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Unipolar Space-Time Codes with Reduced
Decoding Complexity for TH-UWB with PPM
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Abstract—In this paper, we consider the problem of Space-
Time (ST) coding with unipolar Pulse Position Modulations
(PPM) and propose a novel ST code that satisfies a large number
of construction constraints rendering it superior to the existing
PPM encoding schemes. In particular, the proposed2 × 2 code
achieves a full transmit diversity order while transmittin g at a
rate of 1 PPM-symbol per channel use. The proposed scheme can
be associated withM -ary PPM constellations for all even values
of M without introducing any constellation expansion. This
renders the proposed scheme suitable for low cost carrier-less
Ultra-Wideband (UWB) systems where information must be con-
veyed only by the time delays of the modulated sub-nanosecond
pulses without introducing any amplitude amplifications or phase
rotations. Finally, the proposed scheme can be associated with a
reduced complexity optimal Maximum-Likelihood (ML) decoder
that takes the structure of the proposed code into consideration
in order to simplify the decoding procedure. We also propose
a simple diversity-preserving suboptimal decoder that requires
approximately half the number of multiplications compared to
the ML decoder. Possible extensions to transmitters equipped
with three antennas are also discussed in situations where a
certain number of feedback bits is available.

Index Terms—Time-Hopping Ultra-Wideband (TH-UWB),
Space-Time (ST), Pulse Position Modulation (PPM).

I. I NTRODUCTION

There is a growing interest in applying Space-Time (ST)
coding techniques on Time-Hopping Ultra-WideBand (TH-
UWB) systems [1], [2]. For these systems, Pulse Position
Modulation (PPM) is appealing since it is difficult to control
the phase and amplitude of the very low duty-cycle sub-
nanosecond pulses used to convey the information symbols.

Two different approaches can be adopted for the construc-
tion of ST codes suitable for PPM. The first approach consists
of applying one of the numerous ST codes proposed in the
literature for QAM, PAM or PSK [3], [4]. In this context, it
can be easily proven that these codes remain fully diverse with
PPM [2]. However, the disadvantage is that all of these codes
introduce phase rotations or amplitude amplifications in order
to achieve a full transmit diversity order and, consequently,
they introduce an additional constellation expansion when
associated with PPM. For example, while single-antenna PPM
systems transmit unipolar pulses, applying the Alamouti code
[3] with PPM necessitates the transmission of pulses having
positive and negative polarities.

In order to overcome the above disadvantage, the sec-
ond approach consists of constructing shape-preserving PPM-
specific unipolar codes [5]–[7]. However, all of these codes
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are exclusive to binary PPM (or OOK) and they permit to
achieve a full transmit diversity order because of the structure
of such binary constellations that are composed of a signal
and its opposite defined as the signal obtained by reversing
the roles of “on” and “off” [5]. Various extensions toM -
ary constellations were proposed in [8]. However, this was
realized at the expense of an increased receiver complexity
since, to preserve diversity, these codes must be associated
with complex nonlinear decoders such as the sphere decoder
[9].

The first contribution of this paper is the proposition of
a rate-1, fully diverse and shape-preserving ST block code
for unipolar PPM with two transmit antennas. The advantage
over [5]–[7] is that the proposed scheme can be associated
with M -PPM for all even values ofM . The advantage over
[8] is that the proposed code admits a reduced complexity
maximum-likelihood decodability. Note that unlike [3], this
simplified decodability is realized even though the proposed
scheme is unipolar and not orthogonal. Note that symbol-by-
symbol decodable codes that are not based on the orthogonal
design were first proposed in [10] for QAM constellations.

Inspired from [11], the second contribution consists of
extending the proposed scheme to three antennas when 1,
2 or 3 feedback bits are available. In this case, a transmit
diversity order of three can be achieved with a simple re-
duced complexity decodability. Note that in the absence of
feedback, the only existing solution for three-antenna systems
is exclusive toM -PPM with M =3 or M ≥5 [8]. Finally, we
propose simple suboptimal decoders that can take advantage
from the transmit diversity offered by the proposed schemes.
The proposed optimal and suboptimal decoders are compared
in terms of performance and complexity that is measured
by the number of multiplications necessary for decoding one
information symbol.

II. T WO TRANSMIT ANTENNAS WITH NO FEEDBACK

A. System Model

Consider a TH-UWB system where the transmitter is
equipped with2 antennas and the receiver is equipped with
Q antennas. In what follows, we propose a minimal-delay
diversity scheme that extends over two symbol durations.
Denote bysp(t) the signal transmitted from thep-th antenna
for p = 1, 2. We propose the following structure for the
transmitted signals:

s1(t) = w (t − (p1 − 1)δ) + w(t − Ts − (p2 − 1)δ) (1)

s2(t) = w(t − (π(p2) − 1)δ) + w(t − Ts − (p1 − 1)δ) (2)
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where pi ∈ {1, . . . , M} corresponds to the modulation po-
sition of the i-th information symbol fori = 1, 2. w(t) is
the pulse waveform of durationTw normalized to have an
energy ofEs/2 whereEs is the energy used to transmit one
information symbol and the normalization by2 insures the
same transmission level as in the single-antenna case. The
modulation delayδ corresponds to the separation between two
consecutive PPM positions whileTs stands for the symbol
duration.

Note that twoM -PPM symbols are transmitted during two
symbol durations and the proposed scheme transmits at a rate
of one symbol per channel use (PCU). No reference to the
TH sequence was made since all antennas of the same user
are supposed to share the same TH sequence resulting in the
same average multi-user interference as in the single-antenna
case.

The permutation functionπ(.) in eq. (2) is defined by:

π(m) = (m mod 2) + 2

⌊

m − 1

2

⌋

+ 1 (3)

where⌊x⌋ rounds the real numberx to the nearest integer that
is less than or equal to it.

From eq. (1) and eq. (2), the pulses transmitted from the
two antennas during two consecutive symbol durations occupy
the positionsp1, p2 andπ(p2). Sinceπ(.) defines a mapping
over the elements of the set{1, . . . , M} when M is even,
then p1, p2, π(p2) ∈ {1, . . . , M}. Moreover, the transmission
strategy described in eq. (1) and eq. (2) does not introduce any
amplitude scaling. Consequently, during each symbol duration,
only one unipolar pulse occupying one out ofM possible
positions is transmitted. Therefore, the proposed scheme does
not introduce any expansion to theM -PPM constellation for
all values ofM .

In what follows,M is limited to take even values.M -ary
PPM constellations areM -dimensional constellations where
the information symbols are represented byM -dimensional
vectors that belong to the following signal set:

C = {IM,m ; m = 1, . . . , M} (4)

whereIM,m is them-th column of theM×M identity matrix
IM .

Designate byai , [ai,1 · · · ai,M ]T = IM,pi
∈ C the

M -dimensional vector representation of thei-th information
symbol for i = 1, 2. Equations (1) and (2) can be written as:

s1(t) =

M
∑

m=1

[a1,mw(t−(m−1)δ) + a2,mw(t−Ts−(m−1)δ)]

(5)

s2(t)=
M
∑

m=1

[

a2,π(m)w(t−(m−1)δ)+a1,mw(t−Ts−(m−1)δ)
]

(6)

where ai,m is the m-th component ofai with ai,m = 1 if
m = pi andai,m = 0 otherwise.

The received signal at theq-th antenna can be written as:

rq(t) =

2
∑

p=1

sp(t) ∗ gq,p(t) + nq(t) (7)

where∗ stands for convolution andnq(t) is the noise at the
q-th antenna which is supposed to be real AWGN with double
sided spectral densityN0/2. gq,p(t) stands for the impulse
response of the frequency selective channel between thep-th
transmit antenna and theq-th receive antenna.

In order to take advantage from the rich multi-path diversity
of the UWB channels, aL-th order Rake is used after each
receive antenna. Designate byyq,l,i,m the decision variable
collected at thel-th Rake finger of theq-th receive antenna
during them-th position of thei-th symbol duration forq =
1, . . . , Q, l = 1, . . . , L, i = 1, 2 andm = 1, . . . , M . Each one
of these2QLM decision variables is given by:

yq,l,i,m =

∫ +∞

−∞

rq(t)w(t −∆l − (i− 1)Ts − (m− 1)δ)dt (8)

where∆l , (l − 1)Tw stands for the delay of thel-th finger
of the Rake.

Designate byTc the delay spread of the UWB channel
(Tc ≫ Tw). Inter-Symbol-Interference (ISI) can be eliminated
by choosingTs ≥ Tc+Tw. In the same way, the received PPM
constellation is orthogonal if the modulation delay satisfies the
relation:δ ≥ Tc+Tw. In what follows, we consider orthogonal
received PPM constellations in the absence of ISI since only
in this case the proposed scheme can be associated with a ML
decoder having a reduced complexity. In this case, the decision
variables given in eq. (8) can be written as:

yq,l,1,m = hq,1,la1,m + hq,2,la2,π(m) + nq,l,1,m (9)

yq,l,2,m = hq,2,la1,m + hq,1,la2,m + nq,l,2,m (10)

wherenq,l,i,m stands for the noise term during thei-th symbol
duration:nq,l,i,m =

∫ +∞

−∞ nq(t)w(t − ∆l − (i − 1)Ts − (m −
1)δ)dt. Moreover, sinceδ ≥ 2Tw and∆l−∆l−1 ≥ Tw, it can
be easily proven that these noise terms are white. In eq. (9)
and eq. (10), the channel coefficients are given by:hq,p,l =
∫ +∞

−∞ hq,p(t)w(t − ∆l)dt wherehq,p(t) , gq,p(t) ∗ w(t).

B. Optimal ML Decoding

1) Decoding Strategy: Despite the absence of orthogonality
between the transmitted data streams (since the transmitted
signals are unipolar), we propose a simple ML decoder that
takes advantage from the structure of the proposed code in
order to simplify the decoding procedure.

At a first time, we propose to partition theM PPM
positions intoM/2 slots containing2 positions each. In this
case, then-th slot will contain positions2n − 1 and 2n for
n = 1, . . . , M/2. Assume that the second symbol (whose
position is given byp2) is in then-th slot:p2 ∈ {2n−1, 2n}.
This implies thata2,m = 0 for m 6= 2n − 1 and m 6= 2n.
On the other hand, eq. (3) implies thatπ(2n − 1) = 2n
and π(2n) = 2n − 1. Moreover, one of the values in
{a2,2n−1, a2,2n} is equal to1 while the other value is equal
to 0. Consequently, conditioned on the presence ofp2 in the
n-th slot, the components of vectora2 satisfy the following
relation:

a2,π(m) =

{

0, m /∈ {2n− 1, 2n};
−a2,m + 1, m ∈ {2n− 1, 2n}.

(11)



3

Consequently, form /∈ {2n − 1, 2n}, eq. (9) and eq. (10)
can be written as:

yq,l,1,m = hq,1,la1,m + nq,l,1,m (12)

yq,l,2,m = hq,2,la1,m + nq,l,2,m (13)

While for m ∈ {2n − 1, 2n}, eq. (9) and eq. (10) can be
written as:

(yq,l,1,m − hq,2,l) = hq,1,la1,m − hq,2,la2,m + nq,l,1,m (14)

yq,l,2,m = hq,2,la1,m + hq,1,la2,m + nq,l,2,m (15)

Equations (12)-(15) resemble the input-output relations of
the Alamouti code [3]. Consequently, the first information
symbol (which is represented by the vectora1) can be de-
coded by constructing the followingM decision variables
{b1,m}M

m=1. For m /∈ {2n− 1, 2n}, b1,m is given by:

b1,m =

Q
∑

q=1

L
∑

l=1

[hq,1,lyq,l,1,m+hq,2,lyq,l,2,m] (16)

while for m ∈ {2n− 1, 2n}, b1,m takes the following form:

b1,m =

Q
∑

q=1

L
∑

l=1

[hq,1,l(yq,l,1,m−hq,2,l)+hq,2,lyq,l,2,m] (17)

implying thatb1,m can be written as:

b1,m , b
(0)
1,m +

{

0, m /∈ {2n− 1, 2n};
K1, m ∈ {2n− 1, 2n}.

(18)

where b
(0)
1,m ,

∑Q
q=1

∑L
l=1 [hq,1,lyq,l,1,m + hq,2,lyq,l,2,m]

depends on the transmitted signal andK1 ,

−
∑Q

q=1

∑L
l=1 hq,1,lhq,2,l is constant (it depends only

on the channel realization).
On the other hand, since we assume thata2 is in the n-

th slot, then for the detection ofa2 we need to construct the
following two decision variables:

b2,m =

Q
∑

q=1

L
∑

l=1

[−hq,2,l(yq,l,1,m−hq,2,l)+hq,1,lyq,l,2,m] (19)

, b
(0)
2,m − b

(1)
2,m + K2 ; m ∈ {2n − 1, 2n} (20)

where b
(0)
2,m ,

∑Q
q=1

∑L
l=1 hq,1,lyq,l,2,m, b

(1)
2,m ,

∑Q
q=1

∑L
l=1 hq,2,lyq,l,1,m and K2 =

∑Q
q=1

∑L
l=1 h2

q,2,l

is a positive constant.
Note that in the absence of noise, eq. (18) and eq. (20)

imply that:

bi,m =

{

∑Q
q=1

∑L
l=1

(

h2
q,1,l + h2

q,2,l

)

, m = pi;

0, m 6= pi.
; i = 1, 2

(21)
where eq. (21) holds in the case where the conditioning is
made on the correct slot numbern.

A detailed analysis of the diversity order of the proposed
ST code will be given in section II-D. However, in a simplified
manner, eq. (21) shows that at high signal-to-noise ratios
bi,pi

≪ 1 if and only if |hq,p,l|≪1 for q = 1, . . . , Q, p = 1, 2
and l = 1, . . . , L. In other words, the information symbols
are lost only when thePQ sub-channelsgq,p(t) suffer from

fading over a durationLTw. Therefore, the proposed scheme
achieves full transmit, receive and multi-path diversities.

Sincep1 can occupy any one of the positions{1, . . . , M},
then conditioned on the event thata2 is in then-th slot, eq.
(18) implies thatp1 can be decoded from:

p̃1(n) = arg max
m=1,...,M

([b1,1 · · · b1,M ])

= arg max
m=1,...,M

([

b
(0)
1,1 · · · b

(0)
1,M

]

+K1

(

(IM/2,n)T ⊗ [1 1]
)

)

(22)

whereIM/2,n stands for then-th column of theM/2×M/2
identity matrixIM/2 and⊗ stands for the Kronecker product.

On the other hand, given thatp2 can occupy only one of the
two positions{2n−1, 2n}, then conditioned on the event that
a2 is in then-th slot, eq. (20) implies thatp2 can be decoded
from:

p̃2(n) = 2(n − 1) + arg max ([b2,2n−1 , b2,2n])

=2(n−1)+argmax
([

b
(0)
2,2n−1, b

(0)
2,2n

]

−
[

b
(1)
2,2n−1, b

(1)
2,2n

]

+K2

)

≡ 2(n−1)+argmax
([

b
(0)
2,2n−1, b

(0)
2,2n

]

−
[

b
(1)
2,2n−1, b

(1)
2,2n

])

(23)

where the last equation follows sinceK2 does not depend on
the transmitted information symbols.

Let ã1(n) , IM,p̃1(n) and ã2(n) , IM,p̃2(n). After repeat-
ing the operations described in eq. (22) and eq. (23)M/2

times to construct the sets{ã1(n)}
M/2
n=1 and{ã2(n)}

M/2
n=1 , the

receiver decides in favor of(â1, â2) = (ã1(n̂), ã2(n̂)) where:

n̂=argmin
n=1,..., M

2

∑

q,l,m

[

(

yq,l,1,m−hq,1,lã1,m(n)−hq,2,lã2,π(m)(n)
)2

+ (yq,l,2,m − hq,2,lã1,m(n) − hq,1,lã2,m(n))
2
]

(24)

whereãi,m(n) is them-th component of the vector̃ai(n) for
i = 1, 2.

Because of the structure of the PPM constellation, the
decision rule in eq. (24) can be significantly simplified. In the
appendix we prove that an equivalent decision rule is given
by:

n̂ = arg max
n=1,...,M/2

Q
∑

q=1

L
∑

l=1

[

hq,1,l

(

yq,l,1,p̃1(n) + yq,l,2,p̃2(n)

)

+hq,2,l

(

yq,l,2,p̃1(n) + yq,l,1,π(p̃2(n))

)

−hq,1,lhq,2,lδ⌈p̃1(n)/2⌉,n]
(25)

whereδi,j stands for Kronecker’s delta function (δi,j = 1 for
i = j and δi,j = 0 for i 6= j) and where⌈x⌉ rounds the real
numberx to the nearest integer that is greater than or equal
to it.

Following from the definitions of the intermediate decision
variablesb(0)

1,m, b
(0)
2,m andb

(1)
2,m and the constantK1 given in eq.

(18) and eq. (20), the decision rule in eq. (25) can be written
as:

n̂=argmax
n=1,..., M

2

[

b
(0)
1,p̃1(n)+b

(0)
2,p̃2(n)+b

(1)
2,π(p̃2(n))+K1δ⌈p̃1(n)/2⌉,n

]

(26)
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2) Decoding Complexity: In this subsection, we evaluate
the complexity of the proposed ML decoder in terms of
the number of multiplications required for decoding a pair
of information symbols(a1, a2). This simplified approach
neglects the complexity of the additions and comparisons
involved in the decoding algorithm.

The ML decoding procedure described in the previous
subsection can be summarized in the following steps:

1) a) The receiver calculates theM intermediate deci-
sion variables{b(0)

1,m}M
m=1 described in eq. (18).

This step necessitates2QLM multiplications.
b) The receiver calculates theM intermediate deci-

sion variables{b(0)
2,m}M

m=1 described in eq. (20).
This step necessitatesQLM multiplications.

c) The receiver calculates theM intermediate deci-
sion variables{b(1)

2,m}M
m=1 described in eq. (20).

This step necessitatesQLM multiplications.
d) The receiver calculates the constantK1 in eq. (18).

This step necessitatesQL multiplications. Note
that the constantK2 in eq. (20) is not required
for further decoding steps.

2) The receiver repeats the operation described in eq. (22)
M/2 times to construct the set{p̃1(n)}

M/2
n=1 . This op-

eration does not require any number of multiplications.
In fact, the constantK1 in eq. (22) is multiplied by
either zero or one and then added to the decision vector
to determine the maximum component of this vector.
Evidently, there are no multiplications involved in this
procedure.

3) The receiver repeats the operation described in eq.
(23) M/2 times to construct the set{p̃2(n)}

M/2
n=1 . Once

again, this procedure does not require any number of
multiplications. In fact, the constants{2(n− 1)}

M/2
n=1 =

{0, 2, . . . , M − 2} can be calculated and stored before
the decoding of each symbol pair.

4) The decoder evaluates theM/2 decision metrics in eq.
(26) and decides in favor of the positions(p̃1(n), p̃2(n))
having the largest metric. No multiplications are in-
volved in this step since evaluating the quantity

K1δ⌈p̃1(n)/2⌉,n =

{

K1, p̃1(n) ∈ {2n− 1, 2n};
0, p̃1(n) /∈ {2n− 1, 2n}.

(27)
does not require any multiplications.

Note that step (1) is performed before conditioning on the
slot indexn of the second information symbol. The remaining
steps (2)-(4) perform the appropriate comparisons associated
with the assumption that the second symbol is in then-th slot.

From what preceded, the ML decoder requires4QLM+QL
multiplications for the detection of one pair of information
symbols. Note also that the constantK1 (that requiresQL
multiplications) depends only on the channel realization.Con-
sequently,K1 needs to be calculated once for each channel
realization. Assuming a block fading channel that extends over
N pairs of symbol durations, decoding the2N information
symbols requires4NQLM + QL multiplications (rather than
N(4QLM + QL) multiplications). Note that since in IR-
UWB systems the information on the phase is not retained,

all of the above multiplications correspond to real-valued
multiplications.

Note that the complexity of the proposed ML decoder
is comparable to that of the Alamouti code [3]. In fact,
for decodingN pairs of one-dimensional PAM symbols, the
Alamouti code requires4NQL real-valued multiplications. On
the other hand, for decodingN pairs of M -dimensionalM -
PPM symbols, the proposed decoder requires4NQLM +QL
real-valued multiplications. In other words, the additional
complexity of the proposed decoder follows mainly from the
dimensionality of the PPM signal set and not from the structure
of the encode/decoder.

C. Suboptimal Decoding

1) Decoding Strategy: In this section, we propose a sub-
optimal decoder that has a lower decoding complexity. The
decoding procedure at the receiver side can be simplified by
constructing the followingQLM decision variables:

zq,l,i,n = yq,l,i,2n−1 − yq,l,i,2n ; n = 1, . . . , M/2 (28)

Based on the permutation rule given in eq. (3), it follows
thatπ(2n) = 2n−1 andπ(2n−1) = 2n for n = 1, . . . , M/2.
Consequently, using eq. (9) and eq. (10) in eq. (28) results in:

zq,l,1,n = hq,1,ls1,n − hq,2,ls2,n + n′
q,l,1,n (29)

zq,l,2,n = hq,2,ls1,n + hq,1,ls2,n + n′
q,l,2,n (30)

where:

si,n , ai,2n−1 − ai,2n ; i = 1, 2 ; n = 1, . . . , M/2 (31)

andsi,n ∈ {0,±1} sinceai,1, . . . , ai,M ∈ {0, 1} for i = 1, 2.
In the same way, the noise terms are given by:n′

q,l,i,n =
nq,l,i,2n−1 − nq,l,i,2n for i = 1, 2.

Note that the input-output relations given in eq. (29-30)
are similar to the relations verified by the Alamouti code [3].
However, the orthogonal-like behavior of the proposed scheme
is achieved mainly because of the position permutations
described in eq. (3) and the associated decoding technique
without necessitating any polarity inversion of the transmitted
PPM pulses.

Finally, assuming perfect channel state information at the
receiver side (knowledge of the coefficientshq,p,l), the deci-
sions taken on the information symbols will be based on the
following M decision variables (forn = 1, . . . , M/2):

Z1,n =

Q
∑

q=1

L
∑

l=1

[hq,1,lzq,l,1,n + hq,2,lzq,l,2,n] (32)

Z2,n =

Q
∑

q=1

L
∑

l=1

[−hq,2,lzq,l,1,n + hq,1,lzq,l,2,n] (33)

Replacing equations (29) and (30) in equations (32) and
(33) results in (fori = 1, 2 andn = 1, . . . , M/2):

Zi,n =

[

Q
∑

q=1

2
∑

p=1

L
∑

l=1

h2
q,p,l

]

si,n + Ni,n (34)
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where N1,n =
∑

q,l

[

hq,1,ln
′
q,l,1,n + hq,2,ln

′
q,l,2,n

]

and

N2,n =
∑

q,l

[

−hq,2,ln
′
q,l,1,n + hq,1,ln

′
q,l,2,n

]

. It can be easily
proven that these noise terms are still white.

In a simplified manner, by inspecting eq. (34) we observe
that Zi,n ≪ 1 if and only if the 2QL channel coefficients
hq,p,l (for q = 1, . . . , Q, p = 1, 2 and l = 1, . . . , L) all have
small magnitudes. This shows that the overall diversity order
of the system is2QL. Consequently, the proposed suboptimal
decoder preserves the transmit diversity order of the proposed
ST code.

Since the modified symbolss1,n ands2,n given in eq. (31)
can be equal to zero, then the first step in decoding thei-th
information symbol consists of calculating the integern̂i such
that:

n̂i = arg max
n=1,...,M/2

|Zi,n| ; i = 1, 2 (35)

Following from eq. (35), the reconstituted position of the
i-th PPM information symbol is:

p̂i =

{

2n̂i − 1, Zi,n̂i
≥ 0;

2n̂i, Zi,n̂i
< 0.

; i = 1, 2 (36)

in other words, the vector representation of thei-th reconsti-
tuted information symbol will be given by:̂ai = IM,p̂i

∈ C
for i = 1, 2 whereC is given in eq. (4).

2) Decoding Complexity: The proposed suboptimal decod-
ing procedure can be summarized in the following steps:

1) The receiver calculates theQLM intermediate decision
variableszq,l,i,n given in eq. (28) forq = 1, . . . , Q,
l = 1, . . . , L, i = 1, 2 and n = 1, . . . , M/2. This step
does not require any number of multiplications.

2) The receiver calculates theM/2 decision variables
{Z1,n}

M/2
n=1 given in eq. (32). This step necessitates

2QL(M/2) = QLM multiplications.
3) The receiver calculates theM/2 decision variables

{Z2,n}
M/2
n=1 given in eq. (33). This step necessitates

2QL(M/2) = QLM multiplications.
4) The receiver decides in which slots are the two infor-

mation symbols present according to eq. (35). This step
does not require any number of multiplications.

5) The receiver decides in which positions within the slots
(determined in the previous step) are the two information
symbols present according to eq. (36). This step does not
require any number of multiplications. In fact, ifZi,n̂i

is positive (resp. negative), the receiver decides in favor
of the first (resp. second) position withing slotn̂i for
i = 1, 2.

Consequently, for the detection ofN pairs of information
symbols, the simplified suboptimal decoder requires2NQLM
multiplications which is approximately half the number of
multiplications required by the optimal ML decoder (for large
values ofN ).

D. Diversity Order

In the previous sections, we realized heuristically that the
proposed code profits from a full transmit diversity order
(whether with the optimal or the suboptimal decoders). In

this section, we adopt a more rigorous approach for proving
that the proposed scheme is fully diverse based on the design
criteria of [12]. Designate byC(a1, a2) the2M ×2 codeword
whose((p−1)M +m, i)-th entry corresponds to the amplitude
of the pulse (if any) transmitted at them-th position of the
p-th antenna during thei-th symbol duration forp = 1, 2,
m = 1, . . . , M and i = 1, 2. Based on eq. (5) and eq. (6),
C(a1, a2) can be written as:

C(a1, a2) =

[

a1,1 · · · a1,M a2,π(1) · · · a2,π(M)

a2,1 · · · a2,M a1,1 · · · a1,M

]T

(37)
Following from the linearity of the code and from [2], [12],

the code is fully diverse if:

rank[C(a1 − a′
1, a2 − a′

2)] = 2 ∀ (a1, a2) 6= (a′
1, a

′
2) (38)

wherea1, a
′
1, a2 and a′

2 belong to the setC given in eq. (4).
Vectors(a1 − a′

1) and(a2 − a′
2) have the following structure:

they can either be equal to the all-zero vectors or they can
have one component that is equal to+1, one component that
is equal to−1 andM − 2 zero components.

In what follows,C(a1 − a′
1, a2 − a′

2) will be denoted byC
when there is no ambiguity. On the other hand, rank(C) < 2
if there exists a nonzero real numberk such thatC2 = kC1

where Ci stands for thei-th column of C for i = 1, 2.
Moreover, given that the elements ofC belong to the set
{0,±1}, thenk = ±1. Let n be an odd integer that belongs
to {1, . . . , M}. Investigating then-th and(M +n)-th rows of
C respectively, the relationC2 = kC1 implies that:

a2,n − a′
2,n = k(a1,n − a′

1,n) (39)

a1,n − a′
1,n = k(a2,π(n) − a′

2,π(n)) (40)

Combining the last equations results in:

a2,n − a′
2,n = k2(a2,π(n) − a′

2,π(n)) = a2,n+1 − a′
2,n+1 (41)

sincek2 = 1 andπ(n) = n+1 whenn ∈ {1, . . . , M} is odd.
Consequently,C is rank deficient if and only if:

a2,n−a2,n+1 = a′
2,n−a′

2,n+1 ; n ∈ {1, . . . , M} is odd (42)

Given that (a2,n, a2,n+1) ∈ {(0, 0), (0, 1), (1, 0)} and
(a′

2,n, a′
2,n+1) belongs to the same set, then eq. (42) can be

verified if and only if a2,n = a′
2,n and a2,n+1 = a′

2,n+1 for
all odd integersn in {1, . . . , M}. Moreover, from eq. (39),
a2,n = a′

2,n implies thata1,n = a′
1,n. In the same way, from

eq. (40),a2,n+1 = a′
2,n+1 implies thata1,n+1 = a′

1,n+1. Fi-
nally, C(a1−a′

1, a2−a′
2) is rank deficient only whena1 = a′

1

and a2 = a′
2. Therefore, eq. (38) is verified and the code is

fully diverse. Note that for non-orthogonal constellations eq.
(9) and eq. (10) do not hold and the advantage of simplified
decodability will be lost implying that the nonlinear lattice
decoders [9] must be applied. On the other hand, since eq.
(38) is verified independently from the orthogonality of the
constellation, then the proposed scheme achieves full transmit
diversity with non-orthogonal constellations as well.
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III. T HREE TRANSMIT ANTENNAS WITH FEEDBACK

A. One bit feedback

1) Transmission Strategy: In this case, the signals trans-
mitted from the first and second antennas keep the same
expressions as in eq. (5) and eq. (6) respectively. The signal
transmitted from the third antenna is given by:

s3(t) =

M
∑

m=1

[

a1,σ(m)w(t − (m−1)δ)

+a2,σ(m)w(t − Ts − (m−1)δ)
]

(43)

where the choice of the functionσ(.) depends on the specific
channel realization. This function will be chosen according to
the following rule:

σ(.) =

{

1(.),
∑Q

q=1

∑L
l=1 hq,1,lhq,3,l ≥ 0;

π(.), otherwise.
(44)

where1(.) stands for the identity transformation andπ(.) is
given in eq. (3).

Equations (43) and (44) show that the third antenna trans-
mits either exactly the same signal as the first antenna or a
permuted version of what was transmitted from this antenna.
The reason behind the choice of the functionσ given in eq.
(44) is to couple the first and third antennas. In other words,
σ is chosen in such a way that the signals transmitted from
these antennas combine constructively. This choice will be
further clarified in what follows. Note that the constructive
interference will be achieved without inverting the polarities
of the transmitted pulses.

2) Optimal ML Decoding: As in section II-B, assume that
the second PPM symbola2 is in then-th slot. Forσ(.) = 1(.),
equations (12)-(15) can be written as:

{

yq,l,1,m = (hq,1,l + hq,3,l)a1,m + nq,l,1,m

yq,l,2,m = hq,2,la1,m + nq,l,2,m
(45)

for m /∈ {2n − 1, 2n} and
{

(yq,l,1,m−hq,2,l)=(hq,1,l+hq,3,l)a1,m−hq,2,la2,m+nq,l,1,m

yq,l,2,m =hq,2,la1,m + (hq,1,l + hq,3,l)a2,m+nq,l,2,m

(46)
for m ∈ {2n − 1, 2n}.

Consequently, the first information symbol can be deter-
mined from the followingM decision variables:

b1,m =
∑

q,l

[(hq,1,l+hq,3,l)yq,l,1,m + hq,2,lyq,l,2,m] (47)

for m /∈ {2n − 1, 2n} and

b1,m =
∑

q,l

[(hq,1,l+hq,3,l)(yq,l,1,m−hq,2,l)hq,2,lyq,l,2,m] (48)

for m ∈ {2n − 1, 2n}.

In the same way, the second information symbol can be
determined from the following two decision variables:

b2,m =

Q
∑

q=1

L
∑

l=1

[−hq,2,l(yq,l,1,m−hq,2,l)

+(hq,1,l+hq,3,l)yq,l,2,m] ; m ∈ {2n− 1, 2n} (49)

Note that in the absence of noise, equations (47), (48) and
(49) imply that (fori = 1, 2):

bi,m =
{∑

q,l(h
2
q,1,l+h2

q,2,l+h2
q,3,l)+2

∑

q,l hq,1,lhq,3,l, m = pi;
0, m 6= pi.

(50)

Note that σ(.) is chosen to be equal to
1(.) when

∑

q,l hq,1,lhq,3,l ≥ 0 implying that

bi,pi
≥

∑

q,l

(

h2
q,1,l + h2

q,2,l + h2
q,3,l

)

and showing that
the destructive interference between the three transmit
antennas is removed and that the SNR is maximized.

In the presence of a 1-bit feedback and forσ(.) = 1(.),
the decoding procedures described in eq. (22), (23) and (26)
will remain unchanged. However, now, the decision variables
{b

(0)
1,m, b

(0)
2,m, b

(1)
2,m}M

m=1 and the constantK1 given in eq. (18)
and (20) will take the following values:
b
(0)
1,m =

∑

q,l [(hq,1,l + hq,3,l)yq,l,1,m + hq,2,lyq,l,2,m], b
(0)
2,m =

∑

q,l(hq,1,l + hq,3,l)yq,l,2,m, b
(1)
2,m =

∑

q,l hq,2,lyq,l,1,m and
K1 = −

∑

q,l(hq,1,l + hq,3,l)hq,2,l. Note that these relations
follow from comparing eq. (18) to eq. (47,48) and eq. (20) to
eq. (49).

Always assuming that the second symbol is in then-th slot,
when

∑

q,l hq,1,lhq,3,l < 0, σ(.) is chosen to be equal toπ(.)
and equations (12)-(15) will be written as:

{

yq,l,1,m − hq,3,l = (hq,1,l − hq,3,l)a1,m + nq,l,1,m

yq,l,2,m = hq,2,la1,m + nq,l,2,m
(51)

for m /∈ {2n− 1, 2n} and
{

yq,l,1,m−hq,2,l−hq,3,l =(hq,1,l−hq,3,l)a1,m−hq,2,la2,m+nq,l,1,m

yq,l,2,m−hq,3,l =hq,2,la1,m+(hq,1,l−hq,3,l)a2,m+nq,l,2,m

(52)
for m ∈ {2n− 1, 2n}.

The above equations show that the information symbols can
be determined from the decision variables shown in equations
(53) and (54) at the bottom of the page.

This implies that eq. (22), (23) and (26) can be applied with:
b
(0)
1,m =

∑

q,l [(hq,1,l − hq,3,l)(yq,l,1,m − hq,3,l) + hq,2,lyq,l,2,m],

b
(0)
2,m =

∑

q,l(hq,1,l−hq,3,l)yq,l,2,m, b
(1)
2,m =

∑

q,l hq,2,lyq,l,1,m

and K1 =
∑

q,l[−(hq,1,l − hq,3,l)hq,2,l − hq,2,lhq,3,l] =
−

∑

q,l hq,1,lhq,2,l.

b1,m =

{ ∑

q,l [(hq,1,l − hq,3,l)(yq,l,1,m − hq,3,l) + hq,2,lyq,l,2,m] , m /∈ {2n− 1, 2n};
∑

q,l [(hq,1,l − hq,3,l)(yq,l,1,m − hq,2,l − hq,3,l) + hq,2,l(yq,l,2,m − hq,3,l)] , m ∈ {2n− 1, 2n}.
(53)

b2,m =
∑

q,l

[−hq,2,l(yq,l,1,m − hq,2,l − hq,3,l) + (hq,1,l − hq,3,l)(yq,l,2,m − hq,3,l)] ; m ∈ {2n− 1, 2n} (54)
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b1,m =

{ ∑

q,l [hq,1,lyq,l,1,m + (hq,2,l + hq,3,l)yq,l,2,m] , m /∈ {2n− 1, 2n};
∑

q,l [hq,1,l(yq,l,1,m − hq,2,l − hq,3,l) + (hq,2,l + hq,3,l)yq,l,2,m] , m ∈ {2n− 1, 2n}.
(64)

b2,m =
∑

q,l

[−(hq,2,l + hq,3,l)(yq,l,1,m − hq,2,l − hq,3,l) + hq,1,lyq,l,2,m] ; m ∈ {2n − 1, 2n} (65)

Note that in the absence of noise, eq. (53) and eq. (54)
imply that (for i = 1, 2):

bi,m =
{

∑

q,l

(

h2
q,1,l+h2

q,2,l+h2
q,3,l

)

−2
∑

q,l hq,1,lhq,3,l, m=pi;

0, m 6= pi.
(55)

and, consequently,bi,pi
≥

∑

q,l

(

h2
q,1,l + h2

q,2,l + h2
q,3,l

)

since
∑

q,l hq,1,lhq,3,l < 0. This justifies the choiceσ(.) =
π(.) when the last quantity is negative.

3) Suboptimal Decoding: In this case, the decision vari-
ables given in eq. (9) and eq. (10) will take the following
values:

yq,l,1,m =
[

hq,1,la1,m+hq,3,la1,σ(m)

]

+hq,2,la2,π(m)+nq,l,1,m

(56)

yq,l,2,m =hq,2,la1,m+
[

hq,1,la2,m+hq,3,la2,σ(m)

]

+nq,l,2,m

(57)

On the other hand, for the value ofsi,n given in eq. (31)
(and for i = 1, 2):

ai,σ(2n−1) − ai,σ(2n) =

{

si,n, σ(.) = 1(.);
−si,n, σ(.) = π(.).

(58)

Consequently, following from equations (56)-(58), the mod-
ified decision variables given in eq. (29) and eq. (30) will take
the following values:

zq,l,1,n = (hq,1,l + chq,3,l) s1,n − hq,2,ls2,n + n′
q,l,1,n (59)

zq,l,2,n = hq,2,ls1,n + (hq,1,l + chq,3,l) s2,n + n′
q,l,2,n (60)

where:

c =

{

+1, σ(.) = 1(.);
−1, σ(.) = π(.).

(61)

Finally, replacinghq,1,l by hq,1,l + chq,3,l in eq. (34), we
conclude that the final decision variablesZi,n are related to
the information symbols by the following relation:

Zi,n =

[

Q
∑

q=1

3
∑

p=1

L
∑

l=1

h2
q,p,l + 2c

Q
∑

q=1

L
∑

l=1

hq,1,lhq,3,l

]

si,n+Ni,n

(62)
As indicated before, to maximize the SNR, a convenient

choice of the functionσ(.) given in eq. (43) based on the
feedback bit is:σ(.)=1(.) if

∑

q,l hq,1,lhq,3,l ≥ 0 andσ(.)=
π(.) otherwise.

B. Two bits feedback

1) Transmission Strategy: In this case, the signals trans-
mitted from the first two antennas are given in eq. (5) and
eq. (6) respectively. When two bits of feedback are avail-
able, the transmitter chooses to couple either the first and
third antennas or the second and third antennas depending
on whether |

∑

q,l hq,1,lhq,3,l| is greater than or less than
|
∑

q,l hq,2,lhq,3,l|. In other words, if |
∑

q,l hq,1,lhq,3,l| ≥
|
∑

q,l hq,2,lhq,3,l|, the third antenna transmits the signal given
in eq. (43) and selects the functionσ(.) according to eq.(44).
Otherwise, when|

∑

q,l hq,1,lhq,3,l| < |
∑

q,l hq,2,lhq,3,l|, the
third antenna transmits the following signal:

s3(t) =

M
∑

m=1

[

a2,σ(π(m))w(t − (m − 1)δ)

+a1,σ(m)w(t − Ts − (m − 1)δ)
]

(63)

where σ(.) is chosen to be equal to1(.) (resp.π(.)) when
∑

q,lhq,2,lhq,3,l is positive (resp. negative).
2) Optimal ML Decoding: When |

∑

q,l hq,2,lhq,3,l| ≥
|
∑

q,l hq,1,lhq,3,l| and
∑

q,l hq,2,lhq,3,l > 0, it can be proven
that the information symbols can be determined from the
decision variables given in equations (64) and (65) at the top
of the page.

In this case, eq. (22), (23) and (26) can be applied with:
b
(0)
1,m =

∑

q,l [hq,1,lyq,l,1,m + (hq,2,l + hq,3,l)yq,l,2,m], b
(0)
2,m =

∑

q,l hq,1,lyq,l,2,m, b
(1)
2,m =

∑

q,l(hq,2,l + hq,3,l)yq,l,1,m and
K1 = −

∑

q,l hq,1,l(hq,2,l + hq,3,l).
On the other hand, whenσ(.) = π(.), the information

symbols can be determined from the decision variables given
in equations (66) and (67) at the bottom of the page. This
implies that eq. (22), (23) and (26) can be applied with:
b
(0)
1,m =

∑

q,l[hq,1,lyq,l,1,m +(hq,2,l−hq,3,l)(yq,l,2,m−hq,3,l)],

b
(0)
2,m =

∑

q,l hq,1,lyq,l,2,m, b
(1)
2,m =

∑

q,l(hq,2,l−hq,3,l)yq,l,1,m

andK1 = −
∑

q,l hq,1,lhq,2,l.
In both cases, it can be proven that (fori = 1, 2):

bi,m =
{

∑

q,l

(

h2
q,1,l+h2

q,2,l+h2
q,3,l

)

+2c
∑

q,l hq,2,lhq,3,l, m = pi;

0, m 6= pi.
(68)

b1,m =

{ ∑

q,l [hq,1,lyq,l,1,m + (hq,2,l − hq,3,l)(yq,l,2,m − hq,3,l)] , m /∈ {2n − 1, 2n};
∑

q,l [hq,1,l(yq,l,1,m − hq,2,l) + (hq,2,l − hq,3,l)(yq,l,2,m − hq,3,l)] , m ∈ {2n − 1, 2n}.
(66)

b2,m =
∑

q,l

[−(hq,2,l − hq,3,l)(yq,l,1,m − hq,2,l) + hq,1,l(yq,l,2,m − hq,3,l)] ; m ∈ {2n− 1, 2n} (67)
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Fig. 1. The proposed scheme versus single-antenna systems with 4-PPM
and a 1-finger Rake.

wherec = 1 (resp.−1) when
∑

q,l hq,2,lhq,3,l is positive (resp.
negative). This shows that a full transmit diversity order of
three is achieved.

3) Suboptimal Decoding: When the signal transmitted from
the third antenna takes the value given in eq. (63), it can be
easily proven that the decision variables associated with the
suboptimal decoding procedure can be written as:

Zi,n =

[

Q
∑

q=1

3
∑

p=1

L
∑

l=1

h2
q,p,l+2c

Q
∑

q=1

L
∑

l=1

hq,2,lhq,3,l

]

si,n + Ni,n

(69)
wherec is defined in eq. (61). Equation (69) shows that the
SNR is maximized and that the diversity order is enhanced
with two bits of feedback.

C. Three bits feedback

In this case, the transmitter has the choice of transmitting
the signals given in either eq. (6) and eq. (43), eq. (6) and
eq. (63) or eq. (43) and eq. (6) from the second and third
antennas respectively. In the last case, the first antenna is
coupled with the second antenna. The signal transmitted from
the first antenna always takes the value given in eq. (5).

The selection among these three possibilities depends on
the value of (i, j) ∈ {(1, 3), (2, 3), (1, 2)} that maximizes
|
∑

q,l hq,i,lhq,j,l|. The mapping function is chosen as:σ ≡ 1

when
∑

q,l hq,̃i,lhq,j̃,l ≥ 0 andσ ≡ π otherwise where(̃i, j̃) is
the value of(i, j) that maximizes|

∑

q,l hq,i,lhq,j,l|. Whether
with optimal or suboptimal decoding, the corresponding deci-
sion variables are similar to those obtained with one bit and
two bits of feedback and are omitted here for brevity.

IV. SIMULATIONS AND RESULTS

Simulations are performed over the IEEE 802.15.3a channel
model recommendation CM2 [13]. To insure the orthogonality
of the received constellation, the modulation delay is chosen
asδ = 100 ns which is larger than the maximum delay spread
of the UWB channel [13] (readers are referred to [8] for more
details on the simulation setup).
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Fig. 2. The proposed scheme versus single-antenna systems with 4-PPM
and a 20-finger Rake.

Figures 1 and 2 show the performance of the proposed
2× 2 ST code with 1-finger and 20-finger Rakes respectively.
In these figures, we compare the performance of the optimal
and suboptimal decoders with 4-PPM. Results show the high
performance levels and the enhanced diversity order achieved
by the proposed scheme. Results also show that the suboptimal
decoder preserves diversity since the error curves correspond-
ing to the optimal and suboptimal decoders are parallel to each
other at high SNR. Moreover, at low SNRs, single-antenna
systems might slightly outperform2 × 1 systems associated
with the suboptimal decoder. However, at high SNRs, the latter
system will always achieve lower error rates.

Fig. 3 shows the performance of 8-PPM with receivers that
are equipped with a 10-finger Rake and suboptimal decoders.
As expected, increasing the number of feedback bits improves
the error performance of the3 × 1 systems. The highest
improvement results from the first feedback bit. Compared
to this improvement, the additional feedback bits result in
marginal gains. Similar results are observed in Fig. 4 when
applying the optimal decoder.

In Fig. 5 we compare the complexity of the proposed
decoders with respect to the PPM-specific lattice decoder
proposed in [9]. Note that this decoder is the most popular
decoder used to decode all the existing unipolar PPM ST
codes [8]. In this figure we plot the average time needed for
decoding one information symbol as a function the signal-
set dimensionality (which is equal to the number of PPM
positions). In this simulation setup, the proposed2×2 code is
applied and the receiver is equipped with a 5-finger Rake.
Note that unlike the lattice decoders that necessitate long
convergence times at low SNRs, the decoding times of the
proposed optimal and suboptimal decoders are the same for all
values of the SNR. The superiority of the proposed decoders
in terms of complexity is evident. Finally, note that the gap
between the proposed solutions and [9] increases with the
dimensionality of the PPM constellation and with the SNR.

To highlight the advantages of ST coding with UWB, Fig.
6 compares systems having the same overall diversity order
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Fig. 3. Performance of 8-PPM with 1 receive antenna and a 10-finger Rake.
The suboptimal decoder is applied with the2 × 1 and3 × 1 systems.
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Fig. 4. Performance of 8-PPM with 1 receive antenna and a 10-finger Rake.
The optimal decoder is applied with the2 × 1 and3 × 1 systems.

that is equal toPQL (P is the number of transmit antennas).
2-PPM is used and the suboptimal decoder is applied with the
2 × 1 and the3 × 1 systems. For a fair comparison, we plot
the bit error rates (BER) as a function ofPL. For example,
a 1 × 1 system with 60 fingers achieves a BER of7×10−4

at 20 dB. In this case, the2×1 system with only 30 fingers
achieves a better BER in the order of3× 10−4. Fig. 6 shows
that exploiting the transmit diversity by increasing the number
of transmit antennas can be more beneficial than enhancing the
multi-path diversity by increasing the number of Rake fingers
even though there is no increase in the energy capture. This
follows from the fact that consecutive multi-path components
of the same sub-channel can be simultaneously faded because
of cluster and channel shadowing [13].

V. CONCLUSION

We investigated the problem of ST coding with TH-UWB
systems using PPM. The proposed scheme has a full rate
and is fully diverse resulting in high performance levels over
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Fig. 5. Complexity of the proposed decoders compared to thatof the decoder
in [9] with 2 × 1 systems. The receiver is equipped with a 5-finger Rake.
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Fig. 6. Transmit diversity versus multi-path diversity with 2-PPM. The
suboptimal decoder is applied with the2 × 1 and3 × 1 systems.

the realistic indoor UWB channels. Moreover, this scheme
is adapted to unipolar transmissions and, consequently, does
not necessitate additional constraints on the RF circuitryto
control the phase or the amplitude of the very low duty
cycle sub-nanosecond pulses. At the receiver, a simple ML
decoder whose complexity grows linearly with the signal-
set dimensionality assures a fast and optimal separation of
the transmitted data streams. The shape preserving constraint
renders the proposed code applicable with optical wireless
communications as well.

APPENDIX

The summation on the right hand side of eq. (24) can be
written as:

S(n) ,

8
∑

j=1

Sj(n) (70)

where:
S1(n) ,

∑

q,l,m

[

y2
q,l,1,m + y2

q,l,2,m

]

(71)
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S2(n) ,
∑

q,l

(

h
2
q,1,l + h

2
q,2,l

)

∑

m

(ã1,m(n))2 =
∑

q,l

(

h
2
q,1,l + h

2
q,2,l

)

(72)

S3(n) ,
∑

q,l

h
2
q,1,l

∑

m

(ã2,m(n))2 =
∑

q,l

h
2
q,1,l (73)

S4(n) ,
∑

q,l

h
2
q,2,l

∑

m

(ã2,π(m)(n))2 (74)

=
∑

q,l

h
2
q,2,l

∑

m

(ã2,m(n))2 =
∑

q,l

h
2
q,2,l (75)

S5(n) , −2
∑

q,l,m

(hq,1,lyq,l,1,m + hq,2,lyq,l,2,m) ã1,m(n) (76)

= −2
∑

q,l

(

hq,1,lyq,l,1,p̃1(n) + hq,2,lyq,l,2,p̃1(n)

)

(77)

S6(n) , −2
∑

q,l,m

hq,1,lyq,l,2,mã2,m(n) (78)

= −2
∑

q,l

hq,1,lyq,l,2,p̃2(n) (79)

S7(n) , −2
∑

q,l,m

hq,2,lyq,l,1,mã2,π(m)(n) (80)

= −2
∑

q,l,m

hq,2,lyq,l,1,π−1(m)ã2,m(n) (81)

= −2
∑

q,l,m

hq,2,lyq,l,1,π(m)ã2,m(n) (82)

= −2
∑

q,l

hq,2,lyq,l,1,π(p̃2(n)) (83)

S8(n) , 2
∑

q,l

hq,1,lhq,2,l

∑

m

ã1,m(n)
(

ã2,m(n) + ã2,π(m)(n)
)

(84)

= 2
∑

q,l

hq,1,lhq,2,l

(

ã2,p̃1(n)(n) + ã2,π(p̃1(n))(n)
)

(85)

= 2δ⌈

p̃1(n)
2

⌉

,n

∑

q,l

hq,1,lhq,2,l (86)

whereδi,j stands for Kronecker’s delta function (δi,j = 1 for
i = j andδi,j = 0 for i 6= j).

Note that the second equalities in eq. (72) and eq. (73)
follow from the fact that only one component of the vector
ãi(n) = [ãi,1(n) · · · ãi,M (n)]T is equal to 1 while the
remaining components are equal to 0 fori = 1, 2. The first
equality in eq. (75) follows from replacingm by π−1(m) and
by observing that{π−1(m) ; m = 1, . . . , M} is equal to the
set{1, . . . , M}. Equations (77) and (79) follow from the fact
that, by construction,̃ai,m(n) is different from zero (and equal
to 1) only for m = p̃i(n).

Equation (81) follows from performing the change of
variable m → π−1(m). Equation (82) follows from the
fact that π−1(m) = π(m) for all values of m ∈
{1, . . . , M}. Finally, eq. (86) follows from the fact that the
term

(

ã2,p̃1(n)(n) + ã2,π(p̃1(n))(n)
)

is different from zero (and
equal to 1) only ifp̃1(n) corresponds to a position in then-th
slot. In other words,

(

ã2,p̃1(n)(n) + ã2,π(p̃1(n))(n)
)

= 1 if and
only if p̃1(n) ∈ {2n − 1, 2n} implying that ⌈p̃1(n)/2⌉ = n
where the function⌈x⌉ rounds the real numberx to the nearest
integer that is greater than or equal to it.

Now, equations (71)-(75) show that the summations
S1(n), . . . ,S4(n) are independent from the information sym-
bols and hence can be omitted from the decision metric in eq.

(24). Consequently, the optimal ML decoder decides in favor
of the slot indexn that minimizes the summation

∑8
j=5 Sj(n).

Equations (77)-(86) show that this is equivalent to decide in
favor of the value ofn that maximizes:

Q
∑

q=1

L
∑

l=1

[

hq,1,l

(

yq,l,1,p̃1(n) + yq,l,2,p̃2(n)

)

+hq,2,l

(

yq,l,2,p̃1(n) + yq,l,1,π(p̃2(n))

)

−hq,1,lhq,2,lδ⌈p̃1(n)/2⌉,n

]
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