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Abstract—In this paper, we present a general technique for
constructing minimal-delay unitary differential Space-Time (ST)
block codes for Pulse Position Modulation (PPM) with an
arbitrary number of transmit antennas and signal set cardinality.
A typical application corresponds to Multiple Input Multip le
Output (MIMO) Impulse-Radio Ultra-Wideband (IR-UWB) sys-
tems where neither the transmitter nor the receiver knows the
channel. The proposed scheme is a pulse-based solution where the
information is encoded differentially through the relative shifts of
the pulses in one block with respect to the pulse positions inthe
previous block where each block extends overP symbol durations
with P standing for the number of transmit antennas. This
technique of time-domain encoding avoids all types of amplitude
constellation expansions and achieves a full transmit diversity
order while maintaining a single unipolar pulse transmission
per symbol in a way that is completely equivalent to single-
antenna PPM communications. We also propose a simplified
decoder that can be associated with the proposed ST code
and we perform a detailed complexity analysis that allows to
quantify the reduction in the number of operations offered by
this simplified decoding strategy. Finally, the results arevalidated
numerically and through a semi-analytical evaluation of the
conditional symbol error rate.

Index Terms—Ultra-Wideband, UWB, differential, space-time,
MIMO, performance analysis, simplified decoding, decoder com-
plexity, Pulse Position Modulation, PPM.

I. I NTRODUCTION

Differential modulation constitutes an attractive and well-
explored method of communications in the scenario where
the channel is not known to the transmitter and the receiver.
This communication technique gained central importance and
promptly found application in the context of Impulse-Radio
(IR) Ultra-Wideband (UWB) systems. In IR-UWB communi-
cations, the energy of the ultra-short sub-nanosecond transmit-
ted pulses is spread over a very large number of multi-path
components. Consequently, collecting a sufficient amount of
signal energy at the output of this highly frequency selective
channel requires combining a large number of multi-path
components. If this task is to be carried out in a coherent
manner, a large number of channel parameters needs to be
estimated which might induce a prohibitive implementation
complexity. A popular alternative was based on solutions that
do not require any kind of channel estimation. These include
transmitted-reference solutions [1]–[3], noncoherent solutions
based on energy detection [4]–[7] as well as differential
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solutions where the modulation and demodulation techniques
are similar to those used in Differential Binary Phase Shift
Keying (DBPSK) [8]–[11]. In this context, it is worth noting
that [1]–[11] targeted single-antenna systems.

On the other hand, a popular way for Multiple Input Mul-
tiple Output (MIMO) narrowband communications when the
channel is not known corresponds to unitary differential Space-
Time (ST) coding which can be perceived as an extension of
DPSK to the multi-antenna scenario. This constitutes a well
established research field that attracted a huge amount of atten-
tion [12]–[20]. The numerous proposed codes include Cayley
unitary ST codes [14], codes based on cyclic division algebras
[15], codes constructed on the Grassmannian manifold [16],
codes optimized for given numbers of transmit antennas and
rates [17]–[19] and non-orthogonal codes with non-unitary
constellations [20] along with many other differential ST
coding techniques.

Despite the rich literature on differential single-antenna
modulation in the IR-UWB context, on one hand, and on
differential ST coding in the narrowband context, on the other
hand, a limited number of contributions targeted the problem
of differential ST coding for IR-UWB [21]–[23]. IR-UWB
possesses a number of particularities that render the direct
application of the existing narrowband unitary differential
ST codes not possible and make the extension of these ST
techniques not straightforward. In what follows, we will elab-
orate further on the distinctiveness of IR-UWB vis-à-vis the
differential ST code construction. (i): IR-UWB is a carrier-less
transmission technology where all information on the phase
is not retained since UWB signals occupy several GHz of
bandwidth. In this context, almost all narrowband differential
ST codes are complex-valued and hence based on phase
rotations making them not suitable for real-valued carrier-less
UWB transmissions. In this context, differential ST codes for
IR-UWB must satisfy the key constraint of being totally-real.
(ii): IR-UWB differs from narrowband communications in the
type of modulation that is used. In particular, given the fine
temporal resolution of UWB systems, these systems are often
associated with Pulse Position Modulation (PPM) whereas this
modulation is never used for narrowband communications. In
this context, the QAM or PSK differential ST codes in [12]–
[20] can not be applied with PPM. (iii): In IR-UWB it is hard
to control the amplitude of the very low duty-cycle pulses. In
this context, polarity inversions and amplitude constellation
expansions, even though real-valued and hence feasible, are
not preferable for maintaining simple and cost-effective UWB
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transmitters that transmit unipolar pulses.

Based on the above constraints and preferences under which
IR-UWB systems operate, we can highlight the advantages
and disadvantages of the existing differential ST codes. All
complex-valued codes (that are QAM or PSK codes in the
narrowband context) such as [12]–[20] can not be applied
with IR-UWB. Regarding the remaining minority of real-
valued differential ST codes, such as the codes based on the
orthogonal design [24], these codes can be applied with IR-
UWB and can be easily extended to PPM; however, they suffer
from the limitation of not being shape-preserving with PPM.
For example, [24] was extended to2 × 2 IR-UWB systems
with binary PAM in [21] and to2 × 2 IR-UWB systems
with PPM in [22]; however, these extensions suffer from
undesirable constellation expansions. In particular, [21], [22]
require transmitting four amplitude levels; namely, the initial
reference amplitude (the same as the one transmitted by single-
antenna systems), twice this amplitude and the opposites
of these two amplitudes. In this context, the extension of
UWB transmitters from the single-antenna case to the multi-
antenna case induces an increased complexity to invert and
control the amplitudes of the sub-nanosecond pulses. Beside
this limitation of losing the advantage of simple and low-
cost unipolar PPM transmissions, the second main limitation
resides in the fact that such differential ST codes can not
be applied with any number of transmit antennas. Finally,
solutions like [23] take advantage from the pulse repetitions in
Time-Hopping (TH) UWB systems to render the data streams
transmitted from the different antennas orthogonal and, hence,
can not be applied in the absence of pulse repetitions rendering
them unsuitable for high data rate applications. Moreover,
[23] is not shape-preserving with PPM since it entails polarity
inversions.

In this paper, we propose a unitary differential ST code for
IR-UWB communications with PPM. The proposed construc-
tion responds to a large number of construction constraints.
(i): The proposed solution is a minimal-delay solution that
extends overP symbol durations whereP stands for the
number of transmit antennas. (ii): The proposed code can
be applied with an arbitrary number of transmit antennas; a
feature that is shared with a limited number of the existing
ST constructions since the majority of the existing solutions
are often specific to a ceratin number of transmit antennas.
(iii): The proposed ST code can be applied withM -ary PPM
constellations for any value ofM . (iv): The proposed code
is fully diverse in the sense that the difference between any
two non-identical transmitted matrices has a full rank ofP .
(v): The proposed code is totally real. (vi): The proposed
code is shape-preserving with PPM where, in a way that is
completely equivalent to single-antenna communications,each
antenna transmits only one unipolar pulse in one of theM

PPM positions rendering the proposed solution appealing to
low-cost IR-UWB systems. While respecting all of the above
construction constraints, the proposed code suffers from a
single disadvantage that resides in a reduced data-rate where
this code transmits at the rate of1

P
log2(MP ) bits per channel

use (pcu) resulting in a normalized rate oflog2(MP )
P log2(M) ≤ 1

with respect to single-antenna systems deployingM -PPM.
However, this rate of1

P
log2(MP ) can largely exceed the rate

of 1 bit pcu that is achieved by all existing single-antenna
differential IR-UWB solutions based on DBPSK [8]–[11].

Other contributions of the paper are as follows. First, we
perform a semi-analytical performance analysis where we
derive closed-form expressions for the conditional symbol
error rates that can be achieved by the proposed scheme. We
also propose a simplified suboptimal, yet diversity-preserving,
decoder that can be associated with the proposed ST code. We
evaluate the number of multiplications and additions required
by each of the optimal and suboptimal decoders and prove
that the complexity of the former scales asM2 while the
complexity of the latter increases linearly withM .

Of direct relevance to this work is the noncoherent ST
code proposed in [25]. While both codes are fully-diverse,
shape-preserving with PPM, of minimal-delay and can be
applied with any number of transmit antennas without the
knowledge of the channel, they differ by the following. (i):The
code in [25] is based on energy detection where the energy
collected in the different PPM slots of the symbols within
each block are used for detection while the scheme proposed
in this paper encodes the information differentially amongtwo
consecutive blocks. Based on the considered system model, the
complexities of both schemes are comparable. (ii): While the
proposed code can be applied withM -PPM for all values of
M , the code in [25] can be applied only forM > P + 1.
(iii): The codes also differ by their rates that are equal to
1
P

log2(MP ) and 1
P

log2

(

M−1
P

)

bits pcu for the proposed
code and [25], respectively. Comparing these rates shows
that it is more advantageous to apply the differential (resp.
noncoherent) ST code for small (resp. large) values ofM . For
example, it is better to apply the proposed differential ST code
for M ≤ 6, M ≤ 7, M ≤ 7, M ≤ 8 andM ≤ 9 with 2, 3, 4,
5 and6 transmit antennas, respectively.

The rest of this paper is organized as follows. The system
model is described in section II. The encoder structure and
the main properties of the code are highlighted in section
III. The performance analysis is provided in section IV. In
section V, we propose the simplified decoding strategy and we
perform a detailed complexity analysis. Simulation results over
the realistic UWB channel model [26] are provided in section
VI while section VII concludes the paper. In what follows,
boldface letters indicate vectors (lower case) or matrices
(upper case).

II. SYSTEM MODEL

The encoding/decoding schemes that we consider in this
work can be applied withM -ary PPM constellations where the
information symbols are represented by theM -dimensional
vectors carved from the following signal set:

CPPM = {em ; m = 1, . . . , M} (1)

whereem stands for them-th column of theM ×M identity
matrix IM .

Consider a MIMO IR-UWB system where the transmitter is
equipped withP antennas and the receiver is equipped withQ
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antennas. The channel is used in blocks ofP symbol durations
each where the transmitted information is represented by the
sequence of matrices{S(t)} where t = 0, 1, . . . represents
the block channel use. ForM -dimensional constellations,S(t)

is a PM × P matrix that can be written under the form
S(t) = [s

(t)
i,j ]i,j=1,...,P wheres

(t)
i,j is anM -dimensional vector

corresponding to theM -ary PPM symbol transmitted by the
j-th transmit antenna during thei-th symbol duration of the
t-th block.

The receiver is a Rake-based solution where the signal
received in each PPM slot at a given antenna is correlated
with L shifted versions of the UWB pulse shape in order
to achieve a sufficient level of multi-path diversity. Denoting
the pulse width byTw, this corresponds to collecting the
signal energy over an integration time ofLTw. Evidently, as
L increases, an increased amount of energy corresponding to
a larger number of multipath components is collected at the
expense of an increased complexity1. This Rake-based solution
is not associated with any channel estimation procedure used
for estimating the amplitudes of the multi-path componentsas
in the cases of Maximum Ratio Combining (MRC) and Equal
Gain Combining (EGC), for example. In this context, the pro-
posed solution is classified as a non-coherent solution thatcan
be implemented without any knowledge of the Channel State
Information (CSI). As will be explained later in more details,
the signals received in thet-th ST block are compared with
the signals received in the(t− 1)-th ST block for the sake of
extracting the differentially-encodedt-th information symbol.
The decision variables are then used to construct thePM×QL

decision matrixY(t) whose((p− 1)M + m, (q − 1)L + l)-th
element corresponds to the output of thel-th correlator placed
after theq-th receive antenna during them-th PPM slot of
the p-th symbol duration (of thet-th block) for l = 1, . . . , L,
q = 1, . . . , Q, m = 1, . . . , M andp = 1, . . . , P . If the channel
is assumed to be constant over two consecutive blocks, the
baseband inputs and outputs of the channel are related to each
other by:

Y
(t)
PM×QL = S

(t)
PM×P HP×QL + N

(t)
PM×QL (2)

where the subscripts indicate the dimensions of the corre-
sponding matrices.N(t) stands for the noise matrix whose
components are independent and normally distributed with
zero mean and varianceN0

2 . In (2), H is theP ×QL channel
matrix whose(p, (q − 1)L + l)-th element is equal to (for
p = 1, . . . , P , q = 1, . . . , Q and l = 1, . . . , L):

Hp,(q−1)L+l =

∫ Tw

0

rp,q(τ)w(τ − (l − 1)Tw)dτ (3)

wherew(τ) corresponds to the transmitted UWB pulse shape
having a duration ofTw (τ is the time variable) whilerp,q(τ)
stands for the convolution betweenw(τ) and the impulse re-
sponse of the UWB channel between thep-th transmit antenna
and theq-th receive antenna. Note that correlating the received
signal with shifted replicas of the transmitted waveform at

1This occurs below a certain threshold value ofL above which the
performance is no longer enhanced by increasingL since the amount of noise
collected will exceed the harvested signal energy [1]–[4].

multiple of Tw corresponds to a suboptimal Partial-Rake
receiver [27]. This uncomplicated receiver that has a finitetime
resolution suffers from intra-pulse interference resulting from
the multi-path components arriving within the pulse duration.
Despite this limitation, Partial-Rakes are characterizedby a
remarked simplicity where there is no need to estimate the
time-of-arrival of the various multi-path components. This
renders this type of receivers perfectly adapted to our differen-
tial solution that needs to be implemented without requiring
any kind of information about the underlying channel. The
proposed differential scheme can be applied in the scenario
where the channel matrixH is unknown to both the transmitter
and the receiver. It is also worth noting that (2) holds in
the case where the received PPM constellation maintains its
orthogonality after multi-path propagation; in other words,
when the PPM delay is larger than the channel delay spread.

III. D IFFERENTIAL PPM SPACE-TIME CODES

A. General Structure of the Proposed Unitary Code

We use differential unitary ST modulation where the ST
matrix transmitted in blockt is related to the space-time matrix
transmitted in blockt−1 by the following differential encoding
rule:

S(t) = Czt
S(t−1) ; t = 1, 2, . . . (4)

where zt is the data to be transmitted and which assumes
values in the set{0, . . . , PM − 1}. In (4), Czt

is a PM ×
PM matrix and the setC that comprises all possible values of
C constitutes the constellation to be designed. The reference
matrix is assumed to take the following value:S(0) = IP ⊗e1

where⊗ stands for the Kronecker product.
In this work, we propose the following differential unitary

space-time construction:

C = {Ci = Ai | i = 0, . . . , PM − 1} (5)

whereA is the PM × PM matrix whose elements can be
equal to either zero or one:

A =











0M×M · · · 0M×M Ω

IM · · · 0M×M 0M×M

...
. . .

...
...

0M×M · · · IM 0M×M











(6)

where0m×n stands for them × n all-zero matrix andΩ is
the M × M permutation matrix given by:

Ω =

[

01×(M−1) 1
IM−1 0(M−1)×1

]

(7)

Evidently, from (5) and (6),CT
i = A−i and the matrices in

C are unitary:CiC
T
i = CT

i Ci = AiA−i = A−iAi = IPM .

B. Shape-Preserving Property of the Code

One of the major desirable properties of the proposed
scheme resides in the fact that it is a shape-preserving code
that does not result in any constellation expansion of the
original PPM signal set. In other words, as in single-antenna
PPM systems, each transmit antenna transmits exactly one
unipolar UWB pulse in one of theM available PPM slots.
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Fig. 1. The transmission scheme with two transmit antennas and 4-PPM.
The information symbols are{1, 3, 6, 5}.

For example, forP = 2 and M = 4, for the transmission
of the information symbols{1, 3, 6, 5}, the following se-

quence of matrices is transmitted:S(1) =

[

0M×1 Ωe1

e1 0M×1

]

,

S(2) =

[

Ω2e1 0M×1

0M×1 Ω2e1

]

, S(3) =

[

Ω5e1 0M×1

0M×1 Ω5e1

]

and

S(4) =

[

0M×1 Ω8e1

Ω7e1 0M×1

]

. This is better illustrated in Fig. 1

that shows the pulses transmitted by the different antennas
in the different PPM slots. Following fromΩe1 = e2,
Ω2e1 = e3, Ω5e1 = e2, Ω7e1 = e4 andΩ8e1 = e1, and in
generalΩme being a permutation of orderm of e that belongs
to the setCPPM in (1) whenevere ∈ CPPM, then only PPM
symbols are transmitted by the different antennas resulting in
no constellation expansion.

The above observation can be extended to all values ofP

and M . First, from (6), we observe thatAPM = IPM and,
consequently, for any integeri ∈ Z, Ai = Ai′ wherei′ = (i
mod PM) ∈ {0, . . . , PM − 1} and henceAi = Ai′ = Ci′

which is a codeword ofC for any integer value ofi. Hence,
any integer power of the matrixA is a codeword.

We also define the functionf(.) that will be used exten-
sively in the upcoming sections as follows:

f(i) = (k, m) | i′ = (i mod PM) = mP + k

; m ∈ {0, . . . , M − 1} , k ∈ {0, . . . , P − 1} (8)

In other words, this function associates with any integeri

the integersm andk such that the codewordAi can be indexed
asCmP+k wherek = (i′ mod P ) andm = i′−k

P
.

From (4),S(t) can be written as:S(t) =
[

∏t

t′=1 Czt′

]

S(0)

which from (5) can be written as:S(t) = AiS(0) where
i =

∑t

t′=1 zt′ . This expression can be written as:S(t) =
CmP+kS

(0) where (k, m) = f(i) from (8). A careful in-
spection of equations (5)-(7) shows that the transmission of
CmP+kS

(0) corresponds to (i): transmitting the PPM symbol
Ωme1 by antennap during the symbol durationp + k for
p = 1, . . . , P − k and (ii): transmitting the PPM symbol
Ωm+1e1 by antennap during the symbol durationp−(P −k)
for p = P−(k−1), . . . , P . In other words, only PPM symbols
are transmitted by the different antennas and the proposed code
is shape-preserving with PPM.

C. Rate of the Code

From (5), the total number of codewords in the codebook
C is equal toPM . Since each block extends overP symbol
durations, then the transmission rate is:

R =
1

P
log2(PM) (bits per channel use) (9)
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Fig. 2. The normalized rate of the proposed code.

Since a single-antenna system deployingM -PPM transmits
at the rate oflog2(M) bits pcu, then the proposed scheme
incurs a data-rate reduction by a factor oflog2(PM)

P log2(M) ≤ 1.
This normalized rate (with respect to single-antenna systems)
is plotted in Fig. 2 as a function ofM for different values of
P . This figure shows that the normalized rate is a decreasing
function of both M and P and hence the smallest data-
rate reductions are obtained for small values ofP and M

where, for example, no data-rate reduction is observed for two
transmit antennas with binary PPM.

It is worth noting that the data-rate reduction follows
mainly from the shape-preserving constraint where all forms
of polarity inversion, amplitude scaling and symbol combining
are not allowed. As a simple example, the codes based on
the orthogonal design [24] involve a polarity inversion. While
this polarity inversion is shape-preserving with PAM, QAM
and PSK constellations that are deployed in the narrow-band
context, this operation results in a constellation expansion
when associated with unipolar PPM systems. It is worth
noting that rate-1 PPM shape-preserving codes were proposed
in [28] (for given numbers of transmit antennas and signal
set cardinalities); however, these coherent codes do not lend
themselves to differential detection in the absence of channel
state information. In fact, these codes are not unitary while
limiting the construction to the set of unitary matrices con-
stitutes the main challenge in the differential ST code design.
As a conclusion, PPM shape-preserving differential ST codes
were never proposed before and our work constitutes the first
step in this direction.

D. Diversity Order

Consider the two transmitted matricesS(t) = CiS
(0) and

S′(t) = CjS
(0) that are associated with two distinct codewords

Ci andCj for j 6= i. The proposed scheme is fully diverse if
the following relation is satisfied [29]:

rank
(

S(t) − S′(t)
)

= rank
[

(Ci − Cj)S
(0)

]

= P

∀ i 6= j ∈ {0, . . . , PM − 1} (10)

From (5), (Ci − Cj)S(0) =
(

Ai − Aj
)

S(0) =
Aj

(

Ai−j − IPM

)

S(0) which has the same rank as the matrix
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(

Ai−j − IPM

)

S(0) since the matrixAj is invertible follow-
ing from the fact that the proposed code is unitary. On the
other hand, we have proven in subsection III-B that any integer
power ofA belongs to the setC and, consequently, (10) can
be written as:

rank[Di]= rank
[

(

Ai−IPM

)

S(0)
]

=P ∀ i ∈ {1, . . . , PM−1}

(11)
Proposition 1: Equation (11) is satisfied for all values ofP

andM and, consequently, the proposed code is fully diverse
with anyM -ary PPM constellation for any number of transmit
antennas.

Proof: In order to offer more insights on the properties of
the code, we first consider the special case ofP = 2. The
general proof that holds for any value ofP is provided in
Appendix A.

The structure of the codeword depends on the values ofk

andm where(k, m) = f(i) from (8). ForP = 2, k ∈ {0, 1}.
Fork = 0, theM corresponding codewords take the following
form:

Ai =

[

Ωm 0M×M

0M×M Ωm

]

; m = 0, . . . , M − 1 (12)

while for k = 1, the M corresponding codewords take the
following form:

Ai =

[

0M×M Ωm+1

Ωm 0M×M

]

; m = 0, . . . , M − 1 (13)

From (11) and (12), for k = 0, Di =
[

Ωme1 − e1 0M×1

0M×1 Ωme1 − e1

]

where the conditioni 6= 0

in (11) implies that(k, m) 6= (0, 0) and hence, fork = 0,
m ∈ {1, . . . , M − 1}. In this case,Ωme1 = em+1 can
not be equal toe1 for m 6= 0. The matrix Di is rank
deficient if there exist two nonzero scalarsc1 and c2 such
that c1di,1 + c2di,2 = 02M×1 wheredi,j stands for thej-th
column of Di. This implies thatc1(em+1 − e1) = 0M×1

and c2(em+1 − e1) = 0M×1 resulting inc1 = c2 = 0 since
em+1 − e1 6= 0M×1 (the first component of this vector is
equal to−1, the (m + 1)-th component is equal to+1 while
the remaining components are zero). As a conclusion, the
matrix Di has a full rank ofP = 2 for f(i) = (0, m) with
m 6= 0.

From (11) and (13), fork = 1, Di =

[

−e1 Ωm+1e1

Ωme1 −e1

]

where in this casem can be equal to zero. The relationc1di,1+
c2di,2 = 02M×1 implies that−c1e1 + c2Ω

m+1e1 = 0M×1

andc1Ω
me1−c2e1 = 0M×1. Evidently, if c1 = 0 thenc2e1 =

0M×1 implying thatc2 = 0 and if c2 = 0 thenc1e1 = 0M×1

implying that c1 = 0. Hence, we need only to consider the
casec1 6= 0 andc2 6= 0. In this case, the first equation implies
that e1 = c2

c1
Ωm+1e1 while the second equation results in

Ωme1 = c2

c1
e1 where combining these equations results in

e1 =
(

c2

c1

)2

Ω1e1 =
(

c2

c1

)2

e2 which is impossible sincee1

can not be proportional toe2. As a conclusion, the relation
c1di,1 + c2di,2 = 02M×1 holds only for c1 = c2 = 0. As
a conclusion, the matrixDi has a full rank ofP = 2 for
f(i) = (1, m).

From the casesk = 0 andk = 1 we conclude that (11) holds
for (k, m) 6= (0, 0) (i.e. i 6= 0) and the proposed scheme is
fully diverse with two transmit antennas. ForP > 2, the proof
is more involved and is provided in Appendix A.

IV. PERFORMANCEANALYSIS

In this section, we derive expressions for the conditional
pairwise error probability (PEP) of the proposed code.

For the differential schemes, the matrix transmitted in block
t − 1 serves as a reference for the detection of the matrix
transmitted in blockt and thus the maximum-likelihood (ML)
decoder is given by [30]:

ẑt = arg min
i=0,...,PM−1

∥

∥

∥Y
(t) − CiY

(t−1)
∥

∥

∥

2

(14)

where the expression of the decision matrix is provided in (2).
For the sake of the performance analysis, (2) can be written

in a more convenient form as:

y(t) =
(

IQL ⊗ S(t)
)

h + n(t) (15)

wherey(t) andn(t) arePMQL-dimensional vectors obtained
from stacking the columns ofY(t) and N(t), respectively,
vertically one after the other. Vectorh is thePQL-dimensional
vector constructed from the channel matrixH in the same way.

Based on this new notation, (14) can be rewritten as:

ẑt = arg min
i=0,...,PM−1

∥

∥

∥y
(t) − (IQL ⊗ Ci)y

(t−1)
∥

∥

∥

2

(16)

The Frobenius norm can be expanded as follows:

[y(t)]Ty(t) + [y(t−1)]T
(

IQL ⊗ CT
i

)

(IQL ⊗ Ci)y
(t−1)

− 2[y(t)]T (IQL ⊗ Ci)y
(t−1) (17)

where the first term does not depend on the indexi of
the codeword. Moreover, the second term can be written as
[y(t−1)]T

(

IQL ⊗ CT
i Ci

)

y(t−1) = [y(t−1)]Ty(t−1) since the
codewordsCi are unitary and, thus, this term does not depend
on i as well. Consequently, (16) can be expressed as:

ẑt = arg max
i=0,...,PM−1

[

[y(t)]T (IQL ⊗ Ci)y
(t−1)

]

(18)

From (18), the conditional PEP of differentially encoding
the symbolzt = i and deciding in favor of the symbol̂zt = j

is given by:

P (Ci → Cj) =

Pr
(

[y(t)]T (IQL ⊗ Cj)y
(t−1) ≥ [y(t)]T (IQL ⊗ Ci)y

(t−1)
)

(19)

which from (4) and (15) can be written as:

P (Ci → Cj) = Pr
([

hT
(

IQL ⊗ [S(t−1)]TCT
i

)

+ [n(t)]T
]

(IQL ⊗ (Cj − Ci))
[(

IQL ⊗ S(t−1)
)

h + n(t−1)
]

≥ 0
)

(20)

As will be proven later, and in a way analogous to the diver-
sity order analysis in subsection III-D, the expression of the
conditional PEPP (Ci → Cj) can be completely determined
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from the values ofk andm such that(k, m) = f(j− i) where
the functionf(.) is defined in (8). In other words, different
values ofi andj yielding the same values ofk andm will have
the same conditional PEP and, hence, it is better to index this
PEP byk andm rather thani andj. Based on this observation,
(20) can be written under the following form:

P (Ci → Cj) , Pk,m , Pr
(

η
(ss)
k,m + η

(sn)
k,m + η

(nn)
k,m ≥ 0

)

(21)
whereη

(ss)
k,m, η

(sn)
k,m andη

(nn)
k,m stand for the signal-cross-signal,

signal-cross-noise and noise-cross-noise terms, respectively.
Based on (21), the conditional PEP given byPe|H =

1
PM

∑PM−1
i=0

∑PM−1
j=0
j 6=i

P (Ci → Cj) can be evaluated from

the following expression:

Pe|H =

P−1
∑

k=0

M−1
∑

m=0
(k,m)6=(0,0)

Pk,m (22)

From (20) and (21):

η
(ss)
k,m = hT

[

IQL ⊗
(

[S(t−1)]TCT
i (Cj − Ci)S

(t−1)
)]

h

(23)
The recursive application of (4) shows thatS(t−1) can be
written asS(t−1) = AxS(0) wherex =

∑t−1
t′=1 zt′ . Replacing

S(t−1) = AxS(0), [S(t−1)]T = [S(0)]TA−x, Ci = Ai,
Cj = Aj andCT

i = A−i in (23) results in:

η
(ss)
k,m = hT

[

IQL ⊗
(

[S0]T (Aj−i − IPM )S(0)
)]

h (24)

=

QL
∑

l=1

hT
l

(

[S0]T (Aj−i − IPM )S(0)
)

hl (25)

where h = [hT
1 · · ·hT

QL]T (or hl is the l-th column of the
matrix H in (2)).

Following from the independence between the noise terms
in blocks t and t − 1, then from (20) and (21),η(sn)

k,m can be
expressed as the sum of two independent terms as follows:

η
(sn)
k,m =

QL
∑

l=1

[n
(t)
l ]T (Cj − Ci)S

(t−1)hl

+

QL
∑

l=1

hT
l [S(t−1)]T CT

i (Cj − Ci)n
(t−1)
l (26)

wheren(t′) = [[n
(t′)
1 ]T · · · [n

(t′)
QL]T ]T for t′ = t− 1, t (or n

(t′)
l

is thel-th column of the matrixN(t′) in (2)). It is then straight-
forward to prove thatη(sn)

k,m is a zero-mean Gaussian random
variable whose variance takes the following expression:

var(η(sn)
k,m ) = N0

QL
∑

l=1

hT
l

(

[S0]T (2IPM −Aj−i−Ai−j)S(0)
)

hl

(27)
Finally, from (20) and (21):

η
(nn)
k,m =

QL
∑

l=1

[n
(t)
l ]T

(

Aj − Ai
)

n
(t−1)
l (28)

which is a zero-mean random variable with variance:

var(η(nn)
k,m ) = 2MPQL

(

N0

2

)2

(29)

where, evidently, this variance does not depend onk andm.
In appendix B, we prove that (25) and (27) can be written

as:
η
(ss)
k,m = −νk,m ; var(η(sn)

k,m ) = 2N0νk,m (30)

where:

νk,m = hTh−







R(k), k 6= 0, m = 0;
R(P − k), k 6= 0, m = M − 1;
0, otherwise.

(31)

whereR(k) =
∑QL

l=1 Rl(k) whereRl(k) is equal to the sum
of the elements on thek-th upper diagonal of theP×P matrix
hlh

T
l .

Replacingη
(ss)
k,m by its value from (30), equation (21) can

be written as:

Pk,m = Pr
(

η
(sn)
k,m + η

(nn)
k,m ≥ νk,m

)

(32)

Adopting the assumption that the noise-cross-noise term
can be approximated by a Gaussian distribution especially for
large values of the productMPQL (by central-limit theorem
arguments) [1], [2], [8], then the termη(sn)

k,m + η
(nn)
k,m can be

modeled as a Gaussian random variable whose variance is
var(η(sn)

k,m ) + var(η(nn)
k,m ) = 2N0νk,m + 2MPQL

(

N0

2

)2
where

(29) and (30) were invoked. Consequently, (32) can be written
as:

Pk,m = Q





νk,m
√

2N0νk,m + 2MPQL
(

N0

2

)2



 (33)

whereQ(x) = 1√
2π

∫ +∞
x

exp
(

− t2

2

)

dt is the Q-function.
Consequently, from (22) and (31):

Pe|H =
∑

(k,m)∈S
Pk,m +

P−1
∑

k=1

Pk,0 +
P−1
∑

k=1

Pk,M−1 (34)

whereS = {(k, m) | k = 0, m = 1 · · ·M − 1 , k 6= 0, m =
1 · · ·M − 2} that comprises[M − 1 + (P − 1)(M − 2)] =
PM − 2P + 1 elements. The third summation in (34) can be
written in an alternative way as

∑P−1
k=1 PP−k,M−1. Observing

that νP−k,M−1 = νk,0 for k 6= 0 from (31), then the second
and third summations in (34) are equal. Finally, from (31) and
(33), equation (34) can be written as:

Pe|H =[PM − 2P + 1]Q





hT h
√

2N0hTh + 2MPQL
(

N0

2

)2





+ 2

P−1
∑

k=1

Q





hT h− R(k)
√

2N0[hTh− R(k)] + 2MPQL
(

N0

2

)2





(35)

From Appendix B, R(k) can be written asR(k) =
∑QL

l=1

∑P−k

p=1 hl,phl,p+k wherehl,p is thep-th component ofhl

(which is also equal to the channel coefficient defined in (3)).
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Given that the channel coefficients can be positive or negative
with the same probability, then the cross-correlation terms
{R(k)}k 6=0 (where eachR(k) corresponds to the summation
of (P−k)QL terms with random polarities) assume values that
are very small compared toR(0) = hT h =

∑QL

l=1

∑P

p=1 h2
l,p

(that corresponds to the summation ofPQL positive terms).
This observation is especially true for large values of the
productPQL.

From (35) we can deduce the conditional PEP of a SIMO
system deploying the differential modulation schemeS(t) =
ΩztS(t−1) (whereS(t) stands for the PPM symbol transmitted
in the t-th symbol duration) as follows:

P
(SIMO)
e|H = (M − 1)Q





hTh
√

2N0hTh + 2MQL
(

N0

2

)2



 (36)

where in this casehT h =
∑QL

l=1 h2
l,1.

Finally, in the absence of exact expressions of the joint
probability density function ofH, (35) and (36) will be
integrated numerically to yield the results in section VI.

V. SIMPLIFIED DECODING

In this section, we propose a simplified decoder that can
be associated with the proposed differential scheme. In order
to highlight the advantage of this decoder, we compare the
number of operations (multiplications and additions) required
by the ML decoder and the simplified decoder.

A. Complexity of the ML Decoder

The ML decision rule is based on (18) that can be written
as:

ẑt = arg max
i=0,...,PM−1

[

QL
∑

l=1

[y
(t)
l ]T Ciy

(t−1)
l

]

(37)

where thePMQL-dimensional decision vectorsy(t′) in (18)
are written asy(t′) = [[y

(t′)
1 ]T · · · [y

(t′)
QL ]T ]T for t′ = t − 1, t.

In this case,y(t−1)
l andy

(t)
l arePM -dimensional vectors for

l = 1, . . . , QL.
Note that the components of the codewordsCi’s are equal

to 0 or 1. Moreover, every row ofCi contains exactlyPM−1
zero components and one nonzero component that is equal to
1. Consequently, the vectorCiy

(t−1)
l corresponds to a simple

rearrangement of the elements ofy
(t−1)
l and, hence, this

vector can be evaluated without performing any multiplication
operations.

In a more concise manner:

Ciy
(t−1)
l =

[

[Ωm+1y
(t−1)

l,σk(1)
]T , · · · , [Ωm+1y

(t−1)

l,σk(k)
]T ,

[Ωmy
(t−1)

l,σk(k+1)
]T , · · · , [Ωmy

(t−1)

l,σk(P )
]T

]T

(38)

where the multiplication by the matrixΩm corresponds to
a permutation of orderm. In (38), (k, m) = f(i) from
(8), y

(t−1)
l = [[y

(t−1)
l,1 ]T · · · [y

(t−1)
l,P ]T ]T and σk(.) defines a

permutation of orderk among the elements of{1, . . . , P}:

σk(p) = [(p − k − 1) mod P ] + 1 ; p = 1, . . . , P (39)

In other words, multiplyingy(t−1)
l by Ci corresponds to

performing a double permutation. The first permutation is
among theP vectors{y(t−1)

l,p }P
p=1 while the second permuta-

tion is among theM components of each of these vectors.
Based on the above observation, the evaluation of

[y
(t)
l ]TCiy

(t−1)
l necessitatesPM multiplications andPM−1

additions for one particular value of(i, l). Therefore, the im-
plementation of (37) requiresPM ×QL×PM = QL(PM)2

multiplications for the detection of one information symbol.
Assuming that finding the maximum amongn elements ne-
cessitatesn additions, then the total number of additions is
PM × (QL − 1) × (PM − 1) + PM = (QL − 1)(PM)2 −
PM(QL − 2).

Note that the number of multiplications varies as the square
of the ST constellation sizePM and, hence, the complexity of
the ML decoder might be prohibitive for large values of the
number of transmit antennas and/or cardinality of the PPM
signal set thus justifying the interest in a simplified decoder.

B. A Simplified Decoding Procedure

The simplified decoder profits from the structure of the
proposed code and, following from the equivalence between
the codeword indexi and the integers(k, m) = f(i), solves
for the integerŝk andm̂ such that:

(k̂, m̂) = arg max
k=0,...,P−1

m=0,...,M−1

[

QL
∑

l=1

[

k
∑

p=1

[y
(t)
l,p]T Ωm+1y

(t−1)

l,σk(p)

+

P
∑

p=k+1

[y
(t)
l,p ]TΩmy

(t−1)

l,σk(p)







 (40)

where this equation follows from replacing (38) in (37) and
where the decoder decides in favor ofẑt = m̂P + k̂.

In what follows,t′ ∈ {t−1, t}. Consider theM -dimensional
vector y

(t′)
l,p that, for a certain value ofl, comprises the

decision variables collected in theM PPM positions of the
p-th symbol duration of thet′-th block. Only one component
of y

(t′)
l,p comprises a signal part while the remainingM − 1

components comprise only noise following from the structure
of the proposed code where exactly one transmit antenna is
pulsed within each symbol duration. Based on this fact, we
define the positionm̃(t′)

p as the PPM position in which the
maximum amount of energy is collected:

m̃(t′)
p = arg max

QL
∑

l=1

[y
(t′)
l,p ◦ y

(t′)
l,p ] (41)

where◦ stands for the element-wise Hadamard product and
the functionarg max(v) returns the position of the maximum
component of the vectorv.

Based on (41), we define the alternative decision vectorỹ
(t′)
l,p

as:
ỹ

(t′)
l,p = y

(t′)

l,p,m̃
(t′)
p

e
m̃

(t′)
p

, x
(t′)
l,p e

m̃
(t′)
p

(42)

wherey
(t′)
l,p,m is them-th component ofy(t′)

l,p . Note thatỹ(t′)
l,p is

equivalent toy(t′)
l,p where all components corresponding to the
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PPM slots containing only noise, based on the decision made
in (41), are set to zero. In this context:

ỹ
(t′)

l,p,m̃
(t′)
p

= y
(t′)

l,p,m̃
(t′)
p

= x
(t′)
l,p (43)

Replacing the vectors{y(t′)
l,p } by the vectors{ỹ(t′)

l,p } in (40)
results in:

(k̂, m̂) = arg max
k=0,...,P−1

m=0,...,M−1

[

QL
∑

l=1

[

k
∑

p=1

[ỹ
(t)
l,p ]TΩm+1ỹ

(t−1)

l,σk(p)

+

P
∑

p=k+1

[ỹ
(t)
l,p ]T Ωmỹ

(t−1)

l,σk(p)







 (44)

which can be written under the following form:

(k̂, m̂)=arg max
k=0,...,P−1

m=0,...,M−1

[

k
∑

p=1

[

QL
∑

l=1

M
∑

m′=1

[ỹ
(t)
l,p,m′ ỹ

(t−1)

l,σk(p),τm+1(m′)

]

+
P

∑

p=k+1

[

QL
∑

l=1

M
∑

m′=1

[ỹ
(t)
l,p,m′ ỹ

(t−1)

l,σk(p),τm(m′)

]



 (45)

where the functionτm(.) defines a permutation of orderm
among the elements of{1, . . . , M}:

τm(m′) = [(m′ − m − 1) mod M ] + 1 ; m′ = 1, . . . , M

(46)
The simplified decoder is based on the assumption that the

PPM slots that comprise UWB pulses are actually the slots
that will result in the maximum amount of collected energy
based on (41). Under this assumption, the zero components
of the vectors̃y(t)

l,p andΩm+1ỹ
(t−1)

l,σk(p)
(resp.Ωmỹ

(t−1)

l,σk(p)
) will

coincide forp = 1, . . . , k (resp.p = k + 1, . . . , P ). Conse-
quently, the maximization in (45) will become independent of
m and will simplify to the following expression:

k̂ = arg max
k=0,...,P−1

[

k
∑

p=1

QL
∑

l=1

ỹ
(t)

l,p,m̃
(t)
p

ỹ
(t−1)

l,σk(p),m̃
(t−1)

σk(p)

+
P

∑

p=k+1

QL
∑

l=1

ỹ
(t)

l,p,m̃
(t)
p

ỹ
(t−1)

l,σk(p),m̃
(t−1)

σk(p)



 (47)

which can be written in a simpler way as:

k̂ = arg max
k=0,...,P−1

[

P
∑

p=1

Dp,k

]

(48)

where:

Dp,k ,

QL
∑

l=1

x
(t)
l,px

(t−1)

l,σk(p)
(49)

where (43) was invoked.
The transition from (45) to (47) will hold if the following

P equations are satisfied:






m̃
(t)
p = τm+1(m̃

(t−1)

σk̂p
) p = 1, . . . , k̂;

m̃
(t)
p = τm(m̃

(t−1)

σk̂p
) p = k̂ + 1, . . . , P .

(50)

Solving (50) form implies that this integer must satisfy the
following P equations simultaneously:






m = m̃
(t)
p − m̃

(t−1)

σk̂p
− 1 mod M p = 1, . . . , k̂;

m = m̃
(t)
p − m̃

(t−1)

σk̂p
mod M p = k̂ + 1, . . . , P .

(51)
Evidently, discrepancies might arise between the above

equations that do not yield the same solution following from
the fact that the adopted assumption does not necessarily
hold and hence the positions of the transmitted pulses are
not inevitably as predicted by (41). Our approach for solving
(51) resides in weighing the corresponding equations by the
decision metricsDp,k’s; a task that can be realized if the
reconstructed valuêm is selected to satisfy the following
equation:

m̂ = arg max





k̂
∑

p=1

D
p,k̂

e
(m̃

(t)
p −m̃

(t−1)

σk̂p
−1 mod M+1)

+

P
∑

p=k̂+1

D
p,k̂

e
(m̃

(t)
p −m̃

(t−1)

σk̂p
mod M+1)



 − 1 (52)

To summarize, the simplified decoder solves for(k̂, m̂) in
the following steps:

- Step 1:Find the values of̃m(t′)
p in (41) for t′ = t − 1, t

andp = 1, . . . , P .
- Step 2:Evaluate the values of theP 2 metricsDp,k in

(49) for p = 1, . . . , P andk = 0, . . . , P − 1.
- Step 3:Find k̂ according to (48).
- Step 4:Using the values of̃m(t−1)

p , m̃
(t)
p andDp,k found

in step-1 and step-2, find̂m according to (52).

C. Complexity of the Simplified Decoder

We quantify the complexity of the proposed decoder by
evaluating the number of operations required in each of the
above four steps.

Step 1: From (41), evaluating a single value of̃m(t′)
p

requires raisingQL vectors to the power two, adding these
vectors and finding the maximum value of the resultantM -
dimensional vector. Consequently, this step requiresQLM

multiplications and(QL − 1)M + M = QLM additions
where, as in subsection V-A, it is assumed that finding the
maximum amongM components necessitatesM additions.
Consequently, for evaluating̃m(t′)

1 , . . . , m̃
(t′)
P , QLMP mul-

tiplications andQLMP additions are required. Note that
m̃

(t′)
p enters in the decision process of the two consecutive

information symbolszt′ andzt′+1 and hence the above number
of operations needs to be considered only once (and not two
times for t′ = t − 1 and t′ = t). In a more concise manner,
for communicatingNs information symbols,Ns + 1 blocks
are needed (taking into consideration the reference block), and
hence the total number of multiplications (or additions) needed
is (Ns+1)QLPM implying that the number of multiplications
(or additions) for decoding one symbol isNs+1

Ns
QLPM which

tends toQLPM for large values ofNs. As a conclusion,
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Fig. 3. Performance with 8-PPM andL = 4.

step-1 is realized throughQLPM multiplications andQLPM

additions.
Step 2: From (43), the variablex(t′)

l,p is nothing but a

component of the decision vectory(t′)
l,p and hence can be

acquired without requiring any additions or multiplications.
Consequently, calculating theP 2 decision variablesDp,k in
(49) requiresP 2QL multiplications andP 2(QL−1) additions.

Step 3:From (48), evaluating
∑P

p=1 Dp,k for a single value
of k in {0, . . . , P −1} requiresP −1 additions. Consequently,
finding the value of̂k requiresP (P − 1) + P = P 2 additions
without requiring any multiplications.

Step 4: The multiplication of the metricsD
p,k̂

’s by the
columns of the identity matrix in (52) does not require any
number of multiplications. Regarding the number of additions
in (52). (i): The evaluation of the subscripts of the vectorse

requires3k̂ + 2(P − k̂) = 2P + k̂ which is at most equal to
3P−1 whenk̂ takes its maximum possible value ofP−1. Here
it is assumed that themod operator does not require any
number of additions since it can be evaluated using a look-up
table. (ii): The evaluation of the summation ofP multiples
of columns of the identity matrix requires at mostP − 1
additions when all the nonzero components of these vectors
coincide. (iii): Themax operator requiresM additions. (iv):
The substraction of1 at the end requires one addition. As a
conclusion, the number of additions in this step is at most
(3P − 1) + (P − 1) + M + 1 = 4P + M − 1.

As a conclusion, the implementation of the simplified de-
coder requiresQLP (M + P ) multiplications andQLP (M +
P )+4P +M−1 additions for the detection of one information
symbol. Therefore, the number of multiplications is divided by
a factor of QL(PM)2

QLP (M+P ) = PM2

M+P
compared to the ML decoder.

For example, for binary PPM with two transmit antennas,
the simplified decoder requires two times less multiplications
compared to the ML decoder.

VI. N UMERICAL RESULTS

In this section, we present some numerical results that
show the variations of the symbol error rate (SER) as a
function of the signal-to-noise ratio (SNR) per information
bit. The SNR per information bit is defined as1

RN0
where the

average energy of theM -PPM constellations was normalized
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Fig. 4. Performance as a function ofL with 2-PPM.

to unity and whereR is given in (9) for the proposed code
and R = log2(M) for single-antenna systems. The UWB
channels between the different transmit and receive antennas
are generated independently according to the IEEE 802.15.3a
NLOS channel model recommendation CM2 [26]. A Gaussian
pulse with a duration ofTw =0.5 ns is used and the modulation
delay is set toδ=100 ns in order to eliminate the interference
between the different PPM slots.

Fig. 3 shows the performance with8-PPM andL = 4
(which corresponds to an integration time of 2 ns) where
the ML decoder is applied. We compare the numerical results
with the analytical results derived in section IV. Results show
the high performance levels and the enhanced diversity orders
achieved by the proposed scheme. For example, performance
gains in the order of 9 dB with respect to single-antenna
systems can be observed with four transmit antennas at a
SER of10−3. Results in Fig. 3 also show that the numerical
and analytical results are close to each other. Moreover, the
corresponding curves are parallel to each for large values of the
SNR and, hence, the derived closed-form expressions of the
conditional PEP can be used to predict the achievable diversity
orders. It is worth noting that the difference between the
numerical and analytical curves results from two reasons. The
first reason resides in the fact that in section IV we derived the
pairwise error probability and hence the derived expressions
constitute upper-bounds that originate from the union bound.
The second reason follows from the Gaussian approximation
of the noise-cross-noise term.

Fig. 4 shows the impact of the number of combined multi-
path components (through the parameterL) on the perfor-
mance of single-antenna and MIMO UWB systems. In this
figure, the SER is plotted as a function ofL in the case of
2-PPM with one receive antenna. This figure highlights the
usefulness of spatial diversity even in UWB systems that profit
from rich multi-path diversity. This follows mainly from the
high correlation between the different multi-path components
of the same channel [26]. At a given SNR, increasing the
value of L does not always enhance the performance where
the results accentuate on the existence of an optimal value of
L beyond which the performance degrades whenL increases.
This follows from the fact that more noise is integrated in the
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Fig. 5. Performance of the simplified decoder with 2-PPM andL = 5.

receiver whenL increases while the multi-path components at
the tail of the channel impulse response assume small values.
In this context, increasing the number of antennas always
enhances the performance. For example, at a SNR of 25 dB,
the best performance that can be achieved by single-antenna
systems is2 × 10−3 (for L = 45). Any value ofL no matter
how large it is can not decrease this SER value. However,
systems with two and three transmit antennas can achieve
comparable performance levels with onlyL = 10 andL = 6,
respectively. In the same way, at a SNR of 28 dB, the optimal
SER value decreases from1.6 × 10−4 with single-antenna
systems to3.5 × 10−7 and1.2 × 10−8 with 2 × 1 and3 × 1
systems, respectively.

In Fig. 5 we compare the ML decoder and the simpli-
fied decoder with2-PPM, L = 5 and P × P systems for
P = 2, 3, 4. The numbers of multiplications required by the
ML decoder for the detection of one symbol are160, 540
and 1280 while the simplified decoder requires80, 225 and
480 multiplications forP = 2, 3 and4, respectively. In other
words, the numbers of multiplications are reduced by factors
of 2, 2.4 and 2.66, respectively, implying significant savings
in the computationally-involved multiplication operations. In
the same way, the numbers of additions are reduced from
112, 426 and 1072 to 89, 238 and 497 for P = 2, 3 and
4, respectively. The obtained results highlight the interest of
the simplified decoder where the performance levels achieved
by this decoder are very close to those achieved by the optimal
ML decoder especially for large values ofP . In this context,
the performance degradations induced by the suboptimal de-
tection are in the order of1.8 dB, 0.4 dB and 0.5 dB at a
SER of10−4 for P = 2, 3 and4, respectively. Moreover, the
results show that the simplified decoder possesses the desirable
property of being a diversity-preserving decoder where the
error curves corresponding to the ML and simplified detection
are practically parallel for large values of the SNR. In this
context, associating the proposed code with the simplified
decoder does not induce any losses in terms of the achievable
diversity order.

In Fig. 6 we compare the ML decoder and the simpli-
fied decoder with8-PPM, L = 5 and P × P systems for
P = 2, 3, 4. The findings are similar to those in Fig. 5 where
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Fig. 6. Performance of the simplified decoder with 8-PPM andL = 5.

the simplified decoder is found to be diversity-preserving and
incurs limited performance losses especially with large number
of antennas. Note that in this case whereM takes a large value,
the simplified decoder reduces the number of multiplications
by factors of12.8, 17.45 and21.33 as well as the number of
additions by factors of10.12, 15 and19.2 for P = 2, 3 and
4, respectively.

In Fig. 7 we compare different ST codes withP = 2,
M = 4 and L = 6 (or equivalently an integration time of
3 ns). The codes that we compare are as follows. (i): The
proposed differential ST code that transmits at the rate of
1
P

log2(MP ) = 1.5 bits pcu. (ii): The noncoherent code in
[25] that in this case transmits at the rate of1

P
log2

(

M−1
P

)

=
0.7925 bits pcu. (iii): The coherent PPM code in [28] that
transmits at the full rate oflog2(M) = 2 bits pcu. (iv): The
repetition code where the differentially-encoded PPM symbols
are transmitted separately by the two transmit antennas in
two consecutive symbol durations. This code transmits at the
rate of 1

P
log2(M) = 1 bit pcu. (v): The differential code in

[22] that corresponds to a PPM extension of the code in [24]
where the rate islog2(M) = 2 bits pcu. Note that all of the
above codes are shape-preserving with PPM except for the
last one. Results show that all considered codes achieve the
same diversity order where all the SER curves are practically
parallel to each other for large values of the SNR. Evidently,
the best performance is achieved by the coherent code where
full channel state information is available at the receiver.
Results also show the superiority of the proposed differential
code with respect to the noncoherent and repetition codes
since, in this case, the differential code is transmitting at a
higher rate (while all three codes respect equally the remaining
design constraints). Compared to [22], results show a1.2 dB
performance loss at high SNR. This loss is not surprising since
the proposed code respects the additional constraint of being
shape-preserving unlike [22]. In fact, while the proposed code
transmits pulses that have the same amplitude, four amplitude
levels are transmitted by [22]. In other words, the performance
loss follows from the additional shape-preserving design con-
straint that is imposed on the proposed code. It is worth noting
that, unlike [22], the proposed code can be applied with any
number of transmit antennas. As a conclusion, the shape-
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preserving property constitutes a restricting constraintthat has
a critical impact on the achievable performance levels.

While all of the previous simulations were performed as-
suming that the MIMO channels are independent, Fig. 8 shows
the performance over the space-variant UWB channel model
proposed in [31]. Simulations are performed over profile 2
that corresponds to an office NLOS scenario for antenna array
separations of 5 cm and 10 cm. The analytical curves are
plotted for 2-PPM withL = 10. Results show the high
performance levels over this realistic MIMO model that takes
spatial correlation into consideration. Despite the fact that
the different channels are correlated, increasing the number
of antennas always enhances the performance especially for
large values of the SNR. It can also be observed that the
different array separations achieve the same diversity order
where the corresponding SER curves are practically parallel
to each other for large values of the SNR. In this context, the
smaller separation results in a slightly worse performancein
the order of 0.75 dB at a SER of10−6. Finally, it is worth
noting that while the channel correlation has a direct impact
on the achievable performance gains with respect to single-
antenna systems, it does not influence the ST code design,
conditional SER performance and decoder structure presented
in sections III, IV and V, respectively.

VII. C ONCLUSION

We considered the problem of differential space-time coding
for IR-UWB communications and we proposed the first-known
family of unitary codes that is shape-preserving with PPM. The
proposed construction responds to the practical need of realiz-
ing MIMO IR-UWB communications in an easy manner that
avoids any channel estimation procedure. The novel idea of
joint symbol and position permutations of one encoded block
with respect to the previous block replaced the conventional
techniques based on amplitude-scaling and phase-rotationthus
allowing to maintain unipolar transmissions. The proposed
solution is appealing since it renders the extension of the
single-antenna systems to the MIMO scenario simple and cost-
effective without imposing any additional constraints on the
RF circuitry to control the phase or the amplitude of the very
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Fig. 8. Performance of 2-PPM over the Kunisch-Pamp profile-2model [31].

low duty cycle sub-nanosecond pulses. The above advantages
came at the expense of a reduced data rate; however, this
data rate reduction is small for small values of the signal
set cardinality rendering the proposed differential solution
superior to the noncoherent space-time solutions under this
operating scenario. We hope that this first construction will
inspire future constructions and will motivate more research
in the direction of achieving higher rates with unipolar PPM
systems. An adapted suboptimal decoding strategy was also
proposed which further contributes to the implementation
simplicity of the proposed MIMO IR-UWB system.

APPENDIX A

We start our proof with the following preliminary.
Preliminary 1: The following relation holds:

−ce1+c′Ωne1 = 0M×1 ⇒

{

c′ = c, n = 0 mod M ;
c′ = c = 0, n 6= 0 mod M .

(53)
Proof: For n = (0 mod M), Ωn = IM and the relation

in (53) reduces to(−c + c′)e1 = 0M×1 implying that c′ =
c. For n 6= (0 mod M), Ωn 6= IM and Ωne1 is equal to
a certain elementen′ in CPPM that is different frome1 (in
particularn′ = (n mod M)+ 1). In this case, the relation in
(53) can be written asce1 = c′en′ implying that c′ = c = 0
sincee1 can not be proportional toen′ for n′ 6= 1.

The linear dependence between the columns ofDi in
(11) implies the existence of the scalarsc1, . . . , cP such that
∑P

p=1 cpdi,p = 0PM×1 wheredi,p is thep-th column ofDi.
We will next prove that this relation holds only in the case of
c1 = · · · = cP = 0 implying thatDi has a full rank ofP for
i 6= 0. As in subsection III-D, the structure ofDi depends on
the values ofk and m where (k, m) = f(i) from (8). It is
worth noting thatk takes values in{0, . . . , P − 1} while the
values ofm are limited to the set{0, . . . , M − 1}.

Viewing thePM × P matrix Di as aP × P block matrix
composed of blocks of dimensionsM × 1, the following can
be observed regarding the structure ofDi. (i): The blocks on
the main diagonal are equal to−e1. (ii): The blocks on the
k-th lower diagonal are equal toΩme1. (iii): The blocks on
the (P −k)-th upper diagonal are equal toΩm+1e1. (iv): The
remaining blocks are equal to0M×1. Note that fork = 0 the



12

above structure corresponds to a block diagonal matrix whose
diagonal blocks are equal toΩme1 − e1 where in this case
m 6= 0 so thati = mP + k 6= 0.

Based on the above, the relation
∑P

p=1 cpdi,p = 0PM×1

can be written as the following set ofP equations:

−cie1 + cσk(i)Ω
m+1e1 = 0M×1 ; i = 1, . . . , k (54)

−cie1 + cσk(i)Ω
me1 = 0M×1 ; i = k + 1, . . . , P (55)

where the first (resp. second) set ofk (resp.P − k) equations
describes the linear dependence between the diagonal blocks
and the upper (resp. lower) blocks. In (54)-(55), the function
σk(.) defines a permutation of orderk among the elements of
{1, . . . , P}:

σk(i) = [(i − k − 1) mod P ] + 1 ; i = 1, . . . , P (56)

We first consider the simplest case ofk = 0. In this case,
(54)-(55) can be written as:

−cie1 + ciΩ
me1 = 0M×1 ; i = 1, . . . , P (57)

Sincem 6= 0 for k = 0, then applying preliminary 1 with
n = m 6= 0 mod M (in this casem ∈ {1, . . . , M −1}), (57)
implies thatci = 0 for i = 1, . . . , P completing the proof for
this special case.

In what follows, we takek 6= 0 where the following cases
arise.

Case 1: m 6= 0 and m 6= M − 1; in other words
m ∈ {1, . . . , M − 2}. In this case,m + 1 6= 0 mod M ,
then applying preliminary 1 withn = m+1, (54) implies that
ci = 0 for i = 1, . . . , k. In the same way, sincem 6= 0
mod M , then applying preliminary 1 withn = m, (55)
implies thatci = 0 for i = k + 1, . . . , P . Therefore,ci = 0
for i = 1, . . . , P completing the proof for this case.

For the remaining cases, (54)-(55) will be written in a more
convenient form as follows:

−cie1 + cσk(i)Ω
m+1e1 = 0M×1 ; i = 1, . . . , k (58)

−cσ−k(i)e1 + ciΩ
me1 = 0M×1 ; i = 1, . . . , P − k (59)

whereσ−k(.) can be obtained from (56) by replacingk with
−k.

Case 2: m = 0. In this case, applying preliminary 1 with
n = m + 1 = 1 6= 0 mod M , (58) results in the followingk
equalities:

ci = 0 ; i = 1, . . . , k (60)

as well as the equalitiescσk(i) = 0 for i = 1, . . . , k that can
be written in a more convenient way asci+(P−k) = 0 since
σk(i) = i+(P−k) for i ∈ {1, . . . , k}. Finally, these equalities
can be written as:

ci = 0 ; i = (P − k) + 1, . . . , P (61)

Moreover, applying preliminary 1 withn = m = 0
mod M , (59) results inci = cσ−k(i) for i = 1, . . . , P − k

that can be written in a more convenient way asci = ci+k

sinceσ−k(i) = i + k for i ∈ {1, . . . , P − k}. Finally, these
equalities can be written as:

ci = ci−k ; i = k + 1, . . . , P (62)

We will next prove that (60)-(62) imply thatci = 0 for all
values ofi. The proof calls for distinguishing the two cases
k > P − k andk ≤ P − k.

Case 2.1:k > P − k. In this case,k ≥ (P − k) + 1 and
(60) and (61) will imply thatci = 0 for all values ofi in
{1, . . . , P}.

Case 2.2:k ≤ P − k. In this case, replacingc1 = · · · =
ck = 0 from (60) in (62) results inck+1 = · · · = c2k = 0.
Replacing thesek zero values in (62) a second time results in
c2k+1 = · · · = c3k = 0. As a conclusion, applying the relation
in (62) recursively over blocks ofk values ofci’s keeping in
mind that the values in the previous block are zero results in
c1 = · · · = cP = 0.

Case 3: m = M − 1. In this case, applying preliminary
1 with n = m = M − 1 6= 0 mod M , (59) results in the
following P − k equalities:

ci = 0 ; i = 1, . . . , P − k (63)

as well as the equalitiescσ−k(i) = 0 for i = 1, . . . , P − k that
can be written in a more convenient way asci+k = 0 since
σ−k(i) = i+k for i ∈ {1, . . . , P−k}. Finally, these equalities
can be written as:

ci = 0 ; i = k + 1, . . . , P (64)

Moreover, applying preliminary 1 withn = m+1 = M = 0
mod M , (58) results inci = cσk(i) for i = 1, . . . , k that can
be written in a more convenient way asci = ci+(P−k) since
σk(i) = i+(P−k) for i ∈ {1, . . . , k}. Finally, these equalities
can be written as:

ci = ci−(P−k) ; i = (P − k) + 1, . . . , P (65)

For m = M − 1, we consider the two casesk < P − k and
k ≥ P − k.

Case 3.1:k < P − k. Since in this caseP − k ≥ k + 1,
(63) and (64) will imply thatci = 0 for i = 1, . . . , P .

Case 3.2:k ≥ P − k. In this case, replacingc1 = · · · =
cP−k = 0 from (63) in (65) results inc(P−k)+1 = · · · =
c2(P−k) = 0. As a conclusion, applying the relation in (65)
recursively over blocks ofP − k values ofci’s keeping in
mind that the values in the previous block are zero results in
c1 = · · · = cP = 0.

It is worth noting the analogy between cases 2.1 and 3.1
((m = 0, k > P − k) and (m = M − 1, k < P − k)) on
one hand and cases 2.2 and 3.2(m = 0, k ≤ P − k) and
(m = M − 1, k ≥ P − k)) on the other hand.

As a conclusion, all the above cases show that the matrix
Di has a full rank ofP for i 6= 0 completing the proof.

APPENDIX B

From (25), define theP × P matrix Ek,m as Ek,m =
[S0]T (Aj−i − IPM )S(0) where (k, m) = f(j − i) from
(8). Similarly, from (27), define theP × P matrix Fk,m as
Fk,m = [S0]T (2IPM −Aj−i−Ai−j)S(0). Consequently, (25)
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and (27) can be written as:

η
(ss)
k,m =

QL
∑

l=1

hT
l Ek,mhl (66)

var(η(sn)
k,m ) = N0

QL
∑

l=1

hT
l Fk,mhl (67)

We first consider the simple case ofk = 0 where in this
casem 6= 0 since j 6= i and hence(k, m) 6= (0, 0). In this
case,Ek,m is a diagonal matrix whose diagonal elements are
equal toeT

1 Ωme1 − eT
1 e1 = −1 since m 6= 0 resulting in

Ek,m = −IP andη
(ss)
k,m = −

∑QL

l=1 hT
l hl = −hTh from (66).

In the same way,Fk,m is a diagonal matrix whose diagonal
elements are equal to2eT

1 e1 − eT
1 Ωme1 − eT

1 Ω−me1 = 2
sincem 6= 0 which implies thateT

1 Ωme1 = eT
1 Ω−me1 = 0.

Consequently,Fk,m = 2IP and var(η(sn)
k,m ) = 2N0h

T h from
(67). As a conclusion, (30)-(31) are satisfied fork = 0.

In what follows, we consider the casek 6= 0. In this case,
Aj−i is a block matrix where the blocks on thek-th lower
diagonal are equal toΩm, the blocks on the(P − k)-th upper
diagonal are equal toΩm+1 while the remaining blocks are
zero. Consequently, the nonzero elements ofEk,m are the
diagonal elements that are equal to−1, the elements of thek-
th lower diagonal that are equal toeT

1 Ωme1 and the elements
of the(P −k)-th upper diagonal that are equal toeT

1 Ωm+1e1.
Similarly, the nonzero elements ofFk,m are (i): the diagonal
elements that are equal to 2, (ii): the elements of thek-th
lower diagonal that are equal to−eT

1 Ωme1, (iii): the elements
of the k-th upper diagonal that are equal to−eT

1 Ω−me1,
(iv): the elements of the(P − k)-th upper diagonal that are
equal to−eT

1 Ωm+1e1 and (v): the elements of the(P −k)-th
lower diagonal that are equal to−eT

1 Ω−m−1e1. In the case
wherek = P − k, the elements of thek-th lower diagonal
are−eT

1 Ωme1 − eT
1 Ω−m−1e1 while the elements of thek-th

upper diagonal are−eT
1 Ωm+1e1 − eT

1 Ω−me1. For k 6= 0, we
need to distinguish between the following three cases.

Case 1: m 6= 0 andm 6= M − 1. In this case,eT
1 Ωme1 =

eT
1 Ω−me1 = eT

1 Ωm+1e1 = eT
1 Ω−m−1e1 = 0 sinceΩm and

Ωm+1 are different from the identity matrixIM . Consequently,
Ek,m = −IP and Fk,m = 2IP and (66)-(67) take the same
values as in the casek = 0 completing the proof of (30)-(31)
in this case.

Case 2: m = 0. In this case,eT
1 Ωme1 = eT

1 Ω−me1 =
1 while eT

1 Ωm+1e1 = eT
1 Ω−m−1e1 = 0. Consequently,

Ek,m = −IP + Lk and Fk,m = 2IP − Lk − Uk where
Lk (resp.Uk) stands for the matrix whose elements are all
zero except for the elements on thek-th lower (resp. upper)
diagonal. Therefore, (66) simplifies toη(ss)

k,m = −hTh +
∑QL

l=1 hT
l Lkhl = −hTh +

∑QL

l=1

∑P−k

p=1 hl,phl,p+k where
hl,p stands for thep-th element ofhl. Defining Rl(k) ,
∑P−k

p=1 hl,phl,p+k, then this term corresponds to the sum of
the elements on thek-th upper (or lower) diagonal of the sym-
metrical matrixhlh

T
l . Consequently,η(ss)

k,m = −hTh + R(k)

where R(k) ,
∑QL

l=1 Rl(k). Similarly, (67) simplifies to
var(η(sn)

k,m ) = N0(2h
Th−R(k)−R(k)) = 2N0(h

T h−R(k))
completing the proof of (30)-(31).

Case 3: m = M − 1. In this case,eT
1 Ωm+1e1 =

eT
1 Ω−m−1e1 = 1 while eT

1 Ωme1 = eT
1 Ω−me1 = 0.

Consequently,Ek,m = −IP + LP−k and Fk,m = 2IP −

LP−k −UP−k. Therefore, in a way similar to case 2,η
(ss)
k,m =

−hTh + R(P − k) and var(η(sn)
k,m ) = 2N0(h

Th− R(P − k))
completing the proof of (30)-(31).
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