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Abstract—In this paper, we study the impact of inter-relay
cooperation on the performance of Decode-and-Forward (DF)
cooperative Free Space Optical (FSO) communication systems
with any number of relays. The idea of inter-relay cooperation
(IRC) was introduced very recently where the relay-relay links
are activated for further boosting the system performance.We
evaluate the outage probability under forward and forward-
backward IRC that constitute the two variants of this trans-
mission strategy. We also derive the diversity orders that can
be achieved over a composite channel model that takes both
turbulence-induced fading and misalignment-induced fading into
consideration. We present a comprehensive asymptotic analysis
that is effective for tackling the usefulness of IRC with an arbi-
trary number of relays and for deriving the network conditio ns
under which implementing IRC in any of its variants can be
beneficial for enhancing the diversity order of the FSO system.
The introduced framework answers the question on what is
the optimal solution for a particular FSO network (among the
parallel-relaying solution with no IRC, forward IRC or forw ard-
backward IRC).

Index Terms—Free-Space Optics, FSO, cooperation, relaying,
outage, diversity, gamma-gamma, pointing errors.

I. I NTRODUCTION

Cooperative Free Space Optical (FSO) communications
promptly developed into a well established field of research.
A large number of contributions investigated the cooperative
communication techniques as efficient distributed solutions
for mitigating the turbulence-induced fading that severely
degrades the performance of FSO links. Several variants of
the cooperative solutions were examined comprising the asso-
ciation of parallel-relaying and serial-relaying techniques with
Amplify-and-Forward (AF) and Decode-and-Forward (DF)
transmission strategies. In this context, all-optical solutions or
solutions that involve optical-to-electrical conversionwere en-
visaged with either all-active or selective relaying schemes that
can be implemented in the absence and presence of channel
state information (CSI), respectively. Numerous performance
measures were utilized for quantifying the gains with respect
to non-cooperative communications including the bit errorrate
(BER), the outage probability, the ergodic capacity, and the
diversity-multiplexing tradeoff. Furthermore, a wide variety
of fading models were adopted including the exponential,
the lognormal, and the gamma-gamma models. More recent
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contributions included the misalignment-induced fading or
pointing errors that result from the building sway.

All-active parallel-relaying has also been widely investi-
gated [1]–[14]. In parallel-relaying, a signal is first transmitted
from the source to the destination and relays; at a second time,
the relays retransmit the signal to the destination. All-active
relaying constitutes an appealing solution to such systems
where all relays participate in the cooperation effort irrespec-
tive of the network conditions that results in a simple solution
that does not require acquiring the CSI at any node. In [1],
all-active parallel-relaying was analyzed through an outage
probability analysis over lognormal channels where the AF
and the DF strategies were compared. Ref. [2] evaluated the
BER performance of AF cooperation with one relay. The BER
performance of DF cooperation with one relay was analyzed
in [3]–[5] in the context of intensity-modulation and direct-
detection, subcarrier intensity modulation and differential
modulation, respectively. The outage probability and diversity-
multiplexing tradeoff were evaluated in [6] in the context of
parallel-relaying with one relay. Power allocation for all-active
parallel-relaying FSO systems with any number of relays was
investigated in [7]. DF schemes based on convolutional codes
were proposed in [8] while detect-and-forward schemes were
analyzed over gamma-gamma channels in the presence of
pointing errors in [9]. The impact of pointing errors on all-
active parallel-relaying systems was further investigated in
[10] and [11] where all-optical solutions and solutions that
involve optical-to-electrical conversion were analyzed,respec-
tively. The DF parallel-relaying with an arbitrary number of
relays was also investigated in [12] where two variants of
the DF strategy were compared over gamma-gamma fading
channels; in the first one, all symbols received by a relay are
retransmitted to the destination while in the second schemea
selective process is applied on the symbols to be retransmitted.
The problem of optimal relay placement was tackled in [13]
and [14] where unconstrained optimization and constrained
optimization with link obstacles and infeasible regions were
performed, respectively.

While the all-active parallel-relaying systems in [1]–[14]
correspond to a two-phase solution based on sequential source-
relay (and eventually source-destination) followed by relay-
destination communications, the idea of inter-relay coopera-
tion (IRC) was introduced and analyzed in [15] and [16]. For
such systems, the relays cooperate with each other before the
retransmission phase towards the destination that enhances the
fidelity of signal reconstruction at the relays and eventually
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boosts the performance of the cooperative FSO network.
In this context, the solution in [15], [16] corresponds to
a three-phase source-relay, relay-relay, and relay-destination
cooperation strategy (further details on inter-relay cooperation
can be found in subsection II-A below). In [15], the conditional
BER and the optimal power allocation strategy were derived
for any number of relays. In [16], a two-relay system was
analyzed in the absence and presence of CSI. Two variants of
the inter-relay cooperation strategy were proposed and their
outage probabilities and diversity orders were derived over
gamma-gamma fading channels.

In this work, we extend the outage probability analysis
presented in [16] with two relays to an arbitrary number of
relays in the absence of CSI. We derive the exact outage
probability expressions and the diversity orders that can be
achieved by the two variants IRC1 and IRC2 where IRC is
implemented in the forward and forward-backward directions,
respectively. The second contribution of the paper residesin
a comprehensive analysis on the utility of inter-relay coop-
eration. In this context, we highlight the conditions under
which IRC1 or IRC2 can improve the diversity order of a
particular FSO network. In particular, depending on the state
of the source-relay and relay-destination links, we propose
an efficient and simple framework that allows to determine
whether (i) neither IRC1 nor IRC2, (ii) only IRC2 or (iii)
both IRC1 and IRC2 can enhance the diversity order with
respect to systems that do not implement IRC. In the last case,
the comparison between IRC1 and IRC2 depends on the state
of the relay-relay links as well. We propose a technique for
analytically comparing IRC1 and IRC2 under this scenario if
a certain number of network conditions is satisfied.

II. SYSTEM MODEL

A. Cooperation Strategies

Consider a relay-assisted FSO communication system where
N relays are assumed to be present in the vicinity of a
source node S and a destination node D. The relay nodes
correspond to independent communication entities that are
initially deployed for ensuring wireless optical connectivity
between different locations. In case these nodes have no
information to communicate, they can serve as relays for
assisting S in its communication with D. This constitutes a
major advantage of cooperative systems where no additional
infrastructure needs to be deployed. In what follows, the relays
will be denoted by R1, . . ., RN . For simplicity of notation, S
and D will be denoted by R0 and RN+1, respectively.

We will analyze and compare the three following coop-
eration strategies: the No Inter-Relay-Cooperation scheme
(NIRC), One-way IRC scheme (IRC1), and Two-way IRC
scheme (IRC2). It is worth noting that all of these schemes
can be implemented in the absence of CSI at the destina-
tion and the relays that renders them suitable for simple
noncoherent communications based on Intensity-Modulation
and Direct-Detection (IM/DD). The considered cooperation
strategies are based on the DF relaying scheme. In this
context, the signal is first decoded at each relay followed
by a re-encoding/retransmission phase. The first step involves

optical-to-electrical conversion while the second step involves
electrical-to-optical conversion.

1) NIRC: NIRC corresponds to the conventional two-phase
all-active parallel-relaying scheme often considered in the
literature. For NIRC, S first transmits the information message
to D and the relays and, at a second time, the relays retransmit
this message to D.

2) IRC: For the IRC schemes, after the first communication
phase, the relays inter-cooperate with each other to enhance the
fidelity of the reconstructed symbols before the retransmission
phase to D. This inter-relay cooperation can be realized either
in unidirectional or in bidirectional manners resulting intwo
variants of this strategy; namely, IRC1 and IRC2. (i): For
IRC1, each relay retransmits the message to the next relay
(if any). In other words, the decision at Rn will be based on
the signals received from S and Rn−1 (if any). (ii): For IRC2,
forward-backward inter-relay cooperation is envisaged where
the decision at Rn will be based on the signals received from
S, Rn−1, and Rn+1 (if any).

The transmission procedure is as follows. For IRC1, the
signal is first transmitted from S to all relays (and D) in one
time slot. The relays then perform the following operation in
a sequential manner forn = 1, . . . , N : if Rn successfully
decodes at least one of the signals it received along the S-Rn

link or the Rn−1-Rn link (if any), then Rn retransmits this
message to Rn+1 (if any); otherwise, Rn remains idle. The
communications along the R1-R2, . . . , RN−1-RN links occur
sequentially overN−1 time slots. Finally, the relays that have
successfully decoded the message retransmit this message to
D in the last time slot. For IRC2, after triggering the com-
munications over the Rn-Rn+1 links, the relays perform the
following operation in a sequential manner forn = N, . . . , 1:
if Rn has successfully decoded the message in any of the
previous slots, then Rn sends the information message to
Rn−1 (if any); otherwise, this backward communication does
not take place. Potential communications along the links RN -
RN−1, . . . , R2-R1 necessitateN − 1 additional slots before
the final retransmission to D.

Evidently, the IRC schemes entail a higher system com-
plexity as is the case of almost all advanced communication
techniques. For example, the well explored NIRC scheme
results in significant performance gains with respect to point-
to-point communications; however, this improvement is asso-
ciated with an increased complexity since the communications
now involve2N additional source-relay and relay-destination
links. Similar to the improvement of NIRC with respect to non-
cooperative transmissions, the considered IRC system further
improves over the NIRC scheme by means of communicating
over the relay-relay links. In cases where IRC is useful,
implementing this system or not depends on the targeted
levels of compromise between performance and complexity.
It is worth noting that the additional complexity is limited
to the signaling procedure to control the additional relay-
relay communication phase as has been highlighted above
without affecting the network infrastructure. In this context,
no additional transceivers are added and no major hardware
modifications are imposed on the existing transceivers except
for an additional switching component that simply switches
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Fig. 1. FSO relay-assisted transmission withN inter-connected relays.

to the strongest transceiver as will be explained later. More-
over, following from the high directivity of the FSO links,
the different transmissions do not interfere with each other
thus bypassing all forms of involved joint encoding/decoding.
In this context, triggering communications over the existing
relay-relay links is not associated with any decoding complex-
ity where the detection procedure at each transceiver remains
the same compared to non-cooperative communications. The
inter-relay communication phase simply incurs an additional
decoding delay that can be straightforwardly compensated
for at D. Finally, it is worth noting that the considered IRC
schemes are noncoherent and, consequently, the extension of
the existing NIRC scheme to the IRC schemes is not associated
with any additional complexity for acquiring the CSI of the
inter-relay links.

Fig. 1 illustrates a relay-assisted FSO network with IRC.
Nodes S, D, R1, . . . , RN correspond to buildings on which
several transceivers are installed each of which ensures a
directive FSO link with a neighboring building. The IRC
schemes take advantage of the relay-relay links to boost the
performance of the network. Implementing user cooperation
with the existing infrastructure restrains the freedom of reallo-
cating, redistributing or realigning any of the already existing
transceivers and, in particular, the transceivers used forthe
inter-relay communications. For example, these2(N − 1)
transceivers can not be used to create additional links between
S and D via the relays since this will deprive the relay nodes
from the possibility of communicating their information one
with the other in the non-cooperative mode of the network. An
information-carrying signal falls on each one of the different
transceivers installed at a given relay. In this context, itis
sufficient that at least one of these signals has a signal-to-noise
ratio (SNR) that exceeds the decoding threshold to ensure
the delivery of the information message to the relay. This
significantly simplifies the implementation of the cooperative
network where each relay simply switches to thestrongest
transceiver without further complications in the hardwareas
compared to non-cooperative systems. This also simplifies
the shifting from thecooperative mode (where the relay is

transmitting information of S) to thenon-cooperative mode
(where the relay is transmitting its own information). Finally,
the number of signals that fall on each relay depends on the
cooperation scheme and on the index of the relay. For IRC1,
one signal is available at R1 while two signals are available
at each one of the relays R2, . . ., RN . For IRC2, two signals
are available at each one of the relays R1 and RN while three
signals are available at each one of the remaining relays R2,
. . ., RN−1. Following from the high directivity of FSO links,
the optical signal transmitted along the link Ri-Rj does not
interfere with the signals transmitted along the other links. In
particular, communicating over the relay-relay links doesnot
incur any additional interference since the signal transmitted
from a relay to the previous or next relay can not be overheard
by other nodes in the network.

B. Channel Model

Denote byIi,j the irradiance along the link Ri-Rj . This
irradiance can be written as the product of three terms:
Ii,j = I

(l)
i,j I

(a)
i,j I

(p)
i,j where, in this work, we adopt a channel

model that takes into account the combined effects of path
loss (I(l)

i,j ), atmospheric turbulence-induced scintillation (I
(a)
i,j )

and misalignment-induced fading caused by pointing errors
(I(p)

i,j ). Assuming a gamma-gamma turbulence model and a
Gaussian spatial intensity profile falling on a circular aperture
at the receiver, the probability density function (pdf) ofIi,j

was derived in [17] and expressed in terms of the Meijer G-
function Gm,n

p,q [.] as follows:

fIi,j
(I) =

αi,jβi,jξ
2
i,j

Ai,jI
(l)
i,j Γ(αi,j)Γ(βi,j)

×

G3,0
1,3

[

αi,jβi,j

Ai,jI
(l)
i,j

I

∣

∣

∣

∣

∣

ξ2
i,j

ξ2
i,j−1,αi,j−1,βi,j−1

]

(1)

whereΓ(.) is the Gamma function. In (1),αi,j andβi,j stand
for the parameters of the gamma-gamma distribution and can
be written as follows:

αi,j =
[

exp
(

0.49σ2
R,i,j/(1 + 1.11σ

12/5
R,i,j)

7/6
)

− 1
]−1

(2)

βi,j =
[

exp
(

0.51σ2
R,i,j/(1 + 0.69σ

12/5
R,i,j)

5/6
)

− 1
]−1

(3)

whereσ2
R,i,j = 1.23C2

nk7/6d
11/6
i,j is the Rytov variance where

di,j stands for the length of the link Ri-Rj , k is the wave num-
ber, andC2

n denotes the refractive index structure parameter.
In (1), the parametersAi,j andξi,j are related to the pointing

errors.Ai,j is given byAi,j = [erf(vi,j)]
2 where erf(.) stands

for the error function withvi,j =
√

π/2(ai,j/ωz,i,j) where
ai,j is the radius of the receiver andωz,i,j is the beam waist
along the link Ri-Rj . ξi,j = ωzeq,i,j/2σs,i,j whereσs,i,j stands
for the pointing error displacement standard deviation at the
receiver andω2

zeq,i,j = ω2
z,i,j

√
πerf(vi,j)/[2vi,je

−v2
i,j ]. Finally,

the atmospheric loss is given byI(l)
i,j = e−σdi,j whereσ is the

attenuation coefficient.I(l)
i,j is considered as a fixed scaling

factor during a long period of time. Interested readers are
referred to [17]–[19] for more details on the channel model.
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C. Outage Probability along the Individual Links

The instantaneous electrical SNR along the link Ri-Rj with
IM/DD is given by [20]:

γi,j =
η2I2

i,j

N2
linkN0

(4)

whereη is the optical-to-electrical conversion ratio andN0 is
the variance of the additive white Gaussian noise (AWGN).

In (4), Nlink stands for the total number of links in the
FSO network. The normalization byNlink ensures that the
cooperative system transmits the same power as point-to-point
non-cooperative systems. Given that the considered cooper-
ation schemes can be implemented in the absence of CSI,
then this transmit power will be evenly distributed among all
available links; in other words, each FSO link will be allocated
a fractionNlink of the total available transmit power. For NIRC,
Nlink = 2N + 1 counting for theN S-R links,N R-D links,
and the direct S-D link. For IRC1,Nlink = 3N taking into
consideration the additionalN − 1 inter-relay links. Finally,
for IRC2, Nlink = 4N − 1 since theN − 1 inter-relay links
can be activated in both directions. It is worth noting that the
potential performance gains associated with IRC result from
the additional number of links used for communication. Thisis
analogous to any other spatial diversity technique where the
performance gains follow from diversifying the paths along
which the signal propagates from S to D. In this context, the
problem of designing cooperative networks can be formulated
as follows: for a given network with a fixed number of relays
that fixes the system’s hardware complexity, what is the best
cooperation strategy that can be implemented for achievingthe
highest performance levels without transmitting more power?

Given that the mean of the random variableIi,j , having a
pdf as given in (1), is equal toAi,jI

(l)
i,j ξ2

i,j/(ξ2
i,j +1) [17], then

the electrical SNR for the direct non-cooperative transmission
along S-D can be written as [19], [20]:

γ0,N+1 =
η2E2[I0,N+1]

N0
=

1

N0

(

ηA0,N+1I
(l)
0,N+1ξ

2
0,N+1

ξ2
0,N+1 + 1

)2

(5)
where E[.] stands for the averaging operator.

Consequently, (4) can be written as:γi,j =

γ0,N+1

(

ξ2
0,N+1+1

A0,N+1I
(l)
0,N+1ξ2

0,N+1

)2
(

Ii,j

Nlink

)2

.

The link Ri-Rj is in outage if the SNRγi,j falls below a
specified decoding threshold denoted byγth above which the
signal can be decoded with an arbitrarily small probabilityof
error. The outage probabilitypi,j , Pr(γi,j < γth) along this
link can be written as:

pi,j = Pr

(

Ii,j <
Nlink

PM

A0,N+1I
(l)
0,N+1ξ

2
0,N+1

ξ2
0,N+1 + 1

)

(6)

wherePM =
√

γ0,N+1

γth
denotes the optical power margin.

The cumulative distribution function (cdf) associated with
the pdf in (1) can be expressed in terms of the Meijer G-

function as follows [17]:

FIi,j
(I) =

ξ2
i,j

Γ(αi,j)Γ(βi,j)
G3,1

2,4

[

αi,jβi,j

Ai,jI
(l)
i,j

I

∣

∣

∣

∣

∣

1,ξ2
i,j+1

ξ2
i,j ,αi,j ,βi,j ,0

]

(7)
Consequently, (6) can be written as:

pi,j = FIi,j

(

Nlink

PM

A0,N+1I
(l)
0,N+1ξ

2
0,N+1

ξ2
0,N+1 + 1

)

(8)

D. Diversity Order along the Individual Links

Equation (8) does not offer intuitive insights on the be-
havior of pi,j . Consequently, we will further proceed with an
asymptotic analysis. For large SNRs, the outage probability is
dominated by the behavior of the pdf near the origin where
(1) can be approximated byfIi,j

(I) ≈ ai,jI
ζi,j−1 where

ζi,j = min{βi,j , ξ
2
i,j} and:

ai,j =
ξ2
i,j(αi,jβi,j)

ζi,j Γ(αi,j − ζi,j)

(Ai,jI
(l)
i,j )ζi,j Γ(αi,j)Γ(βi,j)

bi,j (9)

wherebi,j = 1/(ξ2
i,j − βi,j) if ξ2

i,j > βi,j andbi,j = Γ(βi,j −
ξ2
i,j) if ξ2

i,j < βi,j [21].
Based on the above approximation, the outage probability

in (8) can be approximated by the following expression for
large values ofPM :

pi,j ≈ ai,j

ζi,j

(

ξ2
0,N+1 + 1

A0,N+1I
(l)
0,N+1ξ

2
0,N+1

PM

Nlink

)−ζi,j

(10)

that scales asymptotically asP−ζi,j

M showing that the diversity
order along the link Ri-Rj is equal toζi,j = min{βi,j , ξ

2
i,j}

in coherence with the asymptotic analysis presented in [22]
for gamma-gamma channels with pointing errors. Finally, we
assume that the FSO channels are reciprocal resulting inIi,j =
Ij,i andpi,j = pj,i.

III. O UTAGE PROBABILITY

From (7) and (8), the outage probability of the overall FSO
system depends on the power marginPM , on the network
setup (through the channel parametersαi,j , βi,j , ξi,j , Ai,j

and I
(l)
i,j ), and on the number of relaysN . In order to offer

more insights on the performance of IRC1 and IRC2, we first
consider the special cases ofN = 2 andN = 3.

A. Special cases

1) N = 2: Considering all possible conditions of the S-R
links, the outage probability of the cooperative FSO network
can be written under the following general form:

Pout=p0,3 [q0,1q0,2Q0 + p0,1p0,2Q1 + q0,1p0,2Q2 + p0,1q0,2Q3]
(11)

whereqi,j , 1 − pi,j is the probability that the link Ri-Rj is
not in outage. In (11), the multiplication byp0,3 results from
the fact that the system will not be in outage if the direct link
S-D (denoted equivalently by R0-R3) is not in outage.

The probabilitiesQ0, . . . , Q3 in (11) depend on the imple-
mented cooperation scheme:
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− Q0: In this case, the information symbol is available at
both relays since the links S-R1 and S-R2 are not in outage.
Consequently, the system will be in outage if the links R1-D
and R2-D are in outage. Consequently,Q0 = p1,3p2,3 whether
with IRC1 or with IRC2.
− Q1: Both relays are in outage andQ1 = 1 for IRC1 and

IRC2.
− Q2: In this case, the information symbol is available at

R1 that is not in outage and, hence, for the system to be in
outage, the link R1-D must be in outage. For the IRC schemes,
even though R2 did not acquire the message from S, yet it
can still acquire it from R1. In other words, for both IRC1
and IRC2, since the message is available at R1, then it can
be forwarded along the additional path R1-R2-D where this
forward cooperation is an additional degree of freedom that is
exploited by the IRC protocols. In this case,Q2 = p1,3p1→2

wherep1→2 , p1,2 + q1,2p2,3. In fact, if R1-R2 is in outage
(with probability p1,2), then the information message can not
reach R2 (since in this case S-R2 is in outage as well) and,
consequently, R2 can not retransmit to D. Otherwise, with
probability q1,2, R2 is acquiring the message from R1 and,
for the system to be in outage, R2-D must be in outage (with
probabilityp2,3).
− Q3: In this case, only R2 is acquiring the message from S

and, hence, for the system to be in outage, the link R2-D must
be in outage. (i): For IRC1, R1 can base its decision only on the
signal received from S. Given that the link S-R1 is in outage
in this case, then R1 can not participate in the cooperation
effort resulting inQ3 = p2,3. (ii): For IRC2, since the message
is available at R2, then it can be forwarded along the addi-
tional path R2-R1-D where thisbackward cooperation is an
additional degree of freedom that is exploited exclusivelyby
IRC2. Consequently,Q3 = p2,3p2→1 = p2,3(p2,1 + q2,1p1,3).

2) N = 3: Similar to the caseN = 2, the system outage
probability can be written as:

Pout = p0,4 [q0,1q0,2q0,3Q0 + p0,1q0,2q0,3Q1

+q0,1p0,2q0,3Q2 + q0,1q0,2p0,3Q3 + p0,1p0,2q0,3Q4

+p0,1q0,2p0,3Q5 + q0,1p0,2p0,3Q6 + p0,1p0,2p0,3Q7] (12)

The probabilitiesQ0, . . . , Q7 can be calculated as follows.
− Q0: Similar to the caseN = 2, Q0 = p1,4p2,4p3,4

whether with IRC1 or with IRC2 since all R-D links must
be in outage for the system to be in outage.
− Q1: In this case, the information symbol is available at

R2 and R3 that are not in outage and, hence, for the system
to be in outage, the links R2-D and R3-D must be in outage.

- For IRC1,Q1 = p2,4p3,4 since R1 can not participate in
the cooperation effort.

- For IRC2, since the message is available at R2, then it can
be forwarded along the additional path R2-R1-D resulting
in Q1 = p2,4p3,4p2→1 = p2,4p3,4(p2,1 + q2,1p1,4).

− Q2: In this case, S-R1 and S-R3 are not in outage and,
consequently, R1-D and R3-D must fail so that the entire
network will suffer from outage.

- For IRC1, while the link S-R2 is in outage, yet R2 can
still acquire the information message from R1. Therefore,
Q2 = p1,4p3,4p1→2 = p1,4p3,4 [p1,2 + q1,2p2,4].

- For IRC2, R2 can acquire the information message from
either R1 or R3 (or both). In this case,Q2 can be
written under the formQ2 = p1,4p3,4p1→2←3 where
p1→2←3 , p2,4+q2,4(p1,2p3,2). In fact, if the link R2-D is
in outage (with probabilityp2,4), then even if R2 acquires
and retransmits the information message, this message
will not reach D. Otherwise, a message retransmitted
from R2 will reach D via R2-D (with probabilityq2,4). In
this case, R2 will not acquire the message if the two inter-
relay links R1-R2 and R3-R2 fail simultaneously (with
probability p1,2p3,2). Note that, in this case,Q2 can not
be written asQ2 = p1,4p3,4p1→2p3→2 since the paths
R1-R2-D and R3-R2-D are not independent.

− Q3: In this case, S-R1 and S-R2 are not in outage. In
a way similar to the previous case,Q3 = p1,4p2,4p2→3 =
p1,4p2,4 [p2,3 + q2,3p3,4] for both IRC1 and IRC2 where, in
this case, R3 can acquire the message from R2.
− Q4: In this case, S-R1 and S-R2 are in outage.

- For IRC1, R1 and R2 can not participate in the coopera-
tion effort since they can not receive the information mes-
sage from the subsequent relay R3 resulting inQ4 = p3,4.

- For IRC2, R3 is the only relay that is acquiring the mes-
sage from S. This message can be subsequently forwarded
to D either directly along R3-D or indirectly via one of
the relays R2 or R1. In this case,Q4 can be written as
Q4 = p3,4p3→2→1 wherep3→2→1 = p3,2+q3,2p2,4p2→1.
In fact, if the link R3-R2 is in outage, then the informa-
tion message can not reach R2 which in turn can not
forward this message to R1 resulting in an outage of
the system. Otherwise, the message is available at R2

that can forward this message either along the direct link
R2-D or along the indirect link R2-R1-D. Consequently,
Q4 = p3,4 [p3,2 + q3,2p2,4 (p2,1 + q2,1p1,4)].

− Q5: In this case, R2 is the only relay that is acquiring
the information message from S.

- For IRC1, the acquired message can be forwarded from
R2 to D via the paths R2-D or R2-R3-D resulting inQ5 =
p2,4p2→3 = p2,4 [p2,3 + q2,3p3,4].

- For IRC2, the additional path R2-R1-D is
available resulting in Q5 = p2,4p2→3p2→1 =
p2,4 [p2,3 + q2,3p3,4] [p2,1 + q2,1p1,4].

− Q6: In this case, R1 is the only relay that is acquiring the
message that can be forwarded to D either directly along R1-D
or indirectly via one of the relays R2 or R3. In this case,Q6 =
p1,4p1→2→3 = p1,4 [p1,2 + q1,2p2,4 (p2,3 + q2,3p3,4)] whether
with IRC1 or with IRC2.
− Q7: Finally, Q7 = 1 for both IRC1 and IRC2 since all

the relays are in outage in this case.
For NIRC, all the probabilities that arise from inter-relayco-

operation must be set to1 where the involved probabilities are
{pn→(n+1), p(n+1)→n}2

n=1, p1→2→3, p3→2→1, andp1→2←3.

B. IRC with N Relays

After introducing the different probability definitions and
highlighting on the cases that might arise in IRC systems with
N = 3, we next tackle the general case of IRC systems with
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N ≥ 2. The outage probability of the overall FSO system can
be written as:

Pout =
∑

S⊂{1,...,N}

Pr({Rj}j∈S not in outage)×

Pr(system in outage| {Rj}j∈S not in outage) (13)

where the first probability can be derived as
[

∏

j∈S q0,j

] [

∏

j′∈S p0,j′

]

since when the relays inS are not

in outage, then the relays inS will be in outage. The second
probability can be written asp0,N+1

[

∏

j∈S pj,N+1

]

P
(IRC)
S

because, for the system to be in outage, (i): the direct link
must be in outage with probabilityp0,N+1, (ii): the relays in
S that succeeded in decoding the message from S must fail in
delivering this message to D where the associated probability
is
∏

j∈S pj,N+1, and (iii): IRC must fail in preventing
outage where the corresponding probability is denoted
by P

(IRC)
S . Indexing all possible subsetsS of {1, . . . , N}

as In,1, . . . , In,(N

n), where n ∈ {0, . . . , N} denotes the
cardinality, results in the following expression of the outage
probability:

Pout = p0,N+1

N
∑

n=0

(N

n)
∑

i=1





∏

j∈In,i

q0,j









∏

j′∈In,i

p0,j′



×





∏

j∈In,i

pj,N+1



P
(IRC)
In,i

(14)

wheren corresponds to the number of relays that are not in
outage.In,1, . . . , In,(N

n) are all possible subsets of{1, . . . , N}
having n elements each. Note that the probabilityP

(IRC)
In,i

results from implementing IRC where this probability must
be set to1 in the case of NIRC.

For example, forN = 3, the probabilities in (12) and
(14) are related as follows:Q0 = p1,4p2,4p3,4P

(IRC)
{1,2,3}, Q1 =

p2,4p3,4P
(IRC)
{2,3} , Q2 = p1,4p3,4P

(IRC)
{1,3} , Q3 = p1,4p2,4P

(IRC)
{1,2} ,

Q4 = p3,4P
(IRC)
{3} , Q5 = p2,4P

(IRC)
{2} , Q6 = p1,4P

(IRC)
{1} , and

Q7 = P
(IRC)
φ whereφ stands for the empty set.

Consider first the setIn,i containing the indices of the relays
that are not in outage (in terms of the signals received from
S) and assume that the elements of this set are arranged in an
increasing order. The following partitioning will be applied on
In,i that will be written as:

In,i = N (1)
n,i ∪ N (2)

n,i ∪ · · · ∪ N (mn,i)
n,i (15)

where the elements ofIn,i are grouped into subsets where
each subset corresponds to a cluster of consecutive integers.
In a more formal way,N (j)

n,i corresponds to thej-th subset of
consecutive integers ofIn,i.

In the same way, the setIn,i that contains the indices of
the relays that are in outage (in an increasing order) can be
partitioned as follows:

In,i = O(1)
n,i ∪ O(2)

n,i ∪ · · · ∪ O(m′
n,i)

n,i (16)

where O(j)
n,i corresponds to thej-th subset of consecutive

integers ofIn,i and where the two following additional rules
need to be applied:

O(1)
n,i = φ if min{O(1)

n,i} 6= 1 (17)

O(m′
n,i)

n,i = φ if max{O(m′
n,i)

n,i } 6= N (18)

For example, assume thatN = 5 and In,i = {3, 5}, then
this set will be written as:In,i = {3}∪{5}. In this case,In,i =
{1, 2, 4} that can be partitioned as:In,i = {1, 2} ∪ {4} ∪ φ.
If N = 8 with In,i = {1, 4, 7, 8} andIn,i = {2, 3, 5, 6}, then
In,i = {1} ∪ {4} ∪ {7, 8} andIn,i = φ∪ {2, 3} ∪ {5, 6} ∪ φ.

Based on the above, the relays can be partitioned into
alternating subsets ofin-outage andnot-in-outage groups:

{1, . . . , N} = O(1)
n,i∪N

(1)
n,i ∪· · ·O

(mn,i)
n,i ∪N (mn,i)

n,i ∪O(mn,i+1)
n,i

(19)
where it can be easily proven thatm′n,i = mn,i + 1.

1) IRC1: In this case, given that the inter-relay cooperation
is implemented only in theforward direction, then inter-relay
cooperation will not benefit the first group of relays that were
already in outage before the inter-relay cooperation phase
(whose indices are given inO(1)

n,i) where these relays will
remain in outage after inter-cooperation between the relays.
On the other hand, relays whose indices fall inO(k+1)

n,i for
k > 0 can benefit from inter-relay cooperation since these
relays can receive the information message from the previous
cluster of relays that are not in outage; i.e., from the relays
whose indices fall inN (k)

n,i .

Denote byN (k)
n,i,l the l-th element ofN (k)

n,i and by |C| the
cardinality of the setC. Given that inter-relay cooperation is
envisaged in theforward direction and that the elements of
N (k)

n,i are arranged in increasing order, then the states of the
links R

N
(k)
n,i,1

-R
N

(k)
n,i,2

, . . ., R
N

(k)

n,i,|N
(k)
n,i

|−1

-R
N

(k)

n,i,|N
(k)
n,i

|

does not

affect the outage probability since the information symbolis
already available atN (k)

n,i,|N
(k)
n,i
|
= max{N (k)

n,i } (from S).

Based on the above, and considering the clustersN (k)
n,i and

O(k+1)
n,i , the information message can propagate sequentially

from R
max{N

(k)
n,i
}

to R
O

(k+1)
n,i,1

to R
O

(k+1)
n,i,2

. . . to R
max{O

(k+1)
n,i

}
.

In this case, the state of the link R
max{O

(k+1)
n,i

}
-R
N

(k+1)
n,i,1

(if any)

does not affect the outage probability since the information
message is already acquired at R

N
(k+1)
n,i,1

since the correspond-

ing link with S is not in outage. Therefore, based on the above
analysis, the probabilityP (IRC)

In,i
can be written as:

P
(IRC1)
In,i

=

mn,i
∏

k=1

p
max{N

(k)
n,i }→min{O

(k+1)
n,i }→···→max{O

(k+1)
n,i }

(20)
where the probabilitypi→i+1→···→i+f stands for the prob-
ability that the information message can not be delivered
from any of the relays Ri+1, . . ., Ri+f to D where each one
of these relays, in its turn, can acquire the message from
the previous relay (since the corresponding link with S is
in outage). Probabilities of this form can be calculated in a
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recursive manner as follows:

pi→i+1→···→i+f = pi,i+1 + qi,i+1pi+1,N+1pi+1→i+2→···→i+f

(21)
with pi→i , 1.

In fact, if the link Ri-Ri+1 is in outage (with probability
pi,i+1), then the propagation of the signal along Ri-Ri+1-· · · -
Ri+f is stopped. In this case, none of the relays Ri+1, . . .,
Ri+f can acquire the information message and, hence, none
of these relays can forward this message to D. If the link
Ri-Ri+1 is not in outage (with probabilityqi,i+1), then the
information message will be available at Ri+1. In this case, the
message can not reach D only if the link Ri+1-D is in outage
(with probabilitypi+1,N+1) and none of the subsequent relays
Ri+2, . . ., Ri+f can deliver the message to D (with probability
pi+1→i+2→···→i+f ).

Regarding the previous example, forN = 5, P
(IRC1)
{3,5} =

p3→4 = p3,4 + q3,4p4,6. For N = 8, P
(IRC1)
{1,4,7,8} =

p1→2→3p4→5→6 = [p1,2 + q1,2p2,9(p2,3 + q2,3p3,9)][p4,5 +
q4,5p5,9(p5,6 + q5,6p6,9)].

Equation (20) can be written in an equivalent form as
follows:

P
(IRC1)
In,i

=

|In,i|
∏

l=1

pIn,i,l→(In,i,l+1)→···→(In,i,l+1−1) (22)

whereIn,i,|In,i|+1 , N + 1.

2) IRC2: Regarding the relays whose indices fall inO(1)
n,i,

these relays can profit from the presence of the informa-
tion message atN (1)

n,i,1 = min{N (1)
n,i } where this mes-

sage can propagate in thebackward direction: R
min{N

(1)
n,i
}
-

R
max{O

(1)
n,i
}
-· · · -R

min{O
(1)
n,i
}
. In this case, the relays inO(1)

n,i

will fail to deliver the message to D with probability
p
min{N

(1)
n,i
}→max{O

(1)
n,i
}→···→min{O

(1)
n,i
}

where:

pi→i−1→···→i−f = pi,i−1 + qi,i−1pi−1,N+1pi−1→i−2→···→i−f

(23)
in a way that is completely analogous to (21).

In a similar way, the group of relays whose indices fall
in O(mn,i+1)

n,i can profit from the presence of the message at

max{N (mn,i)
n,i } where this message can propagate in thefor-

ward direction. In this case, the inter-relay outage probability
is p

max{N
(mn,i)

n,i
}→min{O

(mn,i+1)

n,i
}→···→max{O

(mn,i+1)

n,i
}
.

Consider now the relays whose indices fall in the set
O(k)

n,i for k ∈ {2, . . . , mn,i}. For IRC2, even though these
relays were not capable of acquiring the information mes-
sage from S, yet they can still acquire this message from
the last relay in the previous group (i.e. R

max{N
(k−1)
n,i

}
) or

from the first relay in the next group (i.e. R
min{N

(k)
n,i }

).

The probability that neither one of the relays inO(k)
n,i

is capable of delivering the message to D can be writ-
ten as:p

max{N
(k−1)
n,i

}→
(

min{O
(k)
n,i
}⇄···⇄max{O

(k)
n,i
}
)

←min{N
(k)
n,i
}

where probabilities of this form can be evaluated using the

following recursive relation:

pi→(i+1⇄···⇄i+f−1)←i+f =






pi,i+1pi+f→i+f−1→···→i+1+
qi,i+1pi+1,N+1pi+1→(i+2⇄···⇄i+f−1)←i+f , f > 1;
1, f = 1.

(24)

The interpretation of (24) is as follows. Forf > 1,
if the link Ri-Ri+1 is in outage, then the group of relays
{i + 1, . . . , i + f − 1} can acquire the message exclusively
from Ri+f via backward cooperation. In this case, neither
relay of this group will be able to deliver the message to
D with probability pi+f→i+f−1→···→i+1. On the other hand,
with probability qi,i+1, the link Ri-Ri+1 is not in outage
and the message is now available at Ri+1. For the system
to suffer from outage in this case, the link Ri+1-D must be
in outage and the group of relays in{i + 2, . . . , i + f − 1}
must fail in delivering the message to D where this group
in its turn can acquire the message from either the previous
relay Ri+1 or the next relay Ri+f . For f = 1, the infor-
mation message is available at Ri and Ri+f =Ri+1 where
no relays are present in between these relays resulting in a
probability in (24) that is equal to1. Note that forf = 2,
pi→i+1←i+2 = pi,i+1pi+2→i+1 + qi,i+1pi+1,N+1 that is equal
to the probabilitypi+1,N+1 + qi+1,N+1pi,i+1pi+2,i+1 used in
the previous subsection. In fact, if the link Ri+1-D is in outage
then Ri+1 will fail in delivering the message to D irrespective
of the states of the links Ri-Ri+1 and Ri+2-Ri+1. Otherwise,
these two inter-relay links must both be in outage.

Based on the above analysis,P
(IRC)
In,i

is given by the follow-
ing expression for IRC2:

P
(IRC2)
In,i

= p
min{N

(1)
n,i
}→max{O

(1)
n,i
}→···→min{O

(1)
n,i
}
×

mn,i
∏

k=2

p
max{N

(k−1)
n,i

}→
(

min{O
(k)
n,i
}⇄···⇄max{O

(k)
n,i
}
)

←min{N
(k)
n,i
}
×

p
max{N

(mn,i)

n,i
}→min{O

(mn,i+1)

n,i
}→···→max{O

(mn,i+1)

n,i
}

(25)

where the constituent probabilities can be determined from
(21), (23), and (24).

The expression in (25) can be written under the following
equivalent form:

P
(IRC2)
In,i

= pIn,i,1→(In,i,1−1)→···→1×
|In,i|−1
∏

l=1

pIn,i,l→((In,i,l+1)⇄···⇄(In,i,l+1−1))←In,i,l+1
×

pIn,i,|In,i|
→(In,i,|In,i|

+1)→···→N (26)

For example, for N = 8, P
(IRC2)
{2,3,6,7} =

p2→1p3→(4⇄5)←6p7→8 while P
(IRC2)
{2,3,5,7} =

p2→1p3→4←5p5→6←7p7→8.

IV. D IVERSITY ORDER AND ASYMPTOTIC ANALYSIS

A. Diversity Order

Consider the outage probability in (14). For large values
of the SNR, given thatpi,j scales asymptotically asP−ζi,j

M
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and qi,j = 1 − pi,j ≈ 1, then the first product in (14) is
approximately equal to 1, the second product scales asymp-

totically asP
−
∑

j′∈In,i
ζ0,j′

M , and the third product scales as

P
−
∑

j∈In,i
ζj,N+1

M .
For NIRC,P (IRC)

In,i
= 1 in (14) and the diversity order of the

NIRC scheme can be written as:

ζ(NIRC) = ζ0,N+1 + min
n=0,...,N

min
i=1,...,(N

n)
{ζ(0)
In,i

} (27)

where:
ζ
(0)
In,i

,
∑

j∈In,i

ζj,N+1 +
∑

j′∈In,i

ζ0,j′ (28)

For IRC1, the diversity order can be written as:

ζ(IRC1) = ζ0,N+1 + min
n=0,...,N

min
i=1,...,(N

n)
{ζ(0)
In,i

+ ζ
(f)
In,i

} (29)

where ζ
(f)
In,i

stands for the diversity order of the probability

P
(IRC1)
In,i

given in (22) where the superscriptf stands for the
forward direction.

In Appendix A we prove thatζ(f)
In,i

can be written as:

ζ
(f)
In,i

=

|In,i|
∑

l=1

ζIn,i,l,In,i,l+1δIn,i,l+1/∈In,i
δIn,i,l 6=N (30)

=
∑

m∈In,i ; m 6=N

ζm,m+1δm+1/∈In,i
(31)

whereδS = 1 if the statementS is true andδS = 0 otherwise.
For IRC2, the diversity order can be written as:

ζ(IRC2) = ζ0,N+1 + min
n=0,...,N

min
i=1,...,(N

n)
{ζ(0)
In,i

+ ζ
(f,b)
In,i

} (32)

where ζ
(f,b)
In,i

stands for the diversity order of the probability

P
(IRC2)
In,i

given in (26) where the superscriptb stands for the
backward direction.

In Appendix B we prove that (32) can be written as:

ζ(IRC2) = ζ0,N+1 + min
n=0,...,N

min
i=1,...,(N

n)
{ζ(0)
In,i

+ ζ
(f)
In,i

+ ζ
(b)
In,i

}

(33)
whereζ

(f,b)
In,i

= ζ
(f)
In,i

+ ζ
(b)
In,i

and:

ζ
(b)
In,i

=
∑

m∈In,i ; m 6=1

ζm,m−1δm−1/∈In,i
(34)

Equations (27), (29), and (33) show thatζ(IRC2) ≥ ζ(IRC1) ≥
ζ(NIRC). Note that since the parametersζi,j can take arbitrary
values depending on the relay positions and misalignment
conditions, further simplifications of the expressions in (27),
(29), and (33) are not possible in the general case. The
diversity orders of NIRC, IRC1, and IRC2 are listed in Table
I for N = 2, 3, 4 (terms in parentheses(.) correspond toζ(0)

In,i

that must be included for NIRC, IRC1, and IRC2; terms in
brackets[.] correspond toζ(f)

In,i
that must be included for IRC1

and IRC2; terms in braces{.} correspond toζ(b)
In,i

that must
be included for IRC2).

B. Comparison of the IRC schemes with NIRC

Equations (27), (29), and (33) can be written as:

ζ = ζ0,N+1 + min
I⊂{1,...,N}

{ζ(0)
I + ζ

(1)
I } (35)

where ζ
(0)
I is defined in (28).ζ(1)

I is equal to0, ζ
(f)
I , and

ζ
(f)
I +ζ

(b)
I for NIRC, IRC1, and IRC2, respectively, whereζ

(f)
I

andζ
(b)
I are defined in (31) and (34).

Given the cumbersome expressions of the diversity order,
it is of extreme importance to highlight under which network
conditions will inter-relay cooperation be useful. In [23], it was
proven that (27)-(28) can be written as:ζ(NIRC) = ζ0,N+1 +
∑N

n=1 min{ζ0,n, ζn,N+1}.
1) Case A: Assume first that there are no relays Rn for

which ζ0,n = ζn,N+1. Construct the setS as follows:

S = {n | ζn,N+1 < ζ0,n} (36)

Therefore, for the considered network, the diversity order
that can be achieved by NIRC is given by:

ζ(NIRC) = ζ0,N+1 +
∑

n∈S

ζn,N+1 +
∑

n′∈S

ζ0,n′ = ζ0,N+1 + ζ
(0)
S

(37)
where minI⊂{1,...,N} ζ

(0)
I = ζ

(0)
S . The condition ζ0,n 6=

ζn,N+1 for n = 1, . . . , N implies that ζ(0)
S is the unique

minimum and, hence,ζ(0)
I > ζ

(0)
S for anyI 6= S.

From (35), the diversity order with IRC can be written as:

ζ(IRC) = ζ0,N+1 + min

{

ζ
(0)
S + ζ

(1)
S , min

I6=S
{ζ(0)
I + ζ

(1)
I }

}

(38)
If ζ

(1)
S = 0, thenmin

{

ζ
(0)
S , minI6=S{ζ(0)

I + ζ
(1)
I }

}

= ζ
(0)
S

sinceζ
(0)
I + ζ

(1)
I ≥ ζ

(0)
I > ζ

(0)
S resulting inζ(IRC) = ζ(NIRC)

and, consequently, the IRC schemes do not result in any
enhancement in the diversity order in this case. Ifζ

(1)
S > 0,

then ζ
(0)
S + ζ

(1)
S > ζ

(0)
S and ζ

(0)
I + ζ

(1)
I ≥ ζ

(0)
I > ζ

(0)
S

resulting in min
{

ζ
(0)
S + ζ

(1)
S , minI6=S{ζ(0)

I + ζ
(1)
I }

}

> ζ
(0)
S

and, consequently,ζ(IRC) > ζ(NIRC) implying that inter-relay
cooperation is capable of enhancing the diversity order of the
network in this case.

Note that, from (31),ζ(f)
S = 0 if there is no elementm 6= N

of S for whichm+1 is not inS. Similarly, from (34),ζ(b)
S = 0

if there is no elementm 6= 1 of S for which m − 1 is not in
S. Therefore, for IRC1,ζ(1)

S = ζ
(f)
S = 0 if the first condition

is satisfied while for IRC2ζ(1)
S = ζ

(f)
S + ζ

(b)
S = 0 if the above

two conditions are satisfied.
As a conclusion, the usefulness or not of IRC1 and IRC2

with respect to NIRC can be easily revealed by inspecting the
setS. In particular, one of the following cases might arise:

- Case 1:∄ m ∈ S\{N} | m + 1 /∈ S and ∄ m ∈
S\{1} | m − 1 /∈ S. In this case,ζ(IRC1) = ζ(NIRC) and
ζ(IRC2) = ζ(NIRC) resulting in:

ζ(IRC2) = ζ(IRC1) = ζ(NIRC) (39)

implying that there is no additional gain that results from
exploiting the R-R links. Note that this case arises only
if S = φ or S = {1, . . . , N}.
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TABLE I
DIVERSITY ORDER WITH N RELAYS

N Diversity Order−ζ0,N+1

2 min {(ζ0,1 + ζ0,2), (ζ1,3 + ζ0,2) + [ζ1,2], (ζ2,3 + ζ0,1) + {ζ2,1}, (ζ1,3 + ζ2,3)}
3 min {(ζ0,1 + ζ0,2 + ζ0,3), (ζ1,4 + ζ0,2 + ζ0,3) + [ζ1,2], (ζ2,4 + ζ0,1 + ζ0,3) + [ζ2,3] + {ζ2,1}, (ζ3,4 + ζ0,1 + ζ0,2) + {ζ3,2}, (ζ1,4 + ζ2,4 + ζ0,3) + [ζ2,3],

(ζ1,4 + ζ3,4 + ζ0,2) + [ζ1,2] + {ζ3,2}, (ζ2,4 + ζ3,4 + ζ0,1) + {ζ2,1}, (ζ1,4 + ζ2,4 + ζ3,4)}
4 min {(ζ0,1 + ζ0,2 + ζ0,3 + ζ0,4), (ζ1,5 + ζ0,2 + ζ0,3 + ζ0,4) + [ζ1,2], (ζ2,5 + ζ0,1 + ζ0,3 + ζ0,4) + [ζ2,3] + {ζ2,1}, (ζ3,5 + ζ0,1 + ζ0,2 + ζ0,4) + [ζ3,4] + {ζ3,2},

(ζ4,5 + ζ0,1 + ζ0,2 + ζ0,3) + {ζ4,3}, (ζ1,5 + ζ2,5 + ζ0,3 + ζ0,4) + [ζ2,3], (ζ1,5 + ζ3,5 + ζ0,2 + ζ0,4) + [ζ1,2 + ζ3,4] + {ζ3,2},
(ζ1,5 + ζ4,5 + ζ0,2 + ζ0,3) + [ζ1,2] + {ζ4,3}, (ζ2,5 + ζ3,5 + ζ0,1 + ζ0,4) + [ζ3,4] + {ζ2,1}, (ζ2,5 + ζ4,5 + ζ0,1 + ζ0,3) + [ζ2,3] + {ζ2,1 + ζ4,3},
(ζ3,5 + ζ4,5 + ζ0,1 + ζ0,2) + {ζ3,2}, (ζ1,5 + ζ2,5 + ζ3,5 + ζ0,4) + [ζ3,4], (ζ1,5 + ζ2,5 + ζ4,5 + ζ0,3) + [ζ2,3] + {ζ4,3},
(ζ1,5 + ζ3,5 + ζ4,5 + ζ0,2) + [ζ1,2] + {ζ3,2}, (ζ2,5 + ζ3,5 + ζ4,5 + ζ0,1) + {ζ2,1}, (ζ1,5 + ζ2,5 + ζ3,5 + ζ4,5)}

- Case 2:∄ m ∈ S\{N} | m + 1 /∈ S and ∃ m ∈
S\{1} | m − 1 /∈ S. In this case,ζ(IRC1) = ζ(NIRC) and
ζ(IRC2) > ζ(NIRC) resulting in:

ζ(IRC2) > ζ(IRC1) = ζ(NIRC) (40)

implying that only the two-way scheme IRC2 can result
in a diversity gain in this case.

- Case 3:∃ m ∈ S\{N} | m+1 /∈ S. In this case,ζ(IRC1) >
ζ(NIRC) andζ(IRC2) > ζ(NIRC) resulting in:

ζ(IRC2) ≥ ζ(IRC1) > ζ(NIRC) (41)

and inter-relay cooperation is capable of boosting the
diversity order of the network. In this case, while both
IRC1 and IRC2 outperform NIRC, it is not possible to
determine if IRC2 is capable of outperforming IRC1 or
not. In fact, whetherζ(IRC2) = ζ(IRC1) or ζ(IRC2) > ζ(IRC1)

depends on other parameters of the network and not only
on the setS as in the case of comparing IRC1 and IRC2
with NIRC as will be highlighted later.

Interestingly, the structure of the setS depends on the states
of the S-R and R-D links but not on the states of the R-R links.
For example, consider a 3-relay network. (i): Ifζ1,4 > ζ0,1,
ζ2,4 > ζ0,2, and ζ3,4 < ζ0,3 , then S = {3} resulting in
case 2 above since3 ∈ S while 3 − 1 = 2 /∈ S. Therefore,
IRC2 is recommended for this network. (ii): Ifζ1,4 < ζ0,1,
ζ2,4 < ζ0,2, andζ3,4 > ζ0,3, thenS = {1, 2} resulting in case
3 above since2 ∈ S while 2 + 1 = 3 /∈ S. Therefore, at this
level, both IRC1 and IRC2 constitute valid choices for this
network

Finally, it is worth noting that for negligible misalignment
fading, S = {n | dn,N+1 > d0,n} since ζi,j = βi,j that
decreases with the distancedi,j . Consequently, the usefulness
or not of IRC can be deduced from the geometry of the
network.

2) Case B: Consider now the case where the relationζ0,n =
ζn,N+1 holds for some relays where the set containing the
indices of these relays will be denoted byS(eq). In this case,
(37) can be written under the following form:

ζ(NIRC) = ζ0,N+1+
∑

n∈S

ζn,N+1+
∑

n′∈S\S(eq)

ζ0,n′+
∑

n′′∈S(eq)

ζn′′,N+1

(42)
where the summands of the last summation can also be
written asζ0,n′′ . Now, elements can be moved from the third
summation to either one of the first two summations without
changing the value of (42) sinceζ0,n′′ = ζn′′,N+1. In other
words, moving the elements of any subsetS(eq)

sub of S(eq) from

the third summation to the first summation while moving
the elements ofS(eq)\S(eq)

sub from the third summation to the
second summation, (42) can be written as:

ζ(NIRC) = ζ0,N+1 +
∑

n∈S∪S
(eq)
sub

ζn,N+1 +
∑

n′∈S∪S
(eq)
sub

ζ0,n′ (43)

= ζ0,N+1 + ζ
(0)

S∪S
(eq)
sub

(44)

In other words, the set{ζ(0)
I }I⊂{1,...,N} of 2N elements

contains2|S
(eq)| elements that assume the same minimum value

where each one of these elements corresponds to a possible
setS ∪ S(eq)

sub . In this case, the IRC schemes can not improve
the diversity order unless all of these minima are increased. In
other words, the relationminI⊂{1,...,N} ζ

(0)
I = ζ

(0)
S in the case

of no relays satisfyingζ0,n = ζn,N+1 (case A) needs to be
extended tominI⊂{1,...,N} ζ

(0)
I = ζ

(0)

S∪S
(eq)
sub

for any subsetS(eq)
sub

of S(eq). Moreover, the relationζ(0)
I > ζ

(0)
S for anyI 6= S does

not hold as in case A since there are2|S
(eq)|−1 additional sets

for which ζ
(0)
I = ζ

(0)
S . All of these sets must be taken into

consideration to determine under which one of the scenarios
the network falls.

Define the following two true-false functions:

F1(I) =

{

1, ∃ m ∈ I\{N} | m + 1 /∈ I;
0, otherwise.

(45)

F2(I) =

{

1, ∃ m ∈ I\{1} | m − 1 /∈ I;
0, otherwise.

(46)

The usefulness or not of IRC1 and IRC2 can now be
established by inspecting the union of the setS with all
possible subsets ofS(eq). Let fk ,

∏

S
(eq)
sub ⊂S

(eq) Fk(S ∪ S(eq)
sub )

for k = 1, 2.

- If f1 = 0 and f2 = 0, ζ(IRC2) = ζ(IRC1) = ζ(NIRC)

corresponding to case 1 above.
- If f1 = 0 and f2 = 1, ζ(IRC2) > ζ(IRC1) = ζ(NIRC)

corresponding to case 2 above.
- If f1 = 1 , ζ(IRC2) ≥ ζ(IRC1) > ζ(NIRC) corresponding to

case 3 above.

For example, consider a 4-relay network. Ifζ1,5 = ζ0,1,
ζ2,5 > ζ0,2, ζ3,5 = ζ0,3 and ζ4,5 < ζ0,4, thenS = {4} and
S(eq) = {1, 3} resulting inS(eq)

sub beingφ, {1}, {3} or {1, 3}.
Let S1 , {4}, S2 , {1, 4}, S3 , {3, 4}, andS4 , {1, 3, 4}.
In this case,F1(S1) = 0 implying directly thatf1 = 0. On
the other hand,F2(S1) = F2(S2) = F2(S3) = F2(S4) = 1
resulting in f2 = 1. Therefore,ζ(IRC2) > ζ(IRC1) = ζ(NIRC)

showing that IRC2 is the best solution for this network.
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Note that under weak misalignment fading, the relation
ζ0,n = ζn,N+1 translates intoβ0,n = βn,N+1 and d0,n =
dn,N+1 implying that Rn is in the median plane. An interesting
special case arises when all relays are in the median plane.
In this case,S = φ while S(eq) = {1, . . . , N}. Considering
S(eq)

sub = S(eq) results in the setS ∪ S(eq)
sub = {1, . . . , N} for

which F1({1, . . . , N}) = F2({1, . . . , N}) = 0 resulting in
f1 = f2 = 0 irrespective of the valuesF1(.) andF2(.) yielded
by the other subsets. This results in the important conclusion
that the IRC solutions can not improve the diversity order ofan
FSO network for which all relays belong to the median plane,
or equivalently, for whichζ0,n = ζn,N+1 for n = 1, . . . , N
under any misalignment conditions. Similarly, IRC will not
be privileged if more relays are in the median plane since
the number of elements inS(eq) will increase decreasing the
chances off1 andf2 to be1.

C. Comparison between IRC1 with IRC2 in Case 3

It is more convenient to tackle the problem by analyzing the
diversity gain∆ζ(IRC) , ζ(IRC) − ζ(NIRC) of an IRC scheme
with respect to the NIRC scheme. From (35), given that
ζ(NIRC) = ζ0,N+1+ζ

(0)
S , then∆ζ(IRC) = minI⊂{1,...,N}{ζ(0)

I −
ζ
(0)
S + ζ

(1)
I }. It can be easily proven thatζ(0)

I − ζ
(0)
S =

∑

n∈I⊕S χn whereI ⊕ S stands for the set of elements that
belong toI ∪ S but not toI ∩ S and:

χn , |ζ0,n − ζn,N+1| (47)

Therefore, the diversity gain can be written as:

∆ζ(IRC) = min
I⊂{1,...,N}

{∆ζ
(0)
I + ζ

(1)
I } ; ∆ζ

(0)
I ,

∑

n∈I⊕S

χn

(48)
We will start with an illustrative example that sheds more

light on this case. Assume thatN = 3 and S = {2}.
Considering all possible subsetsI of {1, . . . , N} and after
some simplifications, the diversity gains of IRC1 and IRC2
can be written as:

∆ζ(IRC1) = min{χ2, χ3, ζ2,3} (49)

∆ζ(IRC2) = min{χ2, χ1 + χ3, χ1 + ζ2,3, χ3 + ζ2,1, ζ2,3 + ζ2,1}
(50)

Consider now the following scenarios. (i): Ifχ2 < χ3 and
χ2 < ζ2,3, then∆ζ(IRC1) = χ2 and∆ζ(IRC2) = χ2 resulting in
∆ζ(IRC2) = ∆ζ(IRC1) implying that IRC2 does not present any
diversity advantage over IRC1 in this case. (ii): Ifχ3 < χ2

and χ3 < ζ2,3, then ∆ζ(IRC1) = χ3 while ∆ζ(IRC2) > χ3

since χ2 > χ3, χ1 + χ3 > χ3, χ1 + ζ2,3 > ζ2,3 > χ3,
χ3 + ζ2,1 > χ3 and ζ2,3 + ζ2,1 > ζ2,3 > χ3. Consequently,
∆ζ(IRC2) > ∆ζ(IRC1) and IRC2 results in a higher diversity
order in this case. (iii): Ifζ2,3 < χ2 and ζ2,3 < χ3, then
∆ζ(IRC1) = ζ2,3 while ∆ζ(IRC2) > ζ2,3 sinceχ2 > ζ2,3, χ1 +
χ3 > χ3 > ζ2,3, χ1 + ζ2,3 > ζ2,3, χ3 + ζ2,1 > χ3 > ζ2,3, and
ζ2,3 + ζ2,1 > ζ2,3. Therefore,∆ζ(IRC2) is strictly greater than
∆ζ(IRC1) in this case as well. As a conclusion:
{

∆ζ(IRC2) = ∆ζ(IRC1), min{χ2, χ3, ζ2,3} = χ2;
∆ζ(IRC2) > ∆ζ(IRC1), otherwise.

(51)

and, hence, the comparison between IRC1 and IRC2 depends
not only on the setS but also on the values ofχ2, χ3, and
ζ2,3.

On the other hand, ifS = {1}, it can be proven in a similar
way that ∆ζ(IRC2) = ∆ζ(IRC1) = min{χ1, χ2 + χ3, χ2 +
ζ2,3, ζ1,2} for all values ofχ1, χ2, χ3, ζ1,2, andζ2,3.

Carrying out the comparison between IRC1 and IRC2 for
any N turns out to be tedious where the results are highly
dependent on the particular value of the setS making it
hard to reach a closed-form generic solution that covers all
possible cases. Consequently, we will resort to an assumption
that simplifies the comparison of the above IRC schemes.

Equation (48) shows that∆ζ(IRC) depends on the parameters
{χn}N

n=1 (through the term∆ζ
(0)
I ) and{ζn,n+1}N−1

n=1 (through
the termζ

(1)
I ). Since the parametersχ correspond mainly to

the difference between twoζ parameters, then it is appropriate
to assume that the former parameters are smaller than the latter
ones. This is especially true if (i): the S-Rn and Rn-D links
are of comparable distances and manifest similar misalignment
conditions (resulting in small values ofχn) and/or (ii): the
inter-relay links are short with weak misalignment fading
(resulting in large values ofζn,n+1). Therefore, the comparison
will be performed under the assumption:

χn′ = |ζ0,n′ − ζn′,N+1| ≪ ζn,n+1 ∀ n, n′ (52)

For IRC1, it can be observed thatζ
(1)
I 6= 0 for all 2N

subsetsI of {1, . . . , N} except for the followingN + 1 sets:
φ, {1, . . . , N}, {2, . . . , N}, . . . , {N}. Consequently, based
on the assumption in (52) and sinceζ

(1)
I contains terms of the

form ζn,n+1, then the diversity gain of IRC1 can be written as
∆ζ(IRC1) = minI{∆ζ

(0)
I } where the minimization is limited

over the aboveN + 1 sets. For IRC2,ζ(1)
I 6= 0 for all subsets

of {1, . . . , N} except for the setsφ and{1, . . . , N} resulting
in ∆ζ(IRC2) = min{∆ζ

(0)
φ , ∆ζ

(0)
{1,...,N}}.

Therefore, the comparison between IRC1 and IRC2 can
be performed in a simple way as follows: if the setI that
minimizes∆ζ(IRC1) is eitherφ or {1, . . . , N}, then∆ζ(IRC2) =
∆ζ(IRC1); otherwise,∆ζ(IRC2) > ∆ζ(IRC1). For example, for
N = 3 and S = {2}: ∆ζ

(0)
φ =

∑

n∈φ⊕S={2} = χ2,

∆ζ
(0)
{1,2,3} =

∑

n∈{1,2,3}⊕S={1,3} = χ1 + χ3, ∆ζ
(0)
{2,3} =

∑

n∈{2,3}⊕S={3} = χ3, and ∆ζ
(0)
{3} =

∑

n∈{3}⊕S={2,3} =

χ2 + χ3. In this case,∆ζ(IRC1) = min{χ2, χ1 + χ3, χ3, χ2 +
χ3} = min{χ2, χ3}. If χ2 < χ3, then the set that minimizes
∆ζ(IRC1) is I = φ implying that∆ζ(IRC2) = ∆ζ(IRC1). On the
other hand, ifχ3 < χ2, then the set that minimizes∆ζ(IRC1) is
I = {2, 3} implying that∆ζ(IRC2) > ∆ζ(IRC1). This result is
coherent with (51) ifζ2,3 is large so thatmin{χ2, χ3, ζ2,3} =

min{χ2, χ3}. On the other hand, forS = {1}, ∆ζ
(0)
φ = χ1,

∆ζ
(0)
{1,2,3} = χ2 + χ3, ∆ζ

(0)
{2,3} = χ1 + χ2 + χ3, and

∆ζ
(0)
{3} = χ1 + χ3 resulting in∆ζ(IRC1) = min{χ1, χ2 + χ3}.

In this case,∆ζ(IRC1) is minimized with eitherφ or {1, 2, 3}
implying that ∆ζ(IRC2) is always equal to∆ζ(IRC1) for this
network in coherence with the previously provided direct
comparison.
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Fig. 2. Performance under scenario 1. Solid and dashed linescorrespond to
the exact and approximate outage probabilities.

V. NUMERICAL RESULTS

The refractive index structure constant and the attenuation
constant are set toC2

n = 1×10−14 m−2/3 and σ = 0.44
dB/km. In all scenarios, the distance between S and D is
d0,N+1 = 5 km. The receiver radius, beam waist, and pointing
error displacement standard deviation are assumed to be the
same for all links and they will be denoted bya, ωz, andσs,
respectively. In what follows, we setσs/a = 3. The values of
ωz/a will be varied in the simulations where large values of
this ratio indicate less pointing errors. The set of distancesD
is defined as:D , {±(d0,n, dn,N+1)}N

n=1 where the sign+
(resp.−) indicates that the relay is above (resp. below) the line
formed by joining S and D in a two-dimensional plane. We will
provide simulations under different network configurations
reflecting the following four scenarios that might arise when
comparing the IRC and NIRC schemes. Scenario 1:ζ(IRC2) =
ζ(IRC1) = ζ(NIRC), scenario 2:ζ(IRC2) > ζ(IRC1) = ζ(NIRC),
scenario 3:ζ(IRC2) = ζ(IRC1) > ζ(NIRC) and scenario 4:
ζ(IRC2) > ζ(IRC1) > ζ(NIRC). An extensive simulation campaign
highlighted the extremely close match between the numerical
and analytical results (where the corresponding curves were
barely distinguishable) thus supporting the validity of the
provided derivations.

Fig. 2 shows the performance of 3-relay and 5-relay
networks for which neither IRC1 nor IRC2 is use-
ful corresponding to scenario 1. We setωz/a = 10,
D = {(1, 4.2), (1.5, 3.6),−(2, 3.1)} for N = 3 and
D = {(3, 2.4), (3.3, 2), (3.6, 1.6),−(3.7, 1.5),−(3.8, 2.2)} for
N = 5. This scenario corresponds to case 1 in subsection
IV-B where S = {1, 2, 3} for N = 3 andS = φ for N = 5.
Results show the very close match between the exact outage
probabilities based on (8) and the asymptotic values based
on (10) for large values of the power marginPM . Results
also support the accuracy of the derived expressions for the
diversity order where the analytical values based on (27) and
(28) for NIRC, on (29) and (31) for IRC1 and on (31), (33)
and (34) for IRC2 closely match the negative slopes of the
different outage probability curves. These formulas accurately
predict diversity orders of6.4 and10 for N = 3 andN = 5,
respectively. For this scenario, NIRC is the best solution not
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Fig. 3. Performance under scenario 2. Solid and dashed linescorrespond to
the exact and approximate outage probabilities.

only because it achieves the same diversity order as IRC1
and IRC2 with a reduced system complexity but also since
it achieves a slightly better performance than these two IRC
schemes. This results from the increase of the total number
of links Nlink from NIRC to IRC1 and IRC2 implying that
the transmit power will be divided among a larger number of
links.

In Fig. 3 we provide examples of networks with
different number of relays for which scenario 2 arises.
We set ωz/a = 25 while D takes the following
values: {(2.6, 2.5), (3.2, 1.8),−(2.7, 4.6)} for N = 3,
{(2.6, 2.5), (3.2, 1.8),−(2.7, 4.3),−(2.9, 4.7)} for N =4 and
{(2.6, 2.5), (3.4, 1.6),−(2.7, 3.4),−(2.6, 3.9),−(2.6, 4.3),−(2.7, 4.6)}
for N =6. The superiority of IRC2 over IRC1 (that achieves
the same diversity order as NIRC) was predicted theoretically
by case 2 in subsection IV-B sinceS = {3} for N = 3,
S = {3, 4} for N = 4 andS = {3, 4, 5, 6} for N = 6. For
the considered simulation setup, the gain in the diversity
order offered by IRC2 (with respect to either IRC1 or NIRC)
is 0.86, 1.46, and2.93 with 3, 4, and 6 relays, respectively.
In all scenarios, the performance gains with respect to
non-cooperative systems are huge for average-to-large values
of PM .

Scenario 3 is reflected in Fig. 4 withN = 2 and
N = 4 for ωz/a = 8 and ωz/a = 25. We set
D = {(1, 4.1),−(4.1, 1)} for N = 2 and D =
{(1, 4.1), (1.5, 3.5),−(3.2, 1.9),−(4, 1.8)} for N = 4. Re-
sults highlight the enhanced diversity orders and performance
levels that can be achieved by activating the inter-relay links.
In this scenario, IRC1 and IRC2 achieve the same diversity
order where the outage probability curves are practically
parallel to each other for large values ofPM . This renders
IRC1 the most adapted solution under this scenario. In this
case, IRC2 even results in a small performance loss with
respect to IRC1 since the transmit power needs to be divided
among a larger number of links. In this example, forN = 2,
the diversity order of NIRC does not increase whenωz/a
increases from 8 to 25 where the diversity order remains
4.33. This shows that the performance of the NIRC network is
limited mainly by atmospheric turbulence rather than pointing
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Fig. 4. Performance under scenario 3. Solid and dashed linescorrespond to
the exact and approximate outage probabilities.

errors; in this case, reducing the pointing errors does not
manifest in an improved diversity order. Interestingly, this is
not the case with IRC where the diversity order increases
from 4.64 for ωz/a = 8 to 6.15 for ωz/a = 25. For the
IRC network, both atmospheric turbulence and pointing errors
affect the performance and, hence, reducing the pointing errors
results in an increase in the diversity order. This is reflected in
large performance gains that range from2.5 dB for ωz/a = 8
to 6 dB for ωz/a = 25 when comparing IRC1 with NIRC at an
outage probability of10−10. For N = 4, ζ(NIRC) = 7.88 and
ζ(IRC2) = ζ(IRC1) = 8.16 for ωz/a = 8 while ζ(NIRC) = 7.94
andζ(IRC2) = ζ(IRC1) = 11.96 for ωz/a = 25.

Scenario 4 is reflected in Fig. 5 forωz/a = 25
with different number of relays. The values ofD
are {(2.7, 2.2),−(2.8, 4.6),−(3.7, 3.2)} for N = 3,
{(1, 4.1), (4.1, 1),−(3.9, 1.5),−(1.5, 3.9)} for N = 4, and
{(1, 4.1), (4.1, 1),−(3.9, 1.5),−(2.3, 2.9),−(2.9, 2.3),−(1.5, 3.9)}
for N =6. The simulated network forN = 3 corresponds to
the example provided in subsection IV-C where the diversity
gains of IRC1 and IRC2 with respect to NIRC are provided in
(49)-(50). For this network,χ1 = 0.75, χ2 = 0.86, χ3 = 0.23,
ζ1,2 = 1.94, andζ2,3 = 3.76 implying that IRC2 will achieve
a higher diversity order than IRC1 according to (51). In this
case, the diversity order of IRC2 exceeds the diversity order of
IRC1 by ∆ζ(IRC2) − ∆ζ(IRC1) = χ2 − χ3 = 0.63. For N = 4,
huge gains in the diversity order can be observed where
ζ(NIRC) = 7.46, ζ(IRC1) = 9.34, andζ(IRC2) = 11.7. Similarly,
ζ(NIRC) = 11.58, ζ(IRC1) = 14.13, and ζ(IRC2) = 17.7 for
N = 6.

VI. CONCLUSION

In the context of FSO collaborative systems, communicating
over the existing relay-relay links constitutes an additional
degree of freedom that can be exploited to enhance the achiev-
able diversity orders and performance levels. Special consider-
ation needs to be paid to the engineering of such systems since
inter-relay cooperation is not useful in all circumstances. Even
in the scenarios where inter-relay cooperation is capable of
increasing the diversity order, the achievable gains are highly
dependent on the particular network topology. In some cases,
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Fig. 5. Performance under scenario 4. Solid and dashed linescorrespond to
the exact and approximate outage probabilities.

the minor gains in the diversity order do not justify the upsurge
in the system complexity that results from implementing the
IRC techniques; in other cases, significant gains can be reached
stressing on the huge potential of IRC techniques.

APPENDIX A

Consider the probability in (22) and letu = In,i,l andv =
In,i,l+1. The following cases arise:

(i): v = u + 1 ⇒ pu→···→v−1 = pu→u = 1 and the
corresponding diversity order is zero.

(ii): v > u + 2; in this case,pu→···→v−1 = pu,u+1 +
qu,u+1pu+1,N+1pu+1→···→v−1 where pu+1→···→v−1 in this
case can be written as the sum of different terms where each
one of these terms is either of the formpi,j or corresponds
to the product of two or more probabilities of the formpi,j .
Consequently, the probabilityqu,u+1pu+1,N+1pu+1→···→v−1

is equal to the summation of different terms where each
term corresponds to the product of two or more probabilities
of the form pi,j ; therefore,qu,u+1pu+1,N+1pu+1→···→v−1 is
several orders of magnitude smaller thanpu,u+1 and hence
pu→···→v−1 ≈ pu,u+1 and the corresponding diversity order
is ζu,u+1.

(iii): v = u + 2; in this case, the corresponding prob-
ability can be written aspu→···→v−1 = pu→u+1 =
pu,u+1 + qu,u+1pu+1,N+1 that scales asymptotically as
P−min{ζu,u+1,ζu+1,N+1}

M given that qu,u+1 ≈ 1. In what
follows, we prove that when taking the sets other thanIn,i into
consideration, the dominant probability inpu→u+1 is always
pu,u+1 (and not pu+1,N+1) and, hence, the corresponding
diversity order associated with this term simplifies toζu,u+1.

In fact, for v = u+2, the contribution ofIn,i to the outage
probability in (14) can be written under the following form
for large values ofPM :

PIn,i
=





∏

j∈In,i

pj,N+1

∏

j′∈In,i

p0,j′



 p(u)
∏

u′∈In,i

u′ 6=u

p(u′) (53)

where, from (22),p(w) , pw→w+1→···→w′−1 where, if w =
In,i,k, thenw′ = In,i,k+1. For the case under consideration,
p(u) = pu→u+1

.
= pu,u+1 + pu+1,N+1 wherex

.
= y denotes
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thatx is asymptotically equal toy. Consequently, (53) can be
written as:

PIn,i
=





∏

j∈In,i

pj,N+1

∏

j′∈In,i

p0,j′



 pu,u+1

∏

u′∈In,i

u′ 6=u

p(u′)+





∏

j∈In,i

pj,N+1

∏

j′∈In,i

p0,j′



 pu+1,N+1

∏

u′∈In,i

u′ 6=u

p(u′) (54)

Consider the setI ′n,i =In,i ∪ {u + 1}. The contribution of
this set to the outage probability is:

PI′
n,i

=





∏

j∈I′
n,i

pj,N+1

∏

j′∈I′n,i

p0,j′



 p(u)p(u+1)
∏

u′∈In,i

u′ 6=u

p(u′)

(55)
where, when calculated in the setI ′n,i, p(u) = pu→u = 1
since u + 1 ∈ I′n,i and p(u + 1) = pu+1→u+1 = 1 since
u + 2 = v ∈ In,i ⊂ I′n,i. Therefore:

PI′
n,i

=
∏

j∈I′
n,i

pj,N+1

∏

j′∈I′n,i

p0,j′

∏

u′∈In,i

u′ 6=u

p(u′) (56)

=
pu+1,N+1

p0,u+1

∏

j∈In,i

pj,N+1

∏

j′∈In,i

p0,j′

∏

u′∈In,i

u′ 6=u

p(u′) (57)

Consequently, the second term in (54) can be written as
PI′

n,i
p0,u+1 that is smaller thanPI′

n,i
. As a conclusion, when

evaluating the diversity order, the probability in (54) canbe
approximated by the first term and, hence,p(u) = pu→u+1

.
=

pu,u+1.

APPENDIX B

Consider the third probability in (26). IfIn,i,|In,i| =
N , then this probability is equal topN→N = 1;
otherwise, this probability will behave asymptotically as
pIn,i,|In,i|

,In,i,|In,i|
+1 based on the analysis presented in the

case of IRC1. Similarly, the first probability in (26) will behave
asymptotically aspIn,i,1,In,i,1−1 for In,i,1 6= 1; otherwise, this
probability will be equal to 1.

Now, consider the probability of the form
pu→(u+1⇄···⇄v−1)←v where u = In,i,l and v = In,i,l+1.
The following cases arise. (i):v = u + 1, in this case,
the probability is equal to 1 following from the definition
in (24). (ii): v = u + 2; in this case the probability
is pu→u+1←v = pu+1,N+1 + qu+1,N+1pu,u+1pv,u+1

.
=

pu+1,N+1 + pu,u+1pv,u+1 where x
.
= y means thatx is

asymptotically equal toy. Based on an analysis similar
to that provided in Appendix A, it can be proven that the
diversity order associated with this term isζu,u+1 + ζv,u+1

where in the outage probabilityPout, the setIn,i ∪ {u + 1}
results in a probability that isp0,u+1 times smaller than that
obtained from the probabilitypu+1,N+1 in pu→u+1←v.
In other words, Pout always contains a term that is
smaller than

[

∏

j∈In,i
pj,N+1

∏

j′∈In,i
p0,j′

]

pu+1,N+1.
(iii): v = u + 3; in this case, from (24),pu→(u+1⇄v−1)←v =
pu,u+1pv→v−1→u+1 + qu,u+1pu+1,N+1pu+1→v−1←v

.
=

pu,u+1pv,v−1 + pu+1,N+1pu+1,v−1pv,v−1
.
= pu,u+1pv,v−1.

Therefore, by recursion, for v ≥ u + 3,
pu→(u+1⇄···⇄v−1)←v

.
= pu,u+1pv,v−1 and the corresponding

diversity order isζu,u+1 + ζv,v−1.
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