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Abstract— We propose to approximate the distribution of the
sum of identically-distributed lognormal random variables by
an Erlang distribution. The advantage of the proposed approx-
imation over the lognormal and non-lognormal approximations
proposed in the literature resides mainly in the fact that it results
in simple closed-form expressions of the average bit-error-rate
(BER) thus offering clear insights on the performance of diversity
combining techniques over correlated and uncorrelated lognor-
mal fading channels. For instance, the proposed approach shows
that, for typical values of the BER, the diversity order in the case
of non-severe lognormal fading can be accurately approximated
by the order of the approximating Erlang distribution.

Index Terms— Lognormal-sum distribution, Erlang distribu-
tion, lognormal fading, diversity, performance analysis.

I. I NTRODUCTION

Recent research focused on evaluating the performance of
diversity combining techniques over lognormal fading chan-
nels. The interest in the lognormal distribution arises from
the fact that it accurately models the propagation over indoor
channels [1] and over turbulent atmospheric Free-Space Opti-
cal (FSO) channels [2]. In the same way, the IEEE 802.15.3a
channel model recommendation adopted lognormal cluster and
multi-path shadowing for characterizing the Ultra-Wideband
(UWB) channels [3]. In this context, the outage probability
of SIMO-RF systems employing Selective-Combining (SC)
was studied in [4]. [5] provided expressions for the outage
probability of MRC, EGC and SC. [6] investigated the average
Bit-Error-Rate (BER) performance over MIMO-FSO links.
Finally, the average BER and the achievable diversity gain
over UWB channels were analyzed in [7] and [8] respectively.

Despite this extensive effort in analyzing the lognormal
fading channels, an intuitive and simple closed-form expres-
sion that characterizes the performance of diversity combining
techniques over such channels is unavailable. For example,
over Rayleigh fading channels, the average BER scales asymp-
totically asSNR−L whereSNR stands for the signal-to-noise
ratio andL corresponds to the number of parallel channels
between the transmitter and the receiver; however, a similar
expression for lognormal fading channels is still missing.For
example, [4]- [5] necessitate the numerical evaluation ofL and
L−1 nested integrals, respectively. In the same way, in [6]- [7],
the average BER was expressed in integral forms that do not
admit closed-form solutions since they correspond to variants
of the lognormal density frustration function defined in [9]
as: Fr(a, 0, b) =

∫ +∞

0
1√

2πbx
exp

(

−ax2
)

exp
[

− (ln(x)+b2)2

2b2

]

dx.
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Finally, despite the fact that the integrals in [5]- [6] wereevalu-
ated numerically by applying the Gauss-Legendre quadrature
formula, the obtained results do not give a clear idea about
how do the outage probability and BER scale with the SNR.

Evaluating the BER over lognormal fading channels re-
quires a knowledge of the Probability Density Function (PDF)
of the sum of lognormal random variables. The literature of
approximating the lognormal-sum PDF that does not have an
exact expression is huge [10]–[13]. The lognormal-sum distri-
bution is often approximated by another lognormal distribution
by applying different methods and optimization techniques
[10]. Recently non-lognormal approximations were considered
where a two-component mixture of lognormals [11], a power
lognormal distribution [12] and a type IV Pearson distribution
[13] were proposed. However, the disadvantage of approximat-
ing the lognormal-sum PDF by a lognormal PDF resides in the
fact that the average BER will have an integral form that does
not admit a closed-form solution [7]. On the other hand, the
complexity of the approaches adopted in [11]–[13] results in
complicated expressions of the PDFs and in intractable results
in terms of the BER.

In this paper, we propose the Erlang distribution as an
alternative approximation for the lognormal-sum distribution
in the case of “non-severe” fading; that is, in the case wherethe
variance of the summands is relatively small. Despite the fact
that the proposed Erlang approximation is not as accurate as
the other existing and widely approved approximations [10]–
[13], the motivations behind adopting the Erlang distribution
can be summarized as follows (1): The Erlang distribution
results in closed-form PDFs with acceptable accuracy for a
wide range of lognormal summands and their corresponding
parameters, (2): the Erlang distribution holds in both cases
of the sum of correlated or uncorrelated lognormal random
variables, (3): the Erlang approximation results in simple
closed-form asymptotic expressions of the average BER with
the lognormal and lognormal-sum distributions.

II. LOGNORMAL-SUM APPROXIMATION

A. Preliminaries

Consider the case ofL parallel lognormal fading channels
that are described by the channel coefficients{hl}L

l=1. Assum-
ing that these channels are identically distributed, the PDF of
the lognormal random variable (r.v.)hl can be written as:

f(hl) =
ξ√

2πσhl

exp

[

− (20 log10(hl) − µ)
2

2σ2

]

(1)

whereµ andσ2 correspond to the mean and variance of the
Gaussian r.v.20 log10(hl) for all values ofl andξ is a constant
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that is given by:ξ = 20/ ln(10). The average power ofhl is
normalized to unity by fixingµ = −σ2/ξ.

For a given channel realization, the instantaneous sig-
nal to noise ratio is proportional to the r.v.h defined as:
h =

∑L
l=1 h2

l . Since h1, . . . , hL are lognormal r.v.s, then
h2

1, . . . , h
2
L are also lognormal r.v.s implying thath corre-

sponds to the summation ofL lognormal random variables.
The average BER using BPSK is given by:

Pe =

∫ ∞

0

Q
(√

SNR.x
)

fh(x)dx (2)

where fh(x) corresponds to the PDF of the r.v.h and the
function Q(x) is defined by:Q(x) = 1√

2π

∫ ∞

x
e−t2/2dt.

In this paper, we are interested in the asymptotic behavior

of Pe for SNR ≫ 1. SinceQ(x) ≤ 1√
2π

e−x2/2

x :

Pe ≤ 1√
2π

∫ ∞

0

1√
SNR.x

exp

[

−SNR.x

2

]

fh(x)dx (3)

with the above upper-bound becoming tighter for larger values
of the SNR. Note that the above integral can not be evaluated
analytically when the lognormal-sum PDFfh(.) is approxi-
mated by any one of the distributions proposed in [10]–[13].

B. Erlang approximation of the lognormal-sum PDF

In this work, we propose to approximate the exact
lognormal-sum PDFfh(x) by an Erlang PDFgh(x):

gh(x) =
e−λxxn−1λn

(n − 1)!
; x ≥ 0, n ∈ N, λ > 0 (4)

The main motivation behind adopting the Erlang distrib-
ution as our desired generic approximation resides first in
its simplicity and in the resemblance between its PDF and
that of the lognormal-sum distribution. On the other hand,
in their analysis of queues, the authors of [14] suggested an
Erlang distribution in the case where the squared coefficient
of variation c2

v = var[h]
E2[h] of the service distribution does not

exceed 0.5. Since we observed thatc2
v is always less than 0.5

for the case of non-severe fading, this constituted the second
motivation in considering the Erlang approximation.

In this work, the choice ofn andλ is based on the criterion
of minimizing the mean-square-errorMSE =

∫ +∞

0 [fh(x) −
gh(x)]2dx between the exact and approximate distributions.
This solution can be obtained numerically by applying the
least-squares nonlinear curve fitting techniques. The conver-
gence and accuracy of such algorithms can be enhanced by an
appropriate choice of the starting point. Matching the means
and variances offh(.) andgh(.) results in:

Ef [h] = Eg[h] =
n

λ
; varf [h] = varg[h] =

n

λ2
(5)

where the functionsEf [.] andEg[.] (resp. varf [.] and varg[.])
correspond to evaluating the means (resp. variances) with
respect to the exact and approximate distributionsfh(.) and
gh(.) respectively. Solving the above equations results in:

(n0, λ0) , (n, λ) =
(

E2

f [h]

varf [h] ,
Ef [h]
varf [h]

)

whereEf [h] and varf [h]

can be evaluated numerically from the exact distribution. The
point (n0, λ0) is chosen as the starting point of the algorithm.

Results show that the Erlang approximation is accurate for
values ofσ not exceeding3 dB. In other words, the proposed
approach is useful only for evaluating the performance over
channels that do not suffer from severe fading. Practically,
this corresponds to the case of FSO links with non-severe
turbulence [2] or to indoor UWB channels [3].

C. BER calculation

After finding the optimal Erlang PDFgh(.) that best fits
fh(.), we replacefh(x) by its approximation in eq. (3). The
integral in this equation can be readily solved resulting in:

Pe ≤ 1√
2π

Γ(n − 1
2 )

(n − 1)!

1
(

SNR
λ

)
1

2

1
(

1 + SNR
2λ

)n− 1

2

(6)

where Γ(x) =
∫ +∞

0
e−ttx−1dt corresponds to the Gamma

function (x ≥ 0).
For sufficiently large values of the SNR, the upper-bound in

eq. (6) becomes tight implying thatPe can be approximated
in the high SNR regime by:

Pe ≈ 2n−1

√
π

Γ(n − 1
2 )

(n − 1)!

1
(

SNR
λ

)n (7)

Equation (7) shows thatPe scales asymptotically as
(

SNR
λ

)−n
implying that the overall diversity order is equal to

n which is nothing but the order of the Erlang approximation.
Inspecting eq. (7) also shows that the dominant term that has
the major influence on the BER performance is the parameter
n. While the slope of the BER curve changes withn, the
term 1/λ only results in an additional shift of the BER
curve. Consequently, the parametern alone can constitute
a simple quantitative indicator on the achievable asymptotic
diversity orders over lognormal fading channels. Interestingly,
the numerical results show thatn is an increasing function of
L, a decreasing function ofσ and a decreasing function ofρ
(the correlation coefficient between the different co-channels).

On the other hand, for finite SNRs, the diversity order of
lognormal fading channels can be quantified in a more mean-
ingful way by the so-calledrelative diversity order defined in
[15] as:

RDO(SNR) =

(

∂ log Pe

∂ log SNR

) (

∂ log Pe,BM

∂ log SNR

)−1

(8)

wherePe is given in eq. (6) andPe,BM is the average BER of
a benchmark scheme corresponding toL = 1 [15]. Note that,
from eq. (7),RDO(SNR) is proportional ton asSNR ≫ 1.

III. N UMERICAL RESULTS

We performed an extensive numerical analysis that showed
that the proposed approximation is accurate for all values of
L, σ and ρ in the intervals{1, . . . , 16}, [0 3] dB and [0 1]
respectively. For example, Fig. 1 shows that the exact and
approximate PDFs are very close forσ = 2 dB andρ = 0.

Fig. 2 shows the close match between the exact and ap-
proximate BERs that are evaluated numerically from eq. (2)
using the exact and approximate PDFs, respectively, forσ = 2
dB andρ = 0. This figure also shows the upper-bound given
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Fig. 1. Exact PDFs versus the approximate PDFs forσ = 2 dB andρ = 0.
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Fig. 2. BER performance forσ = 2 dB andρ = 0.

in eq. (7). The proposed upper-bound turns out to be very
close to the exact BER for SNRs that are not excessively very
large. Similar results are obtained in Fig. 3 in the presence
of channel correlation (ρ = 0.75). This figure also shows the
performance loss that results from channel correlation.

Fig. 4 shows the variation ofRDO(SNR) as a function
of L for different values ofSNR. Results clearly show the
increase of the diversity order withL and its decrease withρ.

IV. CONCLUSION

We investigated the performance of diversity combining
techniques over identically-distributed non-severely faded log-
normal channels. We have shown that the average BER scales
asymptotically asSNR−n wheren stands for the order of the
Erlang distribution used to approximate the exact lognormal
or lognormal-sum distribution.
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