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Pulse Antenna Permutation and Pulse Antenna
Modulation: Two Novel Diversity Schemes for
Achieving Very High Data-Rates with Unipolar

MIMO-UWB Communications
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Abstract—In this paper, we consider the problem of ap-
plying the Multiple-Input-Multiple-Output (MIMO) techni ques
on Impulse-Radio Time-Hopping Ultra-Wideband (IR-TH-UWB )
communications. In particular, we propose two novel Space-
Time (ST) block codes that are suitable for UWB. The proposed
encoded MIMO-UWB schemes present the main advantage of
conveying the information only through the positions of the
very short unipolar UWB pulses. The constraint of unipolar
transmissions keeps the transceiver structures very simple since
it imposes no additional constraints on the RF circuitry to control
the amplitudes or the phases of the sub-nanosecond UWB pulses.
Consider the case where the transmitter is equipped withP
antennas and whereM PPM modulation positions are available.
The first proposed scheme achieves a full transmit diversityorder
for M ≥ P while transmitting at the rate of log

2
(M) bits Per

Channel Use (PCU). The second scheme is fully diverse with any
number of antennas and transmits at a rate ofM log

2
(P )/P bits

PCU. The proposed codes permit to achieve different levels of
compromise between complexity and performance since scheme 1
necessitatesM -dimensional Maximum-Likelihood (ML) decoding
while scheme 2 necessitatesMP -dimensional decoding. We also
present a comprehensive analysis on the enhancement in terms of
the data rate achieved at a certain communication distance based
on realistic indoor channel models and on an exact system model
that takes inter-pulse-interference and inter-symbol-interference
into consideration.

Index Terms—MIMO, Ultra-WideBand (UWB), Space-Time
(ST) coding, Pulse Position Modulation (PPM).

I. I NTRODUCTION AND MOTIVATION

Recently, Impulse-Radio (IR) Ultra-Wideband (UWB)
emerged as a strong candidate for Wireless Personal Area
Networks (WPANs). IR-UWB is a carrier-less transmission
technique that gained increased popularity because of its
capability of achieving high data rates with simple low-cost
transceivers. However, the stringent power constraints imposed
on the unlicensed UWB transmissions in different parts of the
world [1] constitute the main limiting factor on the achievable
rates and communication distances especially in Non-Line-
Of-Sight (NLOS) scenarios. Consequently, advanced commu-
nication techniques are needed to overcome these limitations
and to respond to the growing demand of various WPAN
applications for data rate. In this context, several solutions pro-
posed merging the Multiple-Input-Multiple-Output (MIMO)
techniques with IR-UWB [2]–[8].
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Time-Hopping (TH) UWB systems are often associated
with Pulse Position Modulation (PPM) where the information
is conveyed by a sequence of time-shifted unipolar pulses.
Unipolar transmission is appealing for TH-UWB since it is
difficult to control the phases and amplitudes of the very
low duty-cycle sub-nanosecond pulses used to convey the
information symbols. On the other hand, while a huge amount
of work considered the problem of Space-Time (ST) coding
with QAM [9]–[11], the problem of ST coding with PPM is
not very much explored.

Consider a single-user MIMO-UWB system equipped with
P transmit antennas. Assume thatM positions (or time
slots) are available for data modulation within each symbol
duration. M is often fixed by the complexity constraints
on the transceiver since the dimensionality of the position-
modulated constellation as well as the number of matched
filters at the receiver both scale withM [6]. In this context,
PPM ST codes can be classified into two categories. The
first category of codes is unipolar where the information is
conveyed exclusively by the time delays of pulses that can take
only one amplitude level. The interest of unipolar codes resides
in the fact that they introduce no additional constraints onthe
RF circuitry (especially on the pulse generators) compared
to the corresponding single-antenna PPM systems. Unipolar
codes can be either shape-preserving [7], [8] or non shape-
preserving. Shape-preserving codes are appealing since, just
as in the single-antenna systems, only one unipolar pulse is
transmitted from each antenna during each symbol duration.In
this context, the code proposed in [12] is shape-preservingwith
2-PPM and non shape-preserving withM -PPM for M > 2.
The second category of codes is non-unipolar and, in this
case, the extension of the single-antenna PPM systems to the
multi-antenna scenario necessitates transmitting pulseshaving
different polarities and amplitude levels [2]–[6]. Evidently,
non-unipolar codes break down the structure of the PPM
constellation and increase the complexity of the transmitter.
In this context, the different solutions that we propose in this
paper are all unipolar.

The first contribution of the paper is that we propose
a novel unipolar and shape-preserving rate-1 ST code that
transmits at the rate of 1 symbol (log2(M) bits) Per Channel
Use (PCU) withM -PPM. This scheme will be referred to
as scheme 1 in what follows. Scheme 1 can achieve a full
transmit diversity order withM -PPM constellations andP
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transmit antennas for all values ofM ≥ P . Scheme 1 shares
the same interesting properties as the PPM-codes proposed
in [7], [8]. Namely, scheme 1 as well as [7], [8] are all
unipolar, shape-preserving and transmit at the same rate of
log2(M) bits PCU. The superiority of the proposed scheme
over [7], [8] can be summarized in the following points. (1):
Scheme 1 can be applied for a wider range of(P, M) (in
particular for all values ofP satisfyingP ≤ M compared to
the values of(P, M) given in table-1 in [8]). For example,
scheme 1 is the first known unipolar shape-preserving code
that can be applied with the following values of(P, M):
(P, M) ∈ {(p, m) ; p = 3, 4 ; m = 4} ∪ {(p, m) ; p =
5, 6 ; m = 6, 8}∪{(p, m) ; p = 7, 8 ; m = 8, 9, 10, 12}. (2):
Scheme 1 requires a simpler decoding complexity compared to
[7], [8] since the decoding procedure involvesM dimensions
rather thanPM dimensions as in [7], [8]. (3): In contrast to
all fully diverse ST codes that extend over at leastP symbol
durations, scheme 1 extends over only one symbol duration
thus reducing the decoding delays at the receiver side. Note
that ST coding over one symbol duration is rendered possible
because of the particular structure of the PPM signal set as
will be explained later.

On the other hand, a key solution that was adopted in the
literature for exceeding the rate of 1 symbol PCU achieved
by rate-1 QAM ST codes consisted of introducing a constel-
lation expansion to the uncoded signal set [10], [11]. Such
constellation expansions often consist of either amplitude (or
phase) scaling [10] or of algebraic rotations [11]. For PPM,the
idea of constellation expansion was applied in [6] to propose a
family of full-rate ST codes that is based on pulse permutations
and algebraic rotations. Even though [6] transmits at a rate
that exceeds 1 symbol (log2(M) bits) PCU withM -PPM, the
introduced algebraic rotations render this scheme non unipolar.

In this context, the second contribution of the paper consists
of proposing the first known ST code that is capable of
transmitting at a rate that exceedslog2(M) bits PCU while
maintaining unipolar transmissions. In particular, this scheme
(that will be referred to as scheme 2 in what follows) transmits
at the rate ofM log2(P )/P bits PCU. Given that practical
MIMO systems are often equipped with a limited number of
antennas (because of the cost constraints) while the number
of modulation positionsM can take relatively large values,
then the rate of scheme 2 often exceeds the limit oflog2(M)
bits PCU especially for large values ofM . For example, with
P = 2 transmit antennas andM = 32 modulation positions,
scheme 2 transmits 3.2 times faster than the rate-1 PPM codes
( [7], [8] and scheme 1) and 1.6 times faster than the full-rate
codes proposed in [6]. Note that these high multiplexing gains
are associated with an enhanced diversity order since scheme
2 is fully diverse for all values ofP andM .

As a conclusion, comparing scheme 2 with the other unipo-
lar codes, it can be seen that the advantages of scheme 2 over
[7], [8] reside in a potentially higher data rate especiallyfor
large values ofM and in the fact that scheme 2 can be applied
for all values of(P, M) with the same decoding complexity
(PM -dimensional decoders are required). The superiority of
scheme 2 over [6] can be summarized in the following points.
(1): Unlike [6], scheme 2 can be applied with all values ofP

Fig. 1. ST codes forM -PPM with P transmit antennas.R stands for the
normalized data rate in bits PCU. The proposed solutions arerepresented by
shaded sets.

andM . (2): As will be explained later, scheme 2 is based on a
time domain constellation expansion rather than an amplitude
domain expansion making it capable of maintaining unipolar
transmissions. (3): The rate of scheme 2 (resp. [6]) increases
linearly (resp. logarithmically) withM and, consequently,
scheme 2 can achieve much higher data rates for large values
of M . (4): Scheme 2 admits a simpler decoding complexity
since it can be associated withPM -dimensional decoders
rather thanP 2M -dimensional decoders as [6].

Fig. 1 shows the different classes of PPM ST codes. The
proposed schemes are described schematically in Fig. 2. In this
figure, we also show the schematic representation of spatial
multiplexing for comparison. Note that oneM -PPM symbol
and its permutated versions are transmitted from the different
antennas in scheme 1 that will be referred to as pulse antenna
permutation. In scheme 2, one antenna is pulsed during each
modulation position and this scheme will be referred to as
pulse antenna modulation (in analogy with pulse position
modulation). Note that in scheme 2, the index of the antenna
that is pulsed is permuted among theP symbol durations.

Notations: 1m×n and 0m×n correspond to them × n
matrices whose elements are all equal to 1 and 0 respectively.
em stands for them-th column of theM ×M identity matrix
IM . ⊗ stands for the Kronecker product andδi,j stands for
Kronecker’s delta function. The function vec(X) stands for
stacking the columns of the matrixX vertically one after the
other. The function⌈x⌉ rounds the real numberx to the nearest
integer that is greater than or equal to it.

II. SYSTEM MODEL

A. Basic Parameters

A general expression of the signal transmitted from thep-th
antenna is given by:

sp(t) =
1√
PNf

∞∑

j=1

M∑

m=1

ap,j,m

Nf∑

n=1

w(t − (j − 1)Ts

− (n − 1)Tf − cnTc − (m − 1)δ) (1)
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Fig. 2. Schematic representation withP = 3 transmit antennas andM = 4 modulation positions. (a): Scheme 1 withs = 2 ∈ {1, . . . , M}. (b): Spatial-
Multiplexing with s1 = 2 and s2 = s3 = 1; note thatsp ∈ {1, . . . , M} for p = 1, . . . , P . (c): Scheme 2 withs1 = 1, s2 = 2, s3 = 1 ands4 = 3; note
that sm ∈ {1, . . . , P} for m = 1, . . . , M . (a) and (b) extend over 1 symbol duration while (c) extends over 3 symbol durations.

where the multiplying factor 1√
P

was introduced in order to
have the same total transmitted energy as in the case of single-
antenna systems. In eq. (1):

- ap,j,m = 1 (resp.ap,j,m = 0) stands for the presence
(resp. absence) of a pulse emitted from thep-th transmit
antenna during them-th PPM position of thej-th symbol
duration.

- w(t) is the pulse waveform of durationTw and it is
normalized to have a unit energy.

- δ is the PPM modulation delay chosen to verify:δ ≥ Tw.
- Nf is the number of time-hopped pulses used to transmit

one information symbol,Tf is the average separation
between two consecutive pulses andTs = NfTf is the
symbol duration.

- cn ∈ {0, . . . , Nc − 1} is the additional time shift (nor-
malized byTc) applied on the pulses transmitted by the
considered user during then-th frame of each symbol
duration.Tc is the chip duration andNc is the number
of chips per frame (of durationTf ). In order to result in
the same average multi-user interference as in the single-
antenna case, all antennas of the same user are assumed to
share the same pseudo-random TH sequence. Moreover,
this sequence will be assumed to be periodic with period
Nf .

Denote byΓ the maximum delay spread of the underlying
UWB channel (Γ ≫ Tw), Inter-Frame-Interference (IFI) and,
consequently, Inter-Symbol-Interference (ISI) can be elimi-
nated by choosing:

Tf ≥ Γ + NcTc + (M − 1)δ + Tw (2)

In the same way, the interference between the differ-
ent modulation positions (referred to as IPI for Inter-Pulse-
Interference) can be eliminated if the modulation delay satis-
fies the relation:

δ ≥ Γ + Tw (3)

Note that the absence of IPI implies the absence of IFI and
ISI as well.

B. System Model

We assume that the receiver is equipped withQ antennas
and that each antenna is followed by anL-th order Rake
receiver that combines theL first arriving multi-path com-
ponents.

In what follows, the indicesq ∈ {1, . . . , Q}, p ∈ {1, . . . , P}
and l ∈ {1, . . . , L} will correspond to the receive antenna,
transmit antenna and the Rake finger respectively. In the
same way,j ∈ {1, . . . , J} stands for the symbol index,
n ∈ {1, . . . , Nf} for the frame index andm ∈ {1, . . . , M}
for the PPM position index. In what follows, we consider the
case where the information is mapped into ST codewords that
extend overJ symbol durations.

From eq. (1), the signal received at theq-th antenna can be
written as:

rq(t) =

P∑

p=1

∞∑

j=1

M∑

m=1

ap,j,m

Nf∑

n=1

h′
q,p(t − (j − 1)Ts

− (n − 1)Tf − cnTc − (m − 1)δ) + nq(t) (4)

where h′
q,p(t) stands for the convolution ofw(t) with the

impulse response of the channel between antennasp and q
and nq(t) is the noise at theq-th antenna and it is assumed
to be real AWGN. Note that the normalizing factor

√
PNf

in eq. (1) was omitted for simplicity; in fact, this term can be
included in the variance ofnq(t) which is equal toPNfN0/2
(whereN0 stands for the noise spectral density).

The receiver consists of a bank of correlators that collect
JQLNfM decision variables during the duration of each
codeword. These decision variables are given by:

yj,q,l,n,m =

∫ Tf

0

rq(t)w̃j,l,n,m(t)dt (5)

wherew̃j,l,n,m(t) is a reference signal given by:

w̃j,l,n,m(t)=w (t−(j−1)Ts−∆l−(n−1)Tf−cnTc−(m−1)δ)
(6)

where∆l , (l − 1)Tw corresponds to the delay of thel-th
Rake finger.

Replacing eq. (4) in eq. (5) results in:

yj,q,l,n,m =

P∑

p′=1

∞∑

j′=1

Nf∑

n′=1

M∑

m′=1

ap′,j′,m′hq,p′ [(j − j′)Ts + ∆l

+(n − n′)Tf + (cn − cn′)Tc + (m − m′)δ] + nj,q,l,n,m

(7)

wherenj,q,l,n,m =
∫ Tf

0 nq(t)w̃j,l,n,m(t)dt and:

hq,p(τ) =

∫ Tf

0

h′
q,p(t)w(t − τ)dt (8)
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The ST encoding scheme will be determined by the choice
of the PM × J codewordA whose((p − 1)M + m, j)-th
entry is equal toap,j,m. In what follows, we denote byA the
PMJ-dimensional vector given by:A = vec(A).

At a first time, we ignore the interference among the
different codewords. Based on the above notations, the linear
dependence between the baseband inputs and outputs of the
channel can be expressed as:

Y = H(0)
[
IPJ ⊗

(
1Nf×1 ⊗ IM

)]
A + N (9)

whereY is the decision vector of lengthJQLNfM such that:

Y [(j − 1)QLNfM + (q − 1)LNfM

+ (l − 1)NfM + (n − 1)M + m] = yj,q,l,n,m (10)

andN is the noise vector that is constructed in the same way
asY.

In eq. (9),H(0) is theJQLNfM×JPNfM channel matrix
given by:

H(0) =




H1 0QLNfM×PNf M · · · 0QLNfM×PNf M

H2 H1
. . .

...
...

. . .
. . . 0QLNfM×PNf M

HJ · · · H2 H1




(11)
whereHj quantifies the interference (IFI and ISI) between two
columns of the same codeword that are separated by(j − 1)
symbol durations.Hj is a QLNfM × PNfM block matrix
whose(q, p)-th block is denoted byHj,q,p for q = 1, . . . , Q
and p = 1, . . . , P . Hj,q,p is a LNfM × NfM matrix that
can be written as:Hj,q,p = [HT

j,q,p,1 · · · HT
j,q,p,L]T where

Hj,q,p,l is aNfM×NfM block matrix whose(n, n′)-th (M×
M)-dimensional block is denoted byHj,q,p,l,n,n′ for n, n′ =
1, . . . , Nf . The(m, m′)-th element ofHj,q,p,l,n,n′ is given by:

hq,p ((j−1)Ts+∆l+(n− n′)Tf +(cn−cn′)Tc+(m−m′)δ)
(12)

Each codeword can interfere withNin codewords where:

Nin =

⌈
Γ − (Tf − NcTc − (M − 1)δ − Tw)

JNfTf

⌉
(13)

Including the interference among the different codewords,
eq. (9) will be modified to:

Y = H(0)
[
IPJ ⊗

(
1Nf×1 ⊗ IM

)]
A

+ H(in)
[
IPJNin

⊗
(
1Nf×1 ⊗ IM

)]
A(in) + N (14)

where A(in) is a vector of lengthNinJPM . It is given
by: A(in) = [[A(Nin)]T · · · [A(1)]T ]T whereA(i) stands
for the vector of lengthJPM obtained from the vertical
concatenation of the columns of the codeword that precedes
the considered codeword byiJ symbol durations. Based on
this notation, the vectorA in eq. (14) can be written as
A = A(0).

In eq. (14),H(in) is a JQLNfM × NinJPNfM matrix
given by:H(in) = [H(Nin) · · · H(1)] whereH(i) is given

by:

H(i) =




HiJ+1 HiJ · · · HiJ−(J−2)

HiJ+2 HiJ+1
. . .

...
...

. . .
. . . HiJ

H(i+1)J · · · HiJ+2 HiJ+1




(15)

where the construction of theQLNfM × PNfM matrix Hj

is as described above. From eq. (12), it follows thatHj will
be equal to the all-zero matrix whenj < 1. Based on this
notation, the channel matrixH(0) in eq. (11) can be written
as:H(0) = H(0).

C. Simplified System Model in the Absence of Interference

From the previous subsection, it is evident that the model of
MIMO UWB systems described in eq.(14) is intractable and
does not lend itself to a simple analytical analysis. Therefore,
we adopt the following approach in our work. First, we
consider the problem of ST code design in the absence of IPI.
This first step is convenient for determining and understanding
the main characteristics of the proposed schemes; especially
the achieved transmit diversity order. Even though, the code
design is based on the simple scenario of no IPI, the analysis
that we present on the coverage extension offered by MIMO-
UWB systems in section IV as well as all simulation results
will be based on the exact model presented subsection II-B
and that takes into account IPI, IFI and ISI. This approach is
equivalent to assuming that interference can be consideredas
a perturbation on the proposed schemes. This assumption will
be further justified and strengthened in section III where we
present the different code constructions.

In this subsection, we present a simplified system model
in the absence of IPI. On the other hand, the solutions that
we propose do not depend on the value taken byNf and,
consequently, unlike [2] can be applied with very high data-
rate UWB systems that do not employ any pulse repetitions
(Nf = 1). SinceNf has no impact on the performance of
the proposed ST codes in the absence of interference, we also
assume thatNf = 1 in this model for the sake of simplicity.

In the absence of ISI, the constituent sub-matricesHj of the
channel matrixH(0) in eq. (11) will be equal to the all-zero
matrix whenj 6= 1. Consequently,H(0) can be written as:
H(0) = IJ ⊗H1. DenotingH1 by H, eq. (14) can be written
as:

Y = [IJ ⊗H]A + N (16)

On the other hand, forNf = 1 and j = 1, the channel
coefficients in eq. (12) reduce to:

hq,p ((∆l + (m − m′)δ) = hq,p (∆l) δm,m′ (17)

whereδi,j corresponds to Kronecker’s delta function and the
second equality follows from the condition of no IPI.

Therefore, in the absence of IPI and forNf = 1, the
QLM × PM channel matrixH in eq. (16) can be written
as:

H = H ⊗ IM (18)

where H is a QL × P matrix whose((q − 1)L + l, p)-th
element is denoted byhq,l,p for q = 1, . . . , Q, l = 1, . . . , L
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and p = 1, . . . , P . From eq. (8) and eq. (17),hq,l,p is given
by:

hq,l,p = hq,p (∆l) =

∫ Tf

0

h′
q,p(t)w(t − ∆l)dt (19)

III. C ODESCONSTRUCTIONS

As indicated before, the model given in eq. (16) will be
used for the code construction in this section while all of the
numerical results will be based on the exact model presented
in eq. (14).

A. Scheme 1: Pulse Antenna Permutation

The first diversity scheme is based on pulse permutations
and extends overJ = 1 symbol duration only. For simplicity,
since J = 1, the pulse positionsap,j,m can be denoted by
ap,m for p = 1, . . . , P andm = 1, . . . , M .

Denote bys ∈ {1, . . . , M} the position of aM -ary PPM
information symbol. The transmission strategy corresponds to
fixing:

ap,m = δπp−1(s),m ; p = 1, . . . , P (20)

whereπk(.) stands for the cyclic permutation of orderk given
by:

πk(i) = (i + k − 1) mod M + 1 (21)

In other words, the first antenna transmits only one pulse
during thes-th modulation position while thep-th antenna
transmits one pulse that is cyclically permutated byp − 1
positions forp = 2, . . . , P . Evidently, this scheme introduces
no expansion to theM -PPM constellation since each antenna
transmits only one unipolar pulse during one out of theM
available positions.

The most appealing feature of this diversity scheme is
its simplicity since only oneM -PPM information symbol is
involved in the encoding and decoding procedures. Moreover,
this simplicity is achieved with no penalty on the data rate
since scheme 1 is a rate-1 ST code that transmits at the rate
of 1 M -PPM symbol (log2(M) bits) Per Channel Use (PCU).

Unlike all of the existing ST codes that extend over at least
J = P symbol durations, scheme 1 profits from an enhanced
diversity order by conveniently encoding the positions of the
unipolar pulses transmitted duringJ = 1 symbol duration as
stated in the next proposition.

Proposition 1: For P transmit antennas, scheme 1 achieves
a full transmit diversity order withM -PPM constellations for
the values ofM satisfying:M ≥ P .

Proof: For scheme 1, the codewordA in eq. (16) re-
duces to aPM -dimensional vector that can be written as:
A = [eT

s , eT
π(s), . . . , e

T
πP−1(s)]

T whereem stands for them-th
column of theM × M identity matrix IM . In an equivalent
way, A can be written as:A = ΦS whereS , es and Φ is
the PM × M matrix given by:

Φ =
[

IM

(
Ω1

)T · · ·
(
ΩP−1

)T
]T

(22)

whereΩ is theM × M cyclic permutation matrix given by:

Ω =

[
01×(M−1) 1

IM−1 0(M−1)×1

]
(23)

where0m×n is the all-zerom × n matrix.
The Maximum-Likelihood (ML) decoder decides in the

favor of vectorS that minimizes:

‖Y −HΦS‖2 = YTY − 2YTHΦS + ST ΦTHTHΦS (24)

where from eq. (18):HTH = (H ⊗ IM )
T

(H ⊗ IM ) =
HT H ⊗ IM following from the properties of the Kronecker
product. In what follows, we denote byG theP×P symmetric
matrix given by:G = HT H . From eq. (19), it can be easily
seen that the(p, p′)-th element ofG is given by:

G(p, p′) , gp,p′ =

Q∑

q=1

L∑

l=1

hq,l,phq,l,p′ (25)

On the other hand, eq. (23) implies thatΩi is a unitary
matrix whose transpose is given byΩ−i. Consequently, from
eq. (22),ΦT =

[
IM Ω−1 · · · Ω−(P−1)

]
. Therefore, after

some manipulations, the matrixΦTHTHΦ in eq. (24) can be
written as:

ΦTHTHΦ =

P∑

i=1

Ω−(i−1)
P∑

j=1

gi,jΩ
j−1 =

P∑

i=1

P∑

j=1

gi,jΩ
j−i

(26)
As stated in the proposition, we limit ourselves to the case

P ≤ M . The reason for this choice will become clearer at the
end of this subsection. Consequently, eq. (26) can be written
as:

ΦTHTHΦ=

M∑

i=1

M∑

j=1

gi,jΩ
j−i (27)

=

M∑

i=1


gi,iIM +

M∑

j=i+1

gi,jΩ
j−i+

i−1∑

j=1

gi,jΩ
j−i


 (28)

wheregi,j is given in eq. (25) for(i, j) ∈ {1, . . . , P}2 and
gi,j = 0 for (i, j) ∈ {P + 1, . . . , M}2.

By a change of variable, the first summation in eq. (28) can
be written as:I1 ,

∑M

j=i+1 gi,jΩ
j−i =

∑M−i

j=1 gi,i+jΩ
j . In

the summationI1, j ≤ M − i implying that j < M − i + 1.
Consequently,i + j − 1 < M and from eq. (21):

πj(i) = (i + j − 1) mod M + 1 = (i + j − 1) + 1 = i + j
(29)

consequently, summationI1 can be written as:I1 =∑M−i

j=1 gi,πj(i)Ω
j .

Denote byI2 the second summation in eq. (28). Since
ΩM = IM , thenI2 ,

∑i−1
j=1 gi,jΩ

j−i =
∑i−1

j=1 gi,jΩ
j−i+M .

By a change of variable, this summation can be written
as: I2 =

∑M−1
j=M−i+1 gi,i+j−MΩj . In this summation,j ≥

M − i + 1 implying that i + j − 1 ≥ M . Therefore, from eq.
(21):

πj(i) = (i + j − 1) mod M + 1

= (i + j − 1 − M) + 1 = i + j − M (30)

consequently, summationI2 can be written as:I2 =∑M−1
j=M−i+1 gi,πj(i)Ω

j .
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Therefore, eq. (28) can be written as:

ΦTHTHΦ =

M∑

i=1



gi,iIM +

M−1∑

j=1

gi,πj(i)Ω
j



 (31)

= IM

[
M∑

i=1

gi,i

]
+

M−1∑

j=1

Ωj

[
M∑

i=1

gi,πj(i)

]
(32)

Applying the change of variablej′ = −j+M on the second
summation of the last equation results in:

ΦTHTHΦ=IM

[
M∑

i=1

gi,i

]
+

M−1∑

j=1

Ω−j+M

[
M∑

i=1

gi,π−j+M (i)

]

(33)

=IM

[
M∑

i=1

gi,i

]
+

M−1∑

j=1

(
ΩT

)j

[
M∑

i=1

gi,π−j(i)

]
(34)

where the last equation follows sinceΩM = IM , Ω−1 = ΩT

and sinceπM (m) = m for m = 1, . . . , M .
Equation (34) can be written as:

ΦTHTHΦ = αIM +

M−1∑

j=1

βj

(
ΩT

)j
(35)

where:

α ,

M∑

i=1

gi,i =

P∑

i=1

gi,i =

P∑

i=1

Q∑

q=1

L∑

l=1

h2
q,l,i (36)

βj ,

M∑

i=1

gi,π−j(i) =

P∑

i=1

gi,π−j(i) =

P∑

i=1

Q∑

q=1

L∑

l=1

hq,l,ihq,l,π−j(i)

(37)

where the above equations follow from eq. (25) and from the
fact thatgi,i = 0 andgi,π−j(i) = 0 for i > P by construction.

The elements of
(
ΩT

)j
are equal to 1 on thej-th upper

diagonal and(M − j)-th lower diagonal and are equal to
zero elsewhere. Consequently,

(
ΩT

)j
can not be equal toIM

for j = 1 . . .M − 1. Therefore, from eq. (35), the diagonal
elements ofΦTHTHΦ are all equal toα.

In eq. (24), since the vectorS (which is the vector repre-
sentation of aM -PPM symbol) is equal to a certain column of
IM , thenST ΦTHTHΦS is always equal to a diagonal element
of ΦTHTHΦ. From what preceded, since all the diagonal
elements ofΦTHTHΦ are equal, then a ML decoding rule
equivalent to eq. (24) is given by:

ŝ = arg max
s∈{1,...,M}

[
YTHΦes

]
(38)

Consider the high signal-to-noise ratio (SNR) regime and
assume that the PPM symbols0 ∈ {1, . . . , M} was transmit-
ted, thenY = HΦes0

resulting in:

ŝ = arg max
s∈{1,...,M}

[
eT

s0
ΦTHTHΦes

]
(39)

On the other hand,eT
s0

ΦTHTHΦes is equal to the(s0, s)-th
element ofΦTHTHΦ. Based on the structure ofΦTHTHΦ
given in eq. (35), it follows that:

eT
s0

ΦTHTHΦes =

{
α, s = s0;
β|s0−s|, s 6= s0.

(40)

whereα andβ|s0−s| can be obtained from equations (36) and
(37) respectively. Note that from eq. (37),βj contains at most
QLP non-zero terms sincegi,π−j(i) = 0 whenπ−j(i) > P .

From equations (36) and (40), it follows that at high SNRs
α ≪ 1 (and consequently the PPM symbols0 is lost) if and
only if |hq,l,p| ≪ 1 for q = 1, . . . , Q, L = 1, . . . , L and
p = 1, . . . , P . In other words, the information symbol is lost
only when thePQ sub-channels suffer from fading over a
durationLTw. Therefore, the proposed scheme achieves full
transmit, receive and multi-path diversities.

The next argument will also show that the proposed scheme
guides the receiver in the sense of making correct decisionsas
P increases. Note that in eq. (40),α corresponds to a correct
decision whileβj corresponds to confusing the transmitted po-
sition with a position that isj slots further (in a cyclic pattern).
Sinceα can be written asα = β0 and sinceπ−j(i) 6= i for
j = 1, . . . , M−1, thenβj < α for j = 1, . . . , M−1 following
from the properties of the autocorrelation function. For a fixed
value of (Q, L), note thatα (and consequently the diagonal
elements ofΦTHTHΦ) adds up coherently asP increases. On
the other hand,βj for j = 1, . . . , M − 1 (and consequently
all the non-diagonal elements ofΦTHTHΦ) do not contain
any squared channel coefficient sincehq,l,i 6= hq,l,π−j(i)

following from π−j(i) 6= i for j = 1, . . . , M − 1. As
a conclusion, the gap between the absolute values of the
diagonal elements (corresponding to correct decisions) and the
non-diagonal elements (corresponding to erroneous decisions)
increases withP thus enhancing the diversity order of the
proposed scheme and making it more resistent to errors.

While in the above analysis the diversity order was inves-
tigated in the absence of IPI, the impact of IPI will manifest
itself in the presence of additional cross terms that will be
added toα and βj in eq. (40). Since these cross terms can
be positive or negative with the same probability, then their
average will tend to zero. Moreover, these interference terms
do not add up coherently and, consequently, their effect can
be considered as a perturbation onα (and, consequently, on
the overall diversity order of the system).

B. Scheme 2: Pulse Antenna Modulation

Single-antenna systems, scheme 1 as well as the shape-
preserving PPM codes [7], [8] all correspond to transmitting
one pulse during one out of theM available modulation
positions. The novel idea that we propose in this section is as
follows: during each modulation position, only one transmit
antenna (out of theP antennas) is allowed to transmit an
information-carrying pulse. In other words, instead of mod-
ulating the information symbols over theM PPM positions
for each transmit antennap (p = 1, . . . , P ), these symbols are
modulated over theP transmit antennas for each modulation
positionm (m = 1, . . . , M ). Evidently, the proposed scheme
is exclusive to MIMO systems.

Designate bys1, . . . , sM ∈ {1, . . . , P} M P -ary symbols.
The diversity scheme that we propose extends overJ = P
symbol durations and is given by:

ap,j,m = δp,σj−1(sm) ; p = 1 . . . P ; j = 1 . . . J ; m = 1 . . .M
(41)
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where σk(.) stands for the cyclic permutation of orderk
(among theP transmit antennas) given by:

σk(i) = (i + k − 1) mod P + 1 (42)

In other words, for a given modulation positionm, antenna
σj−1(sm) is pulsed during thej-th symbol duration. From eq.
(41), it follows that the number of bits transmitted PCU is:

R2 =
M log2 (P )

P
(43)

while the rate of scheme 1 (and of all the existing shape-
preserving PPM codes) isR1 = log2(M) bits PCU. Given
that practical systems are equipped with a limited number of
antennas, thenM is often much greater thanP and scheme
2 presents the main advantage of an enhanced data rate with
respect to scheme 1. For example, for modulation over16
positions with 2 transmit antennas, scheme 2 transmits two
times faster than scheme 1.

Unlike spatial-multiplexing systems where the data rate is
increased at the expense of sacrificing the transmit diversity
order, the increase in data rate that results from scheme 2
is accompanied with an enhanced diversity order as stated in
the next proposition. Finally, since for scheme 2 in the average
M/P pulses are transmitted from each antenna, the waveform
w(t) in eq. (1) must be normalized by

√
P/M to ensure the

same transmission level compared to SISOM -PPM systems.
Proposition 2: For P > 1 transmit antennas, scheme 2

achieves a full transmit diversity order withM -PPM constel-
lations for all the valuesM .

Proof: The proof is provided in the appendix.
From proposition 1 and proposition 2, it follows that one

advantage of scheme 2 over scheme 1 resides in the fact that
the former can be applied for all values of(P, M) while the
latter is limited toM ≥ P . On the other hand, scheme 2
presents the disadvantage of an increased decoder complexity
sinceM P -ary symbols (PM dimensions), as compared to
oneM -ary symbol (M dimensions), must be decoded jointly.
In this case, the nonlinear PPM-specific sphere decoders
proposed in [13] must be applied resulting in more complex
receivers. Finally, forM ≥ P , the choice of applying scheme
1 or scheme 2 depends on the complexity constraints on the
receiver and on wetherR1 is smaller or greater thanR2. Note
that the decoding complexity of scheme 2 is the same as that
of [7], [8].

IV. COVERAGE EXTENSION OFFERED BY THEMIMO
TECHNIQUES

The low transmission levels imposed on UWB communica-
tions have direct implications on the achieved communication
ranges and data rates. In this section, we discuss the cover-
age extension and the data rate enhancement offered by the
diversity schemes that we proposed in the previous section.

Designate byEb andN0 the average energy per information
bit and the noise spectral density respectively. The ratioEb/N0

can be related to the communication distance (d) by [14]:

Eb

N0
= EIRP +10 log10(B)+Gt +Gr−10α log10

(
4πfcd

c

)

− 10 log10(Rb) − (−173.83 + F ) − I (44)

whereEIRP is the effective isotropic radiated power,B is the
−10 dB bandwidth of the transmitted pulses.Gt andGr are
the gains of the transmit and receive antennas respectively. α
is the path loss exponent. Iffmin andfmax stand for the−10
dB edges of the spectrum occupied by the waveforms, then
fc =

√
fminfmax. F is the noise figure of the receiver andI

is the implementation loss.Rb = R
Nf Tf

is the transmission rate
whereR is the number of bits transmitted PCU:R = log2(M)
(resp.R = M log2(P )/P ) for scheme 1 (resp. scheme 2).

V. SIMULATIONS AND RESULTS

We consider FCC-compliant Gaussian pulses occupying the
[3.1 5.1] GHz bandwidth. In this case,EIRP = −41.25
dBm/MHz [1]. In eq. (44), we fixGt = Gr = 0 dB,
F = 6 dB, I = 5 dB and α = 2 which corresponds to
free-space propagation. The transmit and the receive arrays
are supposed to be sufficiently spaced so that each one of
the PQ sub-channels is generated independently from the
other sub-channels using the standard IEEE 802.15.3a channel
model recommendations CM1 and CM2 that correspond to
line-of-sight (LOS) and non-line-of-sight (NLOS) conditions
[14]. The modulation delay of the PPM constellation is fixed
to: δ = 0.5 ns. Sinceδ is small compared to the channel
delay spread (that is in the order ofΓ = 100 ns), all of
the presented simulations take IPI into consideration. At the
receiver side, perfect channel state information is assumed.
A modified version of the sphere decoder is applied [13].
This assures that the output of the decoder corresponds to
the closest point of the multi-dimensional PPM constellation
(and not simply to the closest lattice point).

In the first simulation setup, we fixTf = 100 ns which is
larger than the channel delay spread. Consequently, this setup
highlights the diversity and multiplexing advantages of the
proposed schemes independently from IFI and ISI.Nf has
no effect on the performance in the absence of IFI and ISI
and it is fixed to1.

Fig. 3 compares the performance of single-antenna IR-UWB
systems with that ofP ×1 MISO-UWB systems using scheme
1 with 5-PPM forP = 2, 3, 5. The receiver is equipped with a
4-finger Rake. Results show the enhanced diversity order and
the high performance levels achieved by the proposed scheme.
In Fig. 4, we compare the performance of scheme 1 with that
of the rate-1 shape-preserving code proposed in [8] with 8-
PPM. This simulation shows that the diversity order of both
codes is the same and that [8] slightly outperforms scheme
1 (by about 0.5 dB at10−3). However, this enhanced per-
formance is realized at the expense of an increased decoding
complexity since [8] necessitates the joint ML detection ofP
PPM symbols while scheme 1 is symbol-by-symbol decodable.
Note that [8] is the best known rate-1 PPM code and that,
with respect to this code, scheme 1 compromises a small
performance loss with an important reduction in the receiver
complexity especially for large numbers of transmit antennas.

In Fig. 5, we compare the two diversity schemes with
16-PPM. The enhanced multiplexing gain of scheme 2 (that
reaches 8 bits PCU with 4 transmit antennas compared to 4
bits PCU for scheme 1) manifests itself in high performance
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Fig. 3. Performance of scheme 1 on CM2 with 5-PPM. One receiveantenna
and a 4-finger Rake are used.
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Fig. 4. Scheme 1 versus the rate-1 code in [8] with 8-PPM. Simulations are
performed over CM2 and the receiver is equipped with a 4-finger Rake.

levels especially at low SNRs. This figure shows the very high
performance levels achieved by scheme 2. The performance
enhancements are associated with a higher decoding complex-
ity (which is the same as that of [8]).

To highlight the advantages of ST coding with UWB
systems, Fig. 6 compares systems having the same overall
diversity order that is equal to the productPQL (with Q = 1
in this case). 3-PPM is used and for a fair comparison, we plot
the symbol error rates (SER) as a function ofPL for SNRs
of 15 dB and 20 dB (note that the gap between the1 × 1
andP × 1 systems will increase if the SER was plotted as a
function of L alone). For example, a1 × 1 system equipped
with 60 fingers achieves a SER of3×10−4 at a SNR of 20 dB.
In this case, the2 × 1 system with only 30 fingers achieves
a better SER in the order of10−5 while the 3 × 1 system
with 20 fingers achieves a SER of4×10−6. Fig. 6 shows that
exploiting the transmit diversity by increasing the numberof
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Fig. 5. Scheme 1 versus scheme 2 with 16-PPM. Simulations areperformed
over CM2 and the receiver is equipped with a 5-finger Rake.
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Fig. 6. Transmit diversity versus multi-path diversity with 3-PPM. Scheme
1 is applied in the MIMO case. Simulations are performed overCM2.

transmit antennas can be more beneficial than enhancing the
multi-path diversity by increasing the number of Rake fingers
even though there is no increase in the energy capture. This
follows from the fact that consecutive multi-path components
of the same sub-channel can be simultaneously faded because
of cluster and channel shadowing [14]. For SNR=20 dB, Fig.
6 shows that it is possible to achieve error rates smaller than
10−5 by increasing the number of transmit antennas while it
was impossible to reach such error rates with single-antenna
systems with any number of Rake fingers.

In Fig. 7, we consider the impact of IFI and ISI. We
fix Nf = 1 and the frame duration can take the values of
Tf = 8, 15 or 100 ns. In particular, we compare2 × 2
systems employing either scheme 2 or Spatial-Multiplexing
(SM) with 16-PPM. The superiority of scheme 2 is evident
for all levels of interference. In this scenario, both scheme
2 and SM transmit 8 bits PCU. However, scheme 2 presents
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Fig. 7. Scheme 2 versus spatial-multiplexing in the presence of inter-symbol-
interference.2×2 MIMO systems are considered with 16-PPM. The receiver
is equipped with a 1-finger Rake.
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Fig. 8. The achievable data rate as a function of the communication distance
at a SER of10−3 with 4-PPM. Results are shown for CM1 and CM2 using
a 3-finger Rake.

the additional advantage of being fully diverse. This enhanced
diversity results in decreasing the error floors that resultfrom
interference. For example, SM has an error floor of6× 10−2

for Tf = 8 ns while scheme 2 can achieve error rates that are
smaller than10−2 while transmitting at the same data-rate of
1 Gbps.

By applying eq. (44), we plot the binary rateRb as a
function of the communication distanced in Fig. 8 for a
target SER of10−3. Scheme 2 is applied with 4-PPM and
a 3-finger Rake. We fixNf = 4 while Tf is varied from2.5
ns to 100 ns. At a first time, the SER is averaged over104

channel realizations by Monte Carlo simulations. At a second
time, the value ofEb/N0 corresponding to a target SER of
10−3 is determined andd is calculated from eq. (44). Results
show the suitability of the proposed MIMO-UWB solutions
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Fig. 9. Performance over the Kunisch-Pamp profile-2 model [15]. Scheme
1 is used with 4-PPM.

for high data-rate WPANs since they can boost the data-rate
and (or) the coverage of such networks. For example, while a
single-antenna system can not deliver more than14 Mbps at
a distance of5 m on CM1, the6×6 system achieves the data
rate of about3 Gbps (without any channel coding).

While all of the previous simulations were performed as-
suming that the MIMO channels are independent, Fig. 9 shows
the performance over the space-variant UWB channel model
proposed in [15]. Simulations are performed over profile 2
that corresponds to an office NLOS scenario for antenna
array separations of 5 cm and 10 cm. Scheme 1 is applied
with 4-PPM. Results show the high performance levels over
this realistic MIMO model that takes spatial correlation into
consideration. It can be observed that the diversity ordersfor
both array separations are the same with the larger separation
resulting only in a slightly better performance.

VI. CONCLUSION

We presented two novel diversity techniques for IR-MIMO-
UWB systems using unipolar PPM constellations. The pro-
posed constructions solve the problem of the non-existenceof
unipolar codes for any number of transmit antennas and signal-
set dimensionality. With respect to single-antenna systems, the
proposed schemes add no additional constraints on the RF
circuitry to control the amplitude and the phase of the UWB
pulses. Results show that data rates in the order of1 Gbps
can be achieved by the proposed schemes for communication
distances that do not exceed5 m thus making the proposed
schemes strong candidates for high data-rate WPANs.

APPENDIX

To simplify the analysis, in the construction of the
(PM × J)-dimensional codewordA, instead of stacking
ap,j,1, . . . , ap,j,M vertically for a given value of(p, j), we
chose to stacka1,j,m, . . . , aP,j,m vertically one after the other
for a given value of(m, j). In other words, the((m− 1)P +
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p, j)-th element ofA will be equal toap,j,m. Based on this
new formulation, eq. (16) will be written as:

Y = [IP ⊗ (IM ⊗ H)]A + N , HA + N (45)

where the constituent elements of theQL × P matrix H are
given in eq. (19).

Based on the encoding scheme described in eq. (41), the
P 2M -dimensional vectorA can be written as:

A , vec(A) = ΦS (46)

=
[

(IM ⊗ IP )
T

(IM ⊗ Ω)
T · · ·

(
IM ⊗ ΩP−1

)T
]T

.
[

eT
s1

· · · eT
sM

]T
(47)

wheres1, . . . , sM ∈ {1, . . . , P} correspond to the information
symbols andΩ is theP × P matrix given by:

Ω =

[
01×(P−1) 1

IP−1 0(P−1)×1

]
(48)

The ML criterion is the same as eq. (24) whereHTH =
[IP ⊗ (IM ⊗ H)]

T
[IP ⊗ (IM ⊗ H)] = IP ⊗ (IM ⊗ G) fol-

lowing from the properties of the Kronecker product where
G = HT H is theP × P matrix whose constituent elements
are given in eq. (25).

Following from the structure of matrixΦ given in eq. (47)
and from the fact that

(
Ωi

)T
= Ω−i, it can be directly proven

that:

ΦTHTHΦ = IM ⊗
[

P∑

i=1

Ω−iGΩi

]
, IM ⊗ G (49)

Inspecting the structure ofG, it can be proven that its(i, j)-
th element can be written as:

Gi,j =

P−1∑

k=0

gσk(i),σk(j) ; i, j = 1, . . . , P (50)

Since theP permutationsσ0(p), . . . , σP−1(p) span the
entire set{1, . . . , P} for all values ofp = 1, . . . , P , then
the diagonal elements ofG are given by (i = 1, . . . , P ):

Gi,i , α =

P−1∑

k=0

gσk(i),σk(i) =

P∑

p=1

gp,p =

P∑

p=1

Q∑

q=1

L∑

l=1

h2
q,l,p

(51)
Consequently, for anyPM -dimensional information vec-

tor S whose structure is described in eq. (47), the scalar
ST ΦTHTHΦS is always equal toMGi,i which is a constant
implying that this term can be removed from the ML metric
given in eq. (24).

Therefore, the decision can be based on the metricYTHΦS.
Assuming that the vectorS′ = [eT

s′

1

· · · eT
s′

M
]T was transmit-

ted, then at high SNR:Y = HΦS′ implying that:

YTHΦS = S′T ΦTHTHΦS =
M∑

m=1

Gsm,s′

m
, βS,S′ (52)

From eq. (51) and eq. (52), it follows that for a correct
decision by the ML decoder,βS′,S′ = Mα = M

∑
p,q,l h2

q,l,p

implying that theL fingers of all of thePQ MIMO sub-
channels add up coherently and that the system profits from
full transmit, receiver and multi-path diversity orders.

For S 6= S′, combining equations (50) and (52) results in:

βS,S′ =

M∑

m=1

P−1∑

k=0

gσk(sm),σk(s′

m)

=

M∑

m=1

P−1∑

k=0

Q∑

q=1

L∑

l=1

hq,l,σk(sm)hq,l,σk(s′

m) (53)

Note that for sm 6= s′m, σk(sm) 6= σk(s′m) implying
that

∑P−1
k=0 gσk(sm),σk(s′

m) ≤ ∑P−1
k=0 gσk(sm),σk(sm) = α

following from the properties of the autocorrelation function.
Consequently, an erroneous estimated positionsm will result
in cross terms that do not add up coherently inβS,S′ and that
are smaller thanα. Consequently, the imposed diversity order
enhances the useful information-bearing part of the received
signal without increasing the probability of confusing it with
other signals corresponding to different information symbols.

Note that in the absence of IPI, the block-diagonal structure
of the matrixΦTHTHΦ in eq. (49) insures that the symbols
s1, . . . , sM can be decoded separately. This is not the case in
the presence of IPI where these symbols must be decoded
jointly. Once again, IPI results in cross-product terms that
do not add up coherently and, consequently, do not affect
the overall diversity order of the system. These interference
terms become more and more negligible compared toβS′,S′ =
M

∑
p,q,l h

2
q,l,p (corresponding to a correct decision) asM , P ,

Q or L increase.
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