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Abstract—In this paper, we present a general technique for
constructing minimal-delay unitary differential Space-Time (ST)
block codes for Pulse Position Modulation (PPM) with an
arbitrary number of transmit antennas and signal set cardinality.
A typical application corresponds to Multiple Input Multip le
Output (MIMO) Impulse-Radio Ultra-Wideband (IR-UWB) sys-
tems where neither the transmitter nor the receiver knows tte
channel. The proposed scheme is a pulse-based solution waéhe
information is encoded differentially through the relative shifts of
the pulses in one block with respect to the pulse positions ithe
previous block where each block extends oveP symbol durations
with P standing for the number of transmit antennas. This
technique of time-domain encoding avoids all types of amplide
constellation expansions and achieves a full transmit divsity
order while maintaining a single unipolar pulse transmisson
per symbol in a way that is completely equivalent to single-
antenna PPM communications. We also propose a simplified

solutions where the modulation and demodulation techmsique
are similar to those used in Differential Binary Phase Shift
Keying (DBPSK) [8]-[11]. In this context, it is worth noting
that [1]-[11] targeted single-antenna systems.

On the other hand, a popular way for Multiple Input Mul-
tiple Output (MIMO) narrowband communications when the
channelis not known corresponds to unitary differentia&p
Time (ST) coding which can be perceived as an extension of
DPSK to the multi-antenna scenario. This constitutes a well
established research field that attracted a huge amourieof at
tion [12]-[20]. The numerous proposed codes include Cayley
unitary ST codes [14], codes based on cyclic division alggbr
[15], codes constructed on the Grassmannian manifold [16],
codes optimized for given numbers of transmit antennas and

decoder that can be associated with the proposed ST codefateés [17]-[19] and non-orthogonal codes with non-unitary

and we perform a detailed complexity analysis that allows to
quantify the reduction in the number of operations offered hy
this simplified decoding strategy. Finally, the results arevalidated
numerically and through a semi-analytical evaluation of the
conditional symbol error rate.

Index Terms—Ultra-Wideband, UWB, differential, space-time,
MIMO, performance analysis, simplified decoding, decoder am-
plexity, Pulse Position Modulation, PPM.

I. INTRODUCTION

constellations [20] along with many other differential ST
coding techniques.

Despite the rich literature on differential single-antann
modulation in the IR-UWB context, on one hand, and on
differential ST coding in the narrowband context, on theeoth
hand, a limited number of contributions targeted the pnwoble
of differential ST coding for IR-UWB [21]-[23]. IR-UWB
possesses a number of particularities that render thetdirec
application of the existing narrowband unitary differahti
ST codes not possible and make the extension of these ST

Differential modulation constitutes an attractive and Iweltechniques not straightforward. In what follows, we wilklet

explored method of communications in the scenario wheggate further on the distinctiveness of IR-UWB vis-a-\ie t
the channel is not known to the transmitter and the receivelfferential ST code construction. (i): IR-UWB is a carriess
This communication technique gained central importanee aftansmission technology where all information on the phase
promptly found application in the context of Impulse-Radigs not retained since UWB signals occupy several GHz of
(IR) Ultra-Wideband (UWB) systems. In IR-UWB communi-bandwidth. In this context, almost all narrowband diffeiain
cations, the energy of the ultra-short sub-nanosecondidn ST codes are complex-valued and hence based on phase
ted pulses is spread over a very large number of multi-paitations making them not suitable for real-valued caiiéss
components. Consequently, collecting a sufficient amotint QWB transmissions. In this context, differential ST codes f
signal energy at the output of this highly frequency selecti IR-UWB must satisfy the key constraint of being totallydrea
channel requires combining a large number of multi-pafi): IR-UWB differs from narrowband communications in the
components. If this task is to be carried out in a coheregjipe of modulation that is used. In particular, given the fine
manner, a large number of channel parameters needs totdrporal resolution of UWB systems, these systems are often
estimated which might induce a prohibitive implementatioassociated with Pulse Position Modulation (PPM) whereias th
complexity. A popular alternative was based on solutios thmodulation is never used for narrowband communications. In
do not require any kind of channel estimation. These includgis context, the QAM or PSK differential ST codes in [12]—
transmitted-reference solutions [1]-[3], noncoheretitsins [20] can not be applied with PPM. (iii): In IR-UWB it is hard
based on energy detection [4]-[7] as well as differentigh control the amplitude of the very low duty-cycle pulses. |
this context, polarity inversions and amplitude constilta
expansions, even though real-valued and hence feasilde, ar
not preferable for maintaining simple and cost-effectiv/®
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transmitters that transmit unipolar pulses. with respect to single-antenna systems deployigPPM.

H fl
Based on the above constraints and preferences under Wﬁ-i@x{vev_er, this rate _Of? 1032(M P) can Iarg_el_y exc_eed the rate

IR-UWB systems operate, we can highlight the advantag® 1 blt.pcu that is ach|gved by all existing single-antenna
and disadvantages of the existing differential ST codes. Aliterential IR-UWB solutions based on DBPSK [8]-[11].
complex-valued codes (that are QAM or PSK codes in the Other contnbt_mons qf the paper are as foIIov_vs. First, we
narrowband context) such as [12]-[20] can not be app”&?rform a semi-analytical performance analysis where we
with IR-UWB. Regarding the remaining minority of regl-derive closed-form expressions for the conditional symbol
valued differential ST codes, such as the codes based on $H@T rates that can be achieved by the proposed scheme. We
orthogonal design [24], these codes can be applied with IRSO Propose a simplified suboptimal, yet diversity-preisey,

UWB and can be easily extended to PPM; however, they sufféfcoder that can be associated with the proposed ST code. We
from the limitation of not being shape-preserving with pp\Evaluate the number of multiplications and additions resgli

For example, [24] was extended fox 2 IR-UWB systems by each of the optimal and suboptimal decoders and prove

with binary PAM in [21] and to2 x 2 IR-UWB systems that the_complexity of _the former. scales @/ﬁ while the
with PPM in [22]; however, these extensions suffer frorfiCMPlexity of the latter increases linearly witt.

undesirable constellation expansions. In particular],[prz] ~ Of direct relevance to this work is the noncoherent ST
require transmitting four amplitude levels; namely, theiah Cc0de proposed in [25]. While both codes are fully-diverse,
reference amplitude (the same as the one transmitted bipsingnN@Pe-Preserving with PPM, of minimal-delay and can be
antenna systems), twice this amplitude and the opposi?e%r’“ed with any number of trgnsm|t antennaslwnhout the
of these two amplitudes. In this context, the extension §fowledge of the channel, they differ by the following. {The
UWB transmitters from the single-antenna case to the mulf°de in [25] is based on energy detection where the energy
antenna case induces an increased complexity to invert jected in the different PPM slots of the symbols within

control the amplitudes of the sub-nanosecond pulses. Besich Plock are used for detection while the scheme proposed
this limitation of losing the advantage of simple and low" this paper encodes the information differentially among
cost unipolar PPM transmissions, the second main limitatiGonsecutive blocks. Based on the considered system mbéel, t

resides in the fact that such differential ST codes can rgtmPplexities of both schemes are comparable. (ii): White th

be applied with any number of transmit antennas. FinalljfoPosed code can be applied witti-PPM for all values of
, the code in [25] can be applied only fad > P + 1.

solutions like [23] take advantage from the pulse repetsim " * : -

Time-Hopping (TH) UWB systems to render the data strearﬂg)' The codes allso differ by their rates that are equal to

transmitted from the different antennas orthogonal andcee P 1082(M P) and £ log, ("p ) bits pcu for the proposed
respectively. Comparing these rates shows

can not be applied in the absence of pulse repetitions ramglerc°de and [25],

them unsuitable for high data rate applications. Moreovdf@t it is more advantageous to apply the differential (resp

[23] is not shape-preserving with PPM since it entails figlar "oncoherent) ST code for small (resp. large) values/ofFor
inversions. example, it is better to apply the proposed differential Sdle

_ _ , . for M <6, M <7, M <7, M <8andM <9 with 2, 3, 4,
In this paper, we propose a unitary differential ST code f6f 5306 transmit antennas, respectively.
IR-UWB communications with PPM. The proposed construc- The rest of this paper is organized as follows. The system

tion responds to a large number of construction constraint§sdel is described in section Il. The encoder structure and
(i): The proposed solution is a minimal-delay solution thahe main properties of the code are highlighted in section
extends overP symbol durations wheré” stands for the ||| The performance analysis is provided in section IV. In
number of transmit antennas. (ii): The proposed code c&Bction Vv, we propose the simplified decoding strategy and we
be applied with an arbitrary number of transmit antennas; @ form a detailed complexity analysis. Simulation resatter
feature that is shared with a limited number of the existinge realistic UWB channel model [26] are provided in section
ST constructions since the majority of the existing solgio v/ \while section VII concludes the paper. In what follows,

are often specific to a ceratin number of transmit antenn@g,gface letters indicate vectors (lower case) or matrices
(iii): The proposed ST code can be applied withr-ary PPM (upper case).

constellations for any value aoff. (iv): The proposed code

is fully diverse in the sense that the difference between any
two non-identical transmitted matrices has a full rankFof

(v): The proposed code is totally real. (vi): The proposed The encoding/decoding schemes that we consider in this
code is shape-preserving with PPM where, in a way that\erk can be applied witld/-ary PPM constellations where the
completely equivalent to single-antenna communicatieash information symbols are represented by the-dimensional
antenna transmits only one unipolar pulse in one of Atie vectors carved from the following signal set:

PPM positions rendering the proposed solution appealing to

low-cost IR-UWB systems. While respecting all of the above Copm = {em s m=1,..., M} @)
construction constraints, the proposed code suffers fromy@eree,, stands for then-th column of theM x M identity
single disadvantage that resides in a reduced data-rateewh@arix 1,,.

this code transmits at the rate gflog, (M P) bits per channel  consider a MIMO IR-UWB system where the transmitter is
use (pcu) resulting in a normalized rate % < 1 equipped withP antennas and the receiver is equipped \@th

Il. SYSTEM MODEL



antennas. The channel is used in block®afymbol durations multiple of T,, corresponds to a suboptimal Partial-Rake

each where the transmitted information is represented by tteceiver [27]. This uncomplicated receiver that has a fiiite

sequence of matrice§S(Y)} wheret = 0,1,... represents resolution suffers from intra-pulse interference resgitirom

the block channel use. Far-dimensional constellationS*)  the multi-path components arriving within the pulse dwnati

is a PM x P matrix that can be written under the formDespite this limitation, Partial-Rakes are characteribgda

St = [sgtj).]m:l,,,,,p wheresgt]). is an M-dimensional vector remarked simplicity where there is no need to estimate the

correspohding to thé/-ary PPM symbol transmitted by thetime-of-arrival of the various multi-path components. §hi

j-th transmit antenna during theth symbol duration of the renders this type of receivers perfectly adapted to ouenfi-

t-th block. tial solution that needs to be implemented without reqgirin
The receiver is a Rake-based solution where the sigraly kind of information about the underlying channel. The

received in each PPM slot at a given antenna is correlateaposed differential scheme can be applied in the scenario

with L shifted versions of the UWB pulse shape in ordewhere the channel matrid is unknown to both the transmitter

to achieve a sufficient level of multi-path diversity. Deingt and the receiver. It is also worth noting that (2) holds in

the pulse width byT,, this corresponds to collecting thethe case where the received PPM constellation maintains its

signal energy over an integration time bf,. Evidently, as orthogonality after multi-path propagation; in other wsrd

L increases, an increased amount of energy correspondingviten the PPM delay is larger than the channel delay spread.

a larger number of multipath components is collected at the

expense of an increased complekityhis Rake-based solution I1l. DIFFERENTIAL PPM SPACE-TIME CODES

is not associated with any channel estimation proceduré U$€ General Structure of the Proposed Unitary Code

for estimating the amplitudes of the multi-path componests

in the cases of Maximum Ratio Combining (MRC) and Equal W(_a use d|f.feren-t|al umtgry ST modulation whgre the .ST
matrix transmitted in block is related to the space-time matrix

Gain Combl_nlng (EGC?’. for example. In this contexF, the prot_ransmitted in block—1 by the following differential encoding
posed solution is classified as a non-coherent solutionctat e

be implemented without any knowledge of the Channel State
Information (CSI). As will be explained later in more desail
the signals received in theth ST block are compared with where z; is the data to be transmitted and which assumes
the signals received in theg — 1)-th ST block for the sake of values in the sef{0,..., PM — 1}. In (4), C,, is a PM x
extracting the differentially-encodeeth information symbol. PM matrix and the sef that comprises all possible values of
The decision variables are then used to construcPthex QL  C constitutes the constellation to be designed. The referenc
decision matrixY ) whose((p — 1)M +m, (¢ — 1)L +1)-th matrix is assumed to take the following valg&? = I» ®e;
element corresponds to the output of thid correlator placed where® stands for the Kronecker product.

after theg-th receive antenna during the-th PPM slot of  In this work, we propose the following differential unitary
the p-th symbol duration (of the-th block) fori =1,...,L, space-time construction:

g=1,...,Q,m=1,...,Mandp =1,..., P. If the channel i

is assumed to be constant over two consecutive blocks, the ¢={Ci=A"]i=0,....,PM -1} ®)

baseband inputs and outputs of the channel are relatedto eggere A is the PM x PM matrix whose elements can be

s® =c,stY . t=1,2... (4)

other by: equal to either zero or one:
t) t) t)
Y§3M><QL = S§3M><PHP><QL + NgDMXQL (2) Onrx Onrsns 0
. _ _ Ine -+ Omxnm Onixm
where the subscripts indicate the dimensions of the corre- A= . ) . . (6)
sponding matricesN(Y) stands for the noise matrix whose ' B ' '
components are independent and normally distributed with Omrxnr - Tar Onrx s

zero mean and variandg®. In (2), H is the P x QL channel where0,,,, stands for then x n all-zero matrix andf is
matrix whose(p, (¢ — 1)L + [)-th element is equal to (for the M x M permutation matrix given by:
p=1,...,P,gq=1,....,Q andl =1,...,L):
T Q= OIIX (M-1) 0 1 (7)

w M-1 M-1)x1

Hp -1+ = / rpq(T)w(T — (1= 1)Ty)dr  (3) i ( .)X . .

0 Evidently, from (5) and (6)CT = A7 and the matrices in
wherew(r) corresponds to the transmitted UWB pulse shageare unitary:C,C! = CI'C; = A'A™" = A~'A" = Ipy.
having a duration of,, (7 is the time variable) while, ,(7)
stands for the convolution betweer(7) and the impulse re- B. Shape-Preserving Property of the Code
sponse of the UWB channel between thth transmit antenna  one of the major desirable properties of the proposed

and theg-th receive antenna. Note that correlating the receivgdpeme resides in the fact that it is a shape-preserving code
signal with shifted replicas of the transmitted waveform gt does not result in any constellation expansion of the

. _ _ original PPM signal set. In other words, as in single-anéenn

This occurs below a certain threshold value bf above which the PPM h . . |
performance is no longer enhanced by increadirgince the amount of noise ™ systems, eac _transm't antenna transm'ts exactly one
collected will exceed the harvested signal energy [1]-[4]. unipolar UWB pulse in one of thd/ available PPM slots.
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For example, forP = 2 and M = 4, for the transmission
of the information symbols{1,3,6,5}, the following se- 04f
Opx1  Qler
) er  Oupxi
N%e; 0, Ne; 0
(2) — 1 Mx1 (3) — 1 Mx1
S Onrx1 Q%er | S [ Onrx1 Qe ] and
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Fig. 2. The normalized rate of the proposed code.

s@ — | Oaxa ey . This is better illustrated in Fig. 1
v g.
Q%1 Oprx1

that shows the pulses transmitted by the different antennasince a single-antenna system deployldgPPM transmits

in the different PPM slots. Following fronf2e; = e,, at the rate oflog,(M) bits pcu, then the proposed scheme

N2e; = e3, N%; = ey, N7e¢; = e, andNBe; = eq, and in incurs a data-rate reduction by a factor Q% < 1.

general2™e being a permutation of orden of e that belongs This normalized rate (with respect to single-antenna sysfe

to the setCppy in (1) whenevere € Cppy, then only PPM is plotted in Fig. 2 as a function o¥/ for different values of

symbols are transmitted by the different antennas reguitin P. This figure shows that the normalized rate is a decreasing

no constellation expansion. function of both M and P and hence the smallest data-
The above observation can be extended to all valueB ofrate reductions are obtained for small valuesifand M

and M. First, from (6), we observe thaA”M = Ip,, and, where, for example, no data-rate reduction is observednor t

consequently, for any integére Z, A’ = A" wherei’ = (i transmit antennas with binary PPM.

mod PM) € {0,...,PM — 1} and henceA’ = A = C; It is worth noting that the data-rate reduction follows
which is a codeword of for any integer value of. Hence, mainly from the shape-preserving constraint where all ®rm
any integer power of the matriA is a codeword. of polarity inversion, amplitude scaling and symbol conirin
We also define the functiorfi(.) that will be used exten- are not allowed. As a simple example, the codes based on
sively in the upcoming sections as follows: the orthogonal design [24] involve a polarity inversion. M¢h
this polarity inversion is shape-preserving with PAM, QAM
f(i)=(k,m)|i'=( mod PM)=mP+k and PSK constellations that are deployed in the narrow-band

. me{0,...,M -1}, ke{0,...,P—1} (8) context, this operation results in a constellation expamsi
when associated with unipolar PPM systems. It is worth

h n other WordZ’kth'S rf}uactlof? assdomat([;si with l;’;m_y ('jmeggrnoting that rate-1 PPM shape-preserving codes were prdpose
the integersn andk such that the codewordl” can be indexed j, [28] (for given numbers of transmit antennas and signal

(! _ i~k
asCppyr Wherek = (i’ mod P) andm = *5~. set cardinalities); however, these coherent codes do not le

From (4),S® can be written asS(*) = {Hile Cz,,} S themselves to differential detection in the absence of nbkn
which from (5) can be written asS() = A‘S(O) where state information. In fact, these codes are not unitary avhil
i = Zi’:l zv. This expression can be written a8{) = limiting the construction to the set of unitary matrices con
CmPJrkS(O) where (k,m) = f(i) from (8). A careful in- stitutes the main challenge in the differential ST code glesi
spection of equations (5)-(7) shows that the transmissfon &S a conclusion, PPM shape-preserving differential ST sode
C,.r++S® corresponds to (i): transmitting the PPM symboivere never proposed before and our work constitutes the first
Q™e; by antennap during the symbol duratiop + & for step in this direction.

p = 1,...,P — k and (ii): transmitting the PPM symbol

Q™*le; by antenng during the symbol duration— (P—k) D. Diversity Order

forp = P—(k—1),..., P. In other words, only PPM symbols - cqqiger the two transmitted matrice&) = C,S© and

are transmitted by the different antennas and the propastel cq/ (1) _ C;S (0) that are associated with two distinct codewords

is shape-preserving with PPM. C, andC for j +# i. The proposed scheme is fully diverse if
the following relation is satisfied [29]:

C. Rate of the Code

From (5), the total number of codewords in the codebookfaﬂk(s(t) - S'(t)) = fank[(ci -Cj) S(O)} =P
Cis gqual toPM. Since egch block e_xtends over symbol Vi£je{0,...,PM—1} (10)
durations, then the transmission rate is: _ _
1 . From (5), (C;—C;)S® = (A'-AJ)SO =
R=5 logy(PM)  (bits per channel uge  (9) A7 (Ai~7 —Ipy,) S which has the same rank as the matrix



(A7 —Ippr) S since the matrixA’ is invertible follow- From the cases = 0 andk = 1 we conclude that (11) holds
ing from the fact that the proposed code is unitary. On tHer (k,m) # (0,0) (i.e. 7 # 0) and the proposed scheme is
other hand, we have proven in subsection IlI-B that any itegfully diverse with two transmit antennas. FBr> 2, the proof
power of A belongs to the saf and, consequently, (10) canis more involved and is provided in Appendix A.

be written as:

rank[Di]:rank[(Ai—IpM) S(O)} —PViec{l,... PM—1} IV. PERFORMANCEANALYSIS

In this section, we derive expressions for the conditional
Proposition 1: Equation (11) is satisfied for all values gf Pairwise error probability (PEP) of the proposed code.

and M and, consequently, the proposed code is fully diverseFor the differential schemes, the matrix transmitted ircklo

with any M-ary PPM constellation for any number of transmif — ! SEIVes as a reference for the _detec'u_on _Of the matrix
antennas. transmitted in block and thus the maximum-likelihood (ML)

Proof: In order to offer more insights on the properties O?Iecoder is given by [30]:

the code, we first consider the special casePof= 2. The
general proof that holds for any value &f is provided in

Appendix A. where the expression of the decision matrix is provided )n (2

The structure of the codeword depends on the values of £qr he sake of the performance analysis, (2) can be written
andm where(k,m) = f(i) from (8). For? =2, k € {0,1}. in a more convenient form as:
Fork = 0, the M corresponding codewords take the following

form: y = (IQL ® S(t)) h+n® (15)

Q™ Omxm
Opxme Q™

2
ét —arg =0 milgllw—l HY(t) B CiY(t_l) H (14)

Al — [ } © m=0,...,M—1 (12) wherey® andn(®) are P/ QL-dimensional vectors obtained

from stacking the columns o¥® and N®), respectively,
while for k& = 1, the M corresponding codewords take théertically one after the other. Vectaris the PQ L-dimensional
following form: vector constructed from the channel mafiin the same way.
Based on this new notation, (14) can be rewritten as:

; Onrsny X }
A'= ; m=0,...,.M—1 (13 2
R, B e min y0 - @ore oy as
Frgm (11) and (12), fork = 0, D; = The Frobenius norm can be expanded as follows:
Q"e; — e Onrx1 T
m where the conditioni # 0
Onrx1 O"e; — e

1T, (t t—1)1T T t—1

in (11) implies that(k,m) # (0,0) and hence, fork = 0, YOy + Iy (Tor @ CF) (g © Co)y" Y
m € {1,...,M — 1}. In this case,Q2™e; = e,,4; can =2y IoL ® Cy)y"™Y  (17)
not be equal toe; for m # 0. The matrix D; is rank
deficient if there exist two nonzero scalars and c; such
that cid; 1 + cadi 2 = Oapx1 Whered; ; stands for thej-th
column of D;. This implies thatci(e,,+1 — e1) = Oprx1
andca(em+1 — €1) = Oarx1 resulting ine; = ¢ = 0 since
em+1 — €1 # Opx1 (the first component of this vector is
equal to—1, the (m + 1)-th component is equal te-1 while % =arg  max [[y(t)]T (Igr ® Ci)y(t‘”} (18)
the remaining components are zero). As a conclusion, the =0,..., PM—1
matrix D; has a full rank ofP = 2 for f(i) = (0,m) with From (18), the conditional PEP of differentially encoding
m # 0. » the symbolz; = i and deciding in favor of the symbaé} = j

From (11) and (13),fok = 1,D; = | . Q_elel is given by:
where in this case: can be equal to zero. The relatiord; ; + P(C; — Cy) =
ngi,g = 02prx1 |mp||es that—clel + czﬂm+1e1 = Oprx1 _ _
andclﬂmel—@el =0nprx1- EVidently, ifCl =0 then02€1 = Pr([y(t)]T (IQL ® Cj) y(t K = [y(t)]T (IQL ® Cl) y(t 1))
0171 implying thate, = 0 and if ¢; = 0 thencie; = Op7x1 (19)
implying thatc, = 0. Hence, we need only to consider theyhich from (4) and (15) can be written as:
casec; # 0 andes # 0. In this case, the first equation implies
thate, = 2Qm e, while the second equation results in p(c, — C;) = pr([hT (IQL ® [S(tfl)]TCiT) 4 [n(t)]T}
Q™e; = 22e; wWhere combining these equations results in

where the first term does not depend on the inderf

the codeword. Moreover, the second term can be written as
[y V)T (I ® CFCy) yt=Y = [yt=Y)Ty(t=1) since the
codewordsC; are unitary and, thus, this term does not depend
on ¢ as well. Consequently, (16) can be expressed as:

_C, (t-1) (t-1)
e = (i—j) Qle; = (%2262 which is impossible since; (Ior @ (C; = Ci) [(IQL ®S )h+n } 2 0)
can not be proportional te;. As a conclusion, the relation (20)
c1d;i1 + cadi2 = Oaprx1 holds only fore; = ¢ = 0. As As will be proven later, and in a way analogous to the diver-
a conclusion, the matriD; has a full rank of P = 2 for sity order analysis in subsection 1lI-D, the expressionhaf t

f@) = (1,m). conditional PEPP(C; — C;) can be completely determined



from the values of: andm such that’k, m) = f(j—¢) where which is a zero-mean random variable with variance:
the function f(.) is defined in (8). In other words, different N

values ofi and; yielding the same values &fandm will have var(n,(fﬂz ) =2MPQL ( 0) (29)
the same conditional PEP and, hence, it is better to index thi

PEP byk andm rather than and;. Based on this observation,where, evidently, this variance does not depend:andm.

(20) can be written under the following form: In appendix B, we prove that (25) and (27) can be written
as:
P(C; - C; ) Py £ Pr( (ss) n(sn) + n(nn) > O) 77,(:2 = —Vkm ; var(n,(f;?) = 2NoVk,m (30)
(21)
Wheren(”), n,(f:;) andn("") stand for the signal-cross- S|gnaIWhere
signal-cross-noise and noise-cross-noise terms, reggigct . R(k), k #0,m = 0;
Based on (21), the conditional PEP given Byy =  Yekm=h h—q R(P—k), k#0m=M-1; (31)
o S 1ZPM ' P(C; — C;) can be evaluated from 0, otherwise.
the following expression: where R(k) = 2" Ry(k) where R;(k) is equal to the sum
Pl M-1 of the elements on thie-th upper diagonal of th& x P matrix

Pan=3 3 Pew (22) Wb
k

Replacmgn(“) by its value from (30), equation (21) can
be written as:

Pin = Pr( (sm) | 77("”) > Vk,m) (32)

771(:2 =h" [IQL ® ([S(tfl)]TCiT(Cj - Ci)s(tfl))} h Adopting the assumption that the noise-cross-noise term
(23)  can be approximated by a Gaussian distribution especialy f
The recursive application of (4) shows that'~") can be l|arge values of the produdt/ PQL (by central limit theorem
written asS(~!) = A*S(®) wherez = >}, z. Replacing arguments) [1], [2], [8], then the termy"") + n"") can be
St1 = A7, [SE-U)T — [SO)TA™" C; = A’, modeled as a Gaussian random variable Whose variance is
C, = A’ andC! = A~% in (23) results in: Var(m(gsm) n Var(m(C m)) = 2Novk.m + 2M PQL (No) where

o o (29) and (30) were invoked. Consequently, (32) can be waritte
nin =h" [Tgr @ (187 (A7 = 1p)S©) | b (24) as;

=0
(k) 2(0,0)

From (20) and (21):

= ZhT( AT - Tp)SO) @) B =Q Ve (33)
V2Novieom + 2M PQL (%)

_ T T 1T H
Vr;l]g?rrii}ﬁ in [(}213) houJ" (or by is the -th column of the whereQ(z) = \/%7 [ exp (_ﬁ) dt is the Q-function.
Following from the independence between the noise termsConsequently, from (22) and (31):
in blockst andt¢ — 1, then from (20) and (21)77,:”) can be
expressed as the sum of two independent terms as follows:  Par = Y, Pim + Z Pro + Z Penv-1 - (34)

(k,m)eS
QL
(sn) _ (t) C, - €S Vn whereS = {(k,m) | k=0m=1---M -1, kE#0,m =
Tie;m. ;[ I i) : 1---M — 2} that comprise§M — 1+ (P — 1)(M — 2)] =
B oL PM — 2P + 1 elements. The third summation in (34) can be
+ 3 hI s ITCr (- Cin(™)  (26) Written in an alternative way as.r_| Pp_j.a—1. Observing
Py ! R ! that vp_i pr—1 = vgo for k # 0 from (31), then the second
and third summations in (34) are equal. Finally, from (319 an
wheren®) — [[ngt )]T . [ngg]T]T for¢' =t—1,t (or nl(t ) (83), equation (34) can be written as:
is thel-th column of the matri>N(t') in (2)). Itis then straight-
T
forwabrld tohprove thatr],C t|.T(a ztﬁrofrr:lean Gaussian random  m=[PM — 2P +1]Q h'h
variable whose variance takes the following expression: \/2N0hTh+2MPQL TO
(sn) & T (01T i Ai—jya(0) Pl h™h — R(k)
var(y{™) = No 3 b ([s 17 (20 pp — AT~ AI9)S )hl 1230
=1 @) = \\/2NolnTh — R(k)] + 2M PQL (22)°
Finally, from (20) and (21): (35)
oL From Appendix B, R(k) can be written asR(k) =
m(gn;) Z[nl(t)]T (A Az) (t=1) (28) Z ZP’k hi phi p+1 Whereh, ,, is thep-th component ohy,

=1 (WhICh is also equal to the channel coefficient defined in.(3))



Given that the channel coefficients can be positive or negati In other words, muItipIyingyl(t_l) by C; corresponds to
with the same probability, then the cross-correlation ternperforming a double permutation. The first permutation is
{R(k)}r2o (Where eachR(k) corresponds to the summatioramong theP veCtOFS{yl(_t,jl)}ﬁzl while the second permuta-
of (P—k)QL terms with random polarities) assume values théibn is among thel/ components of each of these vectors.
are very small compared t8(0) = h’h = ZleLl 25:1 hip Based on the above observation, the evaluation of
(that corresponds to the summation Bf) L positive terms). [yl(t)]TCiyl(t_l) necessitate® M multiplications andPM —1
This observation is especially true for large values of thedditions for one particular value ¢f,[). Therefore, the im-

productPQL. plementation of (37) requireBM x QL x PM = QL(PM)?
From (35) we can deduce the conditional PEP of a SIM@ultiplications for the detection of one information syrhbo
system deploying the differential modulation sche§i® = Assuming that finding the maximum amomgelements ne-
Q>8(t-1) (whereS(*) stands for the PPM symbol transmittectessitates: additions, then the total number of additions is
in the t-th symbol duration) as follows: PM x (QL—1) x (PM — 1)+ PM = (QL — 1)(PM)* —
. PM(QL — 2).
PE(ISII_IMO) — (M -1)Q h™h (36) Note that the number of multiplications varies as the square

of the ST constellation siz2 M and, hence, the complexity of

the ML decoder might be prohibitive for large values of the

where in this casé’h — ZleLl h2,. n.umber of tran§mi'F antennas and/or. cardinalit_y of the PPM
Finally, in the absence of exact expressions of the joifitdnal set thus justifying the interest in a simplified dezod

probability density function ofH, (35) and (36) will be

integrated numerically to yield the results in section VI. B A Simplified Decoding Procedure

V2NohTh + 2MQL (%)’

The simplified decoder profits from the structure of the
proposed code and, following from the equivalence between

In this section, we propose a simplified decoder that ca@ife codeword index and the integergk, m) = f(i), solves
be associated with the proposed differential scheme. lerordor the integersff and s such that:

to highlight the advantage of this decoder, we compare the

V. SIMPLIFIED DECODING

number of operations (multiplications and additions) iespl . QLT k (T eama 1. (i—1)
by the ML decoder and the simplified decoder. (k) = arg  max Do ety
m=0,..., M-1 [ =1 Lp=1
A. Complexity of the ML Decoder a . (t—
.. . . + Z [yl(g]TQ yl(takl()p) (40)
The ML decision rule is based on (18) that can be written i1 '
as:
L . . . .
o Q (O @ (=D - where this equation fol!ows _from rePIaC|rlg (38) in (37) and
Zp=arg max Z[Yz I" Ciy, (37)  where the decoder decides in favorf=mP + k.
=1

In what follows,t’ € {t—1,t}. Consider thé\/-dimensional

where thePM Q L-dimensional decision vectoss®) in (18) vector YI(,t;D) that, for a certain value of, comprises the

are written asy(t/) — [[ygt'>]T . [yg’L)]T]T for ¢ = ¢ —1,¢t. decision variables collected in the/ PPM positions of the
In this caseyl(t’l) andyl(t) are PM-dimensional vectors for pth (‘:‘mem dgraﬂon O_f the'-th bloclf. Only one (_:o_mponent
I=1,...,QL. of y;,,/ comprises a signal part while the remainifg — 1

Note that the components of the codewoftiss are equal components comprise only noise following from the struetur
to 0 or 1. Moreover, every row ofY; contains exacthyPM — 1 of the proposed code where exactly one transmit antenna is
zero components and one nonzero component that is equaPsed within each stymbol duration. Based on this fact, we
1. Consequently, the vect@®,y'' ™" corresponds to a simple define the positionn| ) as the PPM position in which the
rearrangement of the elements pf " and, hence, this Maximum amount of energy is collected:
vector can be evaluated without performing any multiplarat QL )
operations. _ m{") = argmax Y [yf,) oy{")] (41)

In a more concise manner: =1

Coyt=1 — [[Qm+1 (t—1) T, (t—1) 7 where o stands for the element-wise Hadamard product and
RO Lak(Di 2o Lok (k): > the functionarg max(v) returns the position of the maximum
o (t—1 o (t—1 T component of the vectov.
[Q yl(fgk()k_‘_l)]Ta Tty [Q yl(,tgk()p)]T} (38) P

Based on (41), we define the alternative decision v@q(ttg)r
where the multiplication by the matri2” corresponds to as:

a permutation of ordemn. In (38), (k,m) = f(i) from S’z(t;;) :y(t/)~(t,)e~(t/) éxl(t;)&(m (42)
®). v, = [lyiy V1" yi'p )7]" and 0¥ () defines a oot
permutation of ordek among the elements dfl, ..., P}: Whereyl(t;)m is them-th component Oi’z(t;;)' Note thatyl(tz;) is

cf(p)=[(p—k—1) mod P]+1 ; p=1,...,P (39) equivalent tOyl(Z;) where all components corresponding to the



PPM slots containing only noise, based on the decision madesolving (50) form implies that this integer must satisfy the

in (41), are set to zero. In this context: following P equations simultaneously:
B =) o =) 43) [ m=iy) =TV -1 mod M p=1...k
. ) - :m,ﬂ,“-*t D ned M p=k+1,..., P.
Replacing the vector§y,; '} by the vectorsy,; '} in (40) (51)
results in:

Evidently, discrepancies might arise between the above
k equations that do not yield the same solution following from

(k) = arg lz lz ylp TQm“yl(t kl() the fact that the adopted assumption does not necessarily

..... a*(p) o .

M1 =1 hold and hence the positions of the transmitted pulses are
not inevitably as predicted by (41). Our approach for savin

+ Z ylp TQm~lt kl()) (44) (51) resides in weighing the corresponding equations by the

o®(p

p=kt1 decision metricsD, ;’s; a task that can be realized if the
) . . reconstructed valuen is selected to satisfy the following
which can be written under the following form: equation:

kE [QL M .
2N _(t—1) k
(k, m) —argk:max [Z [Z Z lp m'Y; ok (p), rm+1(m’)‘| m = arg max Z Dp ke(m“) - (t D_ 1 mod M+1)

""" p=1 Li=1 m'=1

1
P [QL M ) ., p=
3 S Sl || 69
p=k+1 L 1m/=1 p () + Z Dpke(mm w0 mod M+1) -1 (52)
p=k+1

where the functionr™(.) defines a permutation of orden .
among the elements dfl,..., M}: To summarize, the simplified decoder solves fby) in

the following steps:

- Step 1:Find the values ofh,(f,) in (41) fort' =t —1,t¢
andp=1,...,P.

Step 2: Evaluate the values of th&? metrics D, in
(49)forp=1,...,Pandk=0,...,P— 1.

Step 3:Find k accordmg to (48)

Step 4:Using the values oﬁz (=1 ét) andD,, ;. found
in step-1 and step-2, find accordlng to (52).

™™(m')=[(m'—=m—-1) mod M]+1 ; m'=1,....M
(46)
The simplified decoder is based on the assumption that the
PPM slots that comprise UWB pulses are actually the slots
that will result in the maximum amount of collected energy
based on (41) Under this assumpt|on the zero components
of the vectorsyl » ande“ylt kl()p (resp. mel(t ,Cl) ) will
coincide forp = 1,...,k (resp.p = k + 1,. P) onse-
quently, the maX|m|zat|on in (45) will become independeit o

m and will simplify to the following expression: C. Complexity of the Simplified Decoder
K QL V\Ile quantri]fy the tc;‘ompflexity of the proposded decor:jer]c bﬁ/
I t) ~(t—1) evaluating the number of operations required in each of the
b= arg L;Z;y,p, OV ok (), e above four steps. ,
P oL Step 1: From (41), evaluating a single value ohg)
+ Z Zﬁ Wi l(t kl) e (47) requires ra|S|r_1@2_L vectors te the power two, adding these
Marn iy Ly “LoR(p)m g, ) vectors and finding the maximum value of the resultaf
dimensional vector. Consequently, this step requigdsM
which can be written in a simpler way as: multiplications and(QL — 1)M + M = QLM additions
p where, as in subsection V-A, it is assumed that finding the
k=arg max [Z Dp,k] (48) maximum among) components necessitatd¢ additions.
=0 P11 Consequently, for evaluating:{’, ... 7 (t) , QLM P mul-
where: t|p||cations and QLM P additions are requwed. Note that
' QL m}:) enters in the decision process of the two consecutive
Dy 2 Z xl(t;xl(ta;&)) (49) information symbols,: andzy 1 and hence the above number

=1 of operations needs to be considered only once (and not two
times fort’ = ¢ — 1 andt’ = t). In a more concise manner,
for communicatingN, information symbols N, + 1 blocks

are needed (taking into consideration the reference black)
hence the total number of multiplications (or addition3aed

mét) _ m+1(~(t 1)) p=1,... k is (Ns+1)QLPM implying that the number of multiplications
) . (t e B (50) (or additions) for decoding one symbol%rQLPM which

iy =T (1m oFp ) p=k+1..., P tends toQLPM for large values ofN,. As a conclusion,

where (43) was invoked.
The transition from (45) to (47) will hold if the following
P equations are satisfied:

o =
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step-1is realized througB L P M multiplications and) L P M
additions. ,
Step 2: From (43), the variable:cl(fp) is nothing but a

to unity and whereR is given in (9) for the proposed code
and R = log,(M) for single-antenna systems. The UWB

, channels between the different transmit and receive aatenn
component of the decision VeCtQ’fl(fp) and hence can be are generated independently according to the IEEE 80215.3
acquired without requiring any additions or multiplicat® NLOS channel model recommendation CM2 [26]. A Gaussian
Consequently, calculating the” decision variablesD,, . in  pulse with a duration of}, =0.5 ns is used and the modulation
(49) requiresP?Q L multiplications andP?(Q L—1) additions. delay is set t&y=100 ns in order to eliminate the interference

Step 3:From (48), evaluatin@zf‘:1 D, ;, for a single value between the different PPM slots.
of kin {0,..., P—1} requiresP — 1 additions. Consequently, Fig. 3 shows the performance withPPM andL = 4
finding the value of requiresP(P — 1) + P = P? additions (which corresponds to an integration time of 2 ns) where
without requiring any multiplications. the ML decoder is applied. We compare the numerical results
Step 4:The multiplication of the metricsD ;'s by the \ith the analytical results derived in section IV. Resutisw

columns of the identity matrix in (52) does not require anjhe high performance levels and the enhanced diversityrerde
number of multiplications. Regarding the number of add&io gchieved by the proposed scheme. For example, performance
in (52). (i): The evaluation of the subscripts of the vecters gains in the order of 9 dB with respect to single-antenna
requires3k + 2(P — k) = 2P + k which is at most equal t0 gystems can be observed with four transmit antennas at a
3P—1whenk takes its maximum possible value Bf-1. Here  ggR of 103, Results in Fig. 3 also show that the numerical
it is assumed that themod operator does not require anyang analytical results are close to each other. Moreover, th
number of additions since it can be evaluated using a |00k'b‘9rresponding curves are parallel to each for large valfigeo
table. (ii): The evaluation of the summation &f multiples SNR and, hence, the derived closed-form expressions of the
of columns of the identity matrix requires at moBt— 1  conditional PEP can be used to predict the achievable diyers
additions when all the nonzero components of these vectgygers. It is worth noting that the difference between the
coincide. (iii): Themax operator requires/ additions. (\V): numerical and analytical curves results from two reasohs. T
The substraction ot at the end requires one addition. As gjrst reason resides in the fact that in section IV we deriveed t
conclusion, the number of additions in this step is at moghirwise error probability and hence the derived expressio
@BP-1)+P-1)+M+1=4P+M—1. constitute upper-bounds that originate from the union ldoun

As a conclusion, the implementation of the simplified derhe second reason follows from the Gaussian approximation
coder requlreQLP(]\/[‘f' P) multlpllcatlons an(QLP(]\/[‘i‘ of the noise-cross-noise term.

P)+4P+ M —1 additions for the detection of one information Fig. 4 shows the impact of the number of combined multi-

symbol. Th(gf(fgjr\%zthe nt}iz\nﬁerof multiplications is didd®/ 5ih" components (through the paramefdron the perfor-
a factor of o537 = 773 p compared to the ML decoder. mance of single-antenna and MIMO UWB systems. In this

For example, for binary PPM with two transmit antennaggre, the SER is plotted as a function bfin the case of
the simplified decoder requires two times less multipl@agi >_ppp with one receive antenna. This figure highlights the

compared to the ML decoder. usefulness of spatial diversity even in UWB systems thafttoro
from rich multi-path diversity. This follows mainly from ¢h
VI. NUMERICAL RESULTS high correlation between the different multi-path compuse

In this section, we present some numerical results that the same channel [26]. At a given SNR, increasing the
show the variations of the symbol error rate (SER) as \alue of L does not always enhance the performance where
function of the signal-to-noise ratio (SNR) per informatio the results accentuate on the existence of an optimal vdlue o
bit. The SNR per information bit is defined %To where the L beyond which the performance degrades wiieincreases.
average energy of th&/-PPM constellations was normalizedThis follows from the fact that more noise is integrated ia th
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Fig. 5. Performance of the simplified decoder with 2-PPM &@ne 5. Fig. 6. Performance of the simplified decoder with 8-PPM &@ne 5.

receiver wherL increases while the multi-path components ahe simplified decoder is found to be diversity-preserving a
the tail of the channel impulse response assume small valuasurs limited performance losses especially with largeber

In this context, increasing the number of antennas alwagbantennas. Note that in this case whafdakes a large value,
enhances the performance. For example, at a SNR of 25 die simplified decoder reduces the number of multiplication
the best performance that can be achieved by single-antebgdactors of12.8, 17.45 and21.33 as well as the number of
systems i x 1072 (for L = 45). Any value of L no matter additions by factors 010.12, 15 and19.2 for P = 2, 3 and
how large it is can not decrease this SER value. Howevdr,respectively.

systems with two and three transmit antennas can achieven Fig. 7 we compare different ST codes wifh = 2,

comparable performance levels with onlly= 10 andL =6, )/ = 4 and L = 6 (or equivalently an integration time of
respectively. In the same way, at a SNR of 28 dB, the optim@ins). The codes that we compare are as follows. (i): The
SER value decreases from6 x 10~* with single-antenna proposed differential ST code that transmits at the rate of
systems ta3.5 x 1077 and 1.2 x 107° with 2 x 1 and3 x 1~ L1og,(MP) = 1.5 bits pcu. (ji): The noncoherent code in
systems, respectively. [25] that in this case transmits at the ratejplog, (V) =

In Fig. 5 we compare the ML decoder and the simpli.7925 bits pcu. (iii): The coherent PPM code in [28] that
fied decoder with2-PPM, L = 5 and P x P systems for transmits at the full rate ofog,(M) = 2 bits pcu. (iv): The
P = 2,3,4. The numbers of multiplications required by theepetition code where the differentially-encoded PPM sgisib
ML decoder for the detection of one symbol aré0, 540 are transmitted separately by the two transmit antennas in
and 1280 while the simplified decoder requireé®), 225 and two consecutive symbol durations. This code transmits @t th
480 multiplications for P = 2, 3 and4, respectively. In other rate of 4 log,(M) = 1 bit pcu. (v): The differential code in
words, the numbers of multiplications are reduced by factq22] that corresponds to a PPM extension of the code in [24]
of 2, 2.4 and 2.66, respectively, implying significant s@&n where the rate isog, (M) = 2 bits pcu. Note that all of the
in the computationally-involved multiplication operat® In  above codes are shape-preserving with PPM except for the
the same way, the numbers of additions are reduced frogst one. Results show that all considered codes achieve the
112, 426 and 1072 to 89, 238 and 497 for P = 2, 3 and same diversity order where all the SER curves are pragticall
4, respectively. The obtained results highlight the inter#s parallel to each other for large values of the SNR. Evidently
the simplified decoder where the performance levels actiieute best performance is achieved by the coherent code where
by this decoder are very close to those achieved by the optifi@l channel state information is available at the receiver
ML decoder especially for large values 8t In this context, Results also show the superiority of the proposed difféaent
the performance degradations induced by the suboptimal dede with respect to the noncoherent and repetition codes
tection are in the order of.8 dB, 0.4 dB and0.5 dB at a since, in this case, the differential code is transmittihcaa
SER of10~* for P = 2, 3 and4, respectively. Moreover, the higher rate (while all three codes respect equally the reimgi
results show that the simplified decoder possesses thablesirdesign constraints). Compared to [22], results shoiv2adB
property of being a diversity-preserving decoder where thgrformance loss at high SNR. This loss is not surprisingesin
error curves corresponding to the ML and simplified detectiahe proposed code respects the additional constraint afjbei
are practically parallel for large values of the SNR. In thishape-preserving unlike [22]. In fact, while the proposede:
context, associating the proposed code with the simplifigéhnsmits pulses that have the same amplitude, four ardplitu
decoder does not induce any losses in terms of the achievdbigls are transmitted by [22]. In other words, the perfaroea
diversity order. loss follows from the additional shape-preserving desigm-c

In Fig. 6 we compare the ML decoder and the simplistraint that is imposed on the proposed code. It is worthhgoti
fied decoder with§-PPM, L = 5 and P x P systems for that, unlike [22], the proposed code can be applied with any
P = 2,3,4. The findings are similar to those in Fig. 5 wher@umber of transmit antennas. As a conclusion, the shape-
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L=6

low duty cycle sub-nanosecond pulses. The above advantages
preserving property constitutes a restricting constrdiat has came at the expense of a reduced data rate; however, this
a critical impact on the achievable performance levels.  data rate reduction is small for small values of the signal
While all of the previous simulations were performed asset cardinality rendering the proposed differential sohut
suming that the MIMO channels are independent, Fig. 8 shogigperior to the noncoherent space-time solutions undsr thi
the performance over the space-variant UWB channel modglerating scenario. We hope that this first construction wil
proposed in [31]. Simulations are performed over profile Rspire future constructions and will motivate more reshar
that corresponds to an office NLOS scenario for antenna arigythe direction of achieving higher rates with unipolar PPM
separations of 5 cm and 10 cm. The analytical curves agstems. An adapted suboptimal decoding strategy was also

plotted for 2-PPM withZ = 10. Results show the high proposed which further contributes to the implementation
performance levels over this realistic MIMO model that &kesimplicity of the proposed MIMO IR-UWB system.

spatial correlation into consideration. Despite the fdwitt
tr}e different clhannels fr;]lre correrllated, fincreasing the m|r|nbf APPENDIX A
of antennas always enhances the performance especially far . . -
large values of the SNR. It can also be observed that thgé\/el_sta_\rt ourlptl?r?f ‘]fv'ltlh the foll;)w_mg hprle;:@mary.
different array separations achieve the same diversitgrord reliminary 1: The following relation holds:
where the corresponding SER curves are practically péaralle ran d =g, n=0 mod M,
to each other for large values of the SNR. In this context, the 1 ¢ Ver =01 = { d=c=0, n#0 mod M.
smaller separation results in a slightly worse performance (53)
the order of 0.75 dB at a SER ab~S. Finally, it is worth Proof: Forn = (0 mod M), Q" =1, and the relation
noting that while the channel correlation has a direct inpai® (53) reduces td—c + ¢’)e; = Onrx1 implying thatc’ =
on the achievable performance gains with respect to singte-Forn # (0 mod M), Q" # Iy, and Q"e; is equal to
antenna systems, it does not influence the ST code desigrgertain elemene,, in Cppm that is different frome; (in
conditional SER performance and decoder structure pregerarticularn’ = (n mod M)+ 1). In this case, the relation in
in sections III, IV and V, respectively. (53) can be written age; = c’e,, implying that¢’ = ¢ =0
sincee; can not be proportional te,, for n’ # 1. ]
The linear dependence between the columnsDof in
(1%3) implies the existence of the scalass. .., cp such that
We considered the problem of differential space-time cg)dirEp:1 cpdip = Oparx1 Whered, , is thep-th column ofD;.
for IR-UWB communications and we proposed the first-knowW/e will next prove that this relation holds only in the case of
family of unitary codes that is shape-preserving with PPRE T ¢; = - -- = ¢p = 0 implying thatD; has a full rank ofP for
proposed construction responds to the practical need biZ+reai # 0. As in subsection 1lI-D, the structure @; depends on
ing MIMO IR-UWB communications in an easy manner thathe values ofk and m where (k,m) = f(i) from (8). It is
avoids any channel estimation procedure. The novel ideawedrth noting thatt takes values iq0,..., P — 1} while the
joint symbol and position permutations of one encoded blosklues ofm are limited to the sef0,..., M — 1}.
with respect to the previous block replaced the conventiona Viewing the PM x P matrix D; as aP x P block matrix
techniques based on amplitude-scaling and phase-rothtisn composed of blocks of dimensiodd x 1, the following can
allowing to maintain unipolar transmissions. The proposdz observed regarding the structurel®f. (i): The blocks on
solution is appealing since it renders the extension of tllee main diagonal are equal tee;. (ii): The blocks on the
single-antenna systems to the MIMO scenario simple and coktth lower diagonal are equal ®™e;. (iii)): The blocks on
effective without imposing any additional constraints & t the (P — k)-th upper diagonal are equal ™" 'e;. (iv): The
RF circuitry to control the phase or the amplitude of the vemgmaining blocks are equal ;. Note that fork = 0 the

VII. CONCLUSION
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above structure corresponds to a block diagonal matrix ehos We will next prove that (60)-(62) imply that; = 0 for all
diagonal blocks are equal 8™e; — e; where in this case values ofi. The proof calls for distinguishing the two cases

m # 0 so thati = mP + k # 0. k>P—kandk < P—k.
Based on the above, the relati@f;1 cpdip = Oparxa Case 2.1k > P — k. In this casek > (P — k) + 1 and
can be written as the following set @t equations: (60) and (61) will imply thatc; = 0 for all values ofi in
: 1,...,P}.
—¢ A Q" e =0 ci=1,....k 54 L. . .

Ci€1 + Cok (i) m€1 Mt s B (54) " case 2.2% < P — k. In this case, replacing; = --- =
—cier +cor(QMer = Omrxa 5 i=k+1,..., P (85) ¢ — 0 from (60) in (62) results incgy1 = -+ = cop = 0.
where the first (resp. second) setiofresp. P — k) equations Replacing thesé zero values in (62_) a secon(_j time result_s in
describes the linear dependence between the diagonalsbldi-+1 = - = car = 0. As a conclusion, applying the relation

and the upper (resp. lower) blocks. In (54)-(55), the fuorcti N (62) recursively over blocks of values ofe;’s keeping in

o"(.) defines a permutation of ordéramong the elements of Mind that the values in the previous block are zero results in
1,...,Pk ci=--=cp=0.

{ i J Case 3m = M — 1. In this case, applying preliminary
o"(i)=[(i—k—1) mod PJ+1 ; i=1,...,P (56) 1 withn =m = M —1 # 0 mod M, (59) results in the

We first consider the simplest case iof= 0. In this case, following P> — k equalities:

(54)-(55) can be written as: =0 i=1,.. . .P—k (63)

—ce1+¢c; Qe =011 5 i=1,...,P (57)
_ _ o _as well as the equalities, ;) =0 fori=1,..., P —k that
Sincem # 0 for k = 0, then applying preliminary 1 with can be written in a more convenient way @sx = 0 since
n=m#0 mod M (in this casem € {1,..., M —1}), (57) k(i) = i+kfori € {1,..., P—k}. Finally, these equalities

implies thatc; = 0 for i =1, ..., P completing the proof for can be written as:
this special case.

In what follows, we take: # 0 where the following cases ci=0; i=k+1,...,P (64)
arise.

Case 1 m # 0 andm # M — 1; in other words  Moreover, applying preliminary 1 with = m-+1= M =0
m € {1,...,M — 2}. In this case,n +1 # 0 mod M, mod M, (58) results in¢; = cor(y fori=1,... k that can
then applying preliminary 1 with, = m+ 1, (54) implies that pe written in a more convenient way as= c;(p_x) since
c; = 0 fori = 1,...,k In the same way, sincex # 0 o*(;) =i+ (P—k)foric {1,...,k}. Finally, these equalities
mod M, then applying preliminary 1 witm = m, (55) can be written as:
implies thatc; = 0 fori = k+1,..., P. Therefore,c; = 0

fori =1,..., P completing the proof for this case. ci=Ci—(p—gy ; 1=P—-k)+1,...,P (65)
For the remaining cases, (54)-(55) will be written in a more
convenient form as follows: Form = M — 1, we consider the two casés< P — k and
k>P —k.
—cie; + Cak(i)nm+1el =0px1 ; 1=1,...,k (58) ~

. , Case 3.1k < P — k. Since in this casé® — k > k + 1,
—Co-r(er +ci2"er =01 5 i=1,...,P =k (39) (63) and (64) will imply thate; = 0 for i = 1,..., P.

wheres—*(.) can be obtained from (56) by replacikgwitn ~ €ase 3.2k > P — k. In this case, replacing, = --- =

k. cp— = 0 from (63) in (65) results incp_py 11 = -+ =
Case 2 m = 0. In this case, applying preliminary 1 with ¢2(p—k) = 0. As a conclusion, applying the relation in (65)

n=m+1=1#0 mod M, (58) results in the following: recursively over blocks of” — k values ofc;’s keeping in
equalities: mind that the values in the previous block are zero results in

;=035 i=1,...,k (60) 01:_"'2613:9.
It is worth noting the analogy between cases 2.1 and 3.1
as well as the equalities,»;) =0 fori=1,....kthatcan ((m = 0,k > P—k)and(m = M — 1,k < P —k)) on
be written in a more convenient way as, (p—x) = 0 since one hand and cases 2.2 and %2 = 0,k < P — k) and
o (i) = i+(P—k)fori € {1,...,k}. Finally, these equalities (m =M — 1,k > P — k)) on the other hand.

can be written as: As a conclusion, all the above cases show that the matrix
=0 i=(P—k)+1,....P (61) D; has a full rank ofP for i # 0 completing the proof.
Moreover, applying preliminary 1 with = m = 0
mod M, (59) results in¢; = ¢,y fori =1,...,P —k APPENDIXB

that can be written in a more convenient way @s= c;x
sinceo k(i) =i+ k for i € {1,..., P — k}. Finally, these
equalities can be written as:

From (25), define theP x P matrix E; ,,, as E;,,, =
[SO]T(AI=F — 1pp)S© where (k,m) = f(j — i) from
(8). Similarly, from (27), define theé® x P matrix Fy, ,,, as
cGi=ci_p ; i=k+1,...,P (62) Fym = [SY)T(2Ipn — A" — A=7)S(0), Consequently, (25)



and (27) can be written as: Case 3 m = M — 1. In this case,efQmtle;, =
or efQ@ m=le; = 1 while efQme; = elQ ™e; = 0.
(52 _ ZthEk.mhl (66) ConsequentlyEy, ,, = —I;_a + Lp,k_atld Frm = 215) -
— ’ Lp_; —Up_g. Therefore, in a way similar to case%m =
QL ~h"h+ R(P — k) and vatn ")) = 2No(h"h — R(P — k))
var(nksn) =N, Z h{ Fy . h (67) completing the proof of (30)-(31).

=1

We first consider the simple case bf= 0 where in this
casem # 0 sincej # ¢ and hencgk,m) # (0,0). In this (1]
case E; ,,, is a diagonal matrix whose diagonal elements are
equal toel Qme; — ele; = —1 sincem # 0 resulting in
Eim = —Ip andn”) = — S hTh; = ~h"h from (66).
In the same Way]_i‘kym is a dlagonal matrix whose diagonal
elements are equal t®efe; — el Q™e; — elTQ*mel =2
sincem # 0 which implies thatel 2™e; = el Q2 ™e; = 0.
ConsequentlyFy.., = 21, and va(n,(j;?) = 2NohTh from
(67). As a conclusion, (30)-(31) are satisfied fo 0.

In what follows, we consider the cage# 0. In this case,
AJ~% is a block matrix where the blocks on tlieth lower
diagonal are equal t™, the blocks on théP — k)-th upper
diagonal are equal t§2™*! while the remaining blocks are
zero. Consequently, the nonzero elementsEgf,, are the
diagonal elements that are equaka, the elements of thé-
th lower diagonal that are equal & 2™e; and the elements
of the (P — k)-th upper diagonal that are equalddQ™ e,
Similarly, the nonzero elements &f; ,,, are (i): the diagonal
elements that are equal to 2, (ii): the elements of ikt (9]
lower diagonal that are equal tee? 2™ e, (iii): the elements
of the k-th upper diagonal that are equal teel 2 e,
(iv): the elements of thé P — k)-th upper diagonal that are
equal to—el'Q2™*1le; and (v): the elements of theP — k)-th
lower diagonal that are equal teel 2~™~'e;. In the case
wherek = P — k, the elements of thé&-th lower diagonal
are—el'Qme; — el Q™ le; while the elements of thg-th
upper diagonal are-ef Q™ *tle; — el Q~™e;. Fork # 0, we
need to distinguish between the following three cases.

Case 1m # 0 andm # M — 1. In this casee? Q™e; =

ef'Q- =elQmtle; = efQ ™ 1le; = 0 sinceQ™ and
Qm“ are different from the identity matrik,;. Consequently,
E; . = —Ip andFy ,,, = 2Ip and (66)-(67) take the same
values as in the case= 0 completing the proof of (30)- (31)
in this case.

Case 2 m = 0. In this case.e; TOQme, = e; TQ-me, =
1 while efQ™tle; = efQ ™" le; = 0. Consequently, [17]
Eim = —Ip + Ly and Fpm = 2Ip — L — Uy where
L; (resp.Uy) stands for the matrix whose elements are all
zero except for the elements on theh lower (resp. upper) [18]
diagonal. Therefore, (66) simplifies to,(jf,z ~hTh +

L hTLkhl —hTh + ZQL prk hl,phl,erk where [19]
hl% stands for thep-th element ofh,;. Defining R;(k) £
> hlyphl »+k, then this term corresponds to the sum gboj
the elements on thie-th upper (or lower) diagonal of the sym-
metrical matrixh;h7 . Consequentlyn,iffyz = —hTh + R(k)
where R(k) = g"?:Ll R;(k). Similarly, (67) simplifies to [21]
var(n")) = No(2h"h — R(k) — R(k)) = 2No(h"h — R(k))
completlng the proof of (30)-(31).
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