Resources

2.1. Textual Data Collection
In our study, a textual data collection can be a set of documents, or tuples in a relational or NoSQL database, as
shown in Table 1. More formally:

Definition 1 - Textual Data Collection: A textual data collection Δ (i.e., textual collection for short) is
represented as a relation defined over a set of attributes A = {A1, …, Ap} where each Aj is associated with a set of
values (such as strings, numbers, BLOB, etc.) called the domain of Aj and denoted by dom(Aj). Thus, given a
relation Δ defined over attributes A, each data object (record) Oi ∈ Δ having a unique identifier id(Oi) is denoted
as Oi a1, …, ap1, where aj ∈ dom(Aj). Each aj from Oi is denoted as Oi.aj •

Given a textual data collection Δ, an inverted index (also referred to as a posting file, or inverted list) built
upon Δ, in its simplest form, is a sorted list of index terms and object identifiers from Δ, as shown in Fig. 2.a.
More formally:

Definition 2 - Inverted Index: Given a textual data collection Δ, an inverted index built on Δ, designated
as InvIndex(Δ), is a structure of the form (dom(A), IDs, f) where:

- dom(A) designates the set values within the domains of all attributes A ∈ Δ. Considering text-only domains,
values come down to textual tokens, i.e., terms (words/expressions).

- IDs designates the set of identifiers of the objects in Δ, i.e., IDs = {id(Oi)} ∀ Oi ∈ Δ
- f is a function mapping each term ∈ dom(A) to a list of object identifiers IDs[] designating the term’s

occurrence locations in Δ, i.e., IDs[] = id(Oi) / term ∈ any Oi .aj

A term used as textual token in the inverted index is referred to as index term, whereas the list of data object
identifiers, i.e., IDs[], mapping to each index term is referred to as the term’s posting list •

Term Object IDs[]
“car” O1, O2
“light” O1

“sound” O3
“steel” O1
“zen” O1
… …

a. Inverted index InvIndex(Δ).

b. SemIndex graph GΔ


 representing InvIndex(Δ).

Fig. 2. Sample inverted index (a) and corresponding SemIndex graph (b), based on the textual collection Δ in Table 1.

 Fig. 2 shows an extract from an inverted index built on the sample movie database in Table 1, where data
objects O1, O2, and O3 have been indexed using index terms extracted from the database, sorted in alphabetic
order. It is important to note that this simple index is typically used to answer containment queries [99], aiming
at finding data objects that contain one or more terms. When a keyword query mapping two or more index terms
must be processed, the corresponding posting lists are read and merged. The index terms and their mappings
with the data objects can be generated using classical Natural Language Processing (NLP) techniques (including

1 We use symbols  and  to designate an ordered list of elements, and symbols { and } to designate an unordered set.

Data node Index node Contained relationship

stemming, lemmatization, and stop-words removal) [65], which could be either embedded in the DBMS or
supplied by a third-party provider.

In its more elaborated form [8, 17], a posting list may also store along with each object identifier: the term
frequency (tf), a list of positions where the given term appears (e.g., the element/attribute in which the term
appears in semi-structured text, such as XML [71, 88]), and/or other features including whether the term is
capitalized, is part of a title, is in the URL, etc. These extra data are kept for advanced functionality like phrase
searching and result ranking, which we will address in an upcoming study.

2.2. Semantic Knowledge Base
In the Natural Language Processing (NLP) and Information Retrieval (IR) fields, semantic knowledge bases
(i.e., ontologies, thesauri and/or taxonomies, such as WordNet [64], Roget’s thesaurus [98], and Yago [42])
provide a framework for organizing words/expressions into a semantic space [18]. A knowledge base1 usually
can be represented as a semantic network made of a set of entities representing semantic concepts or groups of
words/expressions, and a set of links between the entities, representing semantic relationships (synonymy,
hyponymy, etc.). In this study, we adopt a structure based on graphs to model semantic knowledge bases. In such
a structure, entities are represented as vertices, and the semantic relationships between entities are modeled as
directed edges. Formally:

Definition 3 - Semantic knowledge base: A semantic knowledge base KB (i.e., knowledge base for short)
can be represented as a semantic network graph, also known as knowledge graph, GKB(V, E, L, fV, fE) where:

− V is a set of vertices (nodes), denoting entities in the knowledge base. To illustrate this with WordNet for
example, V includes both: i) sense nodes, representing semantic senses (synsets) with glosses, and ii) term
nodes, representing literal words/expressions

− E is a set of directed edges, an edge consisting of an ordered pair of vertices in V.
− L is a set of edge labels designating semantic/lexical relationships. For WordNet, L includes:

o Semantic relationships between concepts, e.g., hyponymy, hypernymy, meronymy, etc.
o Semantic relationships between concepts and terms, namely has-sense and has-term (e.g., in Fig. 3,

word “Zen” has-sense S1, and S1 has-term “Zen”)
o Lexical relationships between terms, namely derivation (e.g., term “Zen” derives term “Buddhist

Zen”, and “Buddhist Zen” is-derived-from “Zen”)
− fV is a function defined on V, representing the string value of each node in V. For WordNet, string values

include: i) glosses/definitions, when dealing with sense nodes, and ii) and literal words/expressions,
− fE is a function defined on E, assigning a label from L to each edge in E. Multiple edges may exist

between the same pair of vertices when dealing with term nodes, which makes GKB a multi-graph •

a. Sample GKB graph representing a KB extract from WordNet.

Term Sense IDs[]
“acid” S1, S3

“clean” S2
“light” S2
“lsd” S3

“lysergic” S1, S3
… …

b. Extract of inverted index
InvIndex(GKB) connecting terms in
GKB with corresponding senses (to

speed up term/synset lookup)

Fig. 3. Extract from the knowledge graph of WordNet, with corresponding inverted index.

An extract from the WordNet ontology is shown in Fig. 3, where S1, S2 and S3 represent senses (i.e.,
synsets), and their string values (i.e., the synsets’ glosses/definitions), and T1, T2, …, T11 represent terms, and
their string values (i.e., literal words/expressions) shown alongside the nodes. Given that most semantic/lexical
relationships are symmetrical (hyponymy/hypernymy, meronymy/holonymy, has-sense/has-term, etc.), and given
that a relationship cannot exist without its symmetrical counterpart, we simplify our graph model by
representing each couple of symmetrical relationships between senses and/or terms with one edge having

1

 In the remainder of the paper, we will use WordNet as the illustrative semantic knowledge base (cf. Fig. 3).

opposite directions (instead of two edges), labeled with the names of the symmetrical relationships. For
instance, if one meaning of a term belongs to a synset, it is represented with one edge between the
corresponding sense (synset) node and the term node with opposite directions, labeled has-sense/has-term.

An inverted index InvIndex(GKB) can be subsequently built for the textual tokens of each GKB entity (i.e.,
string values of term nodes and sense nodes, cf. Fig. 3.b) to speed up term/sense lookup when creating and then
querying the integrated SemIndex structure (cf. Section 3).

3. SemIndex Logical Design
In this section, we introduce the logical design techniques of SemIndex. As mentioned previously, SemIndex
adapts tight coupling techniques to index the textual data collection and the semantic knowledge base in one
single index structure, creating a single set of posting lists for all searchable content in both input resources. In
the following, we first present SemIndex’s graph model, and then describe its construction process.

3.1. SemIndex Graph Model
To combine the resources, we define SemIndex as an extended knowledge graph:

Definition 4 - SemIndex graph: Given an input textual collection Δ and an input knowledge base KB, we

define SemIndex(Δ, KB) as an extended knowledge graph S IG


 (Vi, Vd, Ei, Ed, L, fV, fE, fW) where:
− Vi is a set of index nodes, denoting i) entities (senses and terms) from KB, and ii) index terms from Δ:

o iV + ⊆ Vi designates the subset of term nodes designating searchable terms1 in S IG


, i.e., nodes
referring to terms from KB and index terms from Δ (represented visually as circle nodes)

o #
iV ⊆ Vi designates the subset of sense nodes in S IG


referring to senses from KB (represented

visually as double circle nodes)
Naturally, Vi = iV + ∪ #

iV

− Vd is a set of data nodes, denoting data objects from Δ (represented visually as square shaped nodes2)
− Ei is the set of edges between index nodes, called index edges, defined as ordered pairs of index nodes in

Vi (represented visually as straight arrows)
− Ed is the set of edges linking index nodes with data nodes, called data edges (represented visually as

dashed arrows)
− L is a set of edge labels including:

o Index edge (Ei) labels which represent semantic/lexical relationships between index nodes (e.g.,
hyponymy, meronymy, has-sense, etc.)

o A single data edge (Ed) label: contained, designating the containment relationship between term
nodes in iV + and data nodes in Vd

− fV is a function defined on Vi

∪

Vd, representing the string value of each node in Vi

∪

Vd

− fE is a function defined on Ei ∪ Ed, assigning a label from L to each edge in Ei ∪ Ed
− fW is a weighting function defined on the nodes in Vi

∪

Vd and the edges in Ei ∪ Ed. The weights will be

used in selecting and ranking semantic-aware query results, described in Section 5 •

A sample SemIndex graph is shown in Fig. 6 (cf. Section 3.3), built based on the textual collection Δ from Table

1 (where GΔ


 is reported in Fig. 4.a) and the KB extract in Fig. 3 (where KBG


 is provided in Fig. 4.b). It comprises
3 data nodes (O1 – O3), 3 index sense nodes (S1 – S3), and 11 index term nodes (T1 – T11) along with data and
index edges. The SemIndex graph construction process is described in detail in the following subsections.

3.2. Indexing Input Resources
Building our SemIndex graph comes down to: i) generating two separate graph representations, for each of the
input resources (textual collection and knowledge base) following our SemIndex graph model, and then ii)
combining the resulting graphs into a single SemIndex graph structure.

Given an input textual collection Δ, we use a simple conversion function noted SemIndex(Δ) to produce a

SemIndex graph representation of Δ designated G Δ


= SemIndex(Δ). It comes down to first generating Δ’s

inverted index InvIndex(Δ) (cf. Definition 2 -), which is straightforwardly represented as a SemIndex graph (cf.

 Definition 4 -) G Δ


 where: i) the set of index nodes Vi represents index terms in Δ (searchable term nodes), i.e.,

1 Searchable terms will be mapped against query terms when performing query processing (cf. Section 5).
2 Data nodes will designate (potential) query search results (Section 5).

Vi = iV + (since Δ does not contain senses, i.e., #
iV = φ), ii) the set of data nodes Vd represent data objects in Δ,

and iii) the set of edge labels L includes one single label: contained, underlining the containment relationship
between index nodes in Vi and data nodes in Vd. The weighting function fW assigns weights to data nodes and

data edges in G Δ


 based on certain strategies (related to the importance/frequency/diversity of terms, cf. Section

 3.3) within the textual collection. A sample G Δ


 graph representing our running example inverted index based
on the textual collection in Table 1 is shown in Fig. 4.a.

a. Textual collection

SemIndex graph: GΔ


b. Knowledge SemIndex

graph: KBG


Fig. 4. SemIndex graph representations of input resources. 1

Similarly, given a semantic knowledge base KB, represented as a knowledge graph GKB, we use a simple

conversion function noted SemIndex(GKB) to produce a SemIndex graph representation of GKB designated: KBG


=
SemIndex(GKB). GKB’s inverted index InvIndex(GKB) is generated and then straightforwardly represented as a

SemIndex graph KBG


 which inherits the properties of GKB, in such a way that: i) the set of index nodes Vi
represents all nodes in GKB, and includes term nodes (

iV +) and sense nodes (#
iV), ii) the set of data nodes Vd is

empty (since KB does not contain data objects), and iii) the set of edge labels L includes all index edge labels
designating semantic/lexical relationships in GKB (e.g., hyponymy, meronymy, has-sense, derivation, etc.). The

weighting function fW assigns weights to index nodes and index edges in KBG


 based on node/edge properties in

the semantic graph (e.g., based on the type of the semantic/lexical relationship, cf. Section 3.3). A sample KBG


graph representing our running example knowledge base in Fig. 3.a is shown in Fig. 4.b.

3.3. Coupling Resources to Build SemIndex
Producing the combined SemIndex graph structure SIG


 comes down to coupling both GΔ


 and KBG


, noted as: SIG



= GΔ


 ⊕ KBG


, in such a way that: i) the set of index nodes SIG


.Vi = GΔ


.Vi ∪ KBG


.Vi, including corresponding

index edges from KBG


 such that2 SIG


.Ei ≅ KBG


.Ei, ii) the set of data nodes SIG


.Vd = GΔ


.Vd, including

1 The missing term problem is discussed in Section 3.4.
2 The set of index edges in SIG


 is not exactly equivalent to that in KBG


 since it might contain additional index edges connected with

index terms in GΔ


 which do not map to any term node in KBG


. This is discussed as the missing terms problem in Step 4 of
algorithm SemIndex_Construction (cf. Fig. 5).

Data node Term
Index node

Synset
index node

Contained data/
edge relationship

Lexical/semantic
index edge relationship

Missing
term1

corresponding data edges from GΔ


such that SIG


.Ed = GΔ


.Ed, and iii) the set of edge labels SIG


.L = GΔ


.L ∪ KBG


.L
including all index node semantic/lexical relationships as well as the contained data edge label. The weighting
function fW compiles weights for all nodes and edges in the graph, as described in the following.

Algorithm SemIndex_Construction

Input: Δ // Textual data collection

 KB // Semantic knowledge base
 W // Weighting function parameters

Ouput: SIG


 // SemIndex graph

Begin

Step 1: Build InvIndex(∆) to construct GΔ


Step 2: Build InvIndex(GKB) to construct KBG


Step 3: Coupling GΔ


 and KBG


 into SIG


 by:

3 1. Mapping & Merging searchable term nodes in . iG V +Δ


and .KB iG V +


4 2. Including sense nodes from #.KB iG V


5 3. Including data nodes from GΔ


.Vd
Step 4: Run MissingTerms_Linkage algorithm
 // Connect Missing terms in SIG



Step 5: Assign weights to edges & data nodes in SIG


 - According to parameters W and weighting function fW

 Step 6: Aggregate edges between each pair of nodes in SIG


Step 7: Remove from SIG


:

 1. Labels from all edges: SIG


.E

 2. String values from all nodes except searchable terms: .SI iG V +


Return SIG


3

End

1

2

3

4

5

6

7

8

9

10

11

12

13

a. Pseudocode of SemIndex_Construction algorithm.

Fig. 5. Pseudocode of SemIndex_Construction algorithm.

The pseudo-code of the algorithm to construct SIG


 consists of 7 main steps as shown in algorithm
SemIndex_Construction in Fig. 5.a. Each step is detailed as follows:

− Step 1: Given an input textual collection Δ, build the corresponding inverted index InvIndex(Δ), and

generate the corresponding GΔ


 graph as previously defined.

− Step 2: Receiving a semantic knowledge graph GKB representing the semantic knowledge base KB
provided as input, build an inverted index InvIndex(GKB) for the string values of each KB entity (i.e.,
sense nodes and term nodes, in order to access them more efficiently during resource coupling, and later

during query execution), and then construct the corresponding KBG


 graph as illustrated previously.

− Step 3: Combine the two SemIndex graphs into a single graph structure SIG


. To do so, we map and then

merge all searchable term nodes in GΔ


, i.e., GΔ


. iV + , with searchable term nodes in KBG


, i.e., KBG


. iV + , as
follows:

1. For each pair of searchable term nodes in GΔ


. iV +
 and KBG


. iV + , if their string values are equal, then

remove one of them and merge all the connected edges.

2. Sense nodes in KBG


 are kept the same in SIG


, i.e., SIG


. #
iV = KBG


. #

iV , but are connected with the

corresponding searchable term nodes SIG


. iV +

3. Data nodes in GΔ


 are kept the same in SIG


, i.e., SIG


.Vd = GΔ


.Vd, but are connected with the

corresponding searchable term nodes SIG


. iV +
 using the contained data edge relationship.

 Fig. 6 shows the result of combining the two SemIndex graphs of the sample textual collection and the
WordNet extract used in our running example.

− Step 4: Searchable terms from GΔ


. iV +
 which do not map to any searchable term in KBG


. iV +

 can exist,
which we identify as missing terms (e.g., term “steel” in Fig. 4). To solve the missing terms problem, we
create links from each missing term to one or more closely related terms, connecting the missing and
related terms using new index edges labeled related-to. The process is described in detail in Section 3.4.

a. SemIndex graph before removing edge labels and string values.

b. Final SemIndex graph representation.

Fig. 6. SemIndex graph SIG


obtained after coupling the data collection and the knowledge base graphs in Fig. 4.

− Step 5: Assign weights to edges and textual objects, according to fW. The weights will be used to select
and rank query results. Different weighting functions can be used, adopted from string indexing in IR [8,
50], similarity queries [57, 80], XML and graph-based processing [69, 89], and semantic processing [62,
84], which we briefly describe in the Appendix1.

− Step 6: If an ordered pair of vertices is connected by two or more edges, it merges the edges and

aggregates the weights. This means that SIG


 becomes a graph, when generating SemIndex, rather than a
multi-graph, in order to simplify query processing.

− Step 7: Finally, remove edge labels and string values of all nodes in SIG


 except for iV + (searchable term
nodes), since all other nodes are not required for processing semantic queries. Removing node string
values helps improve SemIndex’s scalability in terms of size, construction time, and query processing
time (cf. experiments in Section 7).

 Fig. 6 illustrates two instances of our running example SIG


: including edge and node labels (preliminary
version, cf. Fig. 6.a), and excluding edge and node labels except for searchable term nodes (final version, cf.
 Fig. 6.b). Edge and node weights were omitted for clearness.

3.4. Handling Missing Terms
Connecting unmapped searchable term nodes between GΔ


. iV + and KBG


. iV + , which we identify as missing terms

in SIG


, can be handled using an adaptation of distributional thesauri construction methods, e.g., [75, 94], to
allow mining the syntactic/lexical relatedness between the missing terms and index terms. Note that a
distributional thesaurus is a thesaurus generated automatically from a given textual corpus (such as the Brown
corpus2 [36], COCA [32], or even the textual collection Δ being indexed), by finding words that co-occur
together or that have similar contexts in the corpus.

To that end, we introduce algorithm MissingTerms_Linkage in Fig. 7. It accepts as input: the SemIndex

graph SIG


 , a reference text corpus C, as well as two input parameters: c1 and c2 designating respectively the co-
occurrence window size and the number of top-ranked terms needed to identify related terms. For each missing

term ti in SIG


 (cf. Fig. 7, line 1), the algorithm creates a relatedness vector RV(ti) (line 3) to store the co-
occurrence frequencies of surrounding terms. It identifies a window of size c1, consisting of c1 terms occurring

1 We report the detailed description and evaluation of the weighting scheme and its different variants to a dedicated study.
2 We use the Brown text corpus in our current study since it is general purpose and widely known in the literature.

to the left and right of the missing term in the reference corpus and which also exist among the index terms of

SIG


 (line 4), and adds all window term frequencies to the relatedness vector (line 5). For example, suppose
“steel” is a missing term, i.e., it does not appear in the WordNet lexicon extract but appears in object O1 of the
data collection (cf. Fig. 4). Considering window size c1 = 21, using the data collection itself Δ as reference
corpus, then terms “cop”, “locate”, “car” and “gang” would be in the surrounding window of “steel”, and hence
the relatedness score between “steel” and all these terms is increased. Once the vector has been obtained, we
normalize vector scores w.r.t.2 overall maximum term co-occurrence frequency (line 6), and identify the c2 top-

ranked terms of the missing term ti, which are considered as the most related terms to ti in SIG


 (line 7). Then, a

link is created to connect ti’s term node with each top-ranked term tk node in SIG


. These links are represented as

index edges in SIG


.Ei labeled: occurs-with (cf. Fig. 6 where term “steel” links with “car”, considered as its most
related – top-ranked, i.e., highest co-occurrence frequency – term3).

Algorithm MissingTerms_Linkage

Input: SIG


 // SemIndex graph
 C // Reference text corpus

 c1, c2 // Input parameters: window size and top-ranked terms

Ouput: SIG


 // SemIndex graph with missing term links

Begin

For each missing term ti in SIG


 {

 Create RV(ti) from C given SIG


 // Relatedness vector for term ti

 For each term tj in window(ti, c1, C)

 { Add Freq(tj) to RV(ti) }

 RV(ti) = RV(ti) / Max(RV(ti)) // Normalizing RV(ti) scores

 Ti = set of c2 top-ranked terms in RV(ti)

 For each term tk in Ti

 { Create link between term nodes ti and tk in SIG


 Label the link “occurs-with” }

}

Return SIG


End

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 7. Pseudocode of MissingTerms_Linkage algorithm.

The effectiveness of algorithm MissingTerms_Linkage depends on the number of missing terms, which in

turn depends on the semantic coverage and expressiveness of the knowledge base used and its relatedness with
the input textual collection (e.g., using a medical knowledge base to semantically map terms in a textual
collection describing sports events will obviously lead to a substantial number of missing terms in the resulting
SemIndex graph, thus negatively affecting index construction performance, cf. experiments in Section 7). [9, 91]

4. SemIndex’s Physical Design and Implementation in a Standard RDBMS

In this section, we show how to extend SQL in order to easily setup the graph of SemIndex on disk as a set of
relational tables4, and then formulate corresponding queries. The aim of building SemIndex on an off-the-shelf
RDBMS, although it can be built directly on top of the file system, is to take advantage of the fact that RDBMSs
are capable of efficiently storing and handling large volumes of data. This also allows us to benefit from other
RDBMS features including concurrency control, as well as index and memory management on the database.

1 A window size of 2 (or 3) is often utilized in the word context analysis and disambiguation literature [9, 91], and is considered to

produce good results, compared with larger window sizes which include noisy terms thus lowering performance.
2 with respect to
3 A missing term can link with more than one (top-ranked) related terms, if more than one related terms were ranked with the same

maximum co-occurrence frequency with the missing term.
4 Note that SemIndex can be created using legacy SQL, without the use of our extended SQL specification commands, which we

introduce to simplify the set-up of the index structure.

4.1. Extending SQL

To simplify creating SemIndex, we propose three specification commands1, following the DDL (Data Definition
Language) command style: WEIGHTING MODEL, KNOWLEDGE MODEL, and SEMANTIC INDEX.

4.1.1. Weighting Model

A weighting model allows to store and handle SemIndex edge and node weights (cf. Section 3.3) and can be
defined using the following statement: [46]

<Define weighting model statement>::=
[CREATE | ALTER] WEIGHTING MODEL <weighting name>
ON DATA EDGE

[CONTAINMENT [<alg name>] [({<param list>})] [DEF <value>][,]]
ON INDEX EDGE

[SYNONYMY [<alg name>] [({<param list>})] [DEF <value>][,]]
[HYPONYMY [<alg name>] [({<param list>})] [DEF <value>][,]]
[MERONYMY [<alg name>] [({<param list>})] [DEF <value>][,]]
[HYPERNYMY [<alg name>] [({<param list>})] [DEF <value>][,]]
[HOLONYMY [<alg name>] [({<param list>})] [DEF <value>][,]]
[SENSE [<alg name>] [({<param list>})] [DEF <value>][,]]
[SENSEINV [<alg name>] [({<param list>})] [DEF <value>][,]]
[DERIVATION [<alg name>] [({<param list>})] [DEF <value>][,]]
[OTHERS [<alg name>] [({<param list>})] [DEF <value>]]

ON INDEX|DATA NODE
[<alg name>] [({<param list>})] [DEF <value>]

Creating a sample weighting model:

CREATE WEIGHTING MODEL myweighting
ON DATA EDGE

CONTAINMENT tfidf
ON INDEX EDGE

SYNONYMY alg1(0.5),
HYPONYMY alg1(1), HYPERNYMY alg1(1),
MERONYMY alg1(2), HOLONYMY alg1(2),
OTHERS alg1(2.5)

ON DATA NODE
DEF 1

ON INDEX NODE
DEF 1

This command creates and/or updates a weighting scheme called <weighting name>, based on the different
weighting algorithms associated to data/index edges and nodes. Each algorithm indicated in the <alg name>
clause must be individually developed and integrated into the SemIndex stored procedures. The parameters of
each algorithm are optional and depend on the particular algorithm specified. All required parameters are
included in the <param list> nested in the <alg name> clause. The optional <DEF value> allows to assign an edge
or a node a given default parameter value. For instance, the above command (to the right) could be issued by a
user to create a sample weighting scheme considering that: i) all movies are equally important, ii) synonymy is
more important in weighting index edges than all other semantic relationships, and iii) hypernymy/hyponymy
relations are more important in weighting index edges than holonymy/meronymy relations. Here, tfidf and alg1
are two predefined algorithms to compute statistical and structural information related to data edges and index
edges respectively, such that alg1 takes different input parameters whose increasing values produce decreasing
weight scores, and def 1 assigns default weight value 1 to data and index nodes. An existing weighting model,
named <weighting name>, can be dropped as follows:

<Drop weighting model statement>::= DROP [WEIGHTING MODEL] <weighting name>

4.1.2. Semantic Knowledge Model

A semantic knowledge model allows to store and handle the semantic knowledge base in the RDB, and can be
defined using the following command statement. This command allows to create and/or update a knowledge
base model called <knowledge name>, based on a set of relations or a given SQL script. For instance, in order
to use WordNet as the reference knowledge base, the user can issue the following statement (to the right).

<Define knowledge model statement>::=
[CREATE | ALTER] KNOWLEDGE MODEL <knowledge name>
USING [{<relations list>} | <script filename>]

Creating a sample knowledge model:
CREATE KNOWLEDGE MODEL wordnet
USING ’C:\WORDNET\script.sql’

Similarly, an existing semantic knowledge model, named <knowledge name>, can be dropped as follows:

<Drop knowledge model statement>::= DROP [KNOWLEDGE MODEL] <knowledge name>

4.1.3. Semantic Index Model
Similarly to the traditional SQL CREATE INDEX statement syntax, creating and/or altering SemIndex on one or
several attributes can be issued using the following statement. The optional HASH/BTREE clause allows to create

1 Syntax in is EBNF (Extended Backus-Naur Form) notation [46].

SemIndex nodes using hash-based or B-Tree indexing techniques to speed-up data look-up. The following
example (to the right) shows how to create SemIndex based on our MOVIES relation, considering two of its
attributes title and plot using the weighting scheme and WordNet semantic model defined above:

<Define SemIndex statement>::=
[CREATE | ALTER] [HASH | BTREE] SEMANTIC INDEX <index name>
ON <relation name> [({<att list>})]
[WHERE <predicate>]
USING
WEIGHTING <weighting model>,
KNOWLEDGE <knowledge name>

Creating a sample semantic index:

CREATE SEMANTIC INDEX mysemindex
ON MOVIES (Title, Plot)
USING WEIGHTING myweighting,
KNOWLEDGE wordnet

In order to drop an existing SemIndex structure or rebuild it (after modifying its weighting scheme and/or
knowledge base), the following statement can be used:

<Rebuilding SemIndex statement>::= [DROP | REBUILD] [SEMANTIC INDEX] <index name>

4.2. SemIndex Physical Design
 Fig. 8.a shows the ER conceptual diagram of the SemIndex data graph, whereas Fig. 8.b depicts the data
coverage of each relation in the resulting RDB schema. The relations are described separately in the following
subsections.

a. Conceptual ER model describing SemIndex
physical design.

b. Data representation of each relation in the resulting RDB schema.

Fig. 8. SemIndex physical design.

4.2.1. Data Index

The DDL1 statements for creating relation DataIndex is shown below:

CREATE TABLE DataIndex(objectid INT PRIMARY KEY, weight DECIMAL);

Relation DataIndex stores (in attribute DataIndex.objectid) the identifiers of data objects from the data

collection (Δ), represented as data nodes in SemIndex, i.e., SIG


.Vd (cf. Fig. 8) along with data node weights (e.g.,
an object rank score, stored in attribute DataIndex.weight, which is computed and then updated during query
processing, cf. Section 5). An extract of DataIndex’s content, following our running example SemIndex graph
(from Fig. 6) is shown in Fig. 9.a. Other information, such as the publication date or the original full text of a
data object, may also be stored in this relation, depending on the output requirements and on the system
environment.

4.2.2. Lexicon
The DDL statement for creating the Lexicon relation is shown below:

 CREATE TABLE Lexicon (nodeid INT PRIMARY KEY, value VARCHAR, weight DECIMAL);

1 Data Definition Language.

Entity Relationship Attribute

DataIndex

Lexicon

Posting List

Neighbors

Relation Lexicon stores the lexicon of the knowledge base (KB) used to index the data collection (Δ), i.e. the set

of all index nodes in SemIndex, i.e., SIG


. iV (cf. Fig. 8). Searchable term nodes, i.e., SIG


. iV + , are stored in their
lemmatized form (in attribute Lexicon.value) along with corresponding node identifiers (e.g., WordNet node

identifiers, stored in Lexicon.nodeid), whereas sense nodes, i.e., SIG


. #
iV , have null values (in attribute

Lexicon.value). Note that Lexicon also includes missing terms (as briefly described in Section 3.4) stored in their
lemmatized form (in attribute Lexicon.value) along with special system generated node identifiers (different
from WordNet’s, stored in Lexicon.nodeid). Index node weights are then computed and dynamically updated
during query processing, stored in attribute Lexicon.weight. An extract of Lexicon’s content, following our
running example SemIndex graph (from Fig. 6) is shown in Fig. 9.b.

In some commercial keyword search engines, the lexicon is generally kept in memory for fast response
time, since its size is not related to the size of the indexed dataset and is generally much smaller than the term
posting lists. In SemIndex, we adopt the same idea by allowing relation Lexicon to be kept in memory, when
supported by the DBMS.

objectid weight
O1 WDataNode(T1)
O2 WDataNode(T2)
O3 WDataNode(T3)

a. DataIndex

nodeid objectid weight

T1 O1 wDataEdge(1

1

O
Te)

T1 O2 wDataEdge (2

1

O
Te)

T4 O1 wDataEdge (1

4

O
Te)

T5 O1 wDataEdge (1

5

O
Te)

… … …

c. PostingList

nodeid value weight
T1 “car” wIndeNode(T1)
T2 “window” wIndeNode(T2)
T3 “clear” wIndeNode(T3)
T4 “zen” wIndeNode(T4)
T5 “light” wIndeNode(T5)
… … …

b. Lexicon

id1 node1id node2id relationship2 weight

0 T1 T11 PartOf/
HasPart wIndexEdge(11

1

T
Te)

1 T2 T6 Derivation wIndexEdge (6

2

T
Te)

2 T3 S2 HasWord/
HasSense wIndexEdge (2

3

S
Te)

3 T4 S1 HasWord/
HasSense wIndexEdge (1

4

S
Te)

… … … … …

d. Neighbors

Fig. 9. Extracts of SemIndex’s RDB relations’ contents, based on the running example SemIndex graph (cf. Fig. 6).

4.2.3. Posting List
The DDL statement for creating the PostingList relation is shown below:

 CREATE TABLE PostingList(nodeid INT, objectid INT, weight DECIMAL, PRIMARY KEY(nodeid, objectid));

Relation PostingList stores the inverted index of the textual collection (Δ), which comes down to data edges in

SemIndex, i.e., SIG


.Ed (cf. Fig. 8). PostingList results from joining relations Lexicon with DataIndex, linking

data nodes SIG


.Nd (PostingList.objectid) with corresponding searchable term nodes SIG


. iV + (PostingList.nodeid),
each with its corresponding data edge weight (e.g., term frequency score). PostingList is clustered on attribute
nodeid, and for each nodeid, the posting list is sorted on objectid to optimize search time. An extract of
PostingList’s content, following our running example SemIndex graph (from Fig. 6) is shown in Fig. 9.c.

4.2.4. Concepts/Terms Links
The DDL statement for creating the links between terms and concepts, in a Neighbors relation, is shown below:

 CREATE TABLE Neighbors(id INT PRIMARY KEY, node1id INT, node2id INT, relationship VARCHAR, weight DECIMAL);

Relation Neighbors stores all index edges in SemIndex, i.e., SIG


.Ei (cf. Fig. 8) linking index nodes SIG


.Ni (stored
as pairs of index node identifiers in attributes Neighbors.node1id and Neighbors.node2id), including: term-to-

1 We include an artificial identifier since multiple index edges (i.e., multiple semantic relationships) may exist between the same pair of

index nodes in our SemIndex graph, which comes down to a multi-graph.
2 Relationships are only required in evaluating the weights of index edges (cf. Appendix), and can be removed after index edge weights

have been computed (cf. Step 5 of SemIndex_Contruction algorithm in Fig. 5), since they are not needed in the query evaluation process.

term, term-to-sense and sense-to-sense relationships, along with index edge labels (stored in
Neighbors.relationship) and corresponding index edge weights (stored in Neighbors.weight). When using
WordNet, the label of the relationship includes 28 possible lexical/semantic relationship types (e.g., hypernym,
hyponym, meronym, related-to, etc.), as well as the has-sense/has-term introduced to explore WordNet term
nodes relations. An id attribute is added since several edges can exist between two index nodes. An extract of
Neighbors’ content, following our running example SemIndex graph (from Fig. 6) is shown in Fig. 9.d. Note that
we design our query processor to follow each edge on its direction from node1id, thus relation Neighbors is
clustered on node1id but not on node2id. Also note that relation Neighbors remains unused (un-accessed) when
executing standard containment queries (i.e., semantic-free queries, as shown in the following section).

5. Query Processing with SemIndex

In this section, we define our query model and present a processing algorithm to perform semantic-aware search
with the help of SemIndex.

5.1. Query Model

Definition 5 - Semantic-aware query: Given SemIndex(Δ, KB) and its graph representation SIG


, we define
a semantic-aware query as a projection selection query of the form q = πAi σP l (Δ), defined over data collection Δ,

where Ai ∈ A is a string-based attribute, l ∈ ℕ represents a link distance threshold designating different levels of

semantic awareness in query execution on SIG


, and P is a selection predicate of the form (Ai θ s), where s is a

user-given string value (e.g., a selection term/keyword), and θ ∈ {=, like} whose evaluation against values in
dom(Ai) is previously defined •

Following the value of link distance threshold l, we consider four query types:

− Standard Query: When l = 1, the query is a standard containment query, involving only data edges
(connecting data nodes with searchable term nodes using the contained relationship), such that no
semantic information is involved.

− Lexical Query: When l = 2, the link distance threshold is increased by 1 to include (in addition to data
edges), first level index edges. They designate lexical relationships between searchable term nodes (namely

the derivation relationship, where one term derives another term), such that basic lexical information is
involved.

− Synonym-based Query: When l = 3, the senses (synsets) are also involved. Here, link distance threshold
covers the second level index edges: connecting searchable term nodes with corresponding sense nodes
(via the has-sense and has-term semantic relationships), such that synonymous terms corresponding to the
sense nodes are involved. Note that there is no direct edge between data nodes and sense nodes.

− Extended Semantic Query: When l ≥ 4, the data graph of SemIndex can be explored in all possible ways,
covering index edges designating all kinds of semantic relationships (hyponymy, meronymy, etc.) between
index nodes, to reach even more semantically relevant results.

Regarding SemIndex’s physical design, relation Neighbors is completely disregarded when executing

standard containment queries (l = 1) which are semantic-free. The Neighbors relation is required to execute the

remaining semantic-aware queries (l > 1) in order to explore lexical/semantic relationships.

5.2. Query Answer
The answer to a query q= πX σP l (Δ) in SemIndex(Δ, KB), noted q(Δ), is defined as follows.

Definition 6 - Query answer: Given SemIndex(Δ, KB) and its graph representation SIG


, a query answer

q(Δ) is the set of distinct root nodes of all answer trees in SIG


, retrieving data objects in Δ. We define an answer

tree as a connected sub-graph T ⊆ SIG


satisfying the following conditions:

− Tree structure: For each node n ∈ T, there exists exactly one directed path from n to T’s root node R(T),

− Root node: T’s root is a data node, i.e., R(T) ∈ SIG


.Nd, and it is the only data node in T, designating the
corresponding textual object in Δ to be returned to the user,

− Conjunctive selection: When q consists of a multi-valued predicate P: (Ai ∈ S), the index node matching
every query term (keyword) in S occurs in the answer tree T,

− Leaf nodes: All leaf nodes in the answer tree T are searchable term nodes mapping to query terms
(keywords). When q consists of a single-valued predicate P: (Ai θ s), the answer tree T would contain one
single leaf node designating the index node matching s,

− Height boundary: The height T, i.e., the maximal number of edges between the root and a leaf node, is not
greater than the link distance threshold l,

− Minimal tree: No node can be removed from T without violating some of the above conditions.

It can be proven that the maximal in-degree of all nodes in T is at most k, where k is the number of query terms
(keywords). Hence, the answer tree comes down to a conjunction of paths starting at leaf nodes designating each
a query term, and ending at a common root designating the textual data object to be returned as result •

a. Answer tree for a standard query (l = 1).

b. Answer tree for a lexical query (l = 2)1.

c. Answer tree for a synonym-based query (l = 3).

d. Answer tree for an extended semantic query (l =4).

Fig. 10. Sample answer query trees2 with different link distance threshold values l, extracted from our running

example SemIndex graph (Fig. 6).

According to the value of the link distance threshold l which serves as an interval radius in the SemIndex
graph, various answer trees can be generated for a number of query types:

− Standard Query: When l = 1, the root of the answer tree is linked directly to all leaves, representing the
fact that the result data object contains all query terms directly. A sample answer tree is shown in Fig. 10.a
for query q = πA σA ∈ (“car”, “light”) l =1(Δ) considering our running example data collection Δ (Table 1) and the
corresponding SemIndex(Δ, KB) (Fig. 6),

1 Node S2 does appear in the answer tree since it’s not a searchable term node: it is a synset index node (designating a concept meaning,

and not a textual term). Recall that user queries start only from searchable term nodes (e.g., node T11 in Fig. 10.b), and navigate their way

toward the closes data nodes within the query’s link distance threshold l (e.g., O1 is at distance ≤ 2 from T11).
2 While all edge and node labels are removed from the SemIndex graph except for searchable term nodes (cf. Section 3.3), we show synset

node glosses here for the sake of presentation.

Data node
Term
index node

Contained data/
edge relationship

Lexical/semantic index
edge relationship

Synset
index node

− Lexical Query: When l = 2, the answer tree includes lexical connections between query term nodes and

other index term nodes. Fig. 10.b is an example answer tree for query q = πA σA ∈ (“race car”,“light”)l = 2 (Δ),

− Synonym-based Query: When l = 3, the answer tree includes sense nodes, in addition to the two previous

cases. Note that due to the minimal tree restriction (Definition 6 -), a sense node cannot be a leaf node of
an answer tree. Thus, if an answer tree contains a sense node, the height of the tree is not less than 3. A
sample answer tree is shown in Fig. 10.c for query q = πA σA ∈ (“pane”,“clean”) l = 3 (Δ). The synonyms of the two
query terms, “zen” and “light” are also contained in the answer tree rooted at the data node of object O1,

− Extended Semantic Query: When l = 4, the answer tree contains additional index nodes connected via
index edges designating different semantic relationships, according to the provided input selection terms.
An example answer tree is shown in Fig. 10.d for query q= πA σA ∈ (“lsd”,“clean”) l = 4 (Δ).

Note that it is possible to have more than one path from a query term node to a data node in the SemIndex
graph (through different semantic links), which will naturally result in more than one answer tree.

5.3. Query Processing

The pseudo-code for our SemIndex query processing algorithm is shown in Fig. 11. It takes as input a SemIndex

graph SIG


, a set of query selection terms (keywords) S, and a link distance threshold l, and produces as output
the set of data nodes Nd_Out (the answer trees’ root nodes) designating the data objects returned as the query
answer. The overall process can be described as follows:

− Step 1: The algorithm starts by identifying in SIG


 the index (searchable term) nodes mapping to each query
term (using function getNodeID(), line 4). At the physical level, this is performed by invoking relation
Lexicon (e.g., SendSQL(“SELECT nodeid FROM Lexicon WHERE value = si”),

− Step 2: Then, for each of the selected index nodes, it identifies the minimum distance paths at distance l, i.e.,
using Dijkstra’s shortest path algorithm (performed by function findShortestPaths(), line 5). At the physical
level, this is performed by invoking relation Neighbors (e.g., SendSQL(“SELECT node2id FROM Neighbors
WHERE node1id = ni_In”),

− Step 3. Of these shortest paths, the algorithm then identifies those which contain data edges linking to data
nodes (using function getDataNodeIDs(), line 6), and then adds the resulting data nodes to the list of output
data nodes Nd_Out. At the physical level, this is done by querying the PostingList relation with the index nodes
returned from findShortestPaths() (e.g., SendSQL(”SELECT objectid FROM PostingList WHERE nodeid = SP.ni”),

− Step 4: Consequently, we merge the resulting data nodes with the list of existing answer data nodes. At the
physical level, this is done by computing node intersection using PostingList (e.g., SendSQL(”SELECT objectid
FROM PostingList WHERE objectid = nd_si”). Each answer node is then assigned a score by adding its distance
from every query term index node (using mergeAndRank(), line 7). The algorithm finally returns the list of
answer data nodes ranked by order of path scores in ascending order.

Algorithm SearchTerms

Input: SIG


 // SemIndex graph
 S // A set of query selection terms
 l // A link distance value, designating query-type

Ouput: Nd_Out // A list of ranked data nodes from SIG
 designating query answers

Begin

Nd_Out = φ
For each term si ∈ S // For each selection term
{

Step 1: ni_In = getNodeID(si, SIG
) // Identify index node 4

Step 2: SP = findShortestPaths(ni_In, l, SIG
) // Identify shortest path within distance lfrom ni_In

Step 3: Nd_si = getDataNodeIDs(SP, SIG
) // Identify the set data (root) nodes in each shortest path

Step 4: Nd_Out = mergeAndRank(Nd_si , Nd_Out) 7
} 8

Return Nd_Out 9
End

1
2
3

4

5

6

7

8

9

Fig. 11. Pseudo-code of algorithm SearchTerms.

Note that the scores of data nodes returned as query answers (i.e., answer tree root nodes) are

computed/updated dynamically while executing function findShortestPaths() based on typical Diskstra-style
shortest distance computations [30]. Basically, findShortestPaths() explores the SemIndex graph with Dijkstra’s

algorithm from multiple starting index nodes ni_In (multiple query terms si ∈ S). For each visited node nj, it
stores its shortest distances from all starting nodes (query terms). The path score of an index node nj to a starting
node (query term) ni_In is the sum of all weights on index edges along the path between ni_In and nj (cf. examples
hereunder). Similarly, the path score of a data node nd to a starting node ni_In adds, to the sum of all index edge
weights in the path, the weight of the data edge connecting nd to the path. In other words, the shortest distances
of ni (nd) from ni_In are also the minimal path scores of ni (nd) to all query terms.

For example in Fig. 10.c, given query terms “pane” and “clean”, the algorithm starts to expand from index

nodes T7 and T3. The weight score of T7 is initialized to be a vector of path scores <0, ∞>1, since the shortest
distance from T7 to “pane” is 0, but the node is not reachable from “clean”. Similarly, the weight score of T3 is
initially <∞, 0>. The weights of all other index nodes are initialized to <∞, ∞>13. The minimal path scores are
then updated when each edge is explored in the graph. For example, starting from T7, the weight of index node
S1, which was initialized to <∞, ∞> becomes <1,∞> when the node is reached, considering unit (=1) edge

weight scores2. Likewise, the weights of nodes T4 and O1 become <2, ∞> and <3, ∞> respectively when the
nodes are reached from T7, and so forth. On the other hand, starting from T4, the weights of nodes S2, T5, and O1
become <∞, 1>, <∞, 2>, <∞, 3> respectively.

Consequently, given that a data node nd can be reached from multiple starting nodes Ni_In (i.e., multiple
leafs in the answer tree), function mergeAndRank() computes the combined path score of a data node (i.e.,
answer tree root node) as the aggregate path score from each starting node (each answer tree leaf node). As for
the aggregation function, various mathematical formulations for combining path scores can be used [4, 89],
among which the maximum, minimum, average and weighted sum functions. Here, we utilize the maximum
aggregation function to account for the maximum distance (i.e., minimum semantic relatedness) between the
query answer root node and all tree leaf nodes:

 () _

_ having
score max (,)

∀ ∈
=d i In d

ii Inn s S
n pathScore n n (1)

For instance, considering the example in Fig. 10.c, the vector path score of data node O1 would be <3, 3>, and
thus its combined path score becomes 3. Considering the example in Fig. 10.b, starting from query terms “race
car” and “light”, the vector path score of data node O1 would be <2, 1> (assuming unit edge weights as in the
previous example), and thus its combined path score becomes 2. A data node which is not reachable from all
query term nodes will have at least one infinite path score (i.e., zero semantic relatedness), along one (or more)
of its path score vector dimensions.

Note that while we currently focus on relaxing “strict” conjunctive querying by increasing link distances
between query and data nodes, yet our query model and processing approach can also incorporate different
kinds of “weak AND” operators such as fuzzy predicates [45, 100] (which we are currently investigating).

6. Complexity Analysis

 Table 2 summarizes the list of parameters and symbols used to explain the time complexity of our algorithms
for building SemIndex and executing semantic-aware queries.

6.1. Building SemIndex

6.1.1. Time Complexity

Building SemIndex using algorithm SemIndex_Construction (cf. Fig. 5) is done in quadratic time and simplifies
to O(N2) since:

− Step 1: Building the inverted index, and consequently the SemIndex graph for the textual collection Δ, i.e.,

GΔ


, is of typical O(|Δ| × |A| × NΔ) complexity, which simplifies to O(|Δ| × NΔ) since |A| is usually limited,

− Step 2: Also, building the SemIndex graph for the knowledge base KB, KBG


, is of O(|KB| × NKB),
− Step 3: Coupling both Δ and KB’s SemIndex graphs by mapping and merging searchable term nodes in

both GΔ


 and KBG


can be performed in O(NΔ + NKB) time, given that both underlying structures are sorted,
− Step 4: Connecting missing terms with the merged index, using algorithm MissingTerms_Likage (cf. Fig.

7) can be performed in worst case O(Nmiss × Nterm). Note that building the distributional thesaurus (to
identify term relativeness vectors, based on their co-occurrences in the reference corpus) is conducted
offline prior to SemIndex building and thus does not affect its complexity.

1 Instead of ∞, we could have an initial weight value computed based on a given weight scheme.
2 Any other edge weight function can be considered here, as discussed in the Appendix.

− Step 5: The complexity of the weighting process varies according the weight functions used. It amounts to
O(1) when assigning equal weights, or can vary as follows:

• Data edges: performing typical term frequency computations to assign data edge weights simplifies
to O((Nterm) × |Δ|) time,

• Data nodes: assigning an object rank score to compute data node weights simplifies to O (|Δ|),
taking into account one or several data object features (e.g., source, format, date, etc.) each feature
being processed in typical constant time.

• Index edges: computing index edge weights can be done in O(NKB
2
 × |L|), which simplifies to

O(NKB
2) since |L| is usually small,

• Index node weights are computed during query processing, and thus do not affect SemIndex
construction time.

− Step 6: Edge aggregation between each pair of index nodes in the SemIndex graph can be performed in
O((Nterm + Nsyn)

2 /2) time, which is the time needed to go through all pairs of index nodes in SemIndex,
− Step 7: Removing edge labels and string values from non-searchable (i.e., sense) nodes in SemIndex can be

executed in O (NE + Nsyn).

Hence, the overall complexity of our SemIndex building process is bounded by O(N2) >

1...7

 ()
i

iComplexity Step
=
 since N ≥ param, ∀ param ∈ complexity parameters.

It is to be noted that building the inverted indexes and SemIndex graph for each of the input resources (i.e.,
Steps 1 and 2 of the algorithm), can be handled using multi-threading.

Table 2. Set of complexity symbols and related descriptions.

Symbol Parameter

|Δ| Cardinality, in number of objects (table rows), of the textual data collection Δ
|A| Degree, number of attributes, of Δ
NΔ Number of searchable terms from Δ, which comes down to: |G Δ

 . iV + |

|KB| Cardinality, number of entities (senses and terms), of the knowledge base
NKB Number of searchable term nodes from KB, which comes down to: | KBG


. iV + |

|L| Number of distinct lexical/semantic relationships in the knowledge base
Nmiss Number of missing terms: those searchable terms from Δ’s SemIndex graph G Δ

 which are

not connected to those from KBG


.
Nterm Number of term index nodes in the SemIndex graph: | SIG


. iV + | (= |G Δ

 . iV + ∪ KBG


. iV + |)

Nsyn Number of sense index nodes in the SemIndex graph: | SIG


. #
iV | (= | KBG


. #

iV |)

N Number of index and data nodes in the SemIndex graph: | SIG


. iV | + | SIG


. dV |

NE Number of index and data edges in the SemIndex graph: | SIG


.Ei| + | SIG


.Ed|

Query-related symbols:

k Number of terms (keywords) in a query
Nterm hom Number of homonymous terms in SemIndex, for a given query term,

l Link distance threshold in a query

Ni_acc Number of accessed index nodes in SemIndex, when executing a query
Nd acc Number of accessed data nodes in SemIndex, when executing a query
NE acc Number of accessed edges in SemIndex, when executing a query

6.1.2. Space Complexity

As for space complexity, our approach requires space to store the final SemIndex graph SIG


, which is also
bounded by O(N2) space. In fact, SemIndex is physically broken down into a set of 4 relations in a RDB schema
(cf. Section 4) such that:

− DataIndex: stores data nodes, and thus requires O(|Δ|) space,
− PostingList: stores data edges connecting data nodes with searchable term nodes, and thus requires in the

worst case O(|Δ| + NΔ) space,
− Lexicon: stores index nodes, and thus requires O(Nterm + Nsyn) space,

− Neighbors: stores index edges connecting pairs of index nodes, and thus requires O((Nterm + Nsyn)
2 /2) space

(recall that only one edge exists between two nodes in SemIndex).

Note that these relations, whose total size is bounded by O(N2), can be stored on disk or in memory according to
the size of the input textual collection and knowledge base used.

6.2. Executing Queries

The complexity of our SearchTerms algorithm (cf. Fig. 11) which performs query execution on SemIndex,
comes down to O(N2). In fact, the complexity of SearchTerms comes down to the sum of the complexities of its
underlying functions, such that for each query term:

− getNodeID() identifies the IDs of term nodes in the Lexicon corresponding to the query term, and thus
requires in the worst case O(Nterm + Nsyn) time,

− findShortestPaths() identifies the minimum paths at distance l from each of the starting term node, which

comes down to running Dijkstra’s algorithm within distance lfrom the starting node. Given that Dijkstra’s

algorithm requires O(NE_acc × l) = O(Ni_acc
2 × l) when applied from one starting node, it would require

O(Ni_acc
2 × l× Nterm_hom) when applied on Nterm_hom starting nodes, given that one single query term could

map to multiple starting term nodes (i.e., homonyms),
− getDataNodeIDs() identifies the IDs of data nodes in PostingList for the each shortest path, and thus

requires worst case O(|Δ| + NΔ) time,
− mergeAndRank() merges and ranks data nodes with existing query answer nodes, by comparing the latter

with node IDs in the PostingList, thus requiring at most O(|Δ| × Nd_acc).

Hence, the SearchTerms algorithm’s complexity comes down to that of function findShortestPaths() which
requires O(Ni_acc

2 × l× Nterm_hom), which is bounded by O(N 2) time in the worst case scenario (covering the

whole SemIndex graph).
When considering multiple query terms k, the complexity comes down to O(N 2

 ×k). Yet, given that k is

usually limited (e.g., keyword queries on the Web are usually 2-3 words long [48, 82]), thus overall complexity
simplifies to O(N2).

7. Experimental Evaluation

We first start by describing our prototype and experimental scenario, and then we present, compare, and assess
empirical results.

7.1. Prototype

To validate our approach, we have implemented our SemIndex framework using Java. We also have used
MySQL 5.6 as an RDBMS, and WordNet 3.0 as a knowledge base. In addition to the two basic SemIndex
components (cf. architecture in Fig. 1) consisting of: i) the indexer (including our SemIndex_Construction and
MissingTerms_Linkage algorithms, cf. Fig. 7), and ii) the query processor (including our SearchTerms
algorithm, cf. Fig. 11), our implementation also includes: iii) a lemmatizer1 used to transform index terms into
their lemmas, as well as iv) extensible weight computation components which are called upon within the indexer
and/or query processor to compute edge/node weights as needed (recall that weights are computed initially
during indexing cf. Section 3.3, and are then updated dynamically during querying, cf. Section 5).

The RDBMS initially holds the input textual data collection and the knowledge base in the form of native
RDBs2. Java is used to send SQL queries to the RDBMS in the following order required to build SemIndex:

1. Import the predefined SemIndex RDB schema (cf. Fig. 8).
2. Build the Lexicon table by importing the words table from WordNet.
3. Build the Neighbors table by importing the senses (term-to-synset), semlinks (synset-to-synset), and lexlinks

(term-to-term) tables from WordNet. This is followed by computing index edge weights, and initializing
index node weights.

4. Build the DataIndex table by processing all rows from the input textual database. Every row is tokenized
and every token is lemmatized and inserted into DataIndex, along with corresponding data node weights.

1 We used the University of Washington’s Morpha lemmatizer available on the university’s projects page:

http://mvnrepository.com/artifact/edu.washington.cs.knowitall/morpha-stemmer/1.0.5
2 WordNet 3.0’s RDB is available from http://wordnet.princeton.edu/wordnet/download/

5. Identify all missing terms in Lexicon, by finding all terms in DataIndex that are not in Lexicon (using here a
left join), and then include the latter in Lexicon (following Step 4 of our SemIndex_Construction algorithm).

6. Build the PostingList table by joining Lexicon with DataIndex. This is followed by computing term
frequency weights of data edges.
The RDBMS will finally hold SemIndex’s RDB representation which will be processed for querying. Note

that during the SemIndex building phase, Java is primarily used to lemmatize tokens and to create the textual
database’s inverted index. Yet, during SemIndex querying, Java is mainly used to run Dijkstra’s shortest path
algorithm on every query term, and consequently find the intersection between the returned paths (as described
in our SearchTerms algorithm). The usage of Java in our implementation is not mandatory and can be replaced
by stored-procedures and triggers when supported by the DBMS. The SemIndex prototype is available online1.

7.2. Experimental Scenario and Test Data

We evaluated the practical usability of our indexing approach by assessing four main criteria: i) index building
time, ii) index size and characteristics, iii) query processing time, and iv) the number and quality of returned
results, comparing in each experiment our SemIndex with the legacy Inverted Index solution. To do so, we
started by varying the size of the input textual collection Δ by generating different extracts with respect to
(w.r.t.) its total size (considering 10%, 20%, …, or 100% of Δ). We also vary the size of the input knowledge
base by generating different extracts w.r.t. its total size (considering 10%, 20%, …, or 100% of KB). Then, for
each doublet <Δ chunk ; KB chunk>, we evaluated each of the above four criteria by varying related parameters.
User feedback tests are not detailed here.

We used the IMBD movies table2 as an average-scale3 input textual collection, including the attributes
movie_id and (title, plot) concatenated in one column (cf. Table 1) with a total size of around 75 MBytes
consisting of more than 140k rows and including more than 7 million terms. WordNet 3.0 had a total size of
around 26 Mbytes, including more than 117k synsets (senses). The characteristics of the IMBD and WordNet
chunks used in our experiments are summarized in Table 3 and Table 4.

Table 3. Characteristics of IMDB’ movies table chunks.

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Size (in MBs) 7.6293 15.0629 22.5192 30.0098 37.5452 44.9528 52.5214 59.9325 67.4239 74.8902

N# of Rows 14,304 28,608 42,912 57,217 71,521 85,825 100,130 114,434 128,738 143,043

N# of Terms 724,294 1,422,158 2,125,498 2,834,189 3,547,900 4,247,061 4,959,681 5,661,835 6,378,205 7,086,079

Size (in MBs)
of InvIndex

25.5781 49.625 73.6719 98.7188 122.7656 147.8125 171.8594 195.8906 220.9375 244.9844

Table 4. Characteristics of WordNet chunks.

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Size (in MBs) 2.7707 3.9466 7.6498 9.5691 12.1641 13.8941 18.2191 19.9491 23.4091 26.0041

N# of Senses
(Synsets)

11,738 23,475 35,212 46,949 58,686 70,423 82,160 93,897 105,634 117,371

Avg. Branch 1.4533 1.6257 1.7553 1.9236 2.0697 2.2259 2.3736 2.5285 2.6677 2.8223

Avg. Span 2.1035 2.2299 2.3665 2.5213 2.8849 3.5362 3.7411 4.1947 5.9852 7.5119

Size (in MBs)
 of InvIndex

3.2031 4.5625 8.8437 11.0625 14.0625 16.0625 21.0625 23.0625 27.0625 30.0625

 Table 3 provides the IMDB movies’ table chunk size percentage and actual size (in MBytes), the number of

rows and number of terms (e.g., textual tokens) per chunk, as well as the size of the resulting inverted index
(i.e., InvIndex(Δ)). Table 4 provides the WordNet chunk size percentage and actual size (in MBytes), the
number of senses (i.e., synsets) per chunk, the average branch factor4 and average span factor5 per chunk, as
well as the size of the resulting inverted index (i.e., InvIndex(GKB)). Note that chunking the IMDB movies table
was performed w.r.t. to the number of rows in the table, whereas chunking WordNet was performed w.r.t. the

1 Available at: http://sigappfr.acm.org/Projects/SemIndex/
2 Internet Movie DataBase raw files are available from online http://www.imdb.com/. We used a dedicated data extraction tool (at

http://imdbpy.sourceforge.net/) to transform IMDB files into a RDB.
3 Tests using large-scale TREC data collections and the Yago ontology as a reference KB are underway within an dedicated

comparative evaluation study.
4 The branch factor designates the number of outgoing edges per synset node, i.e., synset node fan-out [64].
5 The span factor designates the length of the path from a root (most abstract) synset node to a leaf (most specific) synset node in the

WordNet taxonomy (considering hierarchical relations only, e.g., hypernym/hyponym and meronym/holonym, to avoid loops).

number of senses (synsets), which was more coherent in generating WordNet extracts than using the number of
rows in WordNet’s RDB representation (made of multiple joined tables representing different entities), with
slight variations due to varying synset gloss sizes, varying number of synonyms per synset, and varying number
of neighboring nodes (branch factor) per synset.

Fig. 12. Total SemIndex build time variation w.r.t. input IMBD and WordNet chunk sizes.

Tests were carried out on a PC with an Intel I7 system with 2.9 GHz CPU, 8GB RAM memory, and a 500
GB built-in NTFS disk drive. The database (IMDB), knowledge graph (WordNet), and index files were stored
on the disk drive’s main partition.

7.3. Index Building Time

7.3.1. SemIndex Build Time

The 3D chart in Fig. 12 shows the total time required to build SemIndex while varying both IMBD and WordNet
chunks. SemIndex construction tests were performed 5 times each, retaining average processing time. One can
realize that the building time is linear in the size of the IMDB chunks on one hand (x axis), and linear on the size
of the WordNet chunks on the other hand (y axis), which underlines quadratic time dependency w.r.t. both of
them (which complies with our complexity analysis in Section 6.1).

We also note two additional observations. First, one can see that time variation w.r.t. IMDB chunk size
(along the x axis) is greater than the variation w.r.t. WordNet chunk size (along the y axis). This is due to: i) the
sheer size of IMDB chunks which are at least twice as big as their WordNet counterparts (and thus require at
least twice as much processing time), and ii) due to running the time expensive lemmatization process on the
database chunks, which is not required with WordNet chunks, thus inducing additional processing time. A
breakdown of the tasks required to build SemIndex in Fig. 13.a and b shows the significant impact of
lemmatization on the overall building time: the time to lemmatize index terms from IMDB (and term nodes
from WordNet, when needed1) in order to be stored as searchable terms in SemIndex amounts to almost 1/3rd of
the total building time of SemIndex.

Second, one can also realize that while SemIndex building time slightly increases w.r.t. WordNet chunks
varying from 50% to 100%, yet it also increases (rather than decreasing) with WordNet chunks varying from
50% to 10%. While the latter observation might seem counterintuitive (since we would expect build time to
decrease when WordNet chunk size decreases), nonetheless the reason for the time increase is also inherent: the
smaller the WordNet chunk, the higher the number of missing terms, and thus the more time is required to
process them (mapping and linking them to WordNet terms). This is also shown in Fig. 13 where the time
needed to process missing terms jumps from 1/10th of the total building time, with WordNet chunk = 100% (i.e.,
when using the whole of WordNet in Fig. 13.a), to almost 1/3rd of total time, with WordNet chunk = 10% (i.e.,
when using only a small portion of WordNet, Fig. 13.b).

1 Most terms nodes in WordNet are handled in their lemmatized form, and need not be processed for lemmatization.

10%20%30%40%50%60%70%80%90%100%

0

50

100

150

200

250

300

350

10%

30%

50%

70%
90%Bu

ild
 T

im
e

(in
 se

co
nd

s) 10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

WordNet
chunks

a. Build time with WordNet chunk = 100% b. Build time with WordNet chunk = 10%

Fig. 13. Breakdown of SemIndex build timing.

 Fig. 13.a and b also show that the building time of the WordNet part of SemIndex remains almost constant

regardless of the IMDB chunk size. This is justified since building the SemIndex representation of the
knowledge base is performed independently of the data collection. Furthermore, for a given knowledge base
(like WordNet), the SemIndex representation can be produced once, stored in memory, and then made available
for coupling with any new data collected to be indexed. Note that updating SemIndex incrementally or partially
will be explored in a dedicated future study.

7.3.2. Comparison with Legacy Inverted Index Build Time

a. Brakedown of traditional InvIndex build time.

b. Comparing traditional InvIndex total build time,
with SemIndex build time using WordNet chunk = 100%

Fig. 14. Comparison with traditional InvIndex build time.

To put things into perspective, we have also measured the total time required to build the legacy inverted index
(which we note InvIndex) while varying IMDB chunk size1 (cf. Fig. 14.a) and compared results with SemIndex’s

1 Recall that InvIndex does not incorporate semantic knowledge and thus is not affected by WordNet chunk size variations.

0

50

100

150

200

250

300

350

400

10%
100%

20% 30% 40% 50% 60% 70% 80% 90% 100%

Ti
m

e
(in

 se
co

nd
s)

IMDB Chunk

Average Wordnet time
Average DataIndex - SQL time
Average DataIndex Lemmatization time
Average Missing Terms Processing time
Average Join Time
Average Total Time

0

50

100

150

200

250

300

350

400

10%
10%

20% 30% 40% 50% 60% 70% 80% 90% 100%

Ti
m

e
(in

 se
co

nd
s)

IMDB Chunk

Average Wordnet time
Average DataIndex - SQL time
Average DataIndex Lemmatization time
Average Missing Terms Processing time
Average Join Time
Average Total Time

0

50

100

150

200

250

300

350

400

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ti
m

e
(in

 se
co

nd
s)

IMDB Chunk

Average DataIndex - SQL time
Average DataIndex - Lemmatization time
Average Total time

0

50

100

150

200

250

300

350

400

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ti
m

e
(in

 se
co

nd
s)

IMDB Chunk

Average SemIndex build time
Average Inv. Index build time
Average Inv. Index build time
(without Lemmatization)

(cf. Fig. 14.b). While both indices require linear building time, yet SemIndex requires almost twice (×2) as much
build time as InvIndex. Furthermore, by disregarding the lemmatization phase in building InvIndex (which can
be ignored following the database manager’s preference: storing words in their actual rather than their original
form), then SemIndex build time becomes almost four times (×4) greater than that of InvIndex. This is
encouraging since even the fastest legacy inverted index creation time is only (at best) four times lesser than the
creation time of SemIndex. The reasons for this are: i) the lightweight physical design of SemIndex which can be
easily created using fast legacy database technology, as well as ii) the sheer difference in size between the
textual database (IMBD) and the reference knowledge graph (WordNet), which renders the build time of
SemIndex mostly dependent on IMDB size rather than WordNet size.

Regardless of the above, note that the index building process is done offline, prior (in preparation) to the
system usage (query evaluation process), and thus does not affect (online) query execution time.

7.4. Index Size and Characteristics

7.4.1. SemIndex Size and Characteristics
Regarding SemIndex size, Fig. 15 shows that the SemIndex graph size (which, at the physical layer, comes down
to the total size of all SemIndex relations following the adopted RDB schema), varies linearly with the size of
the IMDB chunks (x axis) and WordNet chunks (y axis), which underlines quadratic size dependency w.r.t. both
of them (conforming with our complexity analysis in Section 6.1.2). The detailed characteristics of SemIndex
chunks are shown in Table 5 and Fig. 16, where each chunk is generated by merging the corresponding
<Δ chunk ; KB chunk> doublet (for instance, the 10% SemIndex chunk is generated by merging the 10% Δ
chunk with the 10% KB chunk, and so forth, cf. Δ and KB chunk characteristics in Section 7.2).

Fig. 15. SemIndex size variation.

 Table 5 provides SemIndex’ chunk size percentage and actual size (in MBytes); the total number of nodes in

the SemIndex graph (SIG


) including: data nodes (Nd), index nodes (
iV + , including those corresponding to missing

terms), and sense (synset) nodes (#
iV); the average branch factor: including and excluding data nodes (which

represent leaf nodes in SIG


), as well as the average span factor. SemIndex characteristics are also visualized in
 Fig. 16. Three main observations can be made.

First, while the number of nodes in the SemIndex graph increases almost linearly w.r.t. SemIndex (and thus
IMDB and WordNet) chunks size (cf. Fig. 16.a), one can realize that the number of index nodes resulting from
missing terms is almost twice that of matching index terms. That is due to the fact that the IMDB movies table
includes many textual tokens which are not part of the general purpose English language and thus do not appear
in WordNet (e.g., terms like “advogado”, “advon”, “adyeri”, “aeer”, “moustafa”, etc.). Note that we are
currently investigating ways to alleviate the missing terms problem, using dedicated language processors and
multilingual dictionaries, which will be covered in an upcoming study.

10%

30%

50%
70%

90%

0

50

100

150

200

250

300

350

10%

30%
50%

70%
90%

Se
m

In
de

xS
ize

 (i
n

M
By

te
s) 10%

20%
30%
40%
50%
60%
70%
80%
90%
100%

WordNet
chunks

Table 5. Characteristics of SemIndex chunks.

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Size (in MBs) 36.9219 68.2188 100.2813 133.3281 158.3594 202.4063 237.4688 273.5156 306.5938 339.625

N# of Data Nodes 14304 28608 42912 57217 71521 85825 100130 114434 128738 143043

N# of (Matching)
Index Term Nodes

19090 36396 52388 67511 82370 96231 108828 122119 134258 146625

N# of (Missing)
Index Terms Nodes

54165 79174 101594 121078 141534 158663 174111 186930 195897 210279

N# of Sense Nodes
(Synsets)

11738 23475 35212 46949 58686 70423 82160 93897 105634 117371

Total N# of Nodes 99297 167653 232106 292755 354111 411142 465229 517380 564527 617318

Avg. Branch
(without data nodes)

10.0087 14.4015 15.3758 17.0408 17.4348 17.2604 17.4159 17.5771 17.5184 17.4495

Avg. Branch
(with data nodes)

1.7746 4.2493 5.8399 7.5746 8.6564 9.2882 9.9577 10.575 10.9745 11.3173

Avg. Span 2.3886 2.5189 2.7408 3.0089 3.2661 3.6299 4.0109 4.2848 5.9962 7.6178

a. Distribution of the number of nodes in the SemIndex graph.

b. Average node branching factor, with and without data (leaf)
nodes.data (leaf) nodes.

c. Average spanning factor considering hierarchical
relations in SemIndex.

Fig. 16. Characteristics of SemIndex chunks.

A second observation concerns SemIndex’s branching factor, i.e., the average number of outgoing edges per

node (cf. Fig. 16.c). Here, we measure the branching factor with and without data nodes (which represent leaf
nodes in the SemIndex graph, with no outgoing edges). One can realize that the average branch factor with data
nodes (when considering the whole of IMDB and WordNet, i.e., 100% SemIndex chunk size) amounts to 11.3,
whereas it drastically increases to 17.5 when disregarding data nodes. The reason is that SemIndex contains a
huge number of data nodes (i.e., leaf nodes) which considerably decrease the average branch factor score when

0

25

50

75

100

125

150

175

200

225

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N

of
 N

od
es

 (×
10

00
)

SemIndex chunks

Synsets
Data Nodes
Index Terms
Missing Index Terms

0

2

4

6

8

10

12

14

16

18

20

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Av
er

ag
e

N

of
 O

ut
go

in
g

N
od

e
Ed

ge
s

SemIndex chunks

Without Leafs

With Leafs

0

2

4

6

8

10

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Av
er

ag
e

Sp
an

 (i
n

N

of
 N

od
es

)

SemIndex chunks

isA/hasA
partOf/hasPart
memberOf/hasMember
substanceOf/hasSubstance

considered. Thus we chose to also measure average branching without data nodes, in order to more precisely
reflect SemIndex’s rich inner (index) node connectivity (e.g., averaging around 17.5 outgoing edges per node).
Here, one can realize that the branching factor varies logarithmically with increasing SemIndex – and thus
IMDB and WordNet – chunk size, and almost stabilizes (at around 17.5 outgoing edges) with chunk sizes larger
than 50%. This means that SemIndex node branching becomes more or less uniform when considering more
than half of the IMDB and WordNet input sources.

A third observation can be made regarding SemIndex’s average spanning factor, i.e., the average length of
the path from a root (abstract sense) node to a leaf (data) node in the SemIndex graph considering hierarchical
relations only (to avoid loops), namely hyponymy/hypernymy (i.e., IsA/HasA) and meronymy/holonymy (i.e.,
partOf/hasPart, memberOf/ hasMember, and substanceOf/hasSubstance). One can realize that the average span
of the SemIndex graph (following each hierarchical relation) increases in an almost quadratic manner w.r.t. the
size of SemIndex chunks (namely with the IsA/Has/A relationship) since SemIndex’ structure maps to that of the
adopted reference knowledge base: i.e., WordNet in our case (cf. WordNet’s average span factor in Table 4
which is quadratic w.r.t. its chunk size). Note that SemIndex’ spanning factor is marginally affected by IMDB
chunk size since the database does not include hierarchical (semantic/lexical) relations1.

7.4.2. Comparison with Legacy Inverted Index Size and Characteristics

In addition, we have also measured the characteristics and size of legacy InvIndex (cf. Table 6) in comparison
with SemIndex (cf. Fig. 17).

Table 6. Characteristics of InvIndex (w.r.t. IMDB) chunks.

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Size (in MBs) 25.5781 49.6250 73.6719 98.7188 122.7656 147.8125 171.8594 195.8906 220.9375 244.9844

N# of Data Objects 14304 28608 42912 57217 71521 85825 100130 114434 128738 143043

N# of Index Terms 73255 115570 153982 188589 223904 254894 282939 309049 330155 356904

Fig. 17. Comparing SemIndex size with InvIndex size.

Results show that SemIndex’s size is larger only by (almost) 1/3rd of the size of InvIndex. This increase in

size is less pronounced than the increase in build time of SemIndex w.r.t. InvIndex (which was 4 times larger, cf.
Section 7.3.2), which follows the difference in sizes between the textual database (IMBD) and the knowledge
graph (WordNet) used: WordNet (≈ 26 MBytes) is almost 1/3rd the size of IMDB (≈ 75 MBytes), which reflect
in the sizes of SemIndex (coupling IMDB with WordNet) and InvIndex (referencing IMDB only).

7.5. Query Processing Time

To test the performance of SemIndex, we formulated different kinds of queries organized in two categories: i)
unrelated queries, and ii) expanded queries, as shown in Table 7.

1 Including the data contained-in relation, which originates from the database (e.g., IMDB) index graph (GΔ

), would increase the average
SemIndex span score by one (i.e., including one additional hierarchical level to access data nodes), regardless of the database chunk size.

0

50

100

150

200

250

300

350

400

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Si
ze

 (i
n

M
Bs

)

Chunk %

SemIndex
InvIndex

Table 7. Test queries.

Query group Q1 – Unrelated queries Query group Q2 – Expanded queries

ID Terms ID Terms
Q1_1 “time” Q2_1 “car”
Q1_2 “love”, “date” Q2_2 “car”, “muscle”
Q1_3 “fly”, “power”, “man” Q2_3 “car”, “muscle”, “classic”
Q1_4 “robot”, “human”, “war”, “world” Q2_4 “car”, “muscle”, “classic”, “speed”
Q1_5 “mafia”, “kill”, “mob”, “hit”, “family” Q2_5 “car”, “muscle”, “classic”, “speed”, “thrills”

The first category consists of queries with varying numbers of selection terms (keywords), e.g., from 1

(single term query) to 5, where all terms are different and all queries are unrelated (i.e., queries with no common
selection terms, cf. sample query group Q1 in Table 7). The second category consists of queries with varying
numbers of selection terms, where terms are different yet queries are related: such that each query expands its
predecessor by adding an additional selection term to the latter (cf. sample query group Q2 in Table 7).

We considered 5 groups of queries (made of 5 queries each) within each category (e.g., Q1 is one of the 5
groups of queries considered within the category of unrelated queries). Each query was tested on every one of
the 100 combinations of SemIndex generated by combining the different chunks of the IMDB movies table
(10%,20%,30%, …, 100%) with every chunk of WordNet (10%, 20%, 30%, …, 100%), at link distance
threshold values varying from l= 1 to 5. All queries were processed 5 times each, retaining average processing

time. Hence, all in all, we ran an overall of: 2 (categories) × 5 (groups) × 5 (queries) × 100 (SemIndex chunks) ×
5 (lvalues) × 5 (runs) = 125000 query execution tasks. Hereunder, we present and discuss the results obtained

with two sample query groups, Q1 and Q2, corresponding to each category as shown in Table 7, compiled in
 Fig. 18 and Fig. 19 (remaining query groups show similar behavior, cf. technical report in [85], and thus were
omitted here for ease of presentation).

Fig. 18. Query execution time on queries of group Q1, considering k = 5 and l= 5, while varying IMDB and

WordNet chunk sizes.

7.5.1. SemIndex Query Processing Time

On one hand, the graph in Fig. 18 plots query execution time on queries of group Q1 w.r.t. IMBD and WordNet
chunk sizes, while considering a fixed number of query terms k and a fixed link distance threshold l. Here, 25

tests (×5 runs) were conducted covering every combination of k (1-to-5) and l (1-to-5), yet we only show the

graph plotted with maximum k = 5 and l= 5, since remaining graphs highlight a similar behavior (with different
time amplitudes, cf. technical report in [85]). We omitted here results obtained with queries of groups Q2 since
they show a similar behavior to those of group Q1 (details can be found in [85]). This shows that query

5
10%

5
20%

5
30%

5
40%

5
50%

5
60%

5
70%

5
80%

5
90%

5
100%

Q
ue

ry
 T

im
e

(in
 se

co
nd

s)

IMDB Chunk

10% - 5
20% - 5
30% - 5
40% - 5
50% - 5
60% - 5
70% - 5
80% - 5
90% - 5
100% - 5

WordNet
chunks 7

6

5

4

3

2

1

0

execution time is linear in both IMBD and WordNet chunk sizes, and thus is quadratic w.r.t. both of them
(verifying our complexity analysis in Section 6.2).

On the other hand, the graphs in Fig. 19 highlight the effects of varying the number of query terms k and
varying link distance lw.r.t. fixed IMDB and WordNet chunk sizes. Here, 100 tests (×5 runs) were conducted

for each query group, covering every combination of IMDB chunk size (10% to 100%) and WordNet chunk size
(10% to 100%). We only show the graph plotted with maximum size chunks =100%, since remaining graphs
highlight a similar behavior (with different time amplitudes, cf. [85]). One can see that processing time is linear
w.r.t. the number of query terms, and quadratic w.r.t. link distance, which corresponds to the time complexity of
Dijkstra’s algorithm in navigating the edges (i.e., pairs of nodes) of the SemIndex graph (cf. Section 6.2).

a. Tests performed on queries
of group Q1(unrelated queries)

b. Tests performed on queries
of group Q2(expanded queries)

Fig. 19. Query execution time when running queries of groups Q1 and Q2, considering IMDB chunk = 100% and
WordNet chunk = 100%, while varying the number of query terms k and link distance threshold l.

Note that with queries of group Q1 (Fig. 19.a), at k=3, query time seems “strangely” high, in comparison
with the overall behavior of the chart, and compared to the charts of query groups Q2 (Fig. 19.b). This is due to
the fact that terms in query Q1_3 (i.e., “fly”, “power”, “man”) happen to have more neighbors in their SemIndex
graph (i.e., higher branch factor) than remaining query terms in group Q1, which exploration requires more time
(as shown in the following section). As for the time results of query group Q2, the time slope increases regularly
since the processing time of a given query Q2_i covers the processing time of Q2_i-1 plus the time needed to
process the additional term in Q2_i, given that larger queries in Q2 expand smaller ones.

7.5.2. Breakdown of SemIndex Query Processing Time

Similarly to SemIndex building time experiments, we broke down query execution time in order to better
understand the system’s behavior (and identify potential time optimization strategies to be investigated in the
future). Fig. 20 and Fig. 21 plot CPU time versus SQL time (I/O) while: i) varying IMBD and Wordnet chunk
sizes, with fixed query size k and link distance l (Fig. 20), and ii) varying query size k and link distance l, with
fixed IMDB and Wordnet chunk sizes (Fig. 21).

Here, 25 tests (×5 runs) were first conducted for each query group covering every combination of k (1-to-5)
and l (1-to-5), yet we only show the graph plotted with maximum k = 5 and l= 5 (Fig. 20), since remaining

graphs highlight a similar behavior (cf. [85]). Likewise, 100 tests (×5 runs) graphs were then conducted for each
query group covering every combination of IMDB chunk size (10% to 100%) and Wordnet chunk size (10% to
100%), yet we only show the graph plotted with maximum size chunks =100% (cf. Fig. 21), since remaining
graphs highlight a similar behavior. Also, we omit results obtained with queries of group Q2 since they show a
similar behavior to those of Q1 (cf. [85]).

At this point, in addition to the quadratic time dependency w.r.t. IMDB and WorldNet chunk sizes (Fig.
20), as well as quadratic time dependency w.r.t. the number of query terms k and link distance l (Fig. 21, which
were highlighted in the previous section), one can clearly realize that the bulk of execution time goes to SQL
processing (executing SQL statements in order to fetch information from IMBD and WordNet, at the MySQL
database server side) which takes up to 96% of total query processing time, whereas CPU processing (running
non-SQL instructions at the Java software side) requires less than 4% of total execution time.

0
1
2
3
4
5
6
7
8

1 2 3 4 5

Q
ue

ry
 T

im
e

(in
 se

co
nd

s)

N# of query terms k

1
2
3
4
5

0

1

2

3

4

5

1 2 3 4 5
Q

ue
ry

 T
im

e
(in

 se
co

nd
s)

N# of query terms k

1
2
3
4
5

Link distance l Link distance l

10
%

50
%

90
%

30
%

70
%

10
%

50
%

90
%

30
%

70
%

10
%

50
%

90
%

30
%

70
%

10
%

50
%

90
%

30
%

70
%

10
%

50
%

90
%

30
%

70
%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4

Q
ue

ry
 T

im
e

(in
 se

co
nd

s)

At every WordNet chunk (lower level), we vary all IMDB chunks (higher level)

3 - Average of CPU Time
3 - Average of Sql Time

Fig. 20. CPU versus SQL time on queries of group Q1, considering k = 5 and l= 5, while varying IMDB and

Wordnet chunk sizes.

Fig. 21. CPU versus SQL query execution time on queries of group Q1, considering IMDB chunk = 100% and

Wordnet chunk = 100%, while varying the number of query terms k and link distance threshold l.

7.5.3. Comparison with Legacy Inverted Index Query Processing Time

We ran the same querying tasks through the legacy InvIndex built on top of IMDB, and compared the obtained
query time results with those of SemIndex. Fig. 22 and Fig. 23 provide results obtained when running queries of
group Q1 (unrelated), plotted by varying the number of query terms k (Fig. 22) and SemIndex link distance
threshold l in (Fig. 23). Similar results were obtained with queries of group Q2 (expanded) and have been
omitted here for clarity of presentation (they are provided in [85]).

On one hand, results in Fig. 22 and Fig. 22 show that SemIndex and InvIndex have very close query time
levels when link distance is small (l = 1 and l = 2), such that SemIndex time increases as link distance increases,

reaching its highest levels with l = 5 (i.e., almost 8 times higher than InvIndex time levels, with SemIndex
reaching 5 hops into the semantic graph structure to identify more semantically related results). On the other
hand, Fig. 22 shows that both SemIndex and InvIndex query time levels slightly increase when increasing the
number of query keywords k with small link distances (l = 1 and l = 2), such that the pace of increase tends to

augment with k when reaching higher link distance thresholds (l =3-to-5).

0
1
2
3
4
5
6
7
8

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 2 3 4 5

Q
ue

ry
 T

im
e

(in
 se

co
nd

s)

With every N# of query terms k (lower level), we vary link distance l (higher level)

Somme de CPU Time
Somme de Sql Time

8
7
6
5
4
3
2
1
0

Average CPU time
Average SQL time

a. SemIndex query execution time
(reported from Fig. 19.a)

b. InvIndex versus SemIndex at l = 1 c. InvIndex versus SemIndex at l = 2

d. InvIndex versus SemIndex at l = 3

e. InvIndex versus SemIndex at l = 4

f. InvIndex versus SemIndex at l = 5

Fig. 22. Comparison with legacy InvIndex query execution time, considering queries of group Q1 (unrelated queries),
while varying the number of query terms k and fixing link distance threshold l (the latter affecting SemIndex).

a. SemIndex query execution time
(reported from Fig. 19.a)

b. InvIndex versus SemIndex at k = 1 c. InvIndex versus SemIndex at k = 2

d. InvIndex versus SemIndex at k = 3

e. InvIndex versus SemIndex at k = 4

f. InvIndex versus SemIndex at k = 5

Fig. 23. Comparing SemIndex and legacy InvIndex query execution time, considering queries of group Q1 (unrelated
queries), while varying link distance threshold l (affecting SemIndex) and fixing the number of query terms k.

0
1
2
3
4
5
6
7
8

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

N# of query terms k

1
2
3
4
5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

N# of query terms k

SemIndex
InvIndex

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

N# of query terms k

SemIndex
InvIndex

0

0.3

0.6

0.9

1.2

1.5

1.8

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

N# of query terms k

SemIndex
InvIndex

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

N# of query terms k

SemIndex
InvIndex

0

2

4

6

8

10

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

N# of query terms k

SemIndex
InvIndex

0
1
2
3
4
5
6
7
8

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

N# of query terms k

1
2
3
4
5

0

0.3

0.6

0.9

1.2

1.5

1.8

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

Link distance l

SemIndex
InvIndex

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

Link distance l

SemIndex
InvIndex

0

2

4

6

8

10

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

Link distance l

SemIndex
InvIndex

0

1

2

3

4

5

6

7

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

Link distance l

SemIndex
InvIndex

0

1.5

3

4.5

6

7.5

9

1 2 3 4 5

Ti
m

e
(in

 se
co

nd
s)

Link distance l

SemIndex
InvIndex

Link distance l

Link distance l

In other words, the time to navigate the semantic graph, following the allowed link distance l, remains the
foremost determining factor in query execution time. Also, results in Fig. 23 show that InvIndex query time is
invariant w.r.t. variations in link distance l (since it does not navigate the semantic graph, and thus does not
perform semantic-aware processing).

7.6. Query Results Evaluation

7.6.1. Number of Returned Results using SemIndex

To better evaluate query execution time, we also measured the number of neighboring nodes visited in the
SemIndex graph when running each query, and the number of results (n# of data objects = n# of IMDB movies
table rows) returned per query.

a. Tests performed on queries of group Q1
(unrelated queries).

b. Tests performed on queries of group Q2
(expanded queries).

Fig. 24. Number of neighbors visited when running queries of groups Q1 and Q2, using fixed IMDB chunk = 100%
and WordNet chunk = 100%, while varying the number of query terms k and link distance threshold l.

a. Results for query group Q1
(unrelated queries)

b. Results for query group Q2
(expanded queries)

Fig. 25. Number of returned results when running queries of groups Q1 and Q2, using fixed IMDB chunk = 100%
and WordNet chunk = 100%, while varying the number of query terms k and link distance threshold l.

On one hand, the neighbors’ charts in Fig. 24.a, b, and c are directly proportional to time charts in Fig. 19.a,
b, and c respectively. In other words, the amount of neighboring nodes visited in the SemIndex graph (which
depends on the graph’s connectivity, and the query terms used: the starting index nodes used when exploring the
SemIndex graph) shows a direct and proportional impact on query execution time: the more neighbors to be
explored, the more time it will require our SearchTerms (Dijkstra-based) algorithm to explore the SemIndex
graph. This explains the steep increase in query time when running queries Q1-3 (Fig. 19.a, at k = 3) in
comparison with the overall behavior of the chart, and compared with the charts of query group Q2 (Fig. 24.b).

On the other hand, the query result charts in Fig. 25 are proportional to the time charts in Fig. 19 along the l
(link distance) axis, while inversely proportional along the k (number of query terms) axis. In other words, the
number of results increases as link distance l increases, yet decreases as the number of query terms k increases.

0

5

10

15

20

25

1 2 3 4 5

N

of
 N

ei
gh

bo
rs

 v
isi

te
d

(×
10

00
)

N# of query terms k

1
2
3
4
5

0

2

4

6

8

10

1 2 3 4 5

N

of
 N

ei
gh

bo
rs

 v
isi

te
d

(×
10

00
)

N# of query terms k

1
2
3
4
5

0

20

40

60

80

100

120

140

1 2 3 4 5

N

of
 R

es
ul

ts
 (×

10
00

 D
B

ro
w

s)

N# of query terms k

1
2
3
4
5

0

10

20

30

40

50

60

1 2 3 4 5

N

of
 R

es
ul

ts
 (×

10
00

 D
B

ro
w

s)

N# of query terms k

1
2
3
4
5

Link distance l Link distance l

Link distance l Link distance l

The behavior regarding link distance l can be justified since: increasing l would increase the shortest path
length per query term, which would increase the number of potential shortest path intersections in the SemIndex
graph, i.e., returning a higher number of potential results. An extreme case occurs when processing query Q1_1
and Q1_2, with k = 1 (single term query: “time”) and l = 5 (maximum link distance in our test, cf. Fig. 25)
which returns around 90% of the IMDB movies table rows.

The behavior regarding the number of query terms k is due to processing a higher k, which means
identifying the intersection between a higher number of shortest paths in the SemIndex graph, yielding a lesser
number of potentially successful intersections, i.e., a lesser number of returned results. In other words,
processing a more selective query (with a higher number of terms) means producing more selective (yet lesser)
results. Extreme cases occur with extremely selective queries: i.e., Q1_4 and Q1_5 (k = 4 and 5 respectively),
run with reduced link distance thresholds: l = 1, 2 and 3, which produce zero results (i.e., zero path intersections
starting from multiple index terms mapping to each of the keywords).

7.6.2. Comparing with Number of Returned Results obtained using Legacy Inverted Index

Similarly, we measured and compared the number of results returned per query when using legacy InvIndex,
with the number of results obtained using SemIndex. Fig. 26 and Fig. 27 showcase the huge impact of SemIndex
in retrieving (4 to 7 times) more results than legacy InvIndex (here, we only show a set of select result graphs,
the complete set being provided in [85]).

f. InvIndex versus SemIndex at l = 5, with query

group Q1 (unrelated queries)

f. InvIndex versus SemIndex at l = 5,with

query group Q2 (expanded queries)

Fig. 26. Comparing the number of returned results using InvIndex versus SemIndex, by varying the number of
query terms k while fixing SemIndex’s link distance threshold l.

a. InvIndex versus SemIndex with query Q1_1
consisting of single term: “time” (n# of query

keywords k = 1)

c. InvIndex versus SemIndex with Q1_2
consisting of two terms: “love”, “date”

(i.e., n# of query keywords k = 2).

Fig. 27. Comparing the number of returned results using InvIndex versus SemIndex, by varying SemIndex’s link
distance threshold lwhile fixing the number of query terms k.

On one hand, Fig. 25 shows that the number of results returned by SemIndex decreases with the increase in
the number of keywords k, yet remains far greater than the number of results obtained with InvIndex, the latter
producing no results with queries made of k=3, 4, and/or 5 keywords. On the other hand, Fig. 26 shows that the

0

25

50

75

100

125

150

1 2 3 4 5N

of
 R

es
ul

ts
 (×

10
00

 D
B

ro
w

s)

N# of query terms k

SemIndex
InvIndex

0

10

20

30

40

50

60

70

1 2 3 4 5N

of
 R

es
ul

ts
 (×

10
00

 D
B

ro
w

s)

N# of query terms k

SemIndex
InvIndex

0

20

40

60

80

100

120

140

1 2 3 4 5

N

of
 R

es
ul

ts
 (×

10
00

 D
B

ro
w

s)

Link distance l

SemIndex
InvIndex

0

4

8

12

16

20

1 2 3 4 5

N

of
 R

es
ul

ts
 (×

10
00

 D
B

ro
w

s)

Link distance l

SemIndex
InvIndex

number of results returned by SemIndex increases significantly with the increase of link distance l, while it

stagnates with InvIndex which is not affected by l(since it does not navigate the semantic graph to produce

more semantically related results).

7.6.3. Quality of Returned Results using SemIndex versus Legacy InvIndex

In addition to evaluating SemIndex’ efficiency (processing time), we also evaluated its effectiveness (result
quality), i.e., evaluating the interestingness of semantic-aware answers from the user’s perspective. To do so, we
collected the results of our test queries obtained with and without semantic indexing, i.e., querying using the
legacy InvIndex (which is equivalent to executing queries as standard containment queries (l = 1) in SemIndex),

and performing semantic-aware queries (l = 2-to-5) with SemIndex. Results were mapped against user feedback
(user judgments, utilized as golden truth) evaluating the quality of the matches produced by the system by
computing precision and recall metrics commonly utilized in IR evaluation [8]. Precision (PR) identifies the
number of correctly returned results, w.r.t. the total number of results (correct and false) returned by the system.
Recall (R) underlines the number of correctly returned results, w.r.t. the total number of correct results,
including those not returned by the system. In addition to comparing one approach’s precision improvement to
another’s recall, it is a widespread practice to consider the f-value, which represents the harmonic mean of
precision and recall, such that high precision and recall, and thus high f-value characterize good retrieval
quality [63]. Ten test subjects (six master students, and four doctoral students, who were not part of the system
development team) were involved in the experiment as human judges. Testers were asked to evaluate the quality
of the top 1000 results (movie objects returned) per query (since manually evaluating the tens of thousands of
obtained results – cf. Fig. 25 – is practically infeasible) obtained with l = 6 (as an upper bound of l =5, including

potentially more results than l =1-to-5). These were randomized before being shown to testers. Manual relevance

ratings (in the form of integers ∈ {-1, 0, 1}, i.e., {not relevant, neutral, relevant}) were acquired for each query
answer. Then, we quantified inter-tester agreement, by computing pair-wise correlation scores1 among testers
for each of the rated query answers, and subsequently selected the top 500 hundred answers per query having
the highest average inter-tester correlation scores2, which we utilized as the experiment’s golden truth. Results
for queries of groups Q1 (unrelated queries) and Q2 (expanded queries) are shown in Fig. 28 and Fig. 29
respectively, whereas overall f-value results are provided in Fig. 30. Results highlight several observations.

1) Precision and link distance: One can realize that precision levels computed with both query groups Q1
(unrelated queries, Fig. 28.a) and Q2 (expanded queries, Fig. 29.a) generally increase with link distance (l),

until reaching l= 3 (with Q2) or l = 4 (with Q1) where precision starts to slightly decrease toward l = 5. On one

hand, this shows that the number of correct (i.e., user expected) results increases as more semantically related
terms are covered in the querying process (with l > 1). On the other hand, this also shows that over-navigating

the SemIndex graph to link terms with semantically related ones located as far as l ≥ 3 hops away might include
results which: i) are somehow semantically related to the original query terms, but which ii) are not necessarily
interesting for the users. For instance, term “congo” (meaning: black tea grown in China) is linked to term
“time” through l = 5 hops in SemIndex (“time” >> “snap” >> “reception” >> “tea” >> “congo”). Yet, results
(movie objects) containing term “congo” (e.g., movies about the country Congo, or its continent Africa) were
not judged to be relevant by human testers when applying query “time” (testers were probably expecting
movies about the passage of time or time travel instead, etc.).

2) Precision and number of query terms: Here, one can realize that precision levels with queries of group
Q1 (unrelated queries, Fig. 28.a) do not seem to largely vary w.r.t. the number of terms (k) per query, whereas
precision levels with queries of group Q2 (expanded queries, Fig. 29.a) clearly increase with k. These seemingly
different results are due to the human testers’ expectations, where testers were required to judge the quality of
each query’s results given the user’s supposed intent. On one hand, given that queries in group Q1 are unrelated,
result quality was evaluated separately for each query, based on the query’s own keyword terms (e.g., the intent
of query Q1_1 is identifying movies that have to do with time, and the intent of Q1_3 is movies that have to do
with a flying power man, etc.). On the other hand, given that queries in group Q2 are expanded versions of one

1 Using Pearson Correlation Coefficient (PCC), producing scores ∈ [-1, 1] such that: -1 designates that one tester’s ratings is a decreasing

function of the other tester’s ratings (i.e., answers deemed relevant by one tester are deemed irrelevant by the other, and vice versa), 1
designates that one tester’s ratings is an increasing function of the other tester’s ratings (i.e., answers are deemed relevant/irrelevant by
testers alike), and 0 means that tester ratings are not correlated.

2 Having average inter-tester PCC score ≥ 0.4.

another, result quality was evaluated based on the user’s intent: which would be naturally expressed with the
most expanded (i.e., most expressive) query: Q2_5. One can realize that using fewer query terms here produces
lower precision levels, which is due to the system returning more results which are (semantically related to the
query terms but which are) not necessary related to the user’s intent (e.g., query “car” might return movies that
have to do with trains or taxi cabs, whereas the user is apparently searching for movies that have to do with
muscle cars with speed driving and thrills, cf. Q2_5). In other words, with query group Q2: the lesser the
number of query terms used, the lesser the query’s expressiveness w.r.t. user’s intent, and thus the larger the
number of returned results which are not necessarily related to the user’s intent: producing lower precision.

a. Precision results

b. Recall results

Fig. 28. Comparing precision (PR) and recall (R) results obtained using SemIndex versus legacy InvIndex, with query
group Q1 (unrelated queries), varying the number of query terms k and link distance l (the latter affecting SemIndex).

a. Precision results

b. Recall results

Fig. 29. Comparing precision (PR) and recall (R) results obtained using SemIndex versus legacy InvIndex, with query
group Q2 (expanded queries), varying the number of query terms k and link distance l (the latter affecting SemIndex).

a. F-value results with query group Q1 b. F-value results with query group Q2

Fig. 30. Comparing f-value levels obtained using SemIndex versus legacy InvIndex, with query group
Q1 (unrelated queries), and query group Q2 (expanded queries).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Pr
ec

is
io

n

N# of query terms k

1 2 3 4 5Link distance lInvIndex

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
Re

ca
ll

N# of query terms k

1 2 3 4 5InvIndex Link distance l

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Pr
ec

is
io

n

N# of query terms k

1 2 3 4 5Link distance lInvIndex

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Re
ca

ll

N# of query terms k

InvIndex 1 2 3 4 5InvIndex Link distance l

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

F-
va

lu
e

N# of query terms k

1 2 3 4 5Link distance lInvIndex

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

F-
va

lu
e

N# of query terms k

InvIndex 1 2 3 4 5InvIndex Link distance l

3) Recall and link distance: As for recall, one can realize that levels obtained with both Q1 and Q2 steadily
increase with link distance (l) varying from l= 1 (legacy InvIndex) to 5 (Fig. 28.a and Fig. 29.b). This maps to

observation 1, where the number of correct (i.e., user expected) results returned by the system increases as more
semantically related terms are covered in the querying process. In other words, the more the number of correct
results which are returned by the system, the fewer the number of correct results which are not returned, and
thus the higher the recall levels. Note that returning noisy (incorrect) results along with the correct ones does not
affect recall (but rather affects precision as explained in observation 1).

4) Recall and number of query terms: Recall levels vary in a similar fashion to precision levels when
varying link distance (l): increasing with the increase of l, which accounts for more semantic coverage
(returining more semantically related results) in the SemIndex graph (Fig. 28.b and Fig. 29.b). However, recall
levels tend to decrease (rather than increase) with k. This is due to the fact that shorter (less expressive) queries
(i.e., with smaller k values) will naturally return more (semantically related) results than larger queries made of
multiple terms (larger k) which will necessarily identify less results (e.g., lesser number of movie objects
matching the query’s terms). Hence, a decrease in the number of returned results (with increasing k values)
meant the number of correct (and incorrect) results (naturally) decreased, which lead to a decrease in recall.

5) As for f-value results, levels clearly and significantly increase with the increase of link distance l,
whereas they slightly decrease with the increase of the number of query keywords k. This naturally confirms the
precision and recall levels obtained above, where the determining factor affecting retrieval quality remains link
distance l, whereas an increase in the number of keywords k tends to reduce system recall with higher values of
k (queries becoming very selective, thus missing some relevant results). Note that f-value levels are consistently
significantly higher than those obtained with the legacy InvIndex, highlighting a substantial improvement of
semantic-aware retrieval quality over syntactic retrieval quality.

7.7. Evaluating Query Efficiency/Effectiveness Ratios

To sum up, and in order to evaluate the benefits of SemIndex querying over legacy InvIndex querying, we
compute the ratio between improvement in query effectiveness (result quality) and reduction in efficiency
(query execution time). In other words, we would like to study if the cost (in execution time) of obtaining
(higher quality) semantic-aware query results using SemIndex is worthwhile, in comparison with the faster yet
less effective InvIndex. To do so, we first evaluate the ratio (expressed in percentage) of increase in query
execution time (cf. Table 8) as well as the ratio (percentage) of increase in query result quality (i.e., f-value
scores, cf. Table 9) when using SemIndex versus InvIndex. Both ratios were evaluated for the different
combinations of link distance thresholds l and number of query terms k, using the following formulas:

SemIndex InvIndex
Efficiency

InvIndex

QueryTime QueryTime

QueryTime
η −= (2)

f-value f-value

f-value
SemIndex InvIndex

Effectiveness
InvIndex

η −= (3)

Table 8. Percentage of increase in query execution time, when using SemIndex versus legacy InvIndex.

a. Processing queries of group Q1 (unrelated) b. Processing queries of group Q2 (expanded)

 l=1 l =2 l =3 l =4 l =5 l=1 l =2 l =3 l =4 l =5

Q1_1 (k=1) 12.22% 4.63% 35.74% 50.37% 198.89% Q2_1 (k=1) 6.34% 6.34% 29.76% 220.00% 607.80%

Q1_2 (k=2) 2.11% 11.81% 58.02% 70.46% 500.63% Q2_2 (k=2) 5.52% 14.72% 52.76% 253.99% 1125.15%

Q1_3 (k=3) 5.04% 21.22% 247.48% 315.13% 1558.40% Q2_3 (k=3) 2.53% 2.53% 33.84% 215.15% 1200.00%

Q1_4 (k=4) 1.12% 49.76% 70.56% 94.56% 821.60% Q2_4 (k=4) 7.92% 15.84% 69.80% 587.13% 1969.80%

Q1_5 (k=5) 3.89% 21.30% 93.15% 206.85% 1343.33% Q2_5 (k=5) 1.63% 1.63% 58.54% 439.43% 1701.22%

Table 9. Percentage of increase in query result quality (i.e., f-value) when using SemIndex versus legacy InvIndex.

 a. F-value increase with query group Q1 (unrelated) b. F-value increase with query group Q2 (expanded)

 l=1 l =2 l =3 l =4 l =5 l=1 l =2 l =3 l =4 l =5

Q1_1 (k=1) 0.00% 21.78% 39.74% 156.89% 174.74% Q2_1 (k=1) 0.00% 43.34% 64.74% 154.97% 135.05%

Q1_2 (k=2) 0.00% 86.96% 104.77% 325.62% 421.30% Q2_2 (k=2) 0.00% 23.23% 77.69% 405.22% 437.75%

Q1_3 (k=3) 0.00% 72.58% 99.55% 277.57% 247.63% Q2_3 (k=3) 0.00% 39.67% 126.88% 612.35% 766.41%

Q1_4 (k=4) 0.00% 0.00% 0.00% 4968.00% 5922.06% Q2_4 (k=4) 0.00% 0.00% 0.00% 2546.32% 3913.45%

Q1_5 (k=5) 0.00% 0.00% 0.00% 5788.08% 4908.13% Q2_5 (k=5) 0.00% 0.00% 0.00% 466.33% 3649.94%

On one hand, results in Table 8 show that querying using SemIndex, under all considered combinations of
parameters l and k, requires between 6.34% (query Q2_1 of group Q2, with l =1 and k =1) and up to 1701.22%

(query Q2_5 of group Q2, with l=5 and k=5) more processing time than InvIndex. On the other hand, Table 9

shows that query result quality levels increase with SemIndex, from 0% (when l =1, where SemIndex performs

semantic-free standard containment queries) up to 5922.06% (with query Q2_4 of group Q1, with l=5 and k=4)
w.r.t. the quality levels of InvIndex.

Consequently, we compute the ratios between improvement in result quality and increase in query
execution time, when using SemIndex versus InvIndex, for all combinations of link distance l and number of
query terms k, using formula (4):

/
Effectiveness

Quality Time
Efficiency

ηη
η

=
(4)

Values of the ηQuality/time ratio varies as follows:

- ηQuality/time < 1 means SemIndex’s improvement in result quality did not surpass the increased cost in
query processing time in comparison with InvIndex. For instance, a 10% improvement in result quality
which requires a 20% increase in query execution time would yield ηQuality/time = 0.5, such that improving
result quality requires double the effort in query execution time.

- ηQuality/time = 1 means SemIndex’s improvement in result quality exactly matches the increased cost in
query processing time in comparison with InvIndex. In other words, a 10% improvement in result quality
would require exactly a 10% increase in query execution time to obtain ηQuality/time = 1.

- ηQuality/time > 1 means SemIndex’s improvement in result quality surpassed the increased cost in query
processing time in comparison with InvIndex. For instance, a 20% improvement in result quality which
requires only a 10% increase in query execution time would yield ηQuality/time = 2, such that the effort put
in query execution time doubled the increase in query result quality.

Table 10. Ratio of improvement of result quality over increase of query execution time,

when using SemIndex versus legacy InvIndex.

 a. Ratio with query group Q1 (unrelated) b. Ratio with query group Q2 (expanded)

 l=1 l =2 l =3 l =4 l =5 l=1 l =2 l =3 l =4 l =5

Q1_1 (k=1) 0.00 4.70 1.11 3.11 0.88 Q2_1 (k=1) 0.00 6.84 2.18 0.70 0.22

Q1_2 (k=2) 0.00 7.36 1.81 4.62 0.84 Q2_2 (k=2) 0.00 1.58 1.47 1.60 0.39

Q1_3 (k=3) 0.00 3.42 0.40 0.88 0.16 Q2_3 (k=3) 0.00 15.71 3.75 2.85 0.64

Q1_4 (k=4) 0.00 0.00 0.00 52.54 7.21 Q2_4 (k=4) 0.00 0.00 0.00 4.34 1.99

Q1_5 (k=5) 0.00 0.00 0.00 27.98 3.65 Q2_5 (k=5) 0.00 0.00 0.00 1.06 2.15

Results in Table 10 show that in most cases, SemIndex’s improvement in query result quality surpasses the

cost put into query execution time in comparison with InvIndex, varying from ηQuality/Time = 1.11 with Q1_1 at
l=3 and reaching as high as ηQuality/Time = 52.54 with query group Q1_4 at l =4 (i.e., improvement in quality is

equivalent to 51.54 times the increase in query execution cost). We also note that ηQuality/time was less pronounced
in certain cases, especially with low link distance values (e.g., with l <2 or l <3), and sometimes with certain
specific queries (e.g., query Q1-3 of group Q1). Computing the average and standard deviation scores
(considering all queries and link distances) produces avg(ηQuality/Time) = 3.36 and stdev(ηQuality/time) = 8.01, which
means that: i) SemIndex’s improvement in result quality is on average 3.36 times higher than its increase in
query time w.r.t. the legacy InvIndex, and ii) the latter average cannot be generalized given the relatively high
standard deviation of 8.01, reflecting the ratio’s heavy fluctuation among queries (as shown in Table 10), which
seems to depend on every query rather on the query category.

Recall that the above results and observations were obtained based on the feedback of ten test subjects
(involved in the experiment as human judges), and need to be further investigated and generalized with a larger
group of testers (using Amazon’s Mechanical Turk for instance1). Note that we are currently conducting an
extended comparative study comparing SemIndex’ effectiveness with alternative semantic-aware retrieval

1 Available at: https://www.mturk.com/

techniques, namely: query expansion and semantic disambiguation methods, where we can evaluate not only the
relevance of query answers but also the ordering of the results1.

8. Related Works

8.1. Keyword Search in Textual Databases

Traditionally, the DB and IR communities have targeted data search and processing mainly independently of
each other. The DB community has largely focused on structured data providing sophisticated techniques for
processing complex and exact queries, whereas the IR community has focused on searching unstructured data
using various techniques for simple keyword-based search and ranking query results [6]. Yet in the past decade,
there has been an increasing interest in integrating IR and DB search paradigms, namely: integrating keyword-
based search in textual DBs to perform simple and approximate full-text DB querying [25, 58, 97].

Early approaches on keyword search queries for RDBs uses traditional IR scores (e.g., TF-IDF) to find
ways to join tuples from different tables in order to answer a given keyword query [2, 15, 34]. The proposed
search algorithms focus on enumeration of join networks called candidate networks, to connect relevant tuples
by joining different relational tables. The result for a given query comes down to a sequence of candidate
networks, each made of a set of tuples containing the query keywords in their text attributes, and connected
through their primary-foreign key references, ranked based on candidate network size and coverage. The
optimal candidate network problem has been shown to be NP-complete w.r.t. the number of relevant tables [34,
44], and various heuristic algorithms for the enumeration of top-k candidate networks have been proposed, e.g.,
[15, 34]. More recent methods on RDB full-text search in [55, 58] focus on more meaningful scoring functions
and generation of top-k candidate networks of tuples, allowing to group and/or expand candidate networks based
on certain weighting functions in order to produce more relevant results. The authors in [61] tackle the issue of
keyword search on streams of relational data, whereas the approach in [96] introduces keyword search for RDBs
with star-schemas found in OLAP applications. Other approaches introduced natural language interfaces
providing alternate access to a RDB using text-to-SQL transformations [53, 72], or extracting structured
information (e.g., identifying entities) from text (e.g., Web documents) and storing it in a DBMS to simplify
querying [27, 28]. Keyword-based search for other data models, such as XML [1, 24] and RDF [13, 16] have
also been studied.

Our work is complementary to most existing DB search algorithms in that our approach extends syntactic
keyword-term matching: where only tuples containing exact occurrences of the query keywords are identified as
results, toward semantic based keyword matching: where tuples containing terms which are lexically and
semantically related to query terms are also identified as potential results, a functionality which - to our
knowledge - remains unaddressed in most existing DB search algorithms.

8.2. Extending Syntactic Search toward Semantic Search

While DB approaches focused on integrating traditional (syntactic) keyword-based search functionality, many
efforts have been deployed by the IR community to extend syntactic processing toward semantic full-text search
using dedicated semantic indexing techniques, leading to so-called concept-based IR [7, 11, 12]. The latter is an
alternative IR approach that aims to tackle the semantic relatedness problems described in this paper (cf.
motivation scenarios and challenges in Section 1) by transforming both documents and queries into semantic
representations, using semantic concepts in a reference knowledge base, instead of (or in addition to)
keywords/terms, such as the retrieval process is undertaken in the concept space [12, 39]. Consequently, an
adapted IR engine processes the semantically indexed documents and queries, so as to produce more meaningful
results. Existing concept-based methods, e.g., [7, 11, 12, 39, 50, 51], can be characterized by three parameters: i)
Semantic indexing: consists of the representation model the concepts are based on, as well as the underlying
indexing technique used to access the concepts. It attempts to solve the problems of lexical matching by using
conceptual indices instead of individual word indices for retrieval [50]; ii) Mapping method: the mechanism that
maps the lexical terms with these semantic concepts. The mapping can be performed using manual mapping
w.r.t. a handcrafted ontology such as WordNet [64] or Yago [42], or using machine learning [38] or graph
matching techniques [12], though this would usually imply less accurate mappings, iii) Usage in the retrieval
process: the stages in which the concepts are used in information retrieval. Concepts would be best used
throughout the entire process, in both the indexing and retrieval stages [40]. A simpler but less accurate solution
is to apply concept analysis in one stage only: at the query indexing stage, e.g., performing query expansion
over the bag of words retrieval model [41] by adding to the query keywords their most related semantic
concepts in the reference semantic source [5] (e.g., WordNet [64]) or words that co-occur with the query terms

1 The traditional inverted index produces non-ranked results, which is the reason we did not compare result ordering in this study.

in a corpus (i.e., words that, on a probabilistic ground, are believed to belong to the same semantic domain, e.g.,
France and Paris; car and driver) [19], and then performing syntactic query/data matching/retrieval.

An alternative approach to handle semantic meaning is to apply automatic word sense disambiguation
(WSD) to queries, during query execution time. Disambiguation methods usually use knowledge resources such
as WordNet [56], and/or co-occurrence statistical data in a corpus [78] to find the possible senses of a word and
map word occurrences to the correct sense. Semantic query analysis in information retrieval usually involves
two steps: i) WSD to identify the user’s intended meaning for query terms, and ii) semantic query
representation/enhancement in order to alter the query so that it achieves better (precision and recall) results [5].
The disambiguated query terms are then used in query processing, so that only documents that match the correct
sense are retrieved. Nonetheless, the performance of WSD-based approaches depends on the performance of the
automated WSD process [35] which generally: i) is computationally complex requiring substantial execution
time [68], ii) depends on the context of the query/data processed (e.g., surrounding terms) [22, 84, 98] which is
not always sufficiently available (e.g., keyword queries on the Web are typically 2-to-3 words long [48]), and
thus iii) do not guaranty correct results [35, 47] as incorrect disambiguation is likely to harm performance rather
than merely not improve it [35].

Our study attempts to extend syntactic keyword search in textual DBs toward concept-based querying, with
a special emphasis on semantic data indexing using a hybrid-inverted index: SemIndex. In the following, we
briefly review the varieties and extensions of existing inverted indexes, and compare them with our proposal.

8.3. Inverted Indexes handling Data Semantics

Various efforts have been recently deployed to extend the inverted index toward handling data semantics. These
can be organized in three main categories: i) including semantic knowledge into an inverted index, ii) including
full-text information into the semantic knowledge base, and iii) building an integrated hybrid structure.

The first approach consists in adding additional entries in the index structure to designate semantic
information. Here, the authors in [50] suggest extending the traditional (term, docIDs[]) inverted index toward a
(term, context, docIDs[]) structure where contexts designates senses (synsets) extracted from WordNet,
associated to each term in the index taking into account the statistical occurrences of concepts in Web document
[11]. The authors however do not provide the details on how concepts are selected from WordNet and how they
are associated to each term in the index. Another approach is introduced in [101], extending the inverted index
structure by adding additional pointers linking each entry of the index to semantically related terms, (term,
docIDs[], relatedTerms[]). Term links are identified by analyzing term occurrences in Web documents, based on
Web document Page-Rank linkage analysis. The authors mention that they consider semantic relatedness
between terms, yet they do not describe: how semantically related words are identified (what kinds of semantic
relations and processing are used), nor how the index is actually built based on linked Web documents.

Another approach to semantic indexing is to add words as entities in the ontology [11, 92]. For instance,
adding triples of the form word occurs-in-context concept, such that each word can be related to a certain
ontological concept, when used in a certain context. Following such an approach: i) the number of triples would
naturally explode, given that ii) query processing would require reaching over the entire left and right hand sides
of this occurs-in-context index, which would be more time consuming [11] than reading on indexed entry such
as with the inverted index. A possible optimization would be to split the relation into word occurs-in context and
concept occurs-in context, yet the relations would remain huge and concept occurs-in-context always has to be
processed entirely [11]. However, a related approach has been used to disambiguate WordNet glosses [92], and
has been proven useful in enhancing WSD-based query expansion.

A third approach to semantic indexing consists in building an integrated hybrid structure: combining the
powerful functionalities of inverted indexing with semantic processing capabilities. To our knowledge, one
existing method in [11] has investigated this approach, introducing a joint index over ontologies and text. The
authors consider two input lists: containing text postings (for words or occurrences), and lists containing data
from ontological relations (for concept relations). The authors tailor their method toward incremental query
construction with context-sensitive suggestions, and thus use inverted lists for prefixes instead of terms, in order
to allow fast prefix suggestions for words to be used in building queries. They introduce the notion of context
lists instead of usual inverted lists, where a prefix contains one index item per occurrence of a word starting with
that prefix, adding an entry item for each occurrence of an ontological concept in the same context as one of
these words, producing an integrated 4-tuples index structure (prefix, terms[]) ↔ (term, context, concepts[]).

The method in [11] seems arguably the most related to our study, with major differences in objectives and
theoretical/technical contributions: the authors in [11] target semantic full-text search with special emphasis on
incremental query construction and suggestion based on query term prefixes and result excerpts, whereas we
target semantic search in textual DBs extending traditional DB-style (SQL based) querying capability toward
semantic full-text search. Hence, while the authors in [11] focus on the IR aspects of indexing, keyword query
construction, and query evaluation, we rather present a full-fledged textual DB solution, with structures and

tools designed for seamless storage and manipulation within a typical RDBMS, allowing to process different
kinds of DB-style structure queries in a textual DB.

SemIndex brings full-text DB search from traditional syntactic data retrieval toward semantic concept-based
retrieval, attempting to benefit from both worlds: allowing i) simple, ii) semantic-aware, and iii) ranked
keyword search, while: iv) preserving sophisticated DB indexing and v) structured (SQL-based) querying.

SemIndex can also be extended/adapted toward so-called object (entity)-based retrieval, e.g., [13, 16, 73],
where the main objective is to retrieve parts of a KB structure (e.g., sets of triples or components of triples in an
RDF or OWL ontology describing Web resources) that best match a user query. In this context, SemIndex could
be redesigned to integrate: a reference semantic network with a dedicated inverted index built on top of the
target KB structure, using dedicated semantic and ontology matching techniques, e.g., [66, 79, 90], which we
aim to investigate in a future study.

9. Conclusion
In this paper, we introduce a new semantic indexing approach called SemIndex, creating a hybrid structure using
a tight coupling between two resources: a general purpose semantic network, and a standard inverted index
defined on a collection of textual data, represented as dedicated graph structures. In addition to describing the
logical graph-based design of SemIndex, we also provide its physical design using a standard commercial
RDBMS, and develop the index construction process. We also provide an extended query model and related
query processing algorithms, using SemIndex, to allow semantic-aware query processing. Our theoretical study
and extensive experimental evaluation highlighted the following results: i) our index structure can be built in
average linear time, and its size is of average linear space, w.r.t. the sizes of the input data and knowledge
sources used, ii) query processing time is also linear in the size of the SemIndex structure, and varies linearly
w.r.t. to the number query terms (keywords) as well as the link distance threshold designating the breadth of the
SemIndex graph to be covered during querying, and iii) our approach allows both traditional (syntactic) queries
(when using a minimum link distance threshold), as well as semantic-aware queries (when increasing link
distance) with a significant and impressive increase in the number of neighboring nodes visited in the SemIndex
graph as well as the number and quality of semantically-related returned results.

We are currently completing an extended experimental study to evaluate SemIndex’s properties in terms of
i) genericity: to support different types of textual (structured, semi-structured, NoSQL) data collections1, and
different semantic knowledge sources (general purpose like: Roget’s thesaurus [98], Yago [42], and Google
[49], as well as domain specific: like ODP [59] for describing semantic relations between Web pages, FOAF [3]
to identify relations between persons in social networks, and SSG [76] to describe visual and semantic relations
between vector graphics)2, ii) effectiveness: evaluating the interestingness of semantic-aware query answers
considering different query answer weighting and ranking (result ordering) schemes, in comparison with IR-
based indexing, query expansion, and semantic disambiguation methods, and iii) efficiency: to reduce the
index’s building and query processing costs, using multithreading and various index fragmentation and sub-
graph mining techniques [26]. In the near future, we plan to investigate the different operations, algorithms,
physical structures, as well as possible optimizations needed to update the index [20], based on changes in the
textual data collection source as well as changes in the reference knowledge base source. Specifically, we plan
to evaluate term context window size and its impact on the missing terms problem, and consequently on the
SemIndex construction process and its usage in query processing. On the long run, we aim to extend SemIndex
to handle more expressive semi-structured and linked data collections such as domain-specific RDF/OWL
ontologies (e.g., [14, 77] describing health or biomedical data), building on recent solutions for semi-structured
semantic analysis [22, 83, 84] and approximate structure mapping [86, 87] to achieve more sophisticated object
(entity)-based retrieval capability [73].

Acknowledgements. This study is partly funded by the National Council for Scientific Research (CNRS-L) -
Lebanon, project: NCSR_00695_01/09/15, LAU research fund: SOERC1516R003, and the Research Support
Foundation of the State of Sao Paulo (FAPESP), project: MIVisBD_2017.

1 While SemIndex is currently designed to index relational data in the form of key-value tuples, yet indexing NoSQL attribute-value stores

(or semi-structured document stores) requires extending the index’ logical and physical designs in order to handle a varying number of
attributes describing every data object (as well as hierarchical relations connecting data objects).

2 The knowledge base (KB) needs to be first represented following the general graph model adopted in SemIndex (cf. Definition 3), and
then can be straightforwardly used in the SemIndex construction and querying processes. Here, dedicated semantic mediators or wrappers
need to be designed to allow the mapping of every KB with SemIndex’s general graph model.

References

[1] Agarwal M.K., Ramamritham K., and Agarwal P., Generic Keyword Search over XML Data. International Conference on Extended
DataBase Technology (EDBT'16), 2016. pp. 149-160.

[2] Agrawal S., Chakrabarti K., Chaudhuri s., et al., Exploiting Web Search Engines to Search Structured Databases. World Wide Web
Conference (WWW'09), 2009. pp. 501-510.

[3] Aleman-Meza B., Nagarajan M., Ding L., et al., Scalable Semantic Analytics on Social Networks for Addressing the Problem of
Conflict of Interest Detection. ACM Transaction on the Web (TWeb), 2008. 2(1):7.

[4] Algergawy A., Nayak R., and Saake G., Element Similarity Measures in XML Schema Matching. Elsevier Information Sciences,
2010. 180(24): 4975-4998

[5] Allan J. and H. Raghavan, Using Part-of-Speech Patterns to Reduce Query Ambiguity. In 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2002. pp. 307-314, Tampere, Finland: ACM Press, New York.

[6] Amer-Yahia S.; Case P.; Rolleke T., et al., Report on the DB/IR Panel at SIGMOD 2005. Sigmod Record, 2005. 34(4):71-74.
[7] Andreasen T., Bulskov H., Jensen P., et al., Conceptual Indexing of Text Using Ontologies and Lexical Resources, . Inter. Conf. on

Flexible Query Answering Systems (FQAS'09) 2009. pp 323-332.
[8] Baeza-Yates R. and Ribeiro-Neto B., Modern Information Retrieval: The Concepts and Technology behind Search. ACM Press

Books, Addison-Wesley Professional, 2nd Ed., 2011. p. 944.
[9] Banerjee S. and Pedersen T., Extended Gloss Overlaps as a Measure of Semantic Relatedness. International Joint Conference on

Artificial Intelligence (IJCAI'03), 2003. p. 805-810.
[10] Bao Z., Yu Y., Shen J., et al., A Query Refinement Framework for XML Keyword Search. World Wide Web 2017. 20(6):1469-1505.
[11] Bast H. and Buchhold B., An Index for Efficient Semantic Full-Text Search. Proceedings of the 22nd ACM International Conference

on information & knowledge Management (CIKM '13), 2013. pp. 369-378
[12] Baziz M., Boughanem M. and Traboulsi S., A concept-based approach for indexing documents in IR. INFORSID 2005, 2005. pp.

489-504, Grenoble, France.
[13] Bednar Peter, Sarnovsky M. and Demko V., RDF vs. NoSQL databases for the Semantic Web applications. IEEE 12th International

Symposium on Applied Machine Intelligence and Informatics (SAMI'14), 2014. pp. 361-364.
[14] Belleau F., Nolin M.A., Tourigny N., et al., Bio2RDF: Towards a mashup to build bioinformatics knowledge systems. Journal of

Biomedical Informatics, 2008. 41(5): 706-716.
[15] Bergamaschi S., Guerra F., Interlandi M., et al., Combining User and Database Perspective for Solving Keyword Queries over

Relational Databases. Information Systems, 2016. 55: 1-19.
[16] Blanco R., Mika P. and Vigna S., Effective and Efficient Entity Search in RDF data. In International Semantic Web Conference

(ISWC'11), 2011. pp. 83–97.
[17] Brin S. and Page L., Reprint of: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer Networks, 2012. 56(18):

3825-3833.
[18] Budanitsky A. and Hirst G., Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Computational Linguistics, 2006.

32(1): 13-47.
[19] Burton-Jones A.; Storey V.C.; Sugumaran V., and Purao S., A Heuristic-Based Methodology for Semantic Augmentation of User

Queries on the Web. In Proceedings ot the International Conference on Conceptual Modeling (ER'03), 2003. pp. 476–489.
[20] Chakrabarti S., Pathak A. and Gupta M., Index design and query processing for graph conductance search. VLDB Journal, 2011.

20(3):445-470.
[21] Chandramouli K., Kliegr T. , Nemrava J., et al., Query Refinement and user Relevance Feedback for contextualized image retrieval.

5th International Conference on Visual Information Engineering (VIE), 2008. pp. 453 - 458.
[22] Charbel N., Tekli J., Chbeir R., et al., Resolving XML Semantic Ambiguity. International Conference on Extending Database

Technology (EDBT'15), 2015. Brussels, Belgium, pp 277-288.
[23] Chbeir R., Luo Y., Tekli J., et al., SemIndex: Semantic-Aware Inverted Index. 18th East-European Conference on Advanced

Databases and Information Systems (ADBIS'14), 2014. pp. 290-307.
[24] Chen L.J. and Papakonstantinou Y., Supporting top-K keyword Search in XML Databases. International Conference on Data

Engineering (ICDE'10), 2010. pp. 689-700.
[25] Chen Yi, Wang W., Liu Z., et al., Keyword search on structured and semi-structured data. Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data, 2009. pp. 1005-1010.
[26] Cheng J., Ke K., Wai-Chee Fu A.., et al., Fast graph query processing with a low-cost index. VLDB Journal, 2011, 20(4): 521-539.
[27] Cheng T., Yan X. and Chang K. C., EntityRank: searching entities directly and holistically. Proceedings of the 33rd international

conference on Very Large Data Bases (VLDB'07), 2007. pp. 387-398.
[28] Chu E., Baid A., Chen T., et al., A relational approach to incrementally extracting and querying structure in unstructured data.

Proceedings of the 33rd international conference on Very Large Data Bases (VLDB '07), 2007. pp. 1045-1056
[29] Cimiano P.; Handschuh S. and Staab S., Towards the Self-Annotating Web. In Proceedings of the International World Wide Web

Conference (WWW'04), 2004. pp. 462-471.
[30] Cormen T.H., Leiserson C.E., Rivest R.L., et al., Introduction to Algorithms (3rd Ed.). MIT Press and McGraw-Hill. , 2009.
[31] Das S., e.a., Making unstructured data sparql using semantic indexing in oracle database. In Proceedings of 29th IEEE ICDE Conf.,

2012. pp. 1405–1416.
[32] Davies M., The Corpus of Contemporary American English as the first reliable monitor corpus of English. Literary & Linguistic

Computing, 2010. 25(4): 447-464.
[33] de Lima E.F. and Pedersen J.O., Phrase Recognition and Expansion for Short, Precision biased Queries based on a Query Log. In

Proc. of the 22nd Annual Inter.ACM SIGIR Conf.on Research and Development in Information Retrieval, 1999, pp. 145-152.
[34] Ding B., Xu Yu J., Wang S., et al., Finding top-k min-cost connected trees in databases. Proceedings of the International Conference

on Data Engineering (ICDE'07), 2007.
[35] Egozi O., Markovitch S. and Gabrilovich E., Concept-Based Information Retrieval Using Explicit Semantic Analysis. ACM

Transactions on Information Systems 2011, 29(2):8.
[36] Francis W. N. and Kucera H., Frequency Analysis of English Usage. Houghton Mifflin, Boston, 1982.
[37] Gao X. and Qiu J., Supporting Queries and Analyses of Large-Scale Social Media Data with Customizable and Scalable Indexing

Techniques over NoSQL Databases. IEEE/ACM Inter. Symposium on Cluster Computing & the Grid (CCGRID'14), 2014, 587-590.
[38] Gauch S., Ravindran D. and Chandramouli A., KeyConcept: Conceptual Search and Pruning Exploiting Concept Relationships.

Journal of Intelligent Systems, 2010. 19(3): 265-288
[39] Giunchiglia F., Kharkevich U. and Zaihrayeu I., Concept Search. In ESWC - Semantics and Big Data, 2009. pp. 429–444.

[40] Gonzalo J., Verdejo F. and Chugur I., Using Eurowordnet in a Concept-Based Approach to Cross-Language Text Retrieval. Applied
Artificial Intelligence 1999, 13(7): 647-678.

[41] Grootjen F. and Van Der Weide T.P., Conceptual query expansion. Data Knowledge Engineering, 2006. 56:174–193.
[42] Hoffart J., Suchanek F.M., Berberich K., et al., YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artif.

Intell., 2013, 194: 28-61.
[43] Hopfield J. and Tank D., Neural Computation of Decisions in Optimization Problems. . Biological Cybernetics, 1985, 52(3):52–141.
[44] Hristidis V. and Papakonstantinou Y., DISCOVER: Keyword search in relational databases. Proceedings of the International

Conference on Very Large Databases (VLDB), 2002.
[45] Hudec M., An approach to fuzzy database querying, analysis and realization. Comput. Sci. Inf. Syst., 2009, 6(2): 127-140.
[46] International Organization for Standardization, ISO/IEC 14977:1996 Extended BNF Notation. Avaialble from:

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf, 1996.
[47] Kamvar M. and Baluja S., A Large Scale Study of Wireless Search Behavior: Google Mobile Search. In Proceedings of the SIGCHI

Conference on Computer Human Interaction, 2006. pp. 701–709, Montreal, Canada.
[48] Kathuria A., Jansen B.J., Hafernik C.T., et al., Classifying the User Intent of Web Queries using K-means Clustering. Internet

Research, 2010. 20(5): 563-581.
[49] Klapaftis I. and Manandhar S., Evaluating Word Sense Induction and Disamiguation Methods. Language Resourses and Evaluation,

2013. 47(3):579-605.
[50] Kumar S., Rana R.K. and Singh P., Ontology based Semantic Indexing Approach for Information Retrieval System. International

Journal of Computer Applications, 2012. Volume 49– No.12.
[51] L'Hadj L.S., Boughanem M. and Amrouche K., Enhancing Information Retrieval through Concept-based Language Modeling and

Semantic Smoothing. Journal of the Association for Information Science and Technology (JASIST), 2016. 67(12): 2909-2927.
[52] Lester N., Zobel J. and Williams H., Efficient online index maintenance for contiguous inverted lists. Information Processing and

Management, 2006. 42(4):916- 933.
[53] Li F. and J. H.V., Constructing an Interactive Natural Language Interface for Relational Databases. Proceedings of the VLDB

Endowment, 2014. pp. 73-84.
[54] Li Y., Yang H. and Jagadish H.V., Term Disambiguation in Natural Language Query for XML. In Proceedings of the International

Conference on Flexible Query Answering Systems (FQAS), 2006. LNAI 4027, pp. 133–146.
[55] Liu F., Yu C., Meng W., et al., Effective keyword search in relational databases. Proceedings of the 2006 ACM SIGMOD

international conference on Management of data, 2006. pp. 563-574
[56] Liu Y., Scheuermann P., Li X., et al., Using WordNet to Disambiguate Word Senses for Text Classification. International Conference

on Computational Science (ICCS'07), 2007. pp 781-789.
[57] Lucio F. D. Santos, Willian D. Oliveira, Mônica Ribeiro Porto Ferreira, et al., Evaluating the Diversification of Similarity Query

Results. Journal of Information and Data Management (JIDM) 2013. 4(3): 188-203.
[58] Luo Y., Lin X., Wang W., et al., Spark: top-k keyword query in relational databases. Proceedings of the 2007 ACM International

Conference on Management of Data (SIGMOD-07), 2007. pp. 115-126.
[59] Maguitman A., Menczer F., Roinestad H., et al., Algorithmic Detection of Semantic Similarity. Proceedings of the International

Conference on the World Wide Web (WWW), 2005. pp. 107-116.
[60] Mahapatra A.K. and Biswas S., Inverted Index: Types and techniques. International Journal of Computer science Issues,, 2011.

8(4):1.
[61] Markowetz A. and P.D. Yang Y., Keyword search on relational data streams. Proceedings of the International Conference on

Management of Data (SIGMOD'07), 2007. pp. 605–616.
[62] Martinenghi D. and Torlone R., Taxonomy-based relaxation of query answering in relational databases. VLDB Journal, 2014.

23(5):747-769.
[63] McGill M., Introduction to Modern Information Retrieval. 1983. McGraw-Hill, New York.
[64] Miller G.A. and Fellbaum C., WordNet Then and Now. Language Resources and Evaluation, 2007. 41(2): 209-214.
[65] Miller S., Bobrow R., Ingria R., et al., Hidden understanding models of natural language. Proceedings of the 32nd annual meeting on

Association for Computational Linguistics, Stroudsburg, PA, USA, 1994. pp. 25–32.
[66] Ming M., Yefei P. and Michael S., A Harmony Based Adaptive Ontology Mapping Approach. In Proceedings of the International

Conference on Semantic Web and Web Services (SWWS'08), 2008. pp. 336-342.
[67] Mishra C. and Koudas N., Interactive Query Refinement International Conference on Extending Database Technology (EDBT'09),

2009. pp. 862-873.
[68] Navigli R., Word Sense Disambiguation: a Survey. ACM Computing Surveys, 2009. 41(2):1–69.
[69] Navigli R. and Lapata M., An Experimental Study of Graph Connectivity for Unsupervised Word Sense Disambiguation. IEEE Trans.

on Pattern Analysis and Machine Intelligence 2010. 32(4): 678-692.
[70] Navigli R. and Crisafulli G., Inducing Word Senses to Improve Web Search Result Clustering. In Proceedings of the 2010 Conference

on Empirical Methods in Natural Language Processing, 2010. pp. 116–126, MIT, USA.
[71] Nayak R., Fast and effective clustering of XML data using structural information. Knowledge and Information Systems, 2008. 14

(2): 197-215.
[72] Nihalani N., Silakari S. and Motwani M., Natural language Interface for Database: A Brief review. International Journal of

Computer Science Issues, 2011. 8(2):600-608.
[73] Pound J., Mika P. and Z. H., Ad-hoc Object Retrieval in the Web of Data. International World Wide Web Conference (WWW'10),

2010. pp. 771-780.
[74] Richardson R. and Smeaton A., Using WordNet in a Knowledge-based approach to information retrieval. Proceedings of the BCS-

IRSG Colloquium on Information Retrieval, 1995.
[75] Rychly P. and Kilgarriff A., An Efficient Algorithm for Building a Distributional Thesaurus (and other Sketch Engine developments).

ACL 2007, 2007. Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL)(pp. 41-44).
[76] Salameh K., Tekli J. and Chbeir R., SVG-to-RDF Image Semantization. 7th International SISAP Conference, 2014. pp. 214-228.
[77] Samwald M., Jentzsch A., Bouton C., et al., Linked open drug data for pharmaceutical research and development. Journal of

Cheminformatics, 2011. 3:19.
[78] Schuetze H. and Pedersen J. O., Information Retrieval based on Word Senses. In Proceedings of the 4th Annual Symposium on

Document Analysis and Information Retrieval. , 1995. pp. 161–175.
[79] Shvaiko P. and Euzenat J., Ten challenges for ontology matching. Proceedings of the OTM 2008 Confederated International

Conferences, 2008. pp. 1164–1182.

[80] Silva Y.N., Aref W.G., Larson P.A., et al., Similarity queries: their conceptual evaluation, transformations, and processing. VLDB
Journal, 2013. 22(3):395-420.

[81] Sinh Hoa Nguyen, Wojciech Świeboda and G. Jaśkiewicz, Semantic Evaluation of Search Result Clustering Methods. Intelligent
Tools for Building a Scientific Information Platform, Studies in Computational Intelligence Volume 467,

, 2013. 467(393-414).
[82] Spink A., Wolfram D., Jansen M., et al., Searching the Web: The Public and Their Queries. Journal of the American Society for

Information Science, 2001. 52(3):226–234.
[83] Tekli J., An Overview on XML Semantic Disambiguation from Unstructured Text to Semi-Structured Data: Background,

Applications, and Ongoing Challenges. IEEE Trans. on Knowledge and Data Engineering (IEEE TKDE), 2016. 28(6): 1383-1407.
[84] Tekli J., Charbel N. and Chbeir R., Building Semantic Trees from XML Documents. Elsevier Journal of Web Semantics (JWS):

Science, Services and Agents on the World Wide Web, 2016. 37–38:1–24.
[85] Tekli J., Chbeir R., Luo Y., et al., SemIndex: Semantic-Aware Inverted Index - Technical Report. Available at

http://sigappfr.acm.org/Projects/SemIndex/, 2018, 2018.
[86] Tekli J., Chbeir R., Traina A.J.M., et al., Approximate XML Structure Validation based on Document-Grammar Tree Similarity.

Elsevier Information Sciences, 2015. 295:258-302.
[87] Tekli J., Chbeir R. and Yetongnon K., A Novel XML Structure Comparison Framework based on Sub-tree Commonalities and Label

Semantics. Elsevier Journal of Web Semantics (JWS): Science, Services and Agents on the World Wide Web, 2012. 11: 14-40.
[88] Tekli J., Chbeir R. and Yétongnon K., An Overview of XML Similarity: Background, Current Trends and Future Directions. Elsevier

Computer Science Review, 2009. 3(3):151-173.
[89] Tekli J., Chbeir R. and Yétongnon K., Minimizing User Effort in XML Grammar Matching. Elsevier Information Sciences Journal,

2012. 210:1-40.
[90] Umer Q. and Mundy D., Semantically Intelligent Semi-Automated Ontology Integration. Proceedings of the World Congress on

Engineering, 2012. London, U.K. .
[91] Vasilescu F., Langlais P. and Lapalme G., Evaluating Variants of the Lesk Approach for Disambiguating Words. Language

Resources and Evaluation (LREC'04), 2004. pp. 633-636.
[92] Velardi P., Faralli S. and Navigli R., OntoLearn Reloaded: A Graph-Based Algorithm for Taxonomy Induction. Computational

Linguistics, 2013. 39(3): 665-707.
[93] von der Weth C. and Datta A., Multiterm Keyword Search in NoSQL Systems. IEEE Internet Computing, 2012. 16(1):34-42
[94] Weeds J., e.a., Characterizing Measures of Lexical Distributional Similarity. In Proceedings of 20th Int. Conf. on Computational

Linguistics (COLING '04), 2004. Article No. 1015.
[95] Wen H., Huang G.S. and L. Z., Clustering Web Search Results using Semantic Information. International Conference on Machine

Learning and Cybernetics, 2009. 3(1504 - 1509).
[96] Wu P., Sismanis Y. and Reinwald B., Towards Keyword-Driven Analytical Processing. Proceedings of the International Conference

on Management of Data (SIGMOD'07), 2007. pp. 617–628.
[97] Xu Y., Guan J. and Ishikawa Y., Scalable Top-k Keyword Search in Relational Databases. 17th International Conference on

Database Systems for Advanced Applications (DASFAA'12), 2012. Volume 7239 of the series LNCS, pp. 65-80.
[98] Yaworsky D., Word-Sense Disambiguation Using Statistical Models of Roget's Categories Trained on Large Corpora. Proceedings

of the International Conference on Computational Linguistics (Coling), 1992. Vol 2, pp. 454-460. Nantes.
[99] Zhang C., Naughton J., DeWitt D., et al., On Supporting Containment Queries in Relational Database Management systems.

SIGMOD Record, 2001. 30(2), 425–436.
[100] Zhang P., A Study on Database Fuzzy Query Method in SQL. International Conference on Advances in Engineering, 2011. Vol. 24,

pp. 340-344.
[101] Zhong S., Shang M. and Deng Z., A Design of the Inverted Index Based on Web Document Comprehending. Journal of Computers,

2011. 6(4):664-670.

Appendix: SemIndex Weighting Scheme

We propose a set of weighting functions to assign weight scores to SemIndex entries, including: index nodes,
index edges, data nodes, and data edges. The weighting functions are used to select and rank semantically
relevant results w.r.t. the user’s query (cf. SemIndex query processing in Section 5). Other weight functions
could be later added to cater to the index designer’s needs.

1. Index Node Weight

Considering an index node ni ∈ .SI iG V


, the weight of ni denoted as WIndexNote(ni), is evaluated as a node degree
centrality score [69], computed as the node’s in-degree (i.e., number of nodes connected with the target index

node) over the maximum node in-degree in SIG


, according to the below formula:

WIndexNode(ni) =
 .

- ()
 [0,1]

(- ())
SIj i

i

j
v G V

in degree n
Max in degree n

∀ ∈

∈


(5)

Rationale: An index node is more important if it receives many links from other indexing nodes1 (cf. Fig. 30.a).

1 A future extension would be to consider eigenvector centrality, where node weights are normalized based on centrality scores of

connected nodes [69].

a. An index node with many incoming edges (left)
will have a higher weight compared with one with

fewer incoming edges (right) [69].

b. An index edge connecting two index nodes having many other incoming/
outgoing edges (left) will have a lesser weight compared with one connecting

index nodes with fewer edges (right, where j
i

e is the only edge connections ni

and nj, and thus carries all of the descriptive power of ni toward nj) [74].

Fig. 30. Visual depictions of index node and index edge weight evaluation.

2. Index Edge Weight

The weight of an index edge j
ie ∈ .SI iG E


 outgoing from index node ni and incoming into index node nj is

determined by the out-degree of ni, considering the corresponding edge label (e.g., semantic relationship, e.g.,
hypernymy, meronymy, etc.) [74], according to the below formula:

WIndexEdge (
j

ie)= 1]0, 1]
- ()Label iout degree n

∈ (6)

Rationale: An index edge designates a stronger connection between two index nodes when it carries most of the
descriptive power from the source node to the destination node, such that the source node has few other out-
going connections (if any, cf. Fig. 30.b) 1.

3. Data Node Weight

The weight of a data node nd ∈ .SI dG V


in the SemIndex graph is defined as:

WDataNode (nd) =

 .

- ()
 [0, 1]

Max (- ())
SIq d

d

q
n G V

in degree n
in degree n

∀ ∈

∈


(7)

where in-degree(nd) designates the number of foreign key/primary key data links (joins) outgoing from all data
nodes (tuples) where the foreign keys reside, toward data node (tuple) nd where the primary key resides.

Rationale: Similarly to index node weight, we consider that a data node is more important (its weight will
increase) when it received many links from other data nodes (cf. Fig. 31).

Fig. 31. Visual depiction of data node weight evaluation, where data node nd which has a larger number of
foreign key/primary key connections (high in-degree) will have a higher weight compared with np.

1 A future extension would be to assign higher/lower weights to every semantic relation (e.g., hypernymy could be considered as a stronger

semantic relation compared with related-to).

4. Data Edge Weight

Given a data edge d
ie ∈ .SI dG E


 connecting an index node ni with a data node nd (e.g., data edge connecting index

node T1 with data node O2 since the term “car” occurs in the textual description of O2, likewise for T1-O2, T4-

O1,…, T12-O1, in Fig. 6), we compute the weight of d
ie as an adapted tf (term frequency) score where tf

underlines the frequency (number of occurrences) of the index node string literal within a given data node,

connected via the data edge in question. Hence, given a data edge d
ie

incoming from index node ni toward data

node nd, where ni.l denotes the string value of ni, we define:
 [43]

DataEdge

 .

()
W () [0, 1]

(())
d

SIi d

i

j

e G E

d
i

NbOcc n .l
e

Max NbOcc n .l
∈

= ∈


(8)

where NbOcc(nj.l) designates the number of occurrences of a term ni.l in nd’s textual description, normalized
w.r.t. the maximum number occurrences of any index node string literal nj.l within the target data node nd.

Rationale: Following the IR logic of term frequency [8], a data edge is more important if it connects an
index term with a data node where the index term occurs many times in the data node’s string value (e.g., index
term T1 (“car”) occurs many times in data object O2 (“Days of Thunder”)’s full textual description, resulting in a

high WDataEdge(2

1

O
Te)).

Note that the user (admin) can also adapt weight functions by tuning their respective weight parameters,
activating/de-activating certain functions based on her needs.

