
Approximate XML Structure Validation based on

Document-Grammar Tree Similarity

Joe Tekli
1
, Richard Chbeir

2 *
, Agma J.M. Traina

3
, Caetano Traina Jr.

3
,

Renato Fileto

4

1
Dept. of Elec. and Compt. Eng., SOE, Lebanese American University (LAU), 36 Byblos, Lebanon
2
 LIUPPA Laboratory, University of Pau and Adour Countries (UPPA), 64200, Anglet, France

3
 ICMC, University of Sao Paulo (USP), 13566-590 - São Carlos, SP, Brazil

4
Federal University of Santa Catarina (UFSC), 88040-900 - Florianopolis, SC, Brazil

Abstract. Comparing XML documents with XML grammars, also known as XML document and

grammar validation, is useful in various applications such as: XML document classification, document

transformation, grammar evolution, XML retrieval, and the selective dissemination of information.

While exact (Boolean) XML validation has been extensively investigated in the literature, the more

general problem of approximate (similarity-based) XML validation, i.e., document-grammar similarity

evaluation, has not yet received strong attention. In this paper, we propose an original method for

measuring the structural similarity between an XML document and an XML grammar (DTD or XSD),

considering their most common operators that designate constraints on the existence, repeatability and

alternativeness of XML elements/attributes (e.g., ?, *, MinOccurs, MaxOccurs, etc.). Our approach

exploits the concept of tree edit distance, introducing a novel edit distance recurrence and dedicated

algorithms to effectively compare XML documents and grammar structures, modeled as ordered

labeled trees. Our method also inherently performs exact validation by imposing a maximum similarity

threshold (minimum edit distance) on the returned results. We implemented a prototype and conducted

several experiments on large sets of real and synthetic XML documents and grammars. Results

underline our approach‘s effectiveness in classifying similar documents with respect to predefined

grammars, accuratly detecting document and/or grammar modifications, and performing document and

grammar relevance ranking. Time and space analysis were also conducted.

Keywords: XML; Semi-structured data; XML Grammar; Structural Similarity; Tree Edit Distance; Classification,

Relevance Ranking.

1. Introduction

The structural and self-describing nature of XML promotes a number of emerging techniques ranging from XML

version control, intelligent Web search, and data integration, to message translation and clustering/classification,

requiring, in one way or another, some notion of XML structural similarity. In XML similarity-related research, most

work has focused on estimating similarity at the XML data layer (comparing XML documents, e.g., [26, 33, 48]), while

quite a few studies have targeted the XML type layer (comparing XML grammars, e.g., [5, 28, 61]). Nonetheless, few

efforts have been dedicated to similarity evaluation in-between the XML data and type (document/grammar) layers.

Traditionally, most studies related to XML document/grammar comparison have targeted XML validation [7, 8,

49], i.e., a specific case of Boolean XML comparison, designed to verify whether an XML document is valid (or not)

with respect to (w.r.t.) a given XML grammar (DTD [16] or XSD [31]). Yet with the proliferation of heterogeneous

XML data on the Web (i.e., documents originating from different data-sources and not conforming to the same

grammar, or documents lacking predefined grammars), there is an increasing need to perform ranked XML

document/grammar comparison, which we refer to as ‗approximate XML validation‘: identifying those documents

which are not necessarily valid w.r.t. the user grammar, but which share a certain amount of similarity with the

grammar, ranked following their similarity scores.

Evaluating the similarity between heterogeneous documents and grammars can be exploited in various application

scenarios requiring accurate and ranked detection of XML structural similarities [10, 62], ranging over: XML

document classification against a set of grammars declared in an XML database [10, 80], (just as DB schemas are

necessary in traditional DBMS for the provision of efficient storage, retrieval and indexing facilities, the same is true

for DTDs and/or XSDs in XML repositories), XML ranked document retrieval via structural queries [32, 55] (a

structural query being represented as a DTD/XSD in which additional constraints on content can be defined), the

selective dissemination of XML documents [10] (user profiles being expressed as DTDs/XSDs against which the

incoming XML data stream is matched), as well as Web service matching and SOAP processing (searching and ranking

services which best match WSDL
1
 service requests, and comparing outgoing SOAP messages to sender-side WSDLs,

processing only those parts of the messages which differ from the WSDL descriptions in order to avoid unnecessary

overhead, and thus reduce processing cost in SOAP parsing [74], serialization [2], and communications [72, 78]).

———

* Corresponding author. Tel.: +33559574337; fax: +33559574308; e-mail: richard.chbeir@univ-pau.fr
1
 Web Service Description Language (WSDL) is a special XML grammar structure that supports the machine-readable description of

a Web service‘s interface and the operation it supports, including corresponding SOAP message formats.

2

In this study, we focus on the problem of evaluating the structural similarity between an XML document and an

XML grammar, i.e., comparing the structural arrangement and ordering of XML elements/attributes in the XML

document and the XML grammar. Different from previous approaches which are either generic (disregarding XML

grammar constraints, e.g., the Or operator, ?, *, +, etc.) [32, 50, 75], developed for the DTD language and do not

consider more complex and expressive XSD-based constraints (e.g., MinOccurs and MaxOccurs) [9, 10], or restricted to

Boolean results (i.e., traditional XML validation methods [7, 8, 49]), we aim at providing a method which is:

 Fine-grained in detecting and identifying the structural similarities and disparities between XML documents

and grammars, in comparison with current generic [32, 75] and alternative [9, 10] approaches,

 Considering the more expressive XSD grammar constraints (namely MinOccurs and MaxOccurs), in

comparison with less expressive DTD-based constraints (e.g., ?, *, +) handled in existing methods [9, 10],

 Producing a ranked similarity result, in comparison with existing Boolean (validation) methods, e.g., [7, 8, 49].

To achieve these goals, we provide a new approach that extends well-known dynamic programming techniques for

finding the edit distance between tree structures, XML documents and grammars being modeled as Rooted Ordered

Labeled Trees. Our approach consists of two main phases: i) XML document/grammar tree representation, and ii) XML

document/grammar tree comparison (cf. overall architecture in Fig. 1). While XML documents can be naturally

represented as labeled trees, XML grammars are usually more intricate, due to the various types of constraints on the

existence, repeatability and alternativeness of XML nodes (e.g., ?, *, + operators in DTDs, MinOccurs, MaxOccurs

cardinality operators in XSD, as well as the And sequence operator and Or alternativeness operator). These would have

to be considered to obtain an accurate similarity measure. Hence, we address the problem of comparing an XML

document with an XML grammar as that of: producing a tree representation for the XML grammar (comparable to the

XML document tree representation) with additional components to describe cardinality constraints (namely the

MinOccurs and MaxOccurs operators), and then applying a tree-to-tree edit distance function to compute document-to-

grammar structural similarly, taking into account XML grammar constraints. We introduce dedicated grammar

transformation rules to simplify grammar expressions (while preserving their expressiveness) representing each

grammar as a single tree or a set of trees following its disjunctive normal form (i.e., a set of grammars free of the Or

operator, e.g., declaration (a | (b, c)) is split into two declarations: a and (b, c)), each being represented as a separate

tree). Then, we introduce a Tree (Edit Distance) Comparison approach to compute (concurrently, using multi-thread

processing), the cost of transforming the XML document tree so that it becomes valid w.r.t. the (set of) XML grammar

tree(s). Minimum Tree edit Operations Costs computed via TOC module, are fed to a Tree Edit Distance (TED)

algorithm, which identifies the minimum distance (maximum similarity) value. We build on TED as an effective and

efficient means to compare semi-structured data, e.g., XML documents [18, 26, 48], which has been proven optimal in

structural similarity evaluation, w.r.t. less accurate methods [17]. Also, note that our XML grammar tree model

considers complex declarations, including: i) repeatable sequence expressions, ii) repeatable alternative expressions,

and iii) recursive expressions, which have been disregarded in most existing studies, e.g., [9, 32, 57]. In addition, our

grammar tree model is not limited to context-free (DTD-like) grammar declarations: where the definition of an element

is unique and independent of its position in the grammar; but can be used with context-sensitive (XSD-based)

declarations: where identically labeled elements can have multiple definitions in different contexts in the grammar.

Fig. 1. Simplified activity diagram describing our XML document/grammar comparison framework.

A prototype system called XS3 (XML Structure & Semantic Similarity) has been developed to evaluate and

validate our approach, conducting a large battery of experiments on large XML datasets, covering: One to One

(comparing one document to one grammar), One to Many (comparing one XML document to a set of grammars and

vice-versa) and Set comparison (enabling XML document/grammar classification and ranked retrieval). Results

highlight fine-grained (accurate) similarity scores, produced in typical case polynomial time.

The remainder of the paper is organized as follows. Section 2 presents preliminary notions. Section 3 describes our

XML grammar tree representation model. Our XML document-grammar structure comparison algorithms are

developed in Section 4. Section 5 presents the experimental tests. Section 6 briefly reviews the state of the art in XML

document/grammar similarity approaches and related problems. Section 7 concludes the paper.

2. Preliminaries

2.1. XML Document Representation Model

Following the Document Object Model (DOM) [77], XML documents represent hierarchically structured information

and can be represented as rooted ordered labeled trees.

XML gram G

TED

Ci  {C}G

Tree (Edit Distance) Comparison

Sim(D, G)

Tree Representation

Set of

conjunctive

grammar trees

{C}G

XML Document tree representation

Disjunctive

normal form

Max{Sim(D, Ci)}

Ci  {C}G

TOC

Edit operations

costs
Transformation rules

Multi-thread processing

for each Ci  {C}G

XML doc D

One-to-one representation

XML Grammar tree representation

3

Definition 1 – Rooted Ordered Labeled Tree: It is a rooted tree in which the nodes are labeled and ordered. We

denote by T[i] the i
th
 node of T in preorder traversal, T[i]. its label, T[i].d its depth, and T[i].Deg its out-degree (i.e.,

the node‘s fan-out). R(T)=T[0] designates the root node of tree T. In the remainder of this paper, terms tree and rooted

ordered labeled tree are used interchangeably ●

Definition 2 – XML Document Tree: It is a rooted ordered labelled tree in which the nodes represent XML

elements/attributes, labelled following element/attribute tag names. Element nodes are ordered following their order of

appearance in the XML document. Attribute nodes appear as children of their encompassing element nodes, sorted left-

to-right by attribute name, and appearing before sub-element siblings [48, 83] ●

Note that the order of attributes (unlike elements) is irrelevant in native XML [1], yet in the context of XML

structure comparison and processing, attribute nodes are usually ordered (as described above) so as to reduce the

complexity of the similarity evaluation process [48, 83]. Element/attribute values can be disregarded (structure-only) or

considered (structure-and-content) in the comparison process following the application scenario (e.g., structure-only

comparison is usually performed when processing heterogeneous documents for clustering/classifying [26, 48],

whereas data values are generally considered in XML change management and data integration [25, 42]). In this paper,

we address heterogeneous XML document-grammar comparison, and thus target element/attribute tag names

(structure-only comparison) rather than data values. A sample XML document structure is depicted in Fig. 2.a.

<?xml?>

<Paper title= ―…‖>

 <Publisher>

 <FirstName>…</FirstName> <LastName>…</LastName>

 </Publisher>

 <Version> … </Version>

 <Length>…</Length>

 <url>

 <Paper>…</Paper>

 <Download>

 <url>

 <Paper>…</Paper> <Download>…</Download>

 </url>

 </Download>

 </url>

</Paper>

Sample XML document Paper.xml
1

XML tree representation D of Paper.xml

a. Sample XML document, and corresponding tree representation.

<! DOCTYPE [

<!ELEMENT Paper ((Author* | Publisher), Version, Length?, url?)>

<!ELEMENT Publisher (FirstName?, LastName)>

<!ELEMENT url (Homepage, Download+)>

<!ELEMENT Download (url?)

 <!ELEMENT Author (#PCDATA)>

 <!ELEMENT Version (#PCDATA)>

 <!ELEMENT Length (#PCDATA)>

 <!ELEMENT FirstName (#PCDATA)>

 <!ELEMENT LastName (#PCDATA)>

 <!ELEMENT Homepage (#PCDATA)>]

XML grammar in DTD syntax

<?XML?>

<schema>

 <element name= ―Paper‖>

 <sequence> <choice>

 <element name= ―Author‖ minoccurs=―0‖ maxoccurs= ―unbounded‖/>

 <element name= ―Publisher‖>

 <sequence>

 <element name= ―FirstName‖ minoccurs=―0‖ type= ―String‖/>

 <element name= ―LastName‖ type= ―String‖/>

 </sequence> </element> </choice>

 <element name= ―Version‖ type= ―Decimal‖/>

 <element name= ―Length‖ minoccurs= ―0‖ type= ―Decimal‖/>

 <element name=―url‖ minoccurs= ―0‖>

 <sequence>

 <element name=‖Homepage‖ type= ―URI‖/>

 <element name= ―Download‖ maxoccurs= ―unbounded‖ type=―URI‖>

 <element ref= ―url‖ minoccurs = ―0‖/>

 </element>

 </sequence> </element> </sequence> </element>

 </schema>

XML grammar in simplified XSD syntax (allowing a higher degree

of expressiveness in defining structural constraints and data-types)

VPaper  (WAuthor* | VPublisher), WVersion, WLength?, Vurl?

VPublisher  WFirstName?, WLastName

Vurl  WHomepage, WDownload+

VDownload  Vurl?

Production rules (structural model definitions) describing the

structure of the DTD grammar above in formal language

b. Sample XML grammars, in DTD and XSD syntaxes.

Fig. 2. Sample XML document and XML grammas.

Note that hyper-links in XML documents (e.g., XLinks and IDREFs) and other types of nodes such as entities,

comments and notations are usually disregarded in most existing structure comparison methods, e.g., [18, 26, 30, 33,

48], since they are not considered part of the core structure of XML documents.

———
1
 The dots indicate the place where XML element/attribute data values reside.

Version Title url

LastName FirstName Paper Download

Length Publisher

XML tree D

Paper

url

Paper Download

4

2.2. XML Grammar Representation Model

An XML grammar (e.g., DTD [16] or XSD [31]) is an entity consisting of a set of expressions describing XML

element/attribute structural positions and data-types, and defining the rules elements/attributes adhere to in

corresponding document instances (cf. Fig. 2.b). The structural properties of XML grammars are basically captured by

regular tree languages [46], XML grammars being viewed as special regular tree grammars [21, 46, 47]. In formal

language theory [34], a regular tree grammar consists of a set of production rules to transform trees. Formally:

Definition 3 – Regular Tree Grammar: It is represented as a tuple G = (N, T, R, p) where N is a set of non-

terminal symbols
1
, T is a set of terminal symbols, R is a set of regular expressions over N  T, and p is a function p:

N  R that associates a non-terminal symbol n N with a regular expression rnR, producing a set of production rules

of the form n  rn. The language L(G), defined based on grammar G, consists of all the possible trees that can be

generated following the set of symbols and production rules defined in G [46] ●

Definition 4 – XML Grammar: It can be viewed as a special regular tree grammar [21, 46, 47], where each

symbol underlines an element e, such that non-terminal symbols underline composite XML element labels, terminal

symbols underline simple (leaf node) element labels or attribute labels, and where the right hand side of their

production rules e  re are made of special regular expressions re which we identify as structural models (or

structural expressions), defined using combinations of XML grammar constraint operators (instead of traditional

regular expression operators). XML grammar constraint operators specify rules on the existence and repeatability of

elements/attributes, namely: cardinality constraints, i.e., ?, *, + in DTDs, MinOccurs and MaxOccurs in XSDs, and

alternativeness constraints: And (sequence) and Or (choice) operators. In addition, special production rules are

introduced in XML grammar languages (which do not exist in traditional tree languages [34]) to encode XML element

data-type content models (e.g., #PCDATA, String, Decimal, gYear, cf. Fig. 2.b) ●

Note that the DTD language [16] allows context-free-grammars (local tree grammars) [46], which means that the

structural model associated to an given element is independent of its position (i.e., context) in the document, the

element being identified by its label (i.e., for an element e in grammar G, there exists only one possible production rule

e  re , i.e., only one possible structural model re). In contrast, XSD [31] allows context-sensitive grammars (single

type tree grammars) [34] where the structural model associated to an element depends on its position in the document

(e.g., one might have more than one production rule sharing the same element e in the grammar, e.g., e  re and e 
re‘, following the element‘s structural position). For further details, a study highlighting the correlation between XML

grammar languages (namely DTD and XSD) and regular tree languages can be found in [46].

2.3. XML Document/Grammar Structural Similarity

We identify two kinds of XML document/grammar structure similarity: i) Boolean comparison, referring to traditional

XML structure validation, and ii) ranked comparison, which we refer to as approximate XML structure validation.

Definition 5 – XML Structure Validation (Boolean Comparison): denoted G ⊨ D, an XML document (tree) D

is deemed valid w.r.t. an XML (regular tree) grammar G (i.e., D conforms to G), if all element (attribute) tags in D

match the element (attribute) structural models defined in G, considering structural model constraint operators. In other

words, the result of the validation operation would be a Boolean value (true or false) indicating whether the document

is valid (or not) w.r.t. the grammar, which comes down to checking whether the document tree is included in the

language defined by the grammar, i.e., if D  L(G) ●

Definition 6 - Approximate XML Structure Validation (Ranked Comparison): denoted G

 0,1
|


 D,

approximate XML structure validation between an XML document (tree) D and an XML (regular tree) grammar G,

with a similarity (relevance) score   [0, 1] (i.e., D approximately conforms to G with a similarity score ), is defined

as the structural comparison (matching) between the element/attribute tag names in D and the structure models in G, in

order to determine the best matches possible. Corresponding (best) matching scores are compiled into an overall

similarity (relevance) score , highlighting the structural relatedness between D and G. In other words, similarity score

 underlines the degree of membership of D w.r.t. the grammar (regular tree) language L(G) ●

Note that in the remainder of the paper, we sometimes use the simple notation: G

| D to designate that document

D approximately validates grammar G (omitting similarity score  for ease of presentation). Also note that we adopt

the concept of similarity as the inverse of a distance function, i.e., a smaller distance value underlining a higher

similarity between the XML document and grammar being compared, and vice-versa.

———
1
 In language theory, terminal symbols are those not assigned to production rules, and thus cannot be broken down to smaller units.

5

3. XML Grammar Tree Representation

The main idea is to compute a tree representation of the XML grammar in order to apply a tree-to-tree edit distance for

computing the document/grammar similarity. To do so, we aim to unfold the XML (regular tree) grammar G structural

expressions into a set of conjunctive grammar trees {C} of equivalent expressiveness, such that comparing a document

tree D with grammar G would come down to comparing D with {C}. Here, the main difficulties in XML

document/grammar tree-to-tree comparison lie within the disparities in the representation and processing of: i)

repeatable expressions defined via the And operator (cf. Fig. 3.a), ii) alternative declarations defined via the Or operator

(cf. Fig. 3.b), and iii) recursive declarations (which could induce infinite loops of elements, cf. Fig. 3.c).

<!ELEMENT root (a?, b, c)+ > <!ELEMENT root (a? | b | c)>

<!ELEMENT root (a)>

 <!ELEMENT a (root?)>

DTD tree

representation

[10]

Sample XML document

tree conforming to the

DTD declaration

DTD tree

representation

[10]

Sample XML

document tree

conforming to the

DTD declaration

Recursive

declarations are

not considered in

the DTD tree

representation

model proposed

in [10].

XML tree conforming

to the DTD declaration

a. Repeatable expression

b. Alternative declaration

c. Recursive declaration

Fig. 3. Disparities in tree representations between XML document and grammar structures,

following the grammar (DTD) tree representation model in [10] (one of the central methods in the literature).

Intuitively, the higher the disparities in document and grammar tree representations, the more complicated it becomes

to perform the tree comparison (matching) task. Hence, we need to have expressive, yet simplified (flattened) XML

grammar trees, which are (more easily) comparable to XML document trees. To do so, we proceed in three phases:

 XML Grammar Transformation Rules: First, we introduce a number of transformation rules to flatten XML

grammar declarations, considering the most common XML grammar constraints.

 One-to-One Document/Grammar Representation: Second, we extend transformation rules to further simplify

repeatable and recursive declarations in the grammar w.r.t. each document tree being compared (one-to-one).

 XML Grammar Tree Model based on the Disjunctive Normal Form: Where the resulting simplified

(flattened) grammar is represented as a set of conjunctive grammars made solely of sequence declarations (i.e.,

elements connected via an And operator), eliminating alternative declarations (i.e., elements connected via the

Or operator), producing grammar tree structures which are (more easily) comparable to document trees.

The remainder of this section develops each of the phases mentioned above, and provides examples.

3.1. XML Grammar Transformation Rules and Properties

An XML grammar transformation rule can be viewed as a binary function that transforms an XML structural

expression into another, thus transforming one grammar into another. Formally:

Definition 7 – XML Grammar Transformation: Let Ω denote the domain of XML grammar structural

expressions (set of all grammar structural expressions allowed in our study, cf. Definition 4), a transformation rule R is

defined as a function R: ΩΩ, associating an input structural expression re 

Ω with an output structural expression re‟



Ω, such that re‟ results from the application of transformation rule R on re, denoted re 

R
 re‟. When applied to all the

structural expressions in an XML grammar G, i.e.,  re  G, re 
R
 re‟, we say that R is applied to G, and transforms it

into an output grammar G‟ made of the transformed expressions  re‗  G‟ , denoted G 
R
 G‟ ●

Definition 8 – Information Structure Preserving (ISP) property: Given an XML grammar (structural

expression in) G and a grammar transformation rule R applied to G, resulting in G‟, i.e., G 
R
 G‟, rule R

is deemed

information structure preserving if any XML document tree D that conforms to G also conforms to G‟ and vice-versa,

i.e.,  D, G ⊨D  G‟

⊨ D. In other words, the original and the transformed grammar (structural expressions in) G‟

have the same structural expressiveness, denoted G ≜ G‟ ●

The transformation rules we provide in our study (cf. Table 1) verify the ISP property in most practical cases (with

one exception discussed subsequently), i.e., they maintain the expressiveness of the input grammar‘s structural models.

They can be grouped in three main categories: simple expression flattening (Rule 1), repeatable sequence expression

flattening (Rule 2) and repeatable alternative expression flattening (Rule 3).

Hereunder, we utilize a DTD-like syntax (even when presenting XSD operators) to ease the presentation. We

introduce a simplified notation for MinOccurs and MaxOccurs, such that an element (expression) e that is associated

root

a

root

a

root

a

OR

root

b c

a

?

root

b c a b c

AND

+

root

a

b c ?

6

cardinality constraints: MinOccurs = x Λ MaxOccurs = y, is noted
y

xe . Note that an element (expression) e with no

associated cardinality constraints is identified as having a null constraint, which is equivalent to
1

1
e , i.e., it appears

exactly once in the XML document. We also highlight the notion of empty structural model (utilized in defining our

transformation rules): given an XML grammar G, an element e  G has an empty structural model, noted e  , (i.e.,

re ≡ ) when e does not encompass any sub-elements, and corresponds to a leaf node in the XML document tree

instance.

Recall that we only target XML structure in our current study, and hence do not discuss element content data-types and

values. Thus, elements with basic content models (e.g., PCDATA, String, Integer, etc.) will be processed as empty

structural models (e.g., <!ELEMENT dummy (#PCDATA)>, will be processed as production rule: dummy  ).

Table 1. Outline of our XML grammar transformation rules.

Note that A and B designate XML grammar structural expressions.

N# Rule Type
ISP

property

1

()
y v

x uA

1R


y v

x uA




(general rule, handling both MinOccurs and MaxOccurs

1
)

Simple

expression

flattening

Special

case

2.1

Simplified version of Rule 2 handling the MinOccurs constraint:

(,)xA B

2.1R
 (A , B) , …, (A , B) where (A , B) is repeated x times.

Repeatable

sequence

expression

flattening

(And)

2.2

Simplified version of Rule 2 handling the MaxOccurs constraint:

(,)

y
A B

2.2R


((A , B)| ) , …, ((A , B)| ) where ((A , B)| ) is repeated y times.



2

(,)
y

xA B

2R
 (A , B) , …, (A , B), ((A , B)| ) , …, ((A , B)| ) where (A , B) is

repeated x times, and ((A , B)| ) is repeated z = y – x times

3.1

Simplified version of Rule 3 handling the MinOccurs constraint:

(|)xA B

3.1R
 (A | B) , …, (A | B) where (A | B) is repeated x times.

Repeatable

alternative

expression

flattening

(Or)

3.2

Simplified version of Rule 3 handling the MaxOccurs constraint:

(|)

y
A B

3.2R
 (

1

0A |

1

0B) , …, (

1

0A |

1

0B) where (

1

0A |

1

0B) is repeated y times.

Note that (

1

0A |

1

0B) underlines that either A or B can occur, or nothing at all, which is different

from

((A , B) | ε) used in Rule 4.β underlining that A and B must occur together, or nothing at all.
Underlines that



3

(|)
y

xA B
3R



(A | B) , …, (A | B) , (

1

0A |

1

0B) , …, (

1

0A |

1

0B) where (A | B) is

repeated x number of times, and (

1

0A |

1

0B) is repeated z = y – x times.

The transformation rules in Table 1 verify the ISP property (cf. proofs in [73]), to the exception of Rule 1, which

verifies the ISP property in some practical cases, but not in the general case:

Lemma 1 – Given an XML grammar expression of the form ()
y v

x uA , transformation Rule 1 complies with the ISP

property when any of the following conditions holds:

 Condition 1: (x = y = 1) or (u = v = 1) (i.e.,
1

1()
v

uA ≡
v

uA ;
1

1()
y

xA ≡
y

xA).

 Condition 2: (x = u = 0) and (y = 1 or v = 1) (i.e.,
1

0 0()
v

A ≡ 0

v
A ;

1

0 0()
y

A ≡ 0

y
A).

 Condition 3: (x = y) and (u = v) (i.e., ()
x u

x uA ≡

x u

x uA




≡ ()

y v

y vA ≡

x u

x uA




≡

y v

y vA



).

Rule 1 may not comply with the ISP property otherwise ●

For instance, ISP holds when transforming DTD expressions such as:

(A*)?, which is equivalent to
1

0 0()A
 3R

 0A


;

(A+)? which is equivalent to
1

1 0()A
 3R

 0A


 ;

(A+)* which is equivalent to 1 0()A
 

3R

 0A


, since Condition 2 of Lemma 1 holds.

———
1 Note that the special case of MaxOccurs = “unbounded” is covered in the following section.

7

Likewise, transforming expression
2 3

2 3()A
3R


6

6A , ISP holds since Condition 3 of Lemma 1 holds.

However, consider an expression of the form
2 2

2 1()A
3R


4

2A . Here, the ISP property does not hold since the

resulting expression does not preserve the structural expressiveness of its original counterpart since (neither of Lemma

1‘s conditions holds): the transformed expression underlines that expression A can occur a minimum of 2 times and a

maximum of 4 times (i.e., it accepts 2-to-4 occurrences of element dummy), whereas the original expression underlines

that expression A can occur either 2 times, or 4 times only.

In addition, we extend the repeatable (sequence/alternative) expression flattening rules in Table 1 to handle the

special cases of MinOccurs = „Unbounded‟ (infinite repetitions) and recursive declarations, as shown in the following.

3.2. One-to-One Document/Grammar Representation

3.2.1. Handling Repeatable Expressions

As described in Table 1, the simplification of repeatable sequence and alternative expressions, of the form (,)xA B


and (|)xA B


, following Rule 2 and Rule 3, requires the infinite repetition of flattened expressions ((A , B)| ) and

1 1

0 0(|)A B

respectively, in order to verify the ISP property. Yet since our method is one-to-one in comparing one single

XML document to one single XML grammar, repeatable sequence/alternative expressions can be further simplified

without loss of expressiveness in the context of the XML document at hand. This can be done by repeating the flattened

expressions: i.e., ((A, B)| ) w.r.t. Rule 2, and
1 1

0 0(|)A B w.r.t. Rule 3, only a finite number of times in the transformed

grammar, necessary to cover all possible structural configurations of the concerned XML elements/expressions

following the original grammar expression. Hence, we propose extensions of transformation Rule 2 (namely Rule 2.2)

and Rule 3 (namely Rule 3.2) in Table 2.

We note by (G ≜ G‟)D a grammar G and a transformed grammar G‟ having the same structural expressiveness

w.r.t. a particular document tree D. We say that the rule transforming G into G‟ verifies the ISP property w.r.t.

document tree D.

Table 2. Outline of one-to-one document/grammar transformation rules.

Note that A and B designate XML grammar structural expressions

N# Rule (given an XML document tree D) Type
ISP

property

2.2+

Simplified version of Rule 2+ handling the MaxOccurs constraint (MinOccurs is handled the same as in Rule 2.1):

(,)A B



2.2R 
 ((A , B)| ) , …, ((A , B)| ) where ((A , B)| ) is repeated ceil(()

| |

MaxDeg D

E

) times
1
,

such as E = (,)A B


 and |E| denotes the expression‘s cardinality w.r.t. the main And sequence operator

(e.g., |E|=2 for E=(A, B)*, |E|=3 for E=(A, B, C)*).

Repeatable

sequence

expression

flattening



2+

(,)xA B
 2R 
 (A , B) ,…, (A , B) , ((A , B)| ) ,…, ((A , B)| )

where (A , B) is repeated x times, whereas ((A , B)| ) is repeated z =ceil(
()

| |

MaxDeg D

E

) - x times
1

3.2+

 Simplified version of Rule 3+ handling the MaxOccurs constraint (MinOccurs is handled the same as in Rule 3.1):

(|)A B
 3.2R 


1 1

0 0(|)A B , …,
1 1

0 0(|)A B

where
1 1

0 0(|)A B is repeated MaxDeg(D) times. Repeatable

alternative

expression

flattening



3+

(,)xA B
 3R 
 (A | B) ,…, (A | B) , 1 1

0 0(|)A B , …,
1 1

0 0(|)A B

where (A | B) is repeated x times, and 1 1

0 0(|)A B is repeated z = MaxDeg(D) – x times.

4

A strong-linear recursive expression defined on element e, denoted eref 

erec

4R
 e1  e2 … en-1 en

where ei denotes ith nested occurrence of element e, repeated n = ceil(
() 1

()ref rec G

Depth D +

NestDepth e , e
) times

1
.

Recursive

expression

flattening


Given an XML grammar (structural expression in) G, and an XML document tree D to be compared with G, the

application of Rule 2+ and/or Rule 3+ to grammar (structural expressions in) G, considering document tree D, verifies

the ISP property w.r.t. D (cf. proofs in [73]). More importantly, Rule 2+ and Rule 3+ have allowed to simplify

(possibly) infinite size expressions (originally required to preserve grammar expressiveness in the general case) into

expressions which sizes vary linearly w.r.t. the out-degree of the document tree, MaxDeg(D) (cf. example in Fig. 4.a).

———
1
 The function ceil(x) returns the smallest integer value that is not less than x. The formulas‘ proofs are provided in [73].

8

 <!ELEMENT Root(a, b)*>

 <!ELEMENT b(c*)>

 Grammar G

<ELEMENT Root (((a, b)| ), ((a, b)| ), ((a, b)| ))>

 <!ELEMENT b(c*)>

Grammar G’ transformed following Rule 2+, w.r.t. XML doc tree D, such

that expression ((a, b)| ) is repeated ceil (
()

2

MaxDeg D
) = 3 times

Sample XML tree D

Simplifying expression (a, b)* while preserving expressiveness w.r.t. XML document tree D

Note that c* need not be simplified and will be handled by the edit distance algorithm.

a. Flattening repeatable sequence expressions via the application of Rule 2+.

(1) <!ELEMENT Paper (Title , Paper , (Download | Paper*))>

Multiple occurrences of recursive declarations in structural model

 (2) <!ELEMENT Paper (Title, Paper, (download | url))>

(3) <!ELEMENT Paper (Title, (download | Paper ?))>

Non-linear recursive declaration

Strong-linear recursive declarations

b. Sample recursive XML grammar declarations (represented in DTD syntax for ease of presentation).

XML Tree D

 <ELEMENT Root (a, b)> // Rootref

 <ELEMENT b (Root?)> // Rootrec

 <ELEMENT a (#PCDATA)>

 ≡

 <Element name = „Root‟> // Rootref

 <Sequence>

 <Element name = ‗a‘ type= „#PCDATA‟/>

 <Element name = ‗b‘>

 <Element ref = „Root‟ MinOccurs= „0‟/> // Rootrec

 </Element>

 </Sequence>

 </Element>

Recursive grammar G

(in both DTD and XSD syntaxes)

<Element name = „Root‟> // 1st occurrence

 <Sequence>

 <Element name = ‗a‘ type= „#PCDATA‟/>

 <Element name = ‗b‘>

 <Element name = „Root‟ MinOccurs= „0‟> // 2nd occurrence

 <Sequence>

 <Element name = ‗a‘ type= „#PCDATA‟/>

 <Element name = ‗b‘>

 <Element name = „Root‟ MinOccurs= „0‟> //3rd occurrence

 <Sequence>
 <Element name = ‗a‘ type= „#PCDATA‟/>

 <Element name = ‗b‘ type= „#PCDATA‟/>

 </Sequence>

 </Element>

 </Sequence> </Element> </Sequence>

</Element>

Non-recursive grammar G’ flattened while preserving grammar

expressiveness w.r.t. document tree D
(cannot use DTD syntax here since grammar is context-sensitive)

c. Flattening recursive XML declarations.

Fig. 4. Flattening repeatable and recursive XML declarations.

3.2.2. Handling Recursive Declarations

The problem of handling recursive declarations is comparable to that of handling repeatable expressions such that the

recursive expression would have to be repeated (in certain cases) an infinite number of times in the flattened XML

grammar to preserve structural expressiveness. Yet, since our method is one-to-one in comparing one XML document

to one XML grammar, recursive grammar expressions can be simplified without loss of expressiveness in the context

of the XML document at hand. To do so, we propose to repeat the recursive nesting only a finite number of times,

necessary to cover all possible structural configurations of the concerned XML elements (following the original

recursive declaration) in the XML document tree being compared.

Note that in our current study, we only consider strong-linear recursive declarations, which are the most common

in practice [11, 23], and which are inherently easier to process than non-linear recursive expressions. Formally:

Definition 9 – Recursive XML Grammar: An XML grammar G is recursive if it contains an element e

reachable from itself, denoted by eref

 erec, where eref underlines the original element declaration and erec its recursive

reference in the grammar (e.g., in DTD expression <!ELEMENT dummy (a, b, dummy)>, the first dummy element is

denoted dummyref whereas the second is denoted dummyrec) ●

Definition 10 – Strong-Linear Recursive XML Grammar: An XML grammar G is strong-linear recursive if it

is recursive, and if for each recursive element eref  erec in G, erec occurs at most once in the structural expression of its

containing element, such as erec is not repeatable, and where every other element reachable from eref (e‟  G such that

eref

 e‟) is non-recursive [11, 23] (cf. Fig. 4.b) ●

Following Rule 4, a strong-linear recursive declaration eref  erec is transformed into a chain of non-recursive

nestings consisting of the elements comprised within eRef and eRec, repeated a finite number of times linear in the XML

document tree depth (Depth(D)) and the nesting depth of the recursive declaration (NestDepth(eRef, eRec) = eRef.d –

eRec.d), in order to preserve structural expressiveness w.r.t. the XML document tree. Hence, given an grammar G and an

document tree D to be compared with G, the flattening of strong-linear recursive declarations in G, following Rule 4,

produces a transformed grammar G‟ which verifies the ISP property w.r.t. D, (G ≜ G‟)D (cf. proof in [73]).

Root

a b

Root

b a

Root

b a

Root

c c c c c

a b a b

c


R4


R2+

9

A simple example is presented in Fig. 4.c. Here, the recursive declaration defined on node Root in grammar G is

transformed into a chain of non-recursive nestings consisting of the elements comprised within RootRef and RootRec,

repeated (5 + 1

2
=) 3 times w.r.t. XML document tree depth (=5) and the nesting depth of the recursive declaration (=2).

3.3. Applying Transformation Rules

As discussed above, most of our transformation rules verify the ISP property to the exception of Rule 1 which only

conditionally complies with ISP. As a result, the transformation rules (to the exception of Rule 1) verify the Church-

Rosser property [35, 76] and can be applied to an input XML grammar, in any sequence order, producing an output

grammar having the same structural expressiveness (as the input grammar):

Definition 13 – Extended Church-Rosser (ECR) property: Let Ω be the domain of (structural expressions in)

XML grammars, and ρ = {Ri, Rj, Rk …} be the set of XML grammar (expression) transformation rules defined on Ω, ρ

has the extended Church-Rosser property w.r.t. Ω if  G1, G2, G3 

Ω, and  Ri, Rj  ρ, [(G1 

Ri
 G2) Λ (G1 

 Rj
 G3)]

  G4, G4‟  Ω,  Rk, Rl  ρ such that [(G2 
Rk

 G4) Λ (G3 
Rl
 G4‟) where (G4 ≜ G4‟)] (the resulting (structural

expressions in) grammars G4 and G4‟ have the same structural expressiveness (cf. ECR diagram in Fig. 5.a) ●

In other words, given an input XML grammar G, the transformation rules in Table 1 (except the conditional case

of Rule 1), can be applied to G in any sequence order, always resulting in a transformed grammar G‟ having the same

structural expressiveness as its original counterpart (G G‟). The same carries for our one-to-one document/grammar

transformation rules in Table 2 (cf. proof in [73]).

Consider the example in Fig. 5.b. Input grammar declaration root (a, (b | (c, d, e)+ | f)?), is transformed, without

any loss of expressiveness, to root (a, (b
1

0
 | (((c, d, e) | ε), ((c, d, e) | ε), ...) | f

1

0
), via the application of two different

sequences of transformation rules. In the resulting grammar declaration, all repeatable expressions have been flattened,

cardinality constraints being uniquely associated to single elements (i.e., b
1

0
 and f

1

0
) without loss of expressiveness.

a. Visual description of the ECR (Extended Church-Rosser) property, w.r.t. XML grammar transformation.

Input grammar declaration G : <!ELEMENT root (a, (b | (c, d, e)+ | f)?) >

G 
R3

 G1 
R1

 G2 
R2

 G3

 Start: root (a, (b | (c, d, e)
1


 | f)

1

0
)

Rule 3 : root (a, (b
1

0
 | ((c, d, e)

1


)

1

0
 | f

1

0
))

Rule 1 : root (a, (b
1

0
 | (c, d, e)

0


 | f

1

0
))

Rule 2 : root (a, (b
1

0
 | (((c, d, e) | ε) , ((c, d, e) | ε) , ...) | f

1

0
))

a. Sample transformation sequence, yielding G3 ≜ G.

G 
R2

 G1‟
R3

 G2‟
R2

 G3‟

Start : root (a, (b | (c, d, e)
1


 | f)

1

0
)

Rule 2 : root (a, (b | ((c, d, e), (c, d, e)| ε , (c, d, e)| ε , …) | f)
1

0
)

Rule 3 : root (a, (b
1

0
 | ((c, d, e) , (c, d, e)| ε , (c, d, e)| ε ,…)

1

0
 | f

1

0
))

Rule 2 : root (a, (b
1

0
 | (((c, d, e) | ε) , ((c, d, e) | ε) , ...) | f

1

0
))

b. Sample transformation sequence, yielding G3‟ ≜ G.

G3 ≜

G3‟ : <!ELEMENT root (a, (b

1

0
 | (((c, d, e) | ε) , ((c, d, e) | ε) , ...) | f

1

0
)) >

b. XML grammar transformation example, using two different sequences of XML grammar transformation rules.

Fig. 5. Visual description and sample application of sample XML grammar transformations preserving the ECR property.

Note that the ISP and ECR properties reflect the correctness and completeness or the transformation rules.

Minimality also seems intuitive since the transformation rules have been specifically defined to deal with exactly each

of the common grammar constraints considered in our study, and cannot be further reduced. Nonetheless, the nature of

the transformation rules applied, during a grammar simplification task, might differ depending on the nature of the

grammar expressions (as shown in the example of Fig. 5.b). Hence, despite yielding the same end result (the same

transformed grammar), the minimality of the number of transformations applied might not always be guaranteed.

G1

G3

G2

G4 ≜ G4‘

Ri

Rj
R

k

Rl

10

3.4. XML Grammar Tree Model based on the Disjunctive Normal Form

To produce simple grammar tree structures comparable to document trees, we propose to unfold an XML grammar into

a single tree or a set of trees, depending on the occurrences of the And (sequence) and Or (choice) operators. To do so,

we introduce the disjunctive normal form of an XML grammar as a set of conjunctive grammars:

Definition 14 – Conjunctive XML Grammar: A grammar G is conjunctive if all structural expressions in G are

sequence expressions, i.e.,  e  re in G, re is made of elements/expressions connected via the And operator ●

Definition 15 – XML Grammar Disjunctive Normal Form (DNF): The disjunctive normal form (DNF) of an

XML grammar G is the set of conjunctive grammars, DNF(G) = {C}G which are equivalent in their expressiveness to G

taking into account the alternative structural expressions in G, i.e.,  re  G such that e  re , where re is made of

elements/expressions connected via the Or operator (cf. Fig. 6) ●

The disjunctive normal form of an XML grammar verifies by definition the ISP property, such that the grammar‘s

expressiveness (language) is distributed among its constituent conjunctive grammars, L(G) = L(Ci), denoted as

G ≜ DNF(G). In other words, given an XML grammar G, and its representation in disjunctive normal form

DNF(G) = {C}G, any XML document tree D that conforms to G, will conform to at least one of its conjunctive

grammars, i.e.,  G ⊨ D,  C  DNF(G) such that C

⊨ D (the proof carries directly from the definition of DNF).

<!ELEMENT Root (a, (b | c)) >

<!ELEMENT b (d | e) >

<!ELEMENT Root (a, b) >

<!ELEMENT b (d) >

Conjunctive grammar CI

<!ELEMENT Root (a, b) >

<!ELEMENT b (e) >

Conjunctive grammar CII

<!ELEMENT Root (a, c) >

Conjunctive grammar CIII

a. Sample grammar G. b. Disjunctive normal form of G, DNF(G) = {CI , CII , CIII}G.

Fig. 6. Representing an XML grammar in its disjunctive normal form.

Note that the number of conjunctive grammars, resulting from the DNF of an input XML grammar, depends on the

number and configurations of Or operators in the input grammar expressions. This may generate a proliferation of

conjunctive grammars depending on the expressiveness of the grammar declarations. In this context, we have

conducted a mathematical analysis covering some of the most common configurations of alternative (Or) expressions,

based on surveys of real DTDs and XSDs in [11, 23, 38] (some statistics are provided in Section 5.6). Results show that

the most common alternative expressions generate a number of conjunctive grammars linear in the number of Or

operators involved (e.g., in Fig. 6, |DNF(G)| = 1 + number of Or operators in G = 3), while only certain specific cases

(of usually mixed: And-Or expressions) yield polynomial and/or exponential sized DNF representations (mathematical

details are provided in Appendix I).

As a result, we model each resulting conjunctive grammar C  DNF(G) as a special rooted ordered labeled tree:

Definition 16 – Conjunctive XML Grammar Tree: It is a rooted ordered labeled tree in which nodes represent

XML element/attributes, labeled following element/attribute tag names, and such that each node is assigned the

corresponding element/attribute (MinOccurs/MaxOccurs) cardinality operator. Element nodes are ordered following

their order of appearance in the XML grammar declarations. Attribute nodes appear as children of their encompassing

element nodes, sorted left-to-right by attribute name, and appearing before all sub-element siblings (similarly to XML

document trees, cf. Definition 2). Formally, We model a conjunctive XML grammar tree as C = (NC, EC, LC, CCC, gC):

 NC is the set of nodes (i.e., vertices) in C

 EC  NC × NC is the set of edges underlining the XML element/attribute containment relation

 LC is the set of labels corresponding to the nodes of C

 CCC is the set of cardinality constraints associated to the nodes of C

 gC is a function gC : NC  LC × CCC that associates a label l  LC and a cardinality constraint cc  CCC to

each node nNC , following element/attribute ordering as described above.

We denote by C[i] the i
th
 node of C in preorder traversal, represented as a doublet (l, cc) where l  LC, and cc 

CCC are respectively its label and cardinality constraint, referred to as C[i].l and C[i].cc (since cardinality constraints

amount to „MinOccurs‟ and „MaxOccurs‟, we refer to the latter as C[i].MinOccurs and C[i].MaxOccurs, cf. Fig. 7.a).

C[i].d represents the node‘s depth in the tree, and C[i].Deg its out-degree. R(C)=C[0] designates the root of tree C ●

Recall that while the order of attribute children is irrelevant in XML [1], yet we represent the latter as ordered tree

nodes in both our document and grammar tree models (as described above) in order to reduce the complexity of the

similarity computation process
1
, while seamlessly affecting the accuracy of the similarity results (since attribute nodes,

in both XML document and grammar trees, are ordered in the same way).

The algorithm for transforming an XML grammar into its tree representation in provided in Appendix II.

———
1 E.g., most unordered tree distance algorithms are of exponential time, compared to average polynomial ordered tree methods [12].

11

3.5. Running Example: Sample XML Grammar and Corresponding Tree Representation

Consider XSD grammar Paper.xsd in Fig. 7.b, to be compared with XML document tree D in Fig. 2.a.

a. Graphical representation(s) of conjunctive grammar tree node n.

<element name= ―Paper‖>

 <sequence>

 <choice>

 <element name= ―Author‖ minoccurs=―2‖ maxoccurs= ―10‖>

 <sequence>

 <element name= ―FirstName‖ type= “String‖/>

 <element name= ―MidName‖ minoccurs=‖0‖ type= “String”/>

 <element name= ―LastName‖ type= “String”/>

 </sequence>

 </element>

 <element name= ―Publisher‖>

 <sequence minoccurs=“0”>

 <element name= ―FirstName‖ type= “String”/>

 <element name= ―MidName‖ minoccurs=―0‖ type= “String”/>

 <element name= ―LastName‖ type= “String”/>

 </sequence>

 </element>

 </choice>

 <element name= ―Version‖ type= “Decimal”/>

 <element name= ―Length‖ minoccurs= ―0‖ type= “Decimal”/>

 <element name=―url‖ minoccurs= ―0‖>

 <sequence>

 <element name=‖Paper‖ type= “String”/>

 <element name= ―Download‖ maxoccurs= ―2‖>

 <element ref= “url” minoccurs = “0”/>

 </element>

 </sequence>

 </element>

 </sequence>

 <attribute name= ―Title‖ type="String"/>

 <attribute name= ―Category‖ use= ―Implied‖ type= “String” />

</element>

b. Sample XML grammar Paper.xsd, designated as G.

c. Conjunctive grammar trees corresponding to the disjunctive normal

form of grammar Paper.xsd, designated as DNF(G) ={CI , CII , CIII}.

Fig. 7. Sample conjunctive grammar tree representations.

The DNF form of Paper.xsd, unfolded in a set of conjunctive trees, is shown in Fig. 7.c. Grammar Paper.xsd is

first run through our transformation rules (cf. Fig. 8). Then, the resulting flattened grammar, encompassing Or

operators, is represented as three conjunctive grammar trees (Fig. 7.b and c) underlining the three structural

configurations that can be obtained following the different combinations of the Or operators.

<element name= ―Publisher‖>

 <sequence minoccurs=“0”>

 <element name= ―FirstName‖ type= “String”/>

 <element name= ―MidName‖ minoccurs=‖0‖ type= “String”/>

 <element name= ―LastName‖ type= “String”/>

 </sequence>

 </element>

 
R2

<element name= ―Publisher‖>

 <choice>

 <sequence>

 <element name= ―FirstName‖ type= “String”/>

 <element name= ―MidName‖ minoccurs=‖0‖ type= “String”/>

 <element name= ―LastName‖ type= “String”/>

 </sequence>

 <sequence/> <!-- choice between a sequence of 3 elements and an empty sequence -->

 </choice>

</element>

Original declaration. Flattened declaration (transformation Rule 2).

a. Flattening sequence expression in Paper.xsd of Fig. 7.b.

<element name=“url” minoccurs= “0”>

 <sequence>

 <element name=‖Homepage‖ type= “String”/>

 <element name= ―Download‖ maxoccurs= ―2‖/>

 <element ref= “url” minoccurs = “0”/>

 </element>

 </sequence>


R4

<element name=“url” minoccurs= “0”>

 <sequence>

 <element name=‖Homepage‖ type= “String‖/>

 <element name= ―Download‖ maxoccurs= ―2‖/>

 <element name= “url” minoccurs= “0”>

 <sequence>

 <element name= “Homepage” type= “String”/>

 <element name= “Download” maxocc= “2” type= “String‖/>

 <sequence>

 </element>

 </element>

Original recursive declaration. Flattened declaration (transformation Rule 4).

b. Simplifying recursive node declaration url in grammar Paper.xsd of Fig. 7.b, w.r.t. XML document tree D in

 Fig. 2.a. The recursive nesting is re-inserted a second time, corresponding to a total of 2 occurrences.

Fig. 8. Flattening sequence and recursive declarations in grammar Paper.xsd of Fig. 7.b.

Title Version url

Paper

Paper

Length Category Publisher

Download

Paper Download

0

1

 0

1

 0

1

1

2

1

1

 1

1

1

1

1

2

 1

1

url
0

1

1

1

1

1

LastName FirstName MiddleName
1

1

 0

1

 1

1

Conjunctive grammar tree CIII

Title Version url

Paper

Paper

Length Category Publisher

Download

Paper Download

0

1

 0

1

 0

1

1

2

1

1

 1

1

1

1

1

2

 1

1

url
0

1

1

1

1

1

Conjunctive grammar tree CII

Title Version url

Paper

Paper

Length Category Author

LastName FirstName MiddleName Download

Paper Download

0

1

 2

10

 0

1

 0

1

1

2

1

1

 1

1

1

1

1

2

 1

1

url
0

1

1

1

 0

1

 1

1

1

1

Conjunctive grammar tree CI

1

1

Represent default MinOccurs =1 and MaxOccurs =1

values ≡ null cardinality constraint, and can be omitted.

C[i].l x

y

 C[i].l C[i].cc

C[i].l C[i].MinOcc= x Λ C[i].MaxOcc= y

≡

≡

 Elsevier Information Sciences Journal

12

Note that in addition to handling more expressive XSD constraints (MinOccurs and MaxOccurs), as well as

alternative expressions and recursive declarations, our XML grammar tree model also straightforwardly handles

context-sensitive XSD declarations, where identically labeled elements can have multiple definitions in different

contexts in the grammar (as opposed to context-free DTD declarations). For instance, grammar Paper.xsd contains two

elements shaving the same label Paper: i) the grammar root node element, and ii) the first child of element url.

Hence with XML documents and grammars represented as rooted ordered labeled trees, the problem of XML

document/grammar structural comparison now comes down to comparing corresponding trees.

4. XML Document and Grammar Tree Comparison

As mentioned previously, our approach consists of two main phases: i) Tree Representation of documents and

grammars as rooted ordered labeled trees (described in the previous section), ii) and Tree Edit Distance Comparison for

computing the similarity between document and grammar tree structures. The overall algorithm is presented in Fig. 9.

After transforming the XML document and XML grammar into their tree representations (Fig. 9, lines 1-2), the

edit distance between the document tree and each conjunctive grammar tree is computed (lines 3-10).

Definition 17 – Tree Edit Distance (TED): The edit distance between two trees A and B is defined as the

minimum cost of all edit scripts that transforms A to B, TED(A, B, CostOp)=Min{CostES}, noted as TED(A, B) [12, 82] ●

Hence, the problem of comparing two trees A and B, i.e., evaluating the structural similarity between A and B, is

viewed as the problem of computing corresponding tree edit distance, i.e., minimum cost edit script [82]. In this

context, the notion of edit distance can be adapted to our study as follows:

Definition 18 – TEDXDoc_XGram: Given an XML document tree D, a conjunctive grammar tree C, as well as

corresponding tree edit operations costs, denoted CostInsTree/DelTree, and based on the traditional definition of tree edit

distance, we define TEDXDoc_XGram(D, C, CostInsTree/DelTree), noted simply as TEDXDoc_XGram(D, C), as the minimum cost of

all edit scripts transforming D into a document tree D‟ which is valid w.r.t. C, i.e., C ⊨ D‟

●

 Algorithm XDoc_XGram_Comparison

 Input: D // XML document
 G // XML grammar

 {R} // Set of transformation rules (cf. Tables 1 and 2)

Output: Sim(D, G) // Structural similarity value between D and G  [0,1]

 Begin

 Begin Tree Representation phase

 DTree = XDoc_to_Tree(D) // Document tree representation 1
 GTreeSet = XGram_to_Tree(G, D, {R}) // Grammar tree representation 2

 End Tree Representation phase

 Begin Tree Edit Distance phase

 Dist[] = new [1… |GTreeSet|] // |GTreeSet| ≡ |{C}G|, n# of conjunctive 3

 // grammar trees representing G 4

 Multi-thread (i=1, i ≤ |GTreeSet|, i++) // Tree edit distance multi-threading 5
 { 6

 {CostInsTree/DelTree} = TOCXDoc(DTree) ∪

TOCXGram(GTreeSet[i]) // Tree operations costs 7

 Dist[i] = TEDXDoc_XGram(DTree, GTreeSet[i], {CostInsTree/DelTree}) // Tree edit distance 8
 } 9

 | 1

=
 

 
 
 

 Tree1 i G Set|

1

+ Dist[i]

Return (D,G) Max
XDoc_XGram

Sim // Structural Similarity 10

 End Tree Edit Distance phase

 End

Fig. 9. Pseudo-code of overall XML document/grammar comparison algorithm.

The comparison is undertaken using concurrent computing, i.e., multi-threading, evaluating the similarity between

the document tree and each of the conjunctive grammar trees simultaneously (lines 5-9) since they constitute a forest of

separate tree structures (corresponding to the input grammar) following our grammar tree model, without neither

interfering nor relying on each other‘s results. Tree edit operations costs are computed (via algorithms TOCXDoc and

TOCXGram, line 7, mentioned in the following section), and are consequently provided as input to the main tree edit

distance algorithm (TEDXDoc_XGram, line 8)
1
. An atomic edit operation on a tree is either the insertion (addition) of an

inner node, the insertion of a leaf node, the deletion (removal) of an inner node, the deletion of a leaf node, or the

replacement (i.e., update) of a node by another one. A complex tree edit operation is a sequence of atomic tree edit

operations, treated as one single operation, such as the insertion/deletion of a whole sub-tree, or the relocation (moving)

———
1
 Algorithms TOCXGram and TEDXDoc_XGram are developed in the following sections. Algorithm TOCXDoc is provided in [73].

13

of a sub-tree from one position into another in its containing tree
1
. A sequence of edit operations, called an edit script,

ES=≺op1, …, opk ≻ can be applied on a tree T, producing a resulting tree T‟ by applying the edit operations op1, … opk

in ES to T, following their order of appearance in the script. By associating costs, CostOp, with edit operations, the cost

of an edit script is defined as the sum of the costs of its component operations [12, 18]: CostES =
| |

i

ES

Opi=1
Cost . [19]

Then, the maximum similarity (minimum distance) between the document tree and each conjunctive grammar tree

is evaluated as the overall document/grammar structural similarity value (line 10). One can realize, based on the

definition of TEDXDoc_XGram, that our approach allows both:

- Exact document/grammar structure validation (Definition 5), where TEDXDoc_XGram(D, C) = 0  C ⊨ D,

- Approximate document/grammar validation (cf. Definition 6), where TEDXDoc_XGram(D, C)  0  C |  D, such

that  designates a similarity value which is inversely proportional to TEDXDoc_XGram(D, C): the lesser the

similarity , the larger the distance TEDXDoc_XGram(D, C), i.e., the larger the edit script cost needed to transform D

into a document tree D‟ such that C ⊨ D‟.

As for the method to compute TEDXDoc_XGram(D, C), we build on a dynamic programming formulation similar to a

central tree edit distance algorithm by Nierman and Jagadish in [48], mainly in terms of the edit operations utilized.

However, we introduce novel recurrences specifically designed to handle XML grammar cardinality constraints

(namely MinOccurs and MaxOccurs).

In the reminder, we first discuss tree edit operations costs in Section 4.1, and subsequently develop the main

algorithm and similarity measure in Sections 4.2 and 4.3. Section 4.4 presents computation examples. Time and space

complexity analyses are provided in Section 4.5.

4.1. Tree Edit Operations Costs: TOCXDoc & TOCXGram

Our tree edit distance algorithm employs five edit operations: i) leaf node insertion, ii) leaf node deletion, iii) node

update, iv) tree insertion and v) tree deletion adopted from [18, 48] (formal definitions are provided in Appendix III).

However, a central issue in most edit distance approaches is how to determine edit operations cost values, in order to

consequently determine the edit distance value (i.e., the minimum cost of all possible edit scripts). An intuitive way

would be to assign identical unit costs to single node operations:

CostIns (x)= CostDel (x)= 1

CostUpd(x ,y) = CostUpd(x. ,y.)= 1 when x. ≠ y., otherwise, CostUpd = 0,

underlining that no changes are to be made to the label of node x.

(1)

As for tree deletion (insertion) operations, they can be naturally evaluated as the sum of the costs of deleting

(inserting) all individual nodes in the considered sub-tree [26], such as:

CostDel Tree / InsTree(T) = Del/ Ins

All nodes

Cost ()
 i

i
x T

x


 (2)

Following our approach, computing TEDXDoc_XGram(D, C) comes down to transforming document tree D into D‟ to

obtain C ⊨ D‟. To do so, node/tree deletion operations will be applied on the document tree D to remove those nodes

which do not conform to the grammar, whereas node/tree insertion operations will add grammar nodes to the document

tree D in order to obtain C ⊨ D‟. Yet, recall that nodes in grammar trees are associated cardinality constraints:

MinOccurs and MaxOccurs, specifying the allowed number of occurrences corresponding to a (sub-tree rooted at a)

given node. Hence, grammar tree insertion operations costs are updated accordingly in order to evaluate TEDXDoc_XGram:

 Case 1 – Optional Grammar Nodes: An optional grammar tree node xi  C such as xi.MinOccurs = 0,

( xi.MaxOcc), along with its sub-tree Ci (i.e., the sub-tree rooted at xi = R(Ci)), do not affect the costs of

tree insertion operations applied on C. In other words, node/sub-tree xi/Ci do not have to be inserted in the

document tree D to obtain C ⊨ D‟, and hence should not affect edit distance cost.

 Case 2 – Mandatory Grammar Nodes: A mandatory and/or repeatable grammar tree node xi  C such as

xi.MinOccurs ≠ 0 ( xi.MaxOccurs), along with its sub-tree Ci (where R(Ci) = xi), affect the costs of tree

insertion operations applied on C, considering the minimum number of occurrences required for xi (Ci),

i.e., min{xi.MinOccurs, xi.MaxOccurs} ≡ xi.MinOccurs. In other words, when xi/Ci is mandatory/repeatable,

then it should occur (or should be inserted) in the document tree D, a minimum number of times

(xi.MinOccurs) necessary to obtain C ⊨ D‟, thus affecting tree insertion operations costs accordingly.

Formally, given a conjunctive XML grammar tree C (with root node R(C) of degree k), and its first level sub-trees

C1, …, Ck (i.e., the sub-trees rooted at the children nodes of R(C)), we compute corresponding tree operations costs as:

———
1
 Other complex operations such as sub-tree copying and gluing have been considered [19]. These are similar to tree insertions/deletions

respectively, but are defined in the context of unordered tree comparison. Thus, they won‘t be further investigated hereunder.

 Elsevier Information Sciences Journal

14

 Cost InsTree(C) = Cost Ins (R(C)) + InsTree

All first-level sub-trees of

 .Cost () ()
 i

i i
C C

MinOccC R C

 where R(Ci).MinOccurs underlines the MinOccurs constraints associated to the root of Ci.

(3)

The algorithm for computing insert tree operations costs is provided in Fig. 10. Here, we only develop XML

grammar tree processing, TOCXGram, and omit the pseudo-code for XML document tree processing, TOCXDoc

(computing tree deletion operations costs) since the latter is straightforward following formula (2). Algorithm TOCXGram

goes through all sub-trees of the conjunctive XML grammar tree, computing grammar sub-tree insertion operations

costs following Formula (3) (Fig. 10, lines 9-12), taking into account corresponding sub-tree node MinOccurs.

Algorithm TOCXGram

Input: C // XML conjunctive grammar tree

Output: {CostInsTree}C // Tree insertion operations costs, for all sub-trees in C

Begin

M = Degree(C) // The number of first level sub-trees in conjunctive grammar tree G. 1

CostInsTree (C) = CostIns(R(C)) // Initializing grammar sub-tree costs 2
 // with the cost of corresponding sub-tree root node.

If (M = 0) 3
{ 4
 Return CostIns(R(C)) // Leaf node operations are assigned unit costs 5

} // in our approach (basic cost model), 6
Else 7
{ 8
 For (i = 1 ; i ≤ M ; i++) // Going through the first level sub-trees of C, Ci / i=1…M 9
 { 10

 CostInsTree(C) = CostInsTree(C) + (TOCXGram(Ci)  R(Ci).MinOccurs) 11
 } 12

} 13

Return {CostInsTree}C // Tree insertion operations costs 14

End

Fig. 10. Algorithm TOCXGram for computing XML grammar sub-tree operations costs.

Fig. 11. Sample conjunctive grammar tree C (extracted from first grammar tree in Fig. 7.c).

 Consider sample grammar tree C in Fig. 11. Tree insertion operations costs following TOCXGram are computed as:

 CostInsTree(C1) = CostIns(R(C1)) + [CostIns(x2) + CostIns(x3) × 0 + CostIns(x4)] = 3

 CostInsTree(C2) = CostIns(R(C2)) + [CostIns(x6) + CostIns(x7)] = 3

 CostInsTree(C) = CostIns(R(C)) + [CostInsTree(C1) × 2 + CostInsTree(C2) × 0] = 7

Here, the cost of inserting sub-tree C1 rooted at the node of label Author (x1) is equal to 3. This is because node

x3.MinOcc=0, which means that the occurrence of node MiddleName is not required (in the transformed document tree

for it to conform to the grammar). In turn, the cost of inserting tree C (as a whole) is equal to 7, since its first-level sub-

tree C1 is required to appear a minimum number of 2 times in the transformed document tree (R(C1).MinOccurs =

x1.MinOccurs = 2, yielding CostDelTree(C1) × 2), whereas sub-tree C2 is optional (yielding CostDelTree(C2) × 0).

Note that both MinOccurs and MaxOccurs constraints are used in our main tree edit distance algorithm, to verify

whether the minimum/maximum allowed number of occurrences for a given grammar node (sub-tree) are violated in

the document tree being compared, so as to allocate tree edit operations accordingly (described in the following section).

In this study, we restrict our presentation to the basic cost schemes above, since we focus on the structural

properties of XML documents and grammars (i.e., considering parent/child relationships and ordering among XML

elements, identified by their labels). The investigation of alternative tree operations cost models (considering for

instance the semantic relatedness between document and grammar node labels given a semantic reference such as

WordNet [45], Wikipedia [84], or Google [37]) will be addressed in a dedicated upcoming study.

4.2. Tree Edit Distance (TED) Algorithm: TEDXDoc_XGram

As briefly mentioned previously, we propose a novel tree edit distance method to consider the structural properties of

XML document trees and conjunctive grammar trees (inspired by existing tree edit distance proposals, namely [26,

48]). Hereunder, we first describe the overall process of our main algorithm. Then, we present the Traditional TED

url

Homepage

Paper

Author

LastName FirstName MiddleName Download

2

10

 0

1

1

2

 1

1

 1

1

 0

1

 1

1

1

1

Tree C

x1

x2 x3 x4

x5

x6 x7

C1 C2

15

Recurrence formulation as the basic foundation of our algorithm, and introduce our Extended TED Recurrence

formulation taking into account the Minoccurs and MaxOccurs constraints. We then develop computation examples.

4.2.1. Main Algorithm

The overall algorithm TEDXDoc_XGram for computing the edit distance between an XML document tree D and a

conjunctive grammar tree C is shown in Fig. 12. It builds on an Extended TED Recurrence to identify the minimum

cost edit script (i.e., the minimum distance, thus maximum similarity) transforming D into D‟ to obtain C ⊨ D‟.

In short, algorithm TEDXDoc_XGram recursively goes through the sub-trees of both XML document and XML

grammar tree structures, combining node update, tree insertion and tree deletion operations so as to identify the

sequence of operations (edit script) of minimal cost. The insertion/deletion of single nodes is undertaken via tree

insertion and tree deletion operations applied on leaf node sub-trees. In other words, leaf node insertion/deletion

operations do not contribute directly to the edit distance algorithm, but are utilized in computing tree insertion and tree

deletion operations costs (cf. TOCXGram in Fig. 10).

First, the update operation is applied to the roots of the sub-trees being compared (relabeling sub-tree root nodes,

 Fig. 12, line 6). Then, tree deletion operations are applied to corresponding document first-level sub-trees (line 7), and

tree insertion operations are applied on grammar first-level sub-trees taking into account the MinOccurs constraint

(line 8), in order to consider the minimum number of occurrences required in the document tree so as to conform to the

grammar tree (as discussed with sub-tree operations costs in Section 4.1). Consequently, the edit distance process

TEDXDoc_XGram is recursively called once for each pair of sub-trees Di and Cj occurring at the same structural level

(depth) in the document and grammar trees being compared. This is undertaken following our Extended TED

Recurrence formula (lines 11-24) described in detail the following section. The minimum distance between all sub-

trees (first-level, second-level, and so on) of the document tree D and grammar tree C is finally returned (line 28).

When the grammar tree is free of constraint operators (i.e., when all elements in C are associated default constraints

MinOccurs = MaxOccurs = 1), our algorithm simplifies to a classical TED process (namely the algorithm in [48]).

Algorithm TEDXDoc_XGram

Input: D // XML document tree .
 C // Conjunctive grammar tree .

 {CostInsTree/DelTree} // Tree operations costs computed via TOCXDoc and TOCXGram .

Output: TEDXDoc_XGram(D, C) // Edit distance between D and C .

Begin

M = Degree(D) // The number of first level sub-trees in D 1
N = Degree(C) // The number of first level sub-trees in C 2

Dist [,] = new [0...M, 0…N] 3

NbOcc [] = new [0…N] // Keeping track of the number of occurrences for each grammar sub-tree, 4

NbOcc [0...N] = 0 // in order to handle corresponding MinOccurs and MaxOccurs constrains 5

Dist [0, 0] = CostUpd(R(D)., R(C).) // R(D). and R(C). are the labels of the roots of trees D and C 6

For (i = 1 ; i ≤ M ; i++) { Dist[i, 0] = Dist[i-1, 0] + CostDelTree(Di) } 7

For (j = 1 ; j ≤ N ; j++) { Dist [0, j] = Dist [0, j-1] + CostInsTree(Cj) × R(Cj).MinOccurs } 8

For (j = 1 ; j ≤ N ; j++) 9
{ 10

For (i = 1 ; i ≤ M ; i++) 11

{
 NbOcc[j]++ 12

 α = Dist[i-1, j] + CostDelTree(Di) // Considering sub-tree deletion costs 13

β = Dist[i, j-1] + CostInsTree[Cj] × R(Cj).MinOccurs // Considering sub-tree insertion costs 14

If (NbOcc[j] < R(Cj).MaxOccurs) 15
{ 16

 If (NbOcc[j] < R(Cj).MinOccurs) // Considering the MinOccurs constraint, 1 17

 {
, { }(,) +

  

 
 NbOcc j - 1

InsTree

n=0

InsTree/DelTreei - n j j jCostNbOcc[j] D C = Dist[i - , j -1] + Cost (C) (R(C).MinOccurs - NbOcc[j])XDoc_XGramTED

} 18

 Else // Considering the MaxOccurs constraint, 2 19

 {
{ }γ (, ,)

  


 NbOcc j - 1

n=0

InsTree/DelTreei - n j CostNbOcc[j] D C = Dist[i - , j -1] + XDoc_XGramTED }

20

} 21
Else 22

{ γ = Dist[i-1, j-1] + TEDXDoc_XGram(Di, Cj, {CostInsTree/DelTree}) } // Classic edit distance formula, 3 23

Dist[i, j] = min{ α, β, γ } // Identifying minimum distance 24

If(Dist[i, j] = α | | Dist[i, j] = β) { NbOcc[j] = 0 } // Updating NbOcc value corresponding to sub-tree Cj 25

} // End For i 26
} // End For j 27

Return Dist[M, N] // Edit distance value 28

End

Fig. 12. Algorithm TEDXDoc_XGram for comparing an XML document tree and a conjunctive grammar tree.

 Elsevier Information Sciences Journal

16

4.2.2. TED Recurrences

TEDXDoc_XGram(D, C) computes, as sub-routines, the edit distance between pairs of first-level sub-trees DiD and CiC

(i.e., the sub-trees rooted at the children nodes of R(D) and R(C) respectively), noted TEDXDoc_XGram(Di, Cj). We use left-

to-right numbering to identify first-level sub-tree order. We denote by Dist[i, j] the edit distance matrix keeping track of

the edit distance between document tree D with only its i first-level sub-trees, identified as partial document tree D<i>,

and grammar tree C with only its j first-level sub-trees, identified as partial grammar tree C<j>.

Hence, a traditional tree edit recurrence adopted from existing approaches [26, 48] can be represented as:

Traditional TED Recurrence. Consider the pair of first-level sub-trees Di  D and Ci  C. Then:

Dist[i, j] = min
DelTree

InsTree

1

-1

 -1 -1γ

Dist[,] + Cost ()

 = Dist[,] + Cost ()

 = Dist[,] + (,) XDoc_XGram

i

j

i j

i j

i j

i j

D

C

TED D C





 





Proof. Our goal is to find the minimum cost script transforming D<i> into a partial document tree D<i>‟ such

that C<j>⊨ D<i>‟. This can be computed in three ways:

 Having Dist[i-1, j], we spend α = Dist[i-1, j] + CostDelTree(Di), deleting Di from D<i>

 Having Dist[i, j-1], we spend β = Dist[i, j-1] + CostInsTree(Cj), inserting one occurrence of Cj into D<i>

 Having Dist[i-1, j-1], we spend γ = Dist[i-1, j-1] + TEDXDoc_XGram(Di, Cj), transforming Di into Di‟ such that

Cj‟⊨ Di‟.

Since these three cases express all possible tree edit paths yielding Dist[i, j], we keep the minimum from these costs.

Proof description. Traditional TED Recurrence carries from Nierman & Jagadish‘s approach [48]. The minimum

cost script transforming partial tree D<i> into D<i>‟ in order to have C<j> ⊨ D<i>‟ can be computed in three ways:

 Having Dist[i-1, j] and the cost of deleting sub-tree Di, we need to spend at least Dist[i-1, j] + CostDelTree(Di) to

transform partial document tree D<i> into D<i>‟ in order to obtain C<j>⊨ D<i>‟.

 Having Dist[i, j-1] and the cost of inserting sub-tree Cj, we need to spend at least Dist[i, j-1] + CostInsTree(Cj) to

transform D<i> into D<i>‟ to obtain C<j>⊨ D<i>‟.

 Having Dist[i-1, j-1], we need to spend at least Dist[i-1, j-1] + TEDXDoc_XGram(Di, Cj) to transform D<i> into

D<i>‟ to obtain C<j>⊨ D<i>‟.

Since the three cases above express all possible tree edit paths following the set of edit operations considered in our

approach, hence we keep in Dist[i, j] the minimum from the three costs α, β, and γ, i.e., the minimum attainable

distance between D<i> and C<j> allowing to transform D<i> into D<i>‟ such that C<j> ⊨ D<i>‟ 

TEDXDoc_XGram is recursively applied on all sub-trees in D and C (first-level, second-level, so on, cf.  computation,

following [48]), hence identifying the minimum cost scrip transforming D into a document tree D‟ such that C ⊨ D‟. In

short, the Traditional TED Recurrence underlines the most basic case where the conjunctive grammar tree C is

virtually free of cardinality constraint operators (i.e., when all elements in C are associated default constraints

MinOccurs = MaxOccurs = 1), such that all elements (sub-trees) are mandatory and should appear exactly once.

Hence, we propose an Extended TED Recurrence to specifically consider the MinOccurs and MaxOccurs

cardinality constraints when comparing document and grammar trees. To do so, we keep track of the number of

occurrences NbOcc of the document sub-trees corresponding to each grammar sub-tree in the conjunctive grammar at

hand (which will allow us to verify whether the corresponding grammar sub-tree MinOccurs/MaxOccurs constraint has

been met, or violated, and if so to what extent). Sub-tree occurrences in the document tree can be exact (conforming, ⊨)

or approximate (similar enough, |) to the grammar sub-tree.

a. Conjunctive grammar tree C a. Document tree D. a. Document tree E b. Document tree F.

Document tree D is valid w.r.t. C (C

⊨D), whereas document trees E and F are similar (but not valid) w.r.t. C (C

| {E, F}).

Fig. 13. Sample document and grammar trees.

Consider the example in Fig. 13, comprising of conjunctive grammar tree C and document trees D, E, and F. Here,

one can realize that grammar sub-tree C2 occurs three times in document tree D, where C2 ⊨ {D1, D2, D3}. Also,

grammar sub-tree C2 occurs once in document tree E, where C2 ⊨ E2. Yet, sub-tree C2 occurs 4 times in document tree

b a

root

b c

d e d

NbOcc(C2) = 4

F2 F3

F1 F6

b

d e

F4

b

d

F5

f

b a

root

c

d e

NbOcc(C2) = 1

E2

E1 E3

b

root

b b c

d e d e d e

NbOcc(C2) = 3

D1 D2 D3

D4

a

root

b c

d e

C2

2

1

1

1

1

1

1

0

1

1

1

C1 C3

3

17

F, where C2⊨ {F2, F3} whereas C2 | {F4, F5}. Note that we can computationally decide whether a document sub-tree

Di consists of an exact (⊨) or approximate (|) occurrence of a grammar sub-tree Cj based on the corresponding edit

distance score TEDXDoc_XGram(Di, Cj) (e.g., TEDXDoc_XGram(Di, Cj) = 0 is obtained when Cj ⊨ Di, whereas TEDXDoc_XGram(Di,

Cj) ≠ 0 is obtained when Cj | Di).

Hence, based on the Traditional TED Recurrence, and the notion of number of occurrences: NbOcc, we can

effectively consider the MinOccurs and MaxOccurs constraints in our tree edit distance computations as follows:

Extended TED Recurrence (TED
+
). Consider the pair of first-level sub-trees DiD and CiC. Let NbOcc[j] be a

special counter keeping track of the number of occurrences (exact/approximate matches) of grammar sub-tree Cj in the

document tree D. Then, considering R(Ci).MinOccurs and R(Ci).MaxOccurs:

Dist[i, j] = min









a = Dist[i - 1, j] + CostDelTree(Di)

b = Dist[i, j-1] + Cost InsTree(C j) ´ R(C j).MinOccurs

g =

g 1 if (NbOcc[j] < R(C j).MinOccurs) / / Condition 1 : Considering MinOccurs constraint

g 2 else if (NbOcc[j] < R(C j).MaxOccurs) / / Condition 2 : Considering MaxOccurs constraint

g 3 else / / Traditional TED computation

ì

í
ï

î
ï

Where:

 1

NbOcc j 1

 InsTree

n=0

n-NbOcc[j] -1 = - NbOcc)[j]Dist[,] + (,) Cost () ((). XDoc_XGram i - j j ji j MinOccursTED D C C R C
  

 

g 2 = Dist[i - NbOcc[j], j-1] + TEDXDoc_XGram(Di - n , C j)

n=0

NbOcc jéë ùû-1

å

g 3 = Dist[i-1, j-1] + TEDXDoc_XGram(Di , C j)

Proof. Our goal is to find the minimum cost edit script transforming D<i> into D<i>‟ to obtain C<j> ⊨ D<i>‟,

given that a grammar sub-tree Ci  C<j> is required to appear a minimum number of times (R(Cj).MinOccurs) and a

maximum number of times (R(Cj).MaxOccurs) in D<i>‟. This can be computed in three ways:

 Having Dist[i-1, j], we spend α =Dist[i-1, j] + CostDelTree(Di), deleting Di from D<i>

 Having Dist[i, j-1], we spend β = Dist[i, j-1] + CostInsTree(Cj)R(Cj).MinOccurs, inserting sub-tree Cj into D<i>

as many times as required by the corresponding R(Cj).MinOccurs constraint.

 Having Dist[i-1, j-1], we need to account for three alternative cost factors:

 Having NbOcc[j] occurrences of Cj in D<i>, such that NbOcc[j]  [R(Cj).MinOccurs,

R(Cj).MaxOccurs)] (Condition 2) we compute the edit distance between all sub-trees in D<i> which

match Cj, starting from Di - NbOcc[j] (first match) to Di (last match):

γ2 = Dist[i-NbOcc[j], j-1] +

1

n

NbOcc j

n=0

(), jXDoc_XGram i - TED D C

  



 Having NbOcc[j] < R(Cj).MinOccurs (Condition 1) we add to the costs of the NbOcc[j] existing

occurrences of Cj (i.e., γ2) the cost of additional sub-tree occurrences required to occur in D<i> in order

to fulfill Cj‘s MinOccurs constraint: γ1 = γ2 + CostInsTree(Cj)  (R(Cj).MinOccurs – NbOcc[j]).

 Otherwise, when NbOcc[j] > R(Cj).MaxOccurs, then we apply the Traditional TED Recurrence factor 3,

such that every additional Cj occurrence is treated as any regular sub-tree occurrence.

Since these three cases express all possible tree edit paths yielding Dist[i, j], we keep the minimum from these costs.

Proof description. Our goal is to find the minimum cost edit script transforming partial document tree D<i> into

D<i>‟ to obtain C<j> ⊨ D<i>‟, considering that a grammar (element) sub-tree Ci  C<j> is required to appear a

minimum number of times (R(Cj).MinOccurs) and a maximum number of times (R(Cj).MaxOccurs) in the transformed

partial document tree D<i>‟ for it to conform to C<j>. This can be computed in three ways:

 Having the value Dist[i-1, j] and the cost of (deleting) sub-tree Di, we need to spend at least Dist[i-1, j] +

CostDelTree(Di) to transform the partial document tree D<i> into D<i>‟ to obtain C<j>⊨ D<i>‟. This carries

from the Traditional TED Recurrence.

 Having the value Dist[i, j-1] and the cost of (inserting) sub-tree Cj, we need to spend at least Dist[i, j-1] +

CostInsTree(Cj)R(Cj).MinOccurs to transform D<i> into D<i>‟ to obtain C<j>⊨ D<i>‟. This requires inserting

sub-tree Cj into D<i>, as many times as required by the corresponding R(Cj).MinOccurs constraint.

 Elsevier Information Sciences Journal

18

 Having the value Dist[i-1, j-1], we need to account for two cost factors: the costs of i) existing sub-tree

occurrences of Cj (sub-trees matching Cj which already appear in the partial document tree), and ii) remaining

sub-tree occurrences of Cj (sub-trees which are still required to appear – which need to be inserted – in the

partial document tree) to fulfill Cj‘s MinOccurs and MaxOccurs‘ constraints:

 Existing sub-tree occurrences cost: It is only applied when NbOcc[j] < R(Cj).MinOccurs, i.e., when the

number of sub-trees matching Cj in the partial document tree, does not yet fulfill R(Cj).MinOccurs (cf.

2). Having NbOcc[j] existing occurrences (exact/approximate match candidates) of sub-tree Cj in partial

document tree D<i>, the similarity score between each of the (exact/approximate) match candidates on

one hand, and Cj on the other hand, need to be computed, in order to identify the overall cost of these

existing sub-tree occurrences. To do so, we need to start from Dist[i-NbOcc[j], j-1], the distance value at

the last position (in the edit distance table) preceding the occurrence of the first document sub-tree match

candidate with Cj, i.e., Di - NbOcc[j], and then spend at least

1

n

NbOcc j

n=0

(), jXDoc_XGram i - TED D C

  

 , covering the

sum of the tree edit distance costs for comparing grammar sub-tree Cj with all consecutive first-level

document sub-trees in D<i> ranging from sub-tree Di - NbOcc[j] (the first exact/approximate match

candidate of grammar sub-tree Cj in the document tree) to Di (the last exact/approximate match candidate

of Cj in the document tree).

Example: Consider computing the edit distance between document tree F and grammar tree C from

 Fig. 13. Evaluating the  factor at Dist[4, 2], considering grammar sub-tree C2, and having NbOcc[2]=3

(given that 3 possible candidate sub-trees matching C2 have been identified: F2, F3, and F4) yields:

Dist[0, 1] + TEDXDoc_XGram(F2, C2) + TEDXDoc_XGram(F3, C2) + TEDXDoc_XGram(F4, C2) = 0 + 0 + 0 + 1. This

means that C2 ⊨ {F2, F3} such that their occurrences in partial tree D<3> do not entail any additional

cost, whereas C2 | F4 requiring a transformation of cost=1 (i.e., the insertion of node e in F4) for partial

document tree F<4> to become valid w.r.t. grammar tree C<2>, i.e., C<2> ⊨ F<4>‟ (cf. graphical

presentation in Fig. 14.c, and more detailed computation examples in the following section).

 Remaining sub-tree occurrences cost: It is only applied when NbOcc[j]  [R(Cj).MinOccurs,

R(Cj).MaxOccurs)], i.e., when the number of sub-trees matching Cj in the partial document tree, remains

within Cj‘s constraints margin (cf. 1). Here, in addition to the edit distance costs of the NbOcc[j] existing

occurrences (exact/approximate matches) of sub-tree Cj in the partial document tree D<i>, we need to

account for the cost of sub-tree occurrences (corresponding to Cj) which have not yet been inserted in

D<i> but which are required to occur in D<i>, to fulfill the MinOccurs constraint associated to Cj, in

order to obtain C<j>

⊨ D<i>‟. This is mathematically concretized in the edit distance formula by

adding: CostInsTree(Cj)(R(Cj).MinOccurs – NbOcc[j]), covering the cost of inserting sub-tree Cj multiplied

by the minimum number of occurrences needed R(Cj).MinOccurs, minus the number of already existing

occurrences NbOcc[j] of exact/approximate matches of Cj in the partial document tree D<i>. The

remaining sub-tree occurrences factor is (naturally) disregarded when R(Cj).MinOccurs = 0, such that no

additional occurrences whatsoever are required in D<i> since C<j> ⊨ D<i>.

 Otherwise, when the number of sub-trees matching Cj in the partial document sub-tree surpasses Cj‘s

(maximum) cardinality constraints, i.e., NbOcc[j] > R(Cj).MaxOccurs, then we simply apply the

Traditional TED Recurrence factor (3), such that every additional Cj occurrence is treated as any regular

sub-tree occurrence in the partial document sub-tree.

Since the three cases above express all possible tree edit paths following the set of edit operations considered in our

approach, consequently we keep in Dist[i, j] the minimum from the three costs α, β, and γ, i.e., the minimum attainable

distance between D<i> and C<j> allowing to transform D<i> into D<i>‟ such that C<j> ⊨ D<i>‟

4.2.3. Integrating TED
+
 in the Main Algorithm

When utilized in our main TEDXDoc-XGram algorithm (Fig. 12), the Extended TED Recurrence (TED
+
) is recursively

called for every pair of sub-trees Di and Cj in the document and grammar trees being compared (Fig. 12, lines 11-24).

Here, the number of occurrences of document sub-trees evaluated as potential exact/approximate match candidates of

grammar sub-tree Cj C, noted NbOcc[j], is compared with corresponding R(Cj).MinOccurs and R(Cj).MaxOccurs

constraints (lines 15 and 17) in order to decide on the tree edit distance recurrence to execute (1, 2, or 3). Then, the

minimum edit distance between partial document tree D<i> and partial grammar tree C<j>, highlighting the minimum

cost scrip necessary to transform D<i> into D<i>‟ to obtain C<j> ⊨ D<i>‟, is kept in the distance matrix Dist[i, j].

Counter NbOcc[j], keeping track of the number of occurrences of document sub-trees Di matching each grammar

sub-tree Cj, is incremented when processing every Di initially considered as a potential new (exact/approximate) match

candidate for Cj (line 12). Then, NbOcc[j]‘s new value is preserved whenever the edit distance cost Dist[Di, Cj] =

Min(, , ) = , i.e., whenever the cost of the edit scrip leading to TEDXDoc_XGram(Di, Cj) (applying the  factor), is lesser

than those of: i) deleting Di (applying the  factor), and ii) inserting Cj (applying the  factor). This means that the

cheapest cost for transforming partial tree D<i> in order to obtain C<j> ⊨ D<i>‟, is through computing

TEDXDoc_XGram(Di, Cj) (i.e., through the  factor), rather than deleting Di or inserting Cj (applying the  or  factors),

which in turn means (following the logic of edit distance) that Di and Cj match; in other words that the potential match

19

candidate Di is actually a confirmed match for Cj (either an exact match Cj ⊨ Di, when  = 0, or an approximate match

Cj | Di, when   0). Otherwise, when the minimum distance Dist[Di, Cj] = Min(, , )  , then the NbOcc[j] is

reinitialized (line 25), hence ignoring Di as a potential match for Cj.

At the end, the algorithm returns the minimum distance between all sub-trees (first-level, second-level, and so on)

of the document tree D and grammar tree C (line 28), reflecting the minimum cost scrip necessary to transform D into

D‟ to obtain C

⊨ D‟. The minimum distant value is then used to compute XML document/grammar similarity.

4.3. Similarity Measure

As indicated previously, we adopt the concept of similarity as the inverse of a distance function (a smaller distance

value underlining a higher similarity degree). This minimal distance is computed using our TEDXDoc_XGram algorithm,

such that our document/grammar similarity measure is defined as follows:

XDoc_XGram

XDoc_XGram

1
Sim (D, C) = [0, 1]

1 + TED (D, C)
  (4) .

When the XML grammar is represented as a set of conjunctive grammar trees G = {C}G, the maximum similarity

(i.e., minimum edit distance) between the XML document tree and the set of conjunctive grammar trees is retained:

G

XDoc_XGram
i

XDoc_XGram
C {C}

i

[0, 1]
1

Sim (D, G) =
1 + TED (D, C)

 Max



  
 
  

 (5) .

Our similarity measure in formula (5) is consistent with the formal definition of similarity, as a (semi-) metric

function satisfying (in part) the metric properties of Reflexivity, Minimality, Symmetricity and Triangular Inequality (cf.

details in Appendix IV). Our measure is a semi-metric (and not a full metric) since: i) it does not allow comparing two

grammars (i.e., Sim(G1, G2)), nor ii) using a grammar as the first parameter of the similarity measure (Sim(G, D) is not

allowed, i.e., we cannot transform grammar G in order to obtain G‟

⊨ D. We do it the other way around: transforming

D to obtain G

⊨ D‟). Comparing/transforming grammars is out of the scope of this study.

a. Dist[1, 1] between E and C.

b. Computing Dist[1, 2] between E and C.

c. Computing Dist[4, 2] between F and C.

Fig. 14. Sample Extended TED Recurrence (TED
+
) computations (to simplify, we note TEDXDoc_XGram(A, B) as TED(A, B)).

TED(Q3, C2)  Ins(C22)

b a

root

d e

F2

F1

b

d e

F3

b

d

F4

b a

root

d e

F2

F1

b

d e

F3

b

d e

C2

  = Dist[1, 1] + TED(F2, C2) + TED(F3, C2) + TED(F4, C2)

 = 0 + 0 + 0 + 1 = 1

NbOcc[2] = 3 since F2 and F3 are identified as exact matches of C2

(in previous recursions) whereas F4 is a candidate approximate match

  NbOcc[2]  [R(C2).MinOccurs, R(C2).MinOccurs]  [2, 3]

 2 is applied (since no additional occurrences of C2

are required to fulfill C2‘s constraints)

 Having Dist[1, 1] = 0

b a

root

d e

E2

E1

a

root

E1

b

d e

E2

b

d e

C2

  = Dist[1, 1] + TED(E2, C2) +

 CostInsTree(C2)  (R(C2).MinOccurs - NbOcc[2])

 = 0 + 0 + 3  (2 – 1) = 3

TED(E2, C2)

+

InsTree(C2)

NbOcc[2] = 1 since E2 is the only match candidate with C1

  NbOcc[1] < R(C2).MinOccurs (=2)

 1 is applied (since one additional occurrence of C1

 is required to fulfill C1‘s MinOccurs constraints)

  = Dist[0, 0] + TOC(E1, C1) = 0

NbOcc[1] = 1 since E1 is the only

 match candidate with C1

root

a

root

C1  E1
TED(E1,C1)

 Upd(R(D1),

R(C1))

 Exact match



a

  NbOcc[1]  [R(C1).MinOccurs,

 R(C1).MinOccurs]

  [0, 1]

 2 is applied (since no additional

 occurrences of C1 are required

 to fulfill C1‘s constraints)

E1

 Having Dist[0, 0] = 0

a

root

F1

 = Dist[3, 1] + CostIns(C2)  R(C2).MinOccurs = 9 + 32 = 15

Having Dist[4, 1] = 9

Ins(C2)  2

b a

root

d e

C2

F1

b

d e

C3

a

root

D1

b

d e

C2

b

d e

C2

 = Dist[2, 1] + CostIns(C2)  R(C2).MinOccurs

Having Dist[2, 1] = 3

Ins(C2)  2

a

root

E1

= 3 + 32 = 9

root

a

root

C1

 = Dist[1, 0]

InsTree(C1)

Having Dist[1, 0] = 1

= 1 + 0 = 1

+ CostIns(C1) R(C1).MinOccurs

b a

root

d e

 = Dist[3, 2] + CostDelTree(F4) = 0 + 2 = 2

F2

F1

Having Dist[3, 2] = 0

DelTree(F4)

b

d e

F3

b a

root

d e

F2

F1

b

d e

F3

b

d

F4

 = Dist[0, 2] + CostDelTree(E1) = 6 + 1 = 7

Having Dist[0, 2] = 6

DelTree(E1)

b a

root

d e

C2

E1

b

d e

C2

b

root

d e

C2

b

d e

C2

root

DelTree(E1)

 = Dist[0, 1] + CostDelTree(D1)

Having Dist[0, 1] = 0

= 0 + 3 = 3

a

root

E1

 Elsevier Information Sciences Journal

20

4.4. Computation Examples

4.4.1. TED
+

Computations

Consider the edit distance computations in Fig. 14. Fig. 14.a depicts the computation of Dist[1, 1] between partial

document tree E<1> and partial grammar tree C<1>. Computing the  factor consists of computing the cost of deleting

sub-tree E1 (consisting of leaf node a), i.e., cost =1. Computing the  factor consists in inserting sub-tree C1 (made of

grammar node a) with R(C1).MinOccurs = 0, hence its cost = 0, indicating that C1 is optional and is not required to

appear in the partial document tree D<1> since C<1>⊨ D<1>. Computing the  factor consists in evaluating the edit

distance between document sub-tree E1, the (only existing) match candidate with grammar sub-tree C2. Since

NbOcc[2]=1  [R(C1).MinOccurs=0, R(C1).MaxOccurs=1], thus 2 is applied. This yields cost = 0, indicating that E1 is

an exact match of C1, C1
⊨ E1. Hence, Dist[1, 1] = Min(, , ) =  = 0, indicating that no changes need to be made to

E<1> since C<1>

⊨ E<1>.

Similar examples in Fig. 14.b and c are discussed in detail in Appendix V. To summarize, the example in Fig. 14.b

depicts the computation of Dist[1, 2] between partial document tree E<1> and C<2>, where Dist[1, 2] = Min(, , )

=  = 3, indicating that the minimum (cost) amount of change required to transform E<1> is to insert an additional

occurrence of C2 in E<1>, in order to obtain C<2>

⊨ E<1>‟. The example in Fig. 14.c depicts the computation of

Dist[4, 2] between partial document tree F<4> and partial grammar tree C<2>, where Dist[4, 2] = Min(, , ) =  =

1, indicating that the minimum (cost) amount of change required to transform F<4> is to insert node e under sub-tree

F4, in order to obtain C<2>

⊨ F<4>‟.

4.4.2. Complete TEDXDoc_XGram Matrix Computations

 Fig. 15 shows the complete edit distance matrixes (with all recurrences) when running our TEDXDoc_XGram algorithm to

compare document trees D, E, F with grammar C of Fig. 13.

For instance, the first line of the distance matrix in Fig. 15.a (likewise in Fig. 15.b and c), i.e., Dist[0][],

corresponds to the sum of the costs of inserting every node of the grammar tree C1. Likewise, the first column,

Dist[][0], underlines the sum of the costs of deleting every node of XML tree D. Consequently, the algorithm identifies

the combination of tree insertion/deletion operations of minimum cost, following our Extended TED Recurrence, in

populating the remainder of the matrix, such as TEDXDoc_XGram(D, C)=Dist[|S|][|C|] underlines the final distance value.

The matrix in Fig. 15.a shows the edit distance result when comparing document tree D to grammar tree C,

yielding TEDXDoc_XGram(D, C) = 0  SimXDoc_XGram(D, C) = 1 / (1+TEDXDoc_XGram(D, C)) = 1  C ⊨ D. The minimum

cost edit script is highlighted in Fig. 15.a. Dist[0, 0] = CostUpd(R(D), R(C))= 0, since the document/grammar tree roots

match: R(D) = R(C). Dist[0, 1] = Dist[0, 0] + CostInsTree(C1)R(C1).MinOccurs = 0, underlining that C1 is optional and is

not required to appear in the document tree. Dist[3, 2] = Dist[0, 1] + TEDXDoc_XGram(D1, C2) + TEDXDoc_XGram(D2, C2) +

TEDXDoc_XGram(D3, C2) = 0 since C2 ⊨ {D1, D2, D3}, such that NbOcc[2] = R(C3).MaxOccurs = 3 (3 occurrences of C2

are allowed to appear, and have actually appeared in the document tree). Dist[4, 3] = Dist[3, 2] + TEDXDoc_XGram(D4, C3)

 CostUpd(R(D4)., R(C3).) = 0 since C3 ⊨ D4, having R(C3).MinOccurs = R(C3).MaxOccurs = 1 (i.e., one and only one

occurrence of C3 is required to appear in the document tree). Hence, no changes need to be made to D since C

⊨ D.

Similar examples in Fig. 15.b and c show the edit distance result when comparing document trees E and F

(respectively) with grammar tree C, and are discussed in detail in Appendix V. To summarize Fig. 15.b shows

TEDXDoc_XGram(E, C) = 3  SimXDoc_XGram(E, C) = 1 / (1 + TEDXDoc_XGram(E, C) = 0.25  C
0.25

| E highlighting the

cost of inserting one additional occurrence of sub-tree C2 into document tree E, to obtain C ⊨ E‟. Similarly, Fig. 15.a

shows TEDXDoc_XGram(F, C) = 4  SimXDoc_XGram(F, C) = 1 / (1 + TEDXDoc_XGram(F, C) = 0.2  C
0.2

| F , which

underlines the costs of i) inserting node e in sub-tree F4, and ii) deleting sub-tree F5 from document tree F, in order to

obtain C ⊨ F‟. This means that F requires more costly transformations to become valid w.r.t. grammar tree C, and thus

is less similar to grammar tree C in comparison with document tree E.

4.4.3. Running Example

To sum up, we present the result of comparing sample XML document Paper.xml with XML grammar Paper.xsd in

 Fig. 16 (reported from Fig. 2.a and Fig. 7.c respectively, for ease of presentation). Paper.xml is represented as XML

document tree D following our XML data tree model (Fig. 16.a), and Paper.xsd, designated as G, is represented as a set

of conjunctive grammar trees {CI , CII , CIII}. TEDXDoc_XGram computations between D and {CI , CII , CIII} yield:

 TEDXDoc_XGram(D, CI) = TEDXDoc_XGram(D2,
3I

C) + CostInsTree(
3I

C)  (R(
3I

C).MinOccurs – NbOcc[3]) = 1 + 3 =

4, which comes down to: i) the cost of transforming D2, as an approximate match candidate of sub-tree I
3

C , in

order to obtain
3I

C

⊨ D2‟ ( CostUpd(R(D2)., R(

3I
C).)=1, updating node label Publisher into Author), and ii)

the cost of inserting one additional occurrence of
3I

C (made of nodes Author, FirstName and LastName, i.e.,

CostInsTree(
3I

C) = 3), since D2 is the only match of
3I

C in D (NbOcc[2] = 1) whereas the minimum number of

occurrences of
3I

C required to appear in document tree D is R(
3I

C).MinOccurs = 2, transforming D into D‟ in

order to obtain CI
⊨ D‟.

21

 TEDXDoc_XGram(D, CII) = CostDelTree(D21) + CostDelTree(D22) = 2, which corresponds to the sum of the costs of

deleting (sub-tree) nodes of labels FirstName and LastName from document tree D, to obtain CII
⊨ D‟.

 TEDXDoc_XGram(D, CIII) = 0, underlining that changes need to be made to document D, since we already have

CIII ⊨ D (edit distance matrixes when comparing D with CI, CII, and CIII can be found in Appendix V).

j  0 1 2 3

i

↓
R(C)

1

1

1

01 C 22 C


1

13 C

0 R(D) 0 0 6 7

1 D1 3

3

3 3

3

min







 
 

  
  

NbOcc[1]=0

9

9 3

3

min







 
 

  
  

NbOcc[2]=1

10

1 1

9

min







 
 

  
  

NbOcc[3]=0

2 D2 6

6

6 6

6

min







 
 

  
  

NbOcc[1]=0

12

12 0

0

min







 
 

  
  

NbOcc[2]=2

4

1 1

3

min







 
 

  
  

NbOcc[3]=0

3 D3 9

9

9 9

9

min







 
 

  
  

NbOcc[1]=0

9

9 0

0

min







 
 

  
  

NbOcc[2]=3

7

1 1

3

min







 
 

  
  

NbOcc[3]=0

4 D4 10

10

10 10

10

min







 
 

  
  

NbOcc[1]=0

1

16 1

10

min







 
 

  
  

NbOcc[2]=0

8

2 0

0

min







 
 

  
  

NbOcc[3]=1

a. Comparing document tree D and grammar tree C.

j  0 1 2 3

i

↓
R(C)

1

1

1

01 C 22 C


1

13 C

0 R(D) 0 0 6 7

 F1 1

1

1 0

0

min







 
 

  
  

NbOcc[1]=1

9

6 6

6

min







 
 

  
  

NbOcc[2]=0

8

7 7

7

min







 
 

  
  

NbOcc[3]=0

2 F2 4

3

4 3

4

min







 
 

  
  

NbOcc[1]=0

12

12 3

3

min







 
 

  
  

NbOcc[2]=1

10

1 1

9

min







 
 

  
  

NbOcc[3]=0

3 F3 7

6

7 7

7

min







 
 

  
  

NbOcc[1]=0

3

13 0

0

min







 
 

  
  

NbOcc[2]=2

4

1 1

3

min







 
 

  
  

NbOcc[3]=0

4 F4 9

9

9 9

10

min







 
 

  
  

NbOcc[1]=0

2

15 1

1

min







 
 

  
  

NbOcc[2]=3

3

2 2

2

min







 
 

  
  

NbOcc[3]=0

5 F5 12

12

12 12

12

min







 
 

  
  

NbOcc[1]=0

4

18 4

10

min







 
 

  
  

NbOcc[2]=0

5

5 4

4

min







 
 

  
  

NbOcc[3]=1

6 F6 13

13

13 13

13

min







 
 

  
  

NbOcc[1]=0

5

19 5

15

min







 
 

  
  

NbOcc[2]=0

5

6 4

4

min







 
 

  
  

NbOcc[3]=0

c. Comparing document tree F and grammar tree C.

j  0 1 2 3

i

↓
R(C)

1

1

1

01 C
3
22 C

1

13 C

0 R(D) 0 0 6 7

1 E1 1

1

1 0

0

min







 
 

  
  

NbOcc[1]=1

7

6 3

3

min







 
 

  
  

NbOcc[2]=1

8

4 4

7

min







 
 

  
  

NbOcc[3]=0

2 E2 4

3

4 3

7

min







 
 

  
  

NbOcc[1]=1

6

9 3

3

min







 
 

  
  

NbOcc[2]=2

7

4 4

6

min







 
 

  
  

NbOcc[3]=0

3 E3 5

4

5 4

5

min







 
 

  
  

NbOcc[1]=0

4

10 4

4

min







 
 

  
  

NbOcc[2]=0

5

5 3

3

min







 
 

  
  

NbOcc[3]=1

b. Comparing document tree E and grammar tree C.

Fig. 15. Computing edit distance between XML documents D, E and F and grammar tree C in Fig. 13.

Hence, the structural similarity between XML document Paper.xml and XML grammar Paper.xsd is computed as:

 II II III
XDoc_XGram XDoc_XGram

i
XDoc_XGram

C {C , C , C } () ()
1

1 1
Sim (,)

1 + TED , 1 + TED ,
|=

i III

D G Max
D C D C

G D


 
  

 
  

In other words, a maximum similarity value (1 or 100%), indicates that XML document Paper.xml is structurally

valid w.r.t. grammar Paper.xsd, and that no transformations need to be applied to the corresponding document tree

since it already conforms to the grammar tree representation.

4.5. Complexity Analysis

Let |D| be the cardinality of the XML document tree D considered, and |G| the number of nodes (elements/attributes) in

the XML grammar, NG= |{C}G| the number of conjunctive grammars making up the disjunctive normal form of G, and

|CG| the cardinality of the largest conjunctive grammar tree corresponding to G. Our XML document and grammar

structure comparison approach is of O(|D|+|G|+(NG×|D|×|CG|)) time. It simplifies to O(|D|×|G|) in the typical

(practical) case, and O(NG×|D|×|G|) in the worst case.

4.5.1. Time Complexity

 Elsevier Information Sciences Journal

22

Tree Construction: The XML document tree and XML grammar tree construction processes (including algorithm

XGram_to_Tree) are of typical linear complexity and simplify to O(|D|+|G|). Algorithm XGram_to_Tree processes

XML grammar simplification rules using a dedicated index tables to monitor each simplification rule (i.e., detecting

whether the grammar expression is of the form targeted by a given transformation rule). This proved computationally

efficient in practice, requiring typical O(|G|), since the number of simplification rules – and thus the size of the index

tables – is constant). On the other hand, document tree construction requires one single traversal over the document,

hence O(|D|) time.

Tree Edit Operations Costs: Computing document tree and conjunctive grammar tree edit operations‘ costs

requires O(|D|+|CG|) time: i) algorithm TOCXGram for computing XML grammar tree edit operations costs is of O(|CG|)

time, ii) Likewise, algorithm TOCXDoc (developed in the Technical Report [73]) for computing document tree operations

costs, requires O(|D|) time.

Core Tree Edit Distance Algorithm: The TEDXDoc_XGram algorithm (Fig. 12) for computing the edit distance

between the XML document tree and conjunctive grammar tree is of worst O(|D|×|CG|) complexity. The algorithm

recursively goes through the sub-trees of both XML document and conjunctive grammar trees, combining edit

operations so as to identify those of minimal cost. Its main recursive procedure is called once for each pair of sub-trees

occurring and the same structural level (depth) in the document and conjunctive grammar trees being compared, thus

reflecting a linear dependency on the size of each tree, and thus a quadratic dependency on the sizes of both trees.

a. XML document tree D representing Paper.xml.

b. Conjunctive grammar trees corresponding the disjunctive normal form of grammar Paper.xsd, designated as DNF(G)={CI , CII , CIII}.

Fig. 16. XML document tree (reported from Fig. 2.a) and conjunctive grammar trees (reported from Fig. 7.c).

XML Document/Grammar Comparison: Algorithms TOCXGram and TEDXDoc_XGram are executed for all conjunctive

grammars Ci  {C}G in order to compute overall document/grammar edit distance similarity, thus requiring

O(NG×|D|×|CG|) time. Here, recall that the number of conjunctive grammars NG resulting from the disjunctive normal

form expansion of an input XML grammar G, depends on the number and configurations of Or (choice) operators in

the input grammar expressions. This may generate a proliferation of conjunctive grammars depending on the

expressiveness of the grammar declarations. However, in our approach, the XML document tree and each of the

conjunctive grammar trees are compared concurrently (i.e., in parallel) using multi-thread processing (cf. algorithm in

 Fig. 9). Hence, regardless of the (possibly limited) processing capabilities of the computer system being used, the

complexity of the edit distance phase is not (theoretically) affected by the number of conjunctive grammars NG, and

comes down to O(|D|×|CG|). In addition, most common alternative expressions found in real XML grammars [11, 23,

38] generate a number of conjunctive grammars linear in the number of Or operators involved (cf. mathematical

analysis is Appendix I). Hence, based on i) the algorithmic design of our approach (Fig. 9), and i) the relatively simple

nature of real XML grammar expressions, the overall complexity of our approach, O(NG×|S|×|CG|), typically simplifies

to O(D|×|CG|), which in turn simplifies to O(|D|×|G|), since |CG| is linear in the size of |G| (cf. Section 3.2).

In the worst case, when the number of conjunctive grammars NG is explosive (and cannot be even handled using

multi-threading), then the term NG cannot be simplified form the equation, and complexity becomes O(NG×|D|×|G|).

4.5.2. Space Complexity

As for memory consumption, our approach requires O(|D| + NG×|CG|) to store the XML document tree and

conjunctive XML grammar trees being compared, in addition to O(NG×|D|×|CG|) space to store corresponding distance

matrixes. Yet practically, space complexity simplifies to O(|D|+|G|) + O(|D|×|G|) = O(|D|×|G|) since conjunctive

grammar trees consist of references (pointers) to the elements/attributes in the source grammar, and thus require limited

Title Version url

Paper

Paper

Length Category Publisher

Download

Paper Download

0

1

 0

1

 0

1

1

2

1

1

 1

1

1

1

1

2

 1

1

url
0

1

1

1

1

1

LastName FirstName MiddleName
1

1

 0

1

 1

1

Conjunctive grammar tree CIII

Title Version url

Paper

Paper

Length Category Author

LastName FirstName MiddleName Download

Paper Download

0

1

 2

10

 0

1

 0

1

1

2

1

1

 1

1

1

1

1

2

 1

1

url
0

1

1

1

 0

1

 1

1

1

1

Conjunctive grammar tree CI

Title Version url

Paper

Paper

Length Category Publisher

Download

Paper Download

0

1

 0

1

 0

1

1

2

1

1

 1

1

1

1

1

2

 1

1

url
0

1

1

1

1

1

Conjunctive grammar tree CII

Version Title url

LastName FirstName Paper Download

Length Publisher

Paper

url

Paper Download

23

space in comparison with the actual document and grammar sizes (even when the child structures of elements in

different conjunctive grammar trees are different, represented by their respective pointers). Experimental time and

space analyses are provided in Section 5.7.

5. Experimental Evaluation

We first start by describing our prototype and experimental scenarios, and then we present and assess empirical results.

5.1. Prototype

We have implemented our XML document/grammar comparison approach in the existing XS3 prototype
1
 (XML

Structural and Semantic Similarity). Implemented using C#.Net, the XS3 prototype system includes: i) a parser

component verifying the integrity of XML documents and grammars, ii) a tree representation component, for

transforming XML documents and grammars into their tree representations, and iii) a tree edit distance component for

computing document/grammar similarity. An adaptation of the IBM XML documents generator
2
 was implemented to

produce sets of XML documents and grammars based on specific user input requirements (e.g., a MaxRepeats
3

variability parameter for document generation, the number of „And/Or‟ operators and operator positions in synthetic

grammars, etc.). In addition, we have implemented an XML document/grammar modification generator. It accepts as

input an XML document or an XML grammar, a ModifType value designating the kind of modification to be induced to

the document/grammar at hand (i.e., element/attribute insertions, deletions or label updates, cf. Section 5.4), as well as

a Modif% value indicating the amount of modifications to be produced w.r.t. document/grammar size (i.e., cardinality).

Built upon the main XS3 components are different modules for similarity evaluation: One to One, One to Many

(comparing one XML document to a set of grammars and vice-versa, allowing similarity ranking), and Set comparison,

(enabling XML document/grammar classification). A detailed description of the prototype system is available online.

5.2. Experimental Scenarios

How to experimentally evaluate the quality of an XML similarity method remains a debatable issue, especially in

information retrieval. To our knowledge, the definition of standardized XML similarity evaluation metrics remains a

hot topic in the INEX evaluation campaigns
4
. While a few similarity evaluation techniques have been proposed in the

context of XML document comparison (e.g., inter- and intra-cluster similarity coefficients [30], mis-clustering

coefficient [48], and cluster-precision and -recall metrics [26]), and grammar comparison (e.g., overall measure to

quantify user effort in grammar matching [27, 44]) yet, to our knowledge, none have been proposed for XML

document/grammar similarity evaluation; which is probably due to the novelty of the issue.

Hence, in the following, we introduce experimental evaluation methods based on the most common applications of

XML document/grammar comparison, i.e., document classification and ranked retrieval. We demonstrate our method‘s

effectiveness in classifying similar documents w.r.t. predefined grammars in Section 5.3, and ranking relevant XML

documents (grammars) w.r.t. their resemblances to the grammars (documents), in Section 5.4. In Section 5.5, we

perform a hybrid experimental analysis, combining both document classification and grammar transformation, to assess

our method‘s ‗intelligent‘ (noise resistant) behavior in comparing non-conforming yet related documents/grammars,

i.e., given a set of grammars, recognizing documents which are similar but are not written exactly in those grammars. A

qualitative comparative study is presented in Section 5.6. Complexity analysis is presented in Section 5.7.

5.3. XML Document Classification Experiments

The scenario adopted in our document classification experiments comprises of a number of heterogeneous XML

databases that exchange documents among each other, each database storing and indexing the local documents

according to a set of local grammars. Consequently, XML documents introduced in a given database are matched, via

an XML structural similarity method, against the local grammars. In such an application, a similarity threshold is

identified underlining the minimal degree of similarity required to bind an XML document to a grammar. The XML

grammar for which the similarity degree is highest, and above the specified threshold, is selected. Thus, the XML

document is accepted as approximately valid for that grammar (the documents are exactly valid when similarity is

maximal, i.e., SimXDoc_XGram=1).

Note that when the similarity score is below the threshold, for all grammars in the XML database, the XML

document is considered unclassified and is stored separately.

5.3.1. Evaluation Metrics

Owing to the proficient use of their traditional predecessors in classic information retrieval evaluation [43], and their

recent exploitation in XML document clustering (e.g., [26]), we adapt the precision metric (PR, highlighting the

fraction of relevant selected entities) and the recall metric (R, highlighting the fraction of relevant non-selected entities)

———
1 Available online at http://sigappfr.acm.org/Projects/XS3/
2
 http://www.alphaworks.ibm.com.

3
 A greater MaxRepeats underlines greater size and variability in generating XML documents, when repeatable elements (associated *, + in

DTDs, or MaxOccurs in XSDs) are encountered.
4 http://inex.is.informatik.uni-duisburg.de/

 Elsevier Information Sciences Journal

24

in information retrieval to our XML classification scenario, and propose a new method for their usage in order to obtain

consistent experimental results. For an extracted class Ki corresponding to a given grammar Gi:

 ai is the number of XML documents in Ki that indeed correspond to Gi (correctly classified documents, i.e.,

those that conform to grammar Gi).

 bi is the number of documents in Ki that do not correspond to Gi (misclassified).

 ci is the number of XML documents not in Ki, although they correspond to Gi (documents that conform to Gi and

that should have been classified in Ki).

Hence, setting n as the total number of classes, which corresponds to the total number of grammars considered for the

classification task, we have:

1

1 1
 +

n

i
i

n n

i i
i i

a
PR

a b

=

= =

å

=
å å

 ,
1

1 1
 +

n

i
i

n n

i i
i i

a
R

a c

=

= =

å

=
å å

 ,
2

-
PR R

F Value
PR R

 




 (6) .

High precision denotes that the classification task achieved high accuracy grouping together documents that

actually correspond to the grammars considered. On the other hand, high recall means that very few XML documents

are not in the appropriate class where they should have been. In addition to comparing one approach‘s precision

improvement to another‘s recall, it is also a common practice to consider their harmonic mean: the F-value measure.

Hence, as with classic information retrieval, high precision and recall, and thus high F-value, (indicating in our case

high classification quality) characterize a good (XML document/grammar) similarity method.

5.3.2. Multi-level Classification

In our experiments, we undertook a series of multilevel classification tasks, varying the classification threshold in the

[0, 1] interval. In other words, we construct a dendrogram-like structure (Fig. 17.a) such that:

 For the starting threshold s1=0, all XML documents appear in all classes.

 For the final classification threshold sn=1 (with n the number of classification levels, i.e., classification sets in

the dendrogram), each class will only contain the XML documents which actually conform (i.e., which are

exactly valid with respect) to the grammar identifying the class.

 Intermediate classification sets will be identified for thresholds si / s1<si<sn.

Then, we compute precision, recall and F-value for each classification set identified in the dendrogram, thus

constructing PR, R and F-value graphs that describe the system‘s evolution throughout the classification process.

5.3.3. Experimental Results

We conducted experiments on both real and synthetic XML documents to test our XML document/grammar structural

comparison method. For real XML data, we utilized the online XML version of the ACM SIGMOD Record
1
, and the

University of Wisconsin‘s Niagara XML document collection
2
, including a large XML data set extracted from the

Internet Movie Database IMDB
3
. We performed two main classification experiments to test the effectiveness of our

method in comparing: i) related XML documents (i.e., documents sharing identical tag names and related structures),

and ii) heterogeneous XML documents (describing different kinds of information, using different structures). The first

experiment considers the SIGMOD Record documents, which correspond to three main grammars:

OrdinaryIssuePage.dtd, ProceedingsPage.dtd and SigmodRecord.dtd
4
, describing scientific publications. The second

experiment considers all three SIGMOD Record, Niagara and IMDB data sets, combining heterogeneous XML data

describing different kinds of information, ranging over scientific publications, company profiles, personnel

descriptions, movie credentials, and actor descriptions. The characteristics of each document collection and

corresponding grammar definitions are shown in Table 3. Grammar statistics are shown in Table 5.

We also generated two sets of 1000 XML documents from 20 real-case
5
 and synthetic grammars (using the

synthetic XML document and XML grammar generators implemented in the XS3 prototype). The first set of documents

was created with MaxRepeats = 5, the second with MaxRepeats = 10, the latter set underlining XML documents with

greater size and variability (i.e., greater heterogeneity) w.r.t. the former, when optional and repeatable elements are

encountered. The characteristics of synthetic XML datasets are summarized in Table 4 and Table 5.

———
1 Available at http://www.acm.org/sigmod/xml
2 Available at http://www.cs.wisc.edu/niagara/
3
 XML data extracted from http://www.imdb.com/ using a dedicated wrapper generator2.

4
 We were able to find only one XML file conforming to SigmodRecord.dtd: SigmodRecord.xml. However, due to its relatively large size

(479KB) w.r.t. the XML documents corresponding to the other grammars (12KB of average size per document), we carefully decomposed

SigmodRecord.xml to several documents, creating a set of documents conforming to SigmodRecord.dtd.
5
 From http://www.xmlfiles.com and http://www.w3schools.com.

25

Table 3. Characteristics of SIGMOD Record, Niagara, and IMBD document sets.

Grammars
1

(SIGMOD)

N# of

Docs

Avg Node

Depth

(per doc)

N# of

nodes
(per gram)

Avg N# of

nodes

(per doc)

OrdinaryIssuePage 30 5.49 23

262.81

ProceedingsPage 47 3.67 31

382.72

SigmodRecord 27 5.77 14

542.92

Grammars

(Niagara)
N# of

Docs

Avg Node

Depth

(per doc)

N# of

nodes

(per gram)

Avg N# of

nodes

(per doc)

Profile 141 2.57 12 381.25

Personnel 20 2.63 14 38.35

Club 11 2.19 13 259.09

Bib 15 3.04 14 130.66

Grammars

(IMDB)
N# of

Docs

Avg Node Depth

(per doc)
N# of nodes
(per gram)

Avg N# of nodes

(per doc)

Movies 300 3.31 12 53.71

Actors 300 3.40 9 120.25

Table 4. Characteristics of synthetic document sets.

Document set
N# of

grammars

Number of

Documents

N# of documents

(per gram)

Average Node

Depth (per doc)

Average Number of

Nodes (per doc)

MaxRepeats = 5 20 1000 50 3.1 15.4768

MaxRepeats = 10 20 1000 50 3.68 36.9133

Table 5. The percentage and number of structure model expressions in both sets of real and synthetic grammars.

Grammar set
Sequence exp.

(And)

Alternative

exp. (Or)

Mixed exp.

(And & Or)

Single element

Expressions

Empty structural

model (ε) exp.

Real grammars 19.10 % (51) 1.12 % (3) 1.87 % (5) 14.98 % (40) 62.92 % (168)

Synthetic grammars 5.59 % (8) 6.99 % (10) 9.79 % (14) 10.48 % (15) 67.13 % (96)

Note that grammar statistics in Table 5 fairly concur with the empirical analyses in [11, 23, 38] highlighting the

fact that real-world XML grammars are usually made of simple structural models (e.g., sequence expressions, single

element declarations, or basic content models, e.g., PCDATA, String, etc.). In other words, few grammar expressions

contain alternative declarations, i.e., Or operators (e.g., less than 7% of all grammar expressions surveyed in [11], and

less than 16% of those surveyed in [23], contain Or operators - cf. 0 for preliminary statistics).

In addition, note that all real and synthetic grammars considered in our experiments are fairly different and do not

produce identical documents. In other words, we made certain that a given document cannot conform to two grammars

simultaneously, so as to prevent any confusion in computing the precision and recall metrics. Precision and recall

graphs are presented in Fig. 17. One can clearly realize that recall (R) is always equal to 1. This reflects the fact that

our XML document/grammar comparison approach constantly identifies, in the grammar classes, the XML documents

that actually conform to the grammars considered (i.e., documents having SimXDoc_XGram=1), regardless of the

classification threshold as well as the nature of the document collection (related and/or heterogeneous). On the other

hand, precision (PR), and consequently F-value (note that F-value follows PR in this experiment, since R is always

equal to 1) gradually increases toward 1, while varying the classification threshold from 0 to 1:

 When the classification threshold is equal to 0, all documents in the XML repository are considered in each and

every class corresponding to the grammars at hand (Fig. 17.a, initial level). That is underlined by minimum PR.

 Then, as the classification threshold increases, inconsistent documents are gradually filtered from the XML

grammar classes, ultimately yielding classes that only encompass documents conforming to the considered

grammars (cf. Fig. 17.a, final level).

In summary, Precision and F-value results in Fig. 17 show that our method yields high classification quality with

both related and heterogeneous document collections, obtaining optimal classes at a very early stage of the multilevel

classification process (with thresholds < 0.5).

5.4. Similarity Ranking Experiments

In addition to XML document classification, we ran a series of experiments to evaluate the ranking capabilities of our

document/grammar comparison method.

5.4.1. Experimental Scenario

The approach consists in gradually transforming real XML documents/grammars, and consequently evaluating how

closely the obtained similarity results correspond to the induced changes. Here, we exploit two complementary criteria

for ranking evaluation: i) an internal criterion, consisting of the amount of modification (transformation) in

documents/grammars, and ii) an external criterion, consisting of user predefined rankings. On one hand, we consider as

an internal evaluation criterion: the correspondence between the amount of changes and document/grammar similarity

values (i.e., similarity decreasing proportionally with the increase in changes, and vice-versa), such that a straight

correspondence would underline high ranking quality. On the other hand, we also exploit user-predefined rankings,

necessary to highlight the user‘s perception of document/grammar similarity w.r.t. document/grammar modifications.

———
1 Note that all DTD grammars were transformed into XSD definitions, replacing DTD cardinality constraints (namely: ?, *, +) with their

more expressive XSD counterparts (i.e., MinOccurs and MaxOccurs).

 Elsevier Information Sciences Journal

26

a. Dendrogram obtained when classifying 15 XML

documents sampled from the ACM SIGMOD Record.

b. Classifying all 104 XML documents

of the SIGMOD Record.

c. Classifying real XML documents sets:

of SIGMOD, Niagara and IMDB.

d. Classifying documents of synthetic set 1.

e. Classifying documents of synthetic set 2.

Fig. 17. XML document classification: dendrogram, and PR, R, F-value graphs.

To produce changes to XML documents/grammars (cf. Fig. 18.a), we utilize our prototype‘s modification generator:

 For the starting phase of the transformation process, the modification threshold Modif% is set to 0,

underlining the original document/grammar structure.

 For the final phase, Modif%=100. The amount of changes in the resulting modified document/grammar at

hand amounts to 100% of its original size.

 Intermediate transformation phases correspond to 0< Modif% <100.

In addition, for each similarity ranking experiment, the modified documents/grammars were manually evaluated,

identifying corresponding user-relevant rankings. Thirty graduate students were involved in the experiments. Each

subject was given a set of initially conforming documents/grammars and their transformed (modified) versions, and

was asked to rank the transformed documents/grammars w.r.t. the original versions (assigning scores ranging from A to

F, such as A = Conforming, B = Very Similar,…, F = Least similar). Manual answers were consequently correlated

against the system generated ones in order to identify the statistical dependence between system generated similarity

scores and the user‘s perception of similarity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.005 0.01 0.015 0.02

PR

R

F-Value

Classification Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.025 0.05 0.075 0.1

PR

R

F-Value

Classification Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5

PR

R

F-value

Classification Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5

PR

R

F-Value

Classification Threshold

27

<?xml?>

<Paper title=‖…‖>

 <Publisher>

 <FirstName>…</FirstName>

 <LastName>…</LastName>

 </Publisher>

<Version> … </Version>

<Length>…</Length>

<url>

 <Homepage>…</Homepage>

 <Download>…</Download>

 </url>

 <dummy></dummy>

 <dummy>

 <dummy></dummy>

 <dummy></dummy>

 </dummy>

 <dummy></dummy>

</Paper>

<?xml?>

 <Paper>

 <Publisher> </Publisher>

 <Version> </Version>

 <Length></Length>

 <url></url>

 </Paper>

The deletion operator

(buttom-up traversal)

<?xml?>

<Dummy>

 <Dummy></Dummy>

 <Dummy>

 <Dummy>…</Dummy>

 <Dummy>…</Dummy>

 </Dummy>

 <Version> … </Version>

 <Length>…</Length>

 <url>

 <Homepage>…</Homepage>

 <Download>…</Download>

 </url>

</Dummy>

<?xml?> <schema>

 <Element name = ‗Paper‘>

 <Sequence>

 <Element name = ‗Publisher‘>

 <Sequence>

 <Element name = ‗FirstName‘/>

 <Element name= ‗Middle‘ MinOcc = ‗0‘>

 <Element name = ‗Dummy‘/>

 </Sequence>

 </Element>

 <Element name = ‗Dummy‘>

 <Sequence>

 <element name = ‗Dummy‘>

 <element name = ‗Dummy‘ MinOcc=‗0‘>

 </Sequence>

 </Element>

 </Sequence>

 </Element>

</schema>

<?xml?>

<Paper title=‖…‖>

 <Publisher>

 <FirstName>…</FirstName>

 <LastName>…</LastName>

 </Publisher>

</Paper>

The insertion operator
(structure mirroring)

The deletion operator

(post-order traversal)
The update operator

(pre-order traversal)
The update operator

(post-order traversal)

a. Samples of utilizing the modification operators, at Modif% = 50 (i.e., modifying 50% of original document).

Ord_234.xml & OrdinaryIssuePage.dtd

Pro_172_2.xml & ProceedingsPage.dtd

Sigmod_11.xml & SigmodRecord.dtd

b. Similarity graphs reflecting the gradual modification of XML documents Ord_234.xml, Pro_171_2.xml and

Sigmod_11.xml, w.r.t. XML grammars OrdinaryIssuePage.dtd, ProceedingsPage.dtd and SigmodRecord.dtd.

Fig. 18. Detecting and measuring changes (modifications) in XML documents.

5.4.2. Experimental Results

Our experiments can be grouped in two categories: i) detecting changes induced in an XML document, w.r.t. a

reference grammar, and ii) detecting changes produced in an XML grammar, w.r.t. a valid reference document. Due to

space limitations, we selected meaningful changes, which are described as follows.

5.4.2.1. Detecting Changes in XML Documents

Similarly to our classification experiments, we utilized XML data from the online XML version of the ACM SIGMOD

Record. Among the various experiments conducted, we present the results obtained when modifying documents

Ord_234.xml, Pro_172_2.xml and Sigmod_11.xml

1
, evaluating their similarities w.r.t. each of their corresponding

grammars respectively. Graphs in Fig. 18.b show the average similarity values obtained when testing each type of

modification operation, considering the different modifications described in the previous section. Results show that:

i. Similarity varies linearly w.r.t. the modifications induced via the update operation, going from 1 (0% updates) to

0 (100% updates, i.e., when all document nodes have been relabeled),

ii. Similarity varies linearly w.r.t. the modifications induced via the insertion operation, going from 1 (0%

insertions) to ≈ 0.5 (100% insertions, indicating that a structure, which size is equal to that of the original

document, has been inserted under the document root node).

iii. The case of the deletion modification operation is special, in that similarity values are not perfectly linear w.r.t.

the amount of modifications, and sometimes even increase with the increase of the amount of deletions (which

might seem counter-intuitive). That is due to the presence of optional and repeatable elements in the reference

grammar, which are sometimes better satisfied (i.e., higher similarities are obtained) after deleting certain

elements in the documents. This explains the increase in similarity values in the final stages of the modification

process, i.e., at thresholds ≥ 80% (grammar roots encompassing optional siblings such that the deletion of their

document counterparts, along with their sub-trees, positively affects the similarity evaluation process).

In addition to document modification, we also conducted a set of experiments to detect the changes induced in

XML grammars. We particularly modified grammars OrdinaryIssuePage.dtd, ProceedingsPage.dtd and

SigmodRecord.dtd (of the online version of the ACM SIGMOD Record), comparing them to documents Ord_234.xml,

———
1
 Recall that Sigmod_11.xml results from the decomposition of document SigmodRecord.xml.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Sim

Modif %

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Sim

Modif %

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Sim

Modif %

Insertion Deletion Update

 Elsevier Information Sciences Journal

28

Pro_172_2.xml and Sigmod_11.xml respectively. Similarity graphs are similar to those in Fig. 18.b, highlighting a

straight correspondence between similarity and modification levels. Graphs are omitted here (and can be found in [73]).

5.4.2.2. User Rankings

In addition to system generated results, we conducted manual (user) rankings to identify the correspondence between:

i) the user‘s perception of similarity and ii) system-generated similarity scores, in detecting changes in

documents/grammars. Similarity graphs corresponding to each of the charts in Fig. 18.b, are shown in Fig. 19.

Update modification type Insertion modification type Deletion modification type

a. Comparing user and system similarity scores when gradually modifying Ord_234.xml.

Update modification type Insertion modification type Deletion modification type

b. Comparing user and system similarity scores when gradually modifying Ord_172.xml.

Update modification type Insertion modification type Deletion modification type

c. Comparing user and system similarity scores when gradually modifying Ord_172.xml.

Fig. 19. Similarity graphs contrasting system and user-generated similarity scores when comparing

XML documents Ord_234.xml, Pro_171_2.xml and Sigmod_11.xml, w.r.t. XML grammars

OrdinaryIssuePage.dtd, ProceedingsPage.dtd and SigmodRecord.dtd.

Here, user rankings (i.e., A, B, C, …, F) were transformed into numerical values so as to be comparable to system

generated scores, such as: A = 100% (the document conforms to the grammar), B = 80% (high similarity), C = 60%, D

= 40%, E = 20%, and F = 0% similarity (the document and grammar seem completely different to the user). Average

correlation scores for each kind of document modification (document node update, insertion, and deletion) in Fig. 19

are show in Table 6.a. Results confirm the relevance of system generated scores w.r.t. the users‘ perception of

similarity: correlation is > 75%, on average, for all kinds of document modifications.

Similarly to the document modification experiments, manual user rakings conducted w.r.t. grammar modification

experiments reveal a straight correlation with system generated similarity scores. Similarity graphs are akin to those

presented in Fig. 19 and thus are omitted here (they can be found in [73]). Average correlation scores for each kind of

grammar modification (grammar node update, insertion, and deletion) are show in Table 6.b. Results confirm the

relevance of system generated scores w.r.t. the users‘ perception of similarity: correlation is > 85%, on average, for all

kinds of grammar modifications.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Sim

Modif %

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Sim

Modif %

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Sim

Modif %

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Sim

Modif %

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Sim

Modif %

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Sim

Modif %

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Sim

Modif %

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Sim

Modif %

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Sim

Modif %

System User

29

Table 6. Statistical dependency: Pearson Correlation Coef. (PCC) between system and user-generated similarity rankings.

 a. PCC with document modification experiments. b. PCC with grammar modification experiments.

 Update Insertion Deletion Update Insertion Deletion

Ord_234.xml 0.9529 0.6962 0.7678 OrdinaryIssuePage 0.9435 0.9217 0.8575

Pro_172_2.xml 0.9891 0.8832 0.4689 ProceedingsPage 0.9058 0.8706 0.8992

Sigmod_11.xml 0.9891 0.8233 0.5869 SigmodRecord 0.8659 0.7679 0.7991

To sum up, experimental results underline our method‘s effectiveness in accurately discerning modified

documents and/or grammars w.r.t. their original versions. Results show a close correspondence between i) the amount

of modifications in documents/grammars, ii) system-generated similarity levels, and iii) user-generated similarity

rankings, and thus reflect our approach‘s efficiency in accurately comparing and ranking documents/grammars based

on their resemblances/differences, in accordance with the user‘s perception of similarity.

5.5. Evaluating Intelligent Behavior: Comparing Non-Conforming Documents and Grammars

In addition, we evaluate our method‘s quality in intelligent behavior (noise resistance), i.e., its ability to identify

(disregard) documents which are similar (different) to the reference grammars, such that none of the documents

actually conforms to any of the grammars. This corresponds to the most practical case on the Web, where the system

user/administrator does not have prior knowledge about the XML documents scattered online, and would like to

identify those which approximately validate (most likely correspond to) her predefined grammars.

5.5.1. Experimental Scenario

To simulate the process of comparing non-conforming documents and grammars, we combine both grammar

transformation (modification) and document classification methods. Considering an XML document collection with a

set of documents (e.g., D1 and D2) conforming to predefined reference grammars (e.g., G1 and G2), we first deliberately

introduce certain amounts of modifications in the grammars (inserting, deleting and/or relabeling certain amounts of

grammar nodes, as described in the experimental scenario of Section 5.4). Subsequently, we compare the XML

documents with the modified grammars (G1‟ and G2‟), performing XML classification (as described in the experimental

scenario of Section 5.3). In other words, given a set of modified grammars, we attempt to identify those documents

which are similar to the grammars, given that the documents are not written exactly in those grammars (e.g., our

objective is to effectively classify D1 under G1‟, and D2 under G2‟, since they are probably similar, despite the fact that

neither documents were written for those grammars, but rather conform to their original versions: G1 and G2).

Classification metrics are adapted from section 5.3.1 as follows. Given an original grammar Gi, its modified

version Gi‟, and an extracted class Ki corresponding to the modified grammar Gi‟:

 ai is the number of XML documents in Ki that indeed conform to the original grammar Gi. These are the

documents which are most probably similar to the current modified version Gi‟.

 bi is the number of documents in Ki that did not originally conform/correspond to Gi. In other words, these

documents are less likely to be similar to Gi‟.

 ci is the number of XML documents not in Ki, although they conform to the original grammar Gi. In other words,

these documents are probably similar to the modified grammar Gi‟ and should have been classified in Ki.

Consequently, precision, recall and f-value are computed following ai, bi, and ci, using formula (6) in section 5.3.1.

5.5.2. Experimental Results

We consider the real XML data sets described in Table 3 (i.e., SIGMOD, Niagara, and IMBD). Each of the

corresponding grammars is modified with increasing transformation thresholds, ranging from 0% (original grammars),

to 20%, 40%, 60% and 80% w.r.t. the original grammars. We combine all three transformation operations: insertion,

deletion, and relabeling (cf. Section 5.4) in inducing modifications. Our experiments are based on multilevel

classification, similarly to the experiments in Section 5.3.

The central difference here is that since none of the documents actually conforms to the class reference grammars,

all XML documents will be eventually filtered out of the predefined classes (whereas in the experiments of Section 5.3,

the classes always contain the XML documents conforming to their reference grammars). A sample dendrogram

structure depicting the classification of non-conforming XML documents and grammars is depicted in Fig. 20.a.

Average precision, recall and f-value results are depicted in Fig. 20.b, Fig. 20.c and Fig. 20.d respectively.

On one hand, when multilevel classification is applied on conforming documents/grammars (cf. Section 5.3),

recall is constantly equal to 1, indicating that all documents are successfully identified in the ‗correct‘ classes (i.e.,

classes corresponding to their conforming grammars, having SimXDoc_XGram=1). However, when classifying non-

conforming documents/grammars (Fig. 20), recall varies from 1 (maximum value, where all documents are identified

in the correct classes, corresponding to the initial classification step, Fig. 20.a) to 0 (minimum value, where all

documents are misclassified, attained in the final classification step). That is due to the fact that SimXDoc_XGram is always

≠ 1 in this case, since none of the documents conforms to the grammars.

On the other hand, results in Fig. 20.a, b and c show that precision, recall and f-value respectively decrease while

increasing the grammar modification threshold. In other words, classification accuracy steadily decreases when the

resemblance/relatedness levels between the documents and the grammars decrease (simulated, in our experiments, by

varying/increasing the grammar modification threshold). Note that we do not show the results of Modif=100% in Fig.

 Elsevier Information Sciences Journal

30

20, since it underlines the case where all grammars are completely different from all documents, which contradicts the

idea of using grammars as document classification references to compute precision and recall.

a. Dendrogram obtained when classifying 15

documents from the SIGMOD collection, w.r.t.

40% modified SIGMOD grammars.

 b. Average precision graphs for real XML

documents of SIGMOD, Niagara and IMDB

datasets (with modified grammars).

 c. Average recall graphs for real XML

documents of SIGMOD, Niagara and IMDB

datasets (with modified grammars).

 d. Average f-value graphs for real XML

documents of SIGMOD, Niagara and IMDB

datasets (with modified grammars).

Fig. 20. Classification results obtained with non-conforming documents/grammars.

To sum up, while exact (Boolean) XML document validation methods (cf. State of the Art in Section 6.2) could be

used to perform document classification in the case of conforming XML documents/grammars (identifying which

documents conform to which grammars), such methods become obsolete (i.e., completely ineffective) when non-

conforming documents/grammars come to play. In such a context, an ‗intelligent‘ approximate similarity evaluation

method (such as the one proposed in this study) becomes crucial.

Note that while our current experimental study conveniently exploits XML grammars as references to evaluate

result quality (computing precision and recall accordingly), we are currently building a larger XML benchmark better

suited to the experimental tasks, aimed at making use of blind testing. Here, we were unable to utilize the current

INEX
1
 data set in our experiments since it targets XML textual similarity (i.e., similarity between element/attribute

values made of long text fields) which is out of the scope of this study (here, as mentioned earlier, we focus on XML

structure, i.e., document/grammar element/attribute tag names and their structural positions, and disregard values).

5.6. Comparative Study

An experimental study, comparing the effectiveness of our XML document/grammar comparison method with existing

approaches, would have been interesting, and would have allowed us to further validate our method. Nonetheless, most

related studies in the literature (cf. Background in Section 6) do not precisely tackle the issue of ranked

document/grammar comparison, but rather handle (Boolean) document validation, or transformation/correction. Other

———
1 http://inex.is.informatik.uni-duisburg.de/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.05 0.1 0.15 0.2

Classification Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Classification Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Classification Threshold

×

Modifs = 0%

Modifs = 40%

Modifs = 60%

Modifs = 80%

+ Modifs = 20%

×

Modifs = 0%

Modifs = 40%

Modifs = 60%

Modifs = 80%

+ Modifs = 20%

×

Modifs = 0%

Modifs = 40%

Modifs = 60%

Modifs = 80%

+ Modifs = 20%

C
la

s
s
 c

o
rr

e
s
p
o
n
d

in
g
 t
o

O
rd

in
a
ry

Is
s
u
e
P

a
g
e
.d

td

(4
0
%

 M
o

d
if
s
)

C
la

s
s
 c

o
rr

e
s
p
o
n
d

in
g
 t
o

P
ro

c
e
e
d

in
g
s
P

a
g
e
.d

td

(4
0
%

 M
o

d
if
s
)

C
la

s
s
 c

o
rr

e
s
p
o
n
d

in
g
 t
o

S
ig

m
o

d
R

e
c
o
rd

.d
td

(4
0
%

 M
o

d
if
s
)

Grammar modif
thresholds

Grammar modif
thresholds

Grammar modif
thresholds U

n
c
la

s
s
if
ie

d
 d

o
c
u

m
e
n
ts

31

methods, e.g., [32, 75], perform some sort of ranked similarity evaluation, yet are based on a specific premise: that the

possible distortions between the documents/grammars are known in advance, which makes it difficult to define a

common experimental scenario. Thus, we currently settle for a qualitative comparison, depicting the main

characteristics, commonalities and differences between our approach and related studies. We also compare our method

with its most pertinent predecessor: DTDMatch in [9, 10], which to our knowledge is the main existing work to actually

allow (knowledge-free) ranked document/grammar similarity evaluation
1
.

5.6.1. Qualitative Analysis

 Table 7 summarizes the main differences between our method and related approaches. In short, our approach is: i) fine-

grained, extending the concept of tree edit distance distance (as an efficient technique for comparing XML-based

structured data [17]) to detect and identify the structural similarities and disparities between XML documents and

grammars, taking into account the most common XML grammar constraints, namely MaxOccurs and MinOccurs,

repeatable expressions and recursive declarations, which are partly disregarded in the main existing methods, e.g., [7,

10, 32, 57], ii) producing a ranked similarity result, i.e., a similarity value  [0, 1] interval, in comparison with existing

Boolean (validation) methods, e.g., [7, 8, 49], which only provide a Boolean output, iii) capable of identifying (in the

course of computing the similarity value) an edit script transforming the XML document into one conforming to the

XML grammar, similarly to XML transformation methods [57] (note that in our current paper, we do not provide the

additional algorithms needed for extracting edit scripts. We report this issue to an upcoming dedicated study).

Table 7. Comparing our method to related approaches.

Approach

Performs

Document

Validation

Generates

Edit

Script

Computes

similarity

value

Considers

element

constraints

Considers

repeatable

expressions

Considers

recursive

declarations

Dedicated to

XML Grammars
Complexity level

Segoufin et Vianu [49]        (DTD) O(Exp(|G|))

Barbosa et al. [8]
2        (DTD/XSD) O(|D|×log(|G|))

Balmin et al. [7] 3        (DTD/XSD) O(|D|×log(|G|))

Bouchou et al [15]  Partial Partial  „And‟ only 3   (DTD/XSD) Exp(MaxDeg(|S|))

Suzuki [57]        (DTD) O(Exp(|G|))

Bouchou et al. [14]        (DTD/XSD) O(|D|×log(|G|))

Xin G. [79] 3        (DTD) O(|D|×|G|×log(|G|))
Grahne & Thomo [32]        (struct data) O(|AG|×N×|P|3)

Thomo et al. [50, 75]     Partial   (DTD/XSD) O(K3×N 2(K+1)×|P|)

Bertino et al. [9, 10] 2        (DTD) O(Γ2×(|D|+|G|))

Our Approach        (DTD/XSD) O(|NG|×|D|×|G|)

|D|: cardinality of the XML document

|G|: cardinality of XML grammar

|AG|: number of states in the automaton describing the data-grammar,

N: cardinality of semi-structured document,

|P|: number of states in the distortion transducer,

K: number or allowable transformation operations

Γ : maximum node fan-out in document tree D

NG: number of conjunctive grammars representing G

(cf. State of the Art Section 6 for details)

5.6.2. Comparison with DTDMatch

In the following, we compare our approach with its most pertinent predecessor: DTDMatch [9, 10].

1. Both DTDMatch and our approach model XML documents and XML grammars as labeled trees. DTDMatch

follows an intentional approach in producing one compact tree representation per grammar G, representing

the set of rules constraining the content of each element in the grammar (i.e., describing the language L(G) of

the grammar), while we follow a semi-intentional approach such that each grammar G is represented as the set

of conjunctive trees {C}G, where the grammar‘s expressiveness (language) is distributed among its constituent

conjunctive grammars, L(G) = L(Ci) (cf. Fig. 21.a).

2. While DTDMatch‘s grammar tree representation is more compact, nonetheless our grammar tree

representation is more similar (in its structural properties) to XML document tree representation, as it was

designed for this specific purpose in order to simplify the document/grammar tree comparison process.

3. DTDMatch only considers (context-free) DTD grammars whereas our approach processes (context-sensitive)

XSD grammars, with more expressive power related to MinOccurs and MaxOccurs constraints.

4. DTDMatch does not discuss the case of recursive declarations, whereas strong linear recursive declarations

are handled in our grammar tree representation model.

———
1
 We do not empirically compare our method with DTDMatch since the authors do not provide the detailed algorithm/code of the method.

2
 Note that some studies, such as [7, 8, 79], support arbitrary regular expressions as production rules in the grammars. Nonetheless,

[7, 79] do not discuss repeatable expressions, while [7, 8] do not mention recursive declarations.
3

 Considers repeatable sequence expressions only (i.e., expressions connected via the And operator) and disregards repeatable

alternative expressions (connected via the Or operator).

 Elsevier Information Sciences Journal

32

5. The DTDMatch algorithm consists of mapping functions which allow to identify: i) elements appearing both

in the document and in the DTD (common elements), ii) elements appearing in the document but not in the

DTD (plus elements), iii) and elements appearing in the DTD but not in the document (minus elements),

assigning different weights to each group of elements to tune the similarity measure following the user‘s

needs. Our approach assigns no such weights. Nonetheless, by post-processing the edit script describing the

transformations applied on a document tree so that it becomes valid w.r.t. the grammar tree, such (common,

plus, and minus) element mapping can be identified (e.g., such an approach is developed in [70], in the

context of XML grammar tree matching).

<!ELEMENT root (a?, b, c)+ >

<!ELEMENT root (a? | b | c)>

DTD tree

following

[10]

Grammar tree representation following

our DNF model: the DTD is flattened and

represented in 2 conjunctive grammar trees

Sample XML

document tree

conforming to

the DTD

 DTD tree

following

[10]

Grammar tree representation

following our DNF model:

the DTD is flattened and

represented in 3 conjunctive

grammar trees

Sample

XML

document

tree

conforming

to the DTD

Repeatable alternative expression

Recursive declaration

a. Disparities in tree representations between XML document and grammar structures, following the grammar

(DTD) tree representation model in [10] (one of the central methods in the literature).

* 58.33 % of the grammars surveyed in [23] contain (non-linear) recursive declarations,

whereas 41.67% are non-recursive.

b. XML grammar expression usage probability tree (averages and/or extrapolated from [11, 23, 38]).

Fig. 21. Comparing our approach with DTDMatch [10].

6. The DTDMatch algorithm can produce wrong matches when a certain assumption holds: in the declaration of

an element, two sub-elements with the same tag are forbidden (e.g., declaration <!ELEMENT root(b, b, c)> is

not allowed since b appears twice). Following our algorithm, wrong matches can also be obtained when

grammar transformation Rule 1 is applied (in simplifying grammar expressions), ()
y v

x uA

1R


y v

x uA




since

it does not verify the ISP (Information Structure Preserving) property, and thus might produce transformed

grammar expressions that do not preserve the same expressiveness (language) of their original counterparts.

7. The DTDMatch algorithm considers tag similarity, i.e., handling the possibility that tags might be

syntactically different by with semantically similar meanings. This issue is not discussed in our current study,

and is reported to a future extension of this work. This can be performed through the investigation of

alternative tree operations cost models (varying costs w.r.t. the semantic relatedness between document and

grammar node labels given a semantic reference such as Wordnet [45], Wikipedia [84], or Google [37]),

similarly to the studies in [63, 66, 70].

In short, our approach builds on DTDMatch in different aspects, attempting to handle more expressive XSD

constraints, and produced an improved method. Note that we are currently conducting a case study on a large set of real

DTD and XSD grammars (mainly acquired from survey in [11, 23, 38]) in order to estimate empirical usage

probabilities concerning the different kinds of XML grammar declarations (namely MinOccurs and MaxOccurs,

repeatable expressions, multiple identical sub-elements, and recursive declarations) found in real-world grammars. This

would help us better evaluate the performance levels of our approach in comparison with its most relevant

predecessor(s) in terms of: the percentages of correct grammar expression matches, wrong matches, exact validation

 Generic XML Grammar declaration

Single Element Expr. Composite Expr.

Sequence Expr. Alternative Expr.

1

2 3

8 9 Mandatory
Manda

tory

Optional Repeatable Mixed Expr. 10

Mandatory Optional Repeatable Mandatory Optional Repeatable Mandatory Optional Repeatable

Empty structural model (ɛ)

Expr.
4

6.42 %

1.96 %

55.99 % 37.59 %

15.8 % 12.65 % 9.13 % 2.23 % 2.23 %

5.26 % 5.26 % 5.26 % 3.04 % 3.04 % 3.04 % 4.22 % 4.22 % 4.22 %
5 6 7

11 12 13 14 15 16 17 18 19

root

a

root 1

a 1

1

0

root 1

b 1

1

root 1

c 1

1

1

1

OR

root

b c

a

?

root

b c a b c

root

a b c

Represent default MinOcc =1 and MaxOcc =1,

≡ null cardinality constraint, and can be omitted.

1

1

1

1

1

1

 0

1

1
1

root
1

1

a b c
1

1

 0

1

1
1

a b c
1

1

 0

1

1
1

AND

+

root

a

b c ?

33

ratio, approximate validation ratio, etc., considering the usage probabilities of grammar expressions involved (Fig. 21.b

provides a glimpse on our preliminary usage probability estimates).

5.7. Timing and Space Analysis

Timing experiments were carried out on a Dell Precision system with an Intel 2.53 GHz processor and 4 GB RAM. In

Section 4.5, we have shown that the complexity of our approach is of O(|S|+|G|+(NG×|S|×|CG|)) time, and simplifies

to typical quadratic O(|S|×|G|) time, w.r.t. the sizes of the XML document and XML grammar being compared, and

worst case O(NG|S|×|G|) considering the number of conjunctive grammars involved.

We start by verifying our approach‘s quadratic dependency on the combined XML document and grammar sizes,

i.e., O(|S|×|G|), which equally underlines a linear dependency on each of the document and grammar sizes. Fig. 22.a

(left graph) shows that the time to identify the structural similarity between XML document trees and conjunctive XML

grammar trees of various sizes grows in an almost linear fashion with tree size.

Time to compute similarity between XML document and

conjunctive grammar trees

Varying the number of ‘Or’ operators (number of conjunctive

grammars) in the XML grammars

a. Timing results for our XML document/grammar comparison method.

Memory required to compute similarity between XML

document and conjunctive grammar trees.

Varying the number of ‘Or’ operators (number of conjunctive

grammars) in the XML grammars

b. Memory usage for our XML document/grammar comparison method.

Fig. 22. Time and space results.

Second, we varied the number of Or operators in the grammar expressions, in order to deliberately vary the

number of potential conjunctive grammars (NG) and study its effect on overall complexity. We considered different

configurations, using: alternative expressions (of the form (A | B | C |...)) and mixed expressions (of the form

(A | B) , (C | D), ...). Fig. 22.a (right graph) shows the worst case time results (mainly obtained when using mixed

expressions). The time curve remains mostly linear w.r.t. tree size even when the „Or‟ operator comes to play, and only

starts to grow faster with XML grammar size when the number of concatenated Or expressions (e.g., expressions of the

form (A | B), (C | D)…) surpasses 16 (i.e., yielding more than 80 conjunctive grammar trees per single XML grammar).

However, note that such a huge number of mixed Or expressions is unlikely to appear in real XML grammars [11, 23,

38] (around 12.65% of grammar expressions combine And and Or operators, cf. Fig. 21.b – node 10).

A mathematical analysis regarding the variation of the number of conjunctive grammars (NG) w.r.t. different

configurations of Or operators is provided in Appendix I. Results concur with Fig. 22.a (right graph), showing that the

most common alternative expressions generate a number of conjunctive grammars linear in the number of Or

operators, while certain specific cases (of usually mixed: And-Or expressions) yield polynomial and/or exponential NG.

0

25

50

75

100

125

150

175

200

225

250

275

300

0 100 200 300 400 500 600

T
im

e
 (

in
 s

e
c
o

n
d
s
)

Number of nodes in conjunctive
XML grammar tree G

100

200

300

400

500

600

700

800

900

1000

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

in
 s

e
c
o

n
d
s
)

Number of 'Or' operators in XML grammar G

100

200

300

400

500

600

700

800

900

1000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

0 100 200 300 400 500 600 700 800 900 1000

M
e

m
o

ry
 (

K
B

)

Number of nodes in conjunctive grammar tree G

100

200

300

400

500

600

700

800

900

1000

Number of
nodes in XML

document
tree S

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

0 2 4 6 8 10 12 14 16 18 20

M
e

m
o

ry
 (

K
B

)

Number of 'Or' operators in XML grammar G

100

200

300

400

500

600

700

800

900

1000

Number of
nodes in XML

document
tree S

Number of
nodes in XML

document tree S

Number of
nodes in XML

document tree S

NG= 3 8 15 24 35 48 63 80 99 120
XML grammar size grows linearly with the number of

‘Or’ operators such as |G| = 2×Nb(Or) + 1

XML grammar size grows linearly with the number
of ‘Or’ operators such as |G| ≤ 2×Nb(Or) + 1

 Elsevier Information Sciences Journal

34

Similarly to time complexity, memory usage results in Fig. 22.b show that our approach is polynomial in the

combined size of the XML document and grammar trees being compared. It is almost linear in the size of each of the

XML document and conjunctive grammar trees (Fig. 22.b – left graph), and becomes slightly quadratic w.r.t. grammar

size when „Or‟ operators come to play (ranging from 2 to 20 alternative - ‗Or‘- expressions per grammar, cf. Fig. 22.b

– right graph). Recall that conjunctive grammar trees consist of references (pointers) to the elements/attributes in the

source grammar, and thus require limited space in comparison with the actual document and grammar sizes (cf.

complexity analysis in Section 4.5.2). This underlines the limited increase in space (in comparison with a greater

increase in time, as shown in Fig. 22.a), even with a large increase of up to 20 alternative expressions per grammar.

6. State of the Art

In the following, we briefly review the literature on XML document/grammar comparison (a detailed review has been

published in [62]). We also briefly discuss our own research activities related to the problem, in order to better

highlight the contributions of this paper. The interested reader can also refer to [4, 17, 69] for reviews and comparative

studies concerning XML document comparison, and [29, 51] for comprehensive reviews on the state of art in XML

grammar matching, which are also related to the hybrid task of document/grammar comparison.

Comparing XML documents with XML grammars has been explored in several domains. Various methods have

been proposed for validating XML documents against XML grammars [7, 8, 14, 22, 36, 49]. Methods dedicated to

XML document-to-grammar transformation and correction have been investigated in [15, 20, 57]. Yet, to our

knowledge, the main methods (different from ours) to address the issue of document/grammar similarity evaluation,

i.e., producing a similarity score (allowing ranked similarity results), are provided in [32, 75] and [9, 10].

6.1. Approximate Pattern Matching with VLDC

An intuitive XML document/grammar comparison solution could be explored in terms of approximate matching with

the presence of Variable Length Don‟t Cares (VLDC). A VLDC symbol (e.g., ) in a string pattern may substitute for

zero or more symbols in the string [3, 39]. Approximate VLDC string matching means that, after the best possible

substitutions have been made, the pattern still does not match the data string and thus a matching distance is computed.

For example, ―comp  ng‖ matches ―commuting‖ with distance 1 (i.e., the cost of removing the ―p‖ form ―comp  ng‖

and having the ―‖ substitute for ―mmuti‖). The VLDC problem has been generalized for trees [81], introducing VLDC

substitutions for paths or sub-trees. Yet, VLDC symbols are different from operators XML grammars operators: VLDC

symbols can replace any string (w.r.t. string matching) or sub-tree (w.r.t. tree matching) whereas the XML grammar

operators specify constraints on the occurrence of a particular node (and consequently the sub-tree rooted at that node).

For instance, the DTD operator ―?‖ associated with a given element dummy? designates that the node entitled dummy

(and not any other) can appear 0 or 1 time. The same applies for all XML grammar operators.

6.2. XML Document/Grammar Validation

XML document validation w.r.t. XML grammars has recently gained attention, as one of the aspects of XML data

management [7, 8, 14, 22, 36, 49]. Here, XML grammars are generally viewed as context-free (DTD-like) regular tree

grammars [58]. Thus, verifying if an XML document D conforms to XML grammar G comes down to checking

whether the document tree is included in the language defined by the grammar, i.e., if D  L(G). The standard

procedure for testing membership in a formal language is to simulate the automaton that accepts the language on the

input strings [34]. Hence, XML validation methods, e.g., [7, 8, 14, 49], have investigated different variations to extend

automaton-based techniques to deal with the special case of XML regular tree grammars and XML document trees. In

general, the validation is performed in O(|D|× log(|G|)) time, where |D| and |G| designate respectively the sizes of the

XML document and XML grammar. The authors in [49] show that the construction of a standard automaton for

(streaming) XML validation requires exponential time in the size of the XML grammar, when the latter encompasses

recursive declarations. Note that methods for XML document validation generate a Boolean result indicating whether

the XML document is valid or not w.r.t. the grammar. They do not produce a (ranked) similarity score.

6.3. XML Document Transformation and Correction

Methods for identifying the edit script transforming a given XML document, to another document conforming to a

given DTD grammar, have been proposed in [57, 58, 79, 80]. The approach in [57] builds a special graph structure G,

based on the XML document tree D, underlining all possible transformation operations applicable to D (i.e., node

insertion, deletion and update). The algorithm goes through graph G, and verifies which paths have sequences of labels

that satisfy the DTD regular expressions. This is achieved via dedicated NFAs (Non-deterministic Finite Automatons).

The proposed method addresses simple DTDs, and does not consider XSD MinOccurs and MaxOccurs operators, nor

does it discuss the special cases of repeatable and recursive expressions. The authors show that their approach is

polynomial on document and grammar expression sizes when the cost of an operation on a node only depends on the

node label itself, and that it becomes non-polynomial (exponential) otherwise, highlighting a strongly NP-Complete

decision problem. No experimental evaluation is provided. Another approach to XML document/grammar

transformation is provided in [79, 80]. It introduces a tree edit distance method to identify the set of operations

transforming the XML document to one conforming to the grammar. However, the author simplifies DTD definitions

into data-guide like structures (simulated via hedge automatons [46]), omitting all cardinality and alternativeness

35

constraint operators. The proposed method is of O(|D|×|G|× log(|G|)) time, where |G| is the size of the grammar and

|D| is the size of the XML document tree.

A problem comparable to that of document-to-grammar transformation is that of document-to-grammar correction

[6, 15, 58]. The scenario considered here is that of dynamic XML documents which are modified and updated

frequently, underlining the need to continuously test their conformance w.r.t. the corresponding grammars. The authors

in [6, 15] propose to correct those sub-trees, in the modified XML document, where validation fails w.r.t. a given DTD

grammar. The methods exploit automatons and tree edit distance to identify the set of possible sub-tree corrections,

such that their distances from the original sub-tree are within a given threshold. The approach is shown exponential in

the size of document node fan-out (maximum node degree), and has been exploited to incrementally validate XML

integrity constraints defined as XML functional dependencies [13]. In [54, 58] the authors extend document-to-

grammar (DTD) correction to deal with more expressive XML schemas, represented as simple type tree grammars

(where the left-hand side of a production rule may be surrounded by context information, consisting of terminal

symbols), representing repairs as sequences of edit operations to alter XML trees. The authors in [52, 53] investigate

user-defined XML document adaptations, i.e., sequences of document transformation operations intended to adapt

documents valid for an original grammar G to a new grammar G‟. The objective is to check whether a user-proposed

document adaptation is guaranteed to produce a document valid for the new grammar, in order to avoid the usually

expensive revalidation of documents upon grammar modification. Transformation operations are expressed as sequences

of XQuery update primitives, automatically inferred from the original grammar using a Hedge automaton and a set of

rules describing each operation type (e.g. rename node, insert as first child node, insert as last child node, etc.). Type

inclusion is then used as a conformance test w.r.t. the types of updates extracted from the updated schema G‟.

While the methods in [6, 15, 57, 58, 79] produce transformation and correction scripts, they do not however

address the issue of XML document/grammar similarity.

6.4. XML Document/Grammar Similarity

Very few approaches have been developed to measure the structural similarity between XML documents and

grammars. The main methods are provided by Thomo et al. [32, 50, 75] and Bertino et al. [9, 10].

In [32], the authors address the problem of determining whether semi-structured data conform to a given data-

guide, in the context of approximate querying. The authors define a distortion transducer through which the data-guide

can be distorted via elementary transformations (e.g., node insertions, deletions and updates) and then test if the

database conforms to the resulting data-guide. The same technique is exploited to compare semi-structured data with a

given query. The approach in [32] is developed for generic semi-structured data and data-guides, rather than for XML

documents, and does not consider any of the XML grammar repeatability and alternativeness constraints. In a more

recent study [50, 75], the authors propose a similar approach toward approximate XML validation. Dedicated

pushdown transducers are designed to modify XML grammars by a predefined tolerable number of transformation

operations (e.g., node insertions, deletions and updates) and then test if the XML documents conform to the resulting

grammar. Both methods require typical polynomial time with simple (data-guide like) grammar structures, e.g.,

O(K×N
2
×|P|) where K is the number of allowable transformation operations, N is the size of the alphabet (XML

document), and |P| the number of states in the distortion transducer P [50, 75]. However, the authors show that

complexity becomes exponential when considering intrinsic XML grammar properties, namely repeatable elements.

They do not discuss optional, alternative or recursive declarations.

Note that methods in [32, 50, 75] are based on the assumption that the possible derivations from the original

grammar specification are pre-designed by the user through the transducer (pre-processing phase). While this might be

feasible in specific applications such as the fast validation of streaming (homogeneous) XML, yet, it is a limitation to

the general problem of XML document/grammar comparison (namely approximate validation of heterogeneous XML

data) where no prior knowledge of the possible deviations is known in advance.

To our knowledge, the main approach that specifically addresses the general problem of XML document/grammar

similarity, particularly DTDs, was proposed by Bertino el al. in [9, 10]. Here, XML documents and DTDs are modeled

as labeled trees, with additional nodes for representing cardinality and alternativeness operators (i.e., ?, *, +, And, Or).

The proposed algorithm (originally proposed in [10], and formalized in [9]) exploits dedicated measures to consider

the level (i.e. depth) in which the elements occur in the hierarchical structure of the XML and DTD tree

representations, as well as element complexity (i.e. the cardinality of the sub-tree rooted at the element) when

computing similarity values. The algorithm relies on the identification and evaluation of: i) elements appearing both in

the document and in the DTD (common elements), ii) elements appearing in the document but not in the DTD (plus

elements), iii) and elements appearing in the DTD but not in the document (minus elements). Different weights can be

assigned to each group of elements to tune the similarity measure following the user‘s needs. The proposed algorithm is

of typical polynomial time complexity (O(Γ

2
× (|D|+|G|)) where |D| and |G| underline XML document tree and DTD

tree cardinalities respectively, and Γ the maximum node fan-out in the XML document tree), especially when a certain

assumption holds: in the declaration of an element, two sub-elements with the same tag are forbidden (e.g., declaration

<!ELEMENT root(b, b, c)> is not allowed since b appears twice). The authors discuss that when the above assumption

does not hold, the algorithm can become of worst case exponential complexity, and can produce wrong matches

between document and DTD elements (i.e., the minimality of the similarity is no longer guaranteed).

6.5. Our Own Research Activities related to XML Similarity

Part of our research activities have been focused around the study of XML similarity, developing measures for

comparing i) XML documents, ii) XML grammars, and iii) XML documents and grammars, and their application in

 Elsevier Information Sciences Journal

36

specific real-world scenarios. We have largely focused on XML structure, and have recently tackled XML content

(specifically in the context of RSS merging and SOAP multicasting). Various results have been accomplished, mainly:

 Extending the tree edit distance algorithm in [48] so as to detect structural similarities and repetitions amongst

XML sub-trees [65], and XML leaf nodes [67], previously unaddressed in existing approaches,

 Integrating semantics (i.e., considering the meanings of XML labels, via semantic networks such as WordNet

[45]) in the structural comparison of XML documents [64]. An improved method, considering XML sub-tree

structural and semantic similarities, has been recently published in [66].

 Developing a fine-grained method for XML grammar comparison [63], considering element semantic and

syntactic similarities, cardinality and alternativeness constraints, as well as data-types and ordering. An extended

study with detailed theoretical and experimental analyses has been recently proposed in [70].

 Quantifying the similarity and identifying the relations (i.e., inclusion, intersection, disjointness, and equality)

among XML element content values, particularly among RSS items [60], developed toward RSS merging [59].

 Developing a filter-differencing framework for SOAP multicasting, identifying the common pattern and

differences between SOAP messages, modeled as XML trees, to multicast similar messages together [71, 72].

Our only proposal aimed at dealing with XML document/grammar comparison was presented in [68], in addition

to a review paper published in [62]. Similarly to our current study, the approach in [68] is based on the concept of tree

edit distance as a more effective solution to comparing XML trees. The approach targets DTD grammars, and considers

basic DTD cardinality and alternativeness constraints (i.e., ?, +, *, And, Or). Hence, it must be viewed as the

groundwork for the general approach in this paper. Here, we aim to consider more expressive XSD operators (e.g.,

MinOccurs and MaxOccurs), including repeatable expressions and recursive declarations (omitted in [68]).

6.6. Discussion

To sum up, various methods have been proposed for XML document/grammar validation, e.g., [7, 8, 36] and

transformation/correction, e.g., [6, 15, 58]. Yet, most approaches do not address the issue of document/grammar

similarity evaluation and do not produce a similarity score. Those few methods developed for XML document/grammar

similarity are either generic (disregarding most grammar constraints) and intended to consider pre-designed derivations

[32, 75], or developed for the DTD (context-free) grammar language and do not consider XSD (context-sensitive)

structure and constraints which are more complex and expressive (e.g., MinOccurs and MaxOccurs) [9, 10].

Some methods in the context of XML grammar matching [40, 56] have proposed to reduce (sacrifice) XML

grammar expressiveness to simplify the comparison task, using simplification rules to eliminate repeatable and

alternative expressions (e.g., transforming the Or operator into an And operator: (A | B) → (A, B), brute-force

flattening of repeatable expressions such as: (A, B)+ → (A+, B+), (A, B)* → (A*, B*), etc.). While such rules seem

practical in simplifying XML grammars, yet, they reduce grammar expressiveness, which in turn yields erroneous

similarity results, and thus not in line with our goal of providing a fine-grained method to XML document/grammar

comparison.

7. Conclusion

In this paper, we propose a structure-based similarity approach for comparing XML documents and XML grammars

(DTDs and/or XSDs), performing approximate structure XML validation. The proposed approach has several

applications, including document classification, transformation, and XML selective dissemination (e.g., user profiles

being represented as grammars against which the documents will be matched). Based on the tree edit distance concept,

our approach takes into account the most common XML grammar operators that designate constraints on the existence,

repeatability and alternativeness of XML elements/attributes, namely MinOccurs, MaxOccurs. It produces similarity

values in [0, 1] interval (in comparison to Boolean output obtained with classic XML validation methods). Also, an

edit script can be generated from the edit distance computations which can describe the changes required to transform

an XML document into one conforming to the grammar (which is central for document transformation and correction

applications). Note that our XML grammar tree model considers complex declarations, including: i) repeatable

sequence expressions, ii) repeatable alternative expressions, and iii) recursive expressions, which have been previously

disregarded in most existing approaches, e.g., [9, 32, 57]. In addition, it is not limited to context-free (DTD-like)

grammar declarations: where the definition of an element is unique and independent of its position in the grammar; but

can be used with context-sensitive (XSD-based) declarations: where identically labeled elements can have multiple

definitions in different contexts in the grammar. Our theoretical and experimental results showed that our approach

yields accurate structural document/grammar similarity results (characterized by high structural document classification

and ranking quality).

We are currently extending our approach to consider, not only the structural properties of XML documents and

grammars, but also the semantic similarities between XML element/attribute node labels (given a reference semantic

information source such as WordNet [45], Wikipedia [84], or Google [37]), through the investigation of alternative tree

edit operations cost models similarly to the studies in [63, 66, 70]. In the near future, we plan to extend our method to

consider XML element/attribute tag names as well information contents (element/attribute values). By adding

additional constraints on the data content of elements/attributes, grammars could be exploited as content-and-structure

queries, taking into account the structure of XML data in the search process, and returning ranked answers as in

information retrieval (IR). This would also give rise to more elaborate content models, such elements defining hyper-

links (IDREFS or XLink), which would require dedicated graph-based comparison functions. Another direction is the

37

extension of our grammar tree model to handle unordered XML document trees, i.e., XML trees where only ancestor

relations are considered to be significant in the XML structure, which might be more suitable for various database

applications such as document clustering and pattern discovery [24, 41]. Note that combining database (DB) structural

―binary answer‖ XML search (e.g., XML-QL and XQuery) and information retrieval query result ranking (e.g.,

approximate XML validation), is a prominent trend in both DB and IR research.

Acknowledgements

This work is supported in part by: the Research Support Foundation of the Sate of Sao Paulo (FAPESP Post-doc

Fellowship n# 2010/00330-2), STIC AmSud project Geo-Climate XMine, the CEDRE research collaboration program,

project AO 2011 “Easy Search and Partitioning of Visual Multimedia Data Repositories” (funded by the French

National Center for Scientific Research – CNRS, and the Lebanese CNRS), and by the ACM French Chapter on

Applied Computing SIGAPP.fr.

References

[1] Abiteboul S. et al., Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann Publisher (1st

Edition), 1999. pp. 258.

[2] Abu-Ghazaleh N. et al., Differential Serialization for Optimized SOAP Performance. Proceedings of the 13th International

Symposium on High Performance Distributed Computing (HPDC'04), 2004. pp. 55-64.

[3] Akatsu T., Approximate String Matching with Don‟t Care Characters. Information Processing Letters, 1995. (55):235-239.

[4] Algergawy A. et al., XML Data Clustering: An Overview. ACM Computing Survey 2011. 43(4):25.

[5] Algergawy A. et al., XML schema element similarity measures: A schema matching context. Proceedings of the 8th International

Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE 2009), 2009. pp. 1246-1253, Portugal.

[6] Amavi J. et al., On Correcting XML Documents with Respect to a Schema. The Computer Journal, 2013.

[7] Balmin A. et al., Incremental validation of XML documents. ACM Transactions on Database Systems, 2004. 29(4):710-751.

[8] Barbosa D. et al., Efficient Incremental Validation of XML Documents. Proceedings of Inter. ICDE Conf., 2004, pp. 671-682.

[9] Bertino E. et al., Measuring the structural similarity among XML documents and DTDs. Journal of Intelligent Information

Systems, 2008. 30(1):55-92.

[10] Bertino E., Guerrini G., and M. Mesiti, A Matching Algorithm for Measuring the Structural Similarity between an XML

Documents and a DTD and its Applications. Elsevier Information Systems, 2004. (29):23-46.

[11] Bex G. J., Neven F., and Bussche J.V., DTDs versus XML Schema: A Practical Study. International Workshop of the Web and

Databases (WebDB'04), 2004. pp. 79-84.

[12] Bille P., A Survey on Tree Edit Distance and Related Problems. Theoretical Computer Science, 2005. 337(1-3):217-239.

[13] Bouchou B., Alves M., and de Lima M., A Grammarware for the Incremental Validation of Integrity Constraints on XML

Documents under Multiple Updates. T. on Large-Scale Data- and Knowledge-Centered Systems, 2012. 6:167-197.

[14] Bouchou B. et al., Efficient Constraint Validation for XML Database. Informatica, 2007. 31(3): 285-309.

[15] Bouchou B. et al., XML Document Correction : Incremental Approach Activated by Schema Validation. Proceedings of the

International Database Engineering and Applications Symposium (IDEAS), 2006. pp. 228-238

[16] Bray T. et al.. Extensible Markup Language (XML) 1.0 - 5th Edition. W3C recommendation, 26 Novembre 2008. 2008 [cited

November 2014]; Available from: http://www.w3.org/TR/REC-xml/.

[17] Buttler D., A Short Survey of Document Structure Similarity Algorithms. Proceedings of the International Conference on Internet

Computing (ICOMP), 2004. pp. 3-9.

[18] Chawathe S., Comparing Hierarchical Data in External Memory. Inter. Conf. on Very Large Databases (VLDB), 1999, 90-101.

[19] Chawathe S. and Garcia-Molina H., Meaningful Change Detection in Structured Data. ACM SIGMOD, 1997. pp. 26–37.

[20] Cheriat A. et al., Incremental String Correction : Towards Correction of XML Documents. Proceedings of the Prague

Stringology Conference (PSC), 2005. pp. 201-215.

[21] Chidlovskii B., Using Regular Tree Automata as XML Schemas. IEEE Advances in Digital Libraries (ADL'00), 2000, 89-98.

[22] Chitic C. and Rosu D., On Validation of XML Streams using Finite State Machines. Proceedings of the 7th International

Workshop on the Web and Databases (WebDB ‘04) 2004. pp. 85–90, New York, NY, USA, ACM Press.

[23] Choi B., What are Real DTDs Like? Proc. of the International Workshop on the Web and Databases (WebDB), 2003. pp. 43-48.

[24] Chowdhury I.J. and Nayak R., A Novel Method for Finding Similarities between Unordered Trees Using Matrix Data Model.

International Conference on Web Information Systems and Engineering (WISE'13), 2013. pp. 421-430.

[25] Cobéna G. et al., Detecting Changes in XML Documents. IEEE Inter. Conf. on Data Engineering (ICDE), 2002. pp. 41-52.

[26] Dalamagas T. et al., A Methodology for Clustering XML Documents by Structure. Information Systems, 2006. 31(3):187-228.

[27] Do H., Melnik S., and Rahm E., Comparison of Schema Matching Evaluations. Proceedings of the International Workshop on

the Web and Databases (German Informatics Society), 2002. pp. 221-237. Erfurt.

[28] Do H. and Rahm E., Matching Large Schemas: Approaches and Evaluation. Information Systems, 2007. 32(6): 857-885.

[29] Do H.H. and Rahm E., Matching large schemas: Approaches and evaluation. Information Systems, 2007. 32(6):857-885.

[30] Flesca S. et al., Detecting Structural Similarities Between XML Documents. ACM SIGMOD WebDB, 2002. pp. 55-60.

[31] Gao S., Sperberg-McQueen C.M., and Thompson H.S. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures.

W3C recommendation, http://www.w3.org/TR/xmlschema11-1/ 2009 [cited May 2014].

[32] Grahne G. and Thomo A., Approximate Reasoning in Semi-structured Databases. Proceedings of the International Workshop on

Knowledge Representation meets Databases (KRDB), 2001. Vol. 45, Rome.

[33] Helmer S., Measuring the Structural Similarity of Semistructured Documents Using Entropy Proceedings of the International

Conference on Very Large Databases (VLDB), 2007. pp. 1022-1032.

[34] Hopcroft J. E. et al. , Introduction to Automata Theory, Languages, and Computation. 2001. Addison Wesley, 2nd edition.

[35] Huet G., Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. Journal of the ACM, 1980.

27:797-821.

[36] Kim S.K., Lee M., and Lee K.C., Validation of XML Document Updates Based on XML Schema in XML Databases.

International Conference on Database and Expert Systems Applications (DEXA'03), , 2003. LNCS 2736, pp. 98–108.

[37] Klapaftis I. and Manandhar S., Google and Wordnet based Word Sense Disambiguation. Proceedings of the Workshop on

Learning and Extending Ontologies by using Machine Learning methods 2005.

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema11-1/

 Elsevier Information Sciences Journal

38

[38] Laender A. et al., An X-ray on Web-available XML Schemas. SIGMOD Record, 2009. 38(1): 37-42.

[39] Landau G. M and Vishkin U., Fast Parallel and Serial Approximate String Matching. J. of Algorithms, 1989. (10):157-169.

[40] Lee M., Yang L., Hsu W., and Yang X., XClust: Clustering XML Schemas for Effective Integration. Proceedings of the

International Conference on Information and Knowledge Management (CIKM), 2002. pp. 292-299.

[41] Li W., L.X., Te R.,, Cluster Dynamic XML Documents based on Frequently Changing Structures Advances in Information

Sciences and Service Sciences (AISS'12) 2012. 4(6):70-77.

[42] Liang W. and Yokota H., SLAX: An Improved Leaf-Clustering Based Approximate XML Join Algorithm for Integrating XML

Data at Subtree Classes. Transactions of Information Processing Society of Japan, 2006. Volume 47, pp. 47-57.

[43] McGill M., Introduction to Modern Information Retrieval. 1983. McGraw-Hill, New York.

[44] Melnik S., Garcia-Molina H., and Rahm E., Similarity Flooding: A Versatile Graph Matching Algorithm and its Application to

Schema Matching. Proceedings of the IEEE International Conference on Data Engineering (ICDE), 2002. pp. 117-128.

[45] Miller G., WordNet: An On-Line Lexical Database. International Journal of Lexicography, 1990. 3(4).

[46] Murata M. et al., Taxonomy of XML Schema Languages Using Formal Language Theory. ACM TOIT, 2005. 5(4):660-704.

[47] Neumann A., Parsing and Querying XML Documents in SML. PhD thesis, University of Trier, Trier, Germany, 2000.

[48] Nierman A. and Jagadish H. V., Evaluating structural similarity in XML documents. Proceedings of the ACM SIGMOD

International Workshop on the Web and Databases (WebDB), 2002. pp. 61-66.

[49] Segoufin L. and Vianu V., Validating Streaming XML Documents. Proceedings of the ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS), 2002. pp. 53-64.

[50] Shoaran M. and Thomo A., Evolving schemas for streaming XML. Theor. Comput. Sci. , 2011. 412(35):4545-4557.

[51] Shvaiko P. and Euzenat J., A Survey of Schema-Based Matching Approaches. Journal of Data Semantics IV, 2005. pp. 146-171.

[52] Solimando A., Delzanno G., and Guerrini G., Automata-based Static Analysis of XML Document Adaptation. Third

International Symposium on Games, Automata, Logics, and Formal Verification (GandALF'12), 2012. pp. 85-98.

[53] Solimando A. et al., Static Analysis of XML Document Adaptations. Inter. Conf. on Conceptual Modeling (ER), 2012, 57-66.

[54] Starka J. et al.., XML Document Correction and XQuery Analysis with Analyzer. DATESO 2011, 2011. pp. 61-72.

[55] Staworko S. and Chomicky J., Validity-Sensitive Querying of XML Databases. Current Trends in Database Technology – EDBT

2006, DataX‘06, 2006. Lecture Notes in Computer Science, Springer, vol. 4254/2006, pp. 164–17.

[56] Su H., Padmanabhan S., and Lo M.L., Identification of Syntactically Similar DTD Elements for Schema Matching. Proceedings

of the International Conference on Advances in Web-Age Information Management (WAIM), 2001. pp. 145-159.

[57] Suzuki N., Finding an Optimum Edit Script between an XML Document and a DTD. Proceedings of the ACM Symposium on

Applied Computing (ACM SAC), 2005. pp. 647-653.

[58] Svoboda M. and Mlynkova I., Correction of Invalid XML Documents with Respect to Single Type Tree Grammars. Proceedings

of NDT (Networked Digital Technologies) Communications in Computer and Information Science, 2011. 136:179-194.

[59] Taddesse F.G. et al., Semantic-based Merging of RSS Items. World Wide Web Journal, 2010. Vol. 12 (No. 11280), Springer.

[60] Taddesse F.G. et al., Relating RSS News/Items. Inter. Conf. on Web Engineering (ICWE'09), LNCS, 2009. pp. 44-452.

[61] Tansalarak N. and Claypool K. T., QMatch - Using paths to match XML schemas. Data Know. Eng., 2007. 60(2):260-282.

[62] Tekli J. et al., XML Document-Grammar Comparison: Related Problems and Applications. Central European Journal of

Computer Science, 2011. Inaugural Issue, 1(1):117-136.

[63] Tekli J. et al., Extensible User-based Grammar Matching. Inter. Conf. on Conceptual Modeling (ER), 2009, pp. 294-314.

[64] Tekli J. et al., Semantic and Structure Based XML Similarity: An Integrated Approach. Inter. Conf. on Management of Data

(COMAD), 2006. pp. 32-43.

[65] Tekli J. et al., Efficient XML Structural Similarity Detection using Sub-tree Commonalities. In Proceedings of the Brazilian

Symposium on Databases (SBBD) and SIGMOD DiSC, (Best paper award), 2007. pp. 116-130.

[66] Tekli J. et al. , A Novel XML Structure Comparison Framework based on Sub-tree Commonalities and Label Semantics.

Elsevier Journal of Web Semantics (JWS): Science, Services and Agents on the World Wide Web, 2012. 11: 14-40.

[67] Tekli J. et al., A Fine-grained XML Structural Comparison Approach. Inter. Conf. on Concept. Modeling (ER), 2007, 582-598.

[68] Tekli J. et al., Structural Similarity Evaluation between XML Documents and DTDs. Proceedings of the 8th International

Conference on Web Information Systems Engineering (WISE), 2007. pp. 196-211.

[69] Tekli J. et al., An Overview of XML Similarity: Background, Current Trends and Future Directions. Elsevier Computer Science

Review, 2009. 3(3):151-173.

[70] Tekli J. et al., Minimizing User Effort in XML Grammar Matching. Elsevier Information Sciences Journal, 2012. 210:1-40.

[71] Tekli J. et al., Differential SOAP Multicasting. IEEE Inter. Conf. on Web Services (ICWS'11), 2011. pp. 1-8, Washington DC.

[72] Tekli J. et al., Using XML-based Multicasting to Improve Web Service Scalability. Inter. J. on Web Services Research (IJWSR),

2012. 9(1):1-29.

[73] Tekli J. et al., Approximate XML Structure Validation. Technical Report ApproXMLVal-TR-14, LAU-ICMC-LIUPPA,ICMC,

2014, http://sigappfr.acm.org/Projects/XS3/ApproXMLVal-TR-14.pdf

[74] Teraguchi M. et al., Optimized Web Services Security Performance with Differential Parsing. Proceedings of the 4th

International Conference on Service-Oriented Computing (ICSOC'06), 2006. pp. 277-288.

[75] Thomo A. et al., Visibly Pushdown Transducers for Approximate Validation of Streaming XML. International Symposium on

Foundations of Information and Knowledge Systems (FoIKS), 2008. pp. 219-238.

[76] Toyama Y., On the Church-Rosser Property for the Direct Sum of Term Rewriting Systems. J. of the ACM, 1987. 34:128-143.

[77] W3 Consortium. The Document Object Model. 2005 [cited 28 May 2009]; Available from: http://www.w3.org/DOM.

[78] Werner C. et al., WSDL-Driven SOAP Compression. Inter. Journal of Web Services Research, 2005. (2)1:18-35.

[79] Xing G., Fast Approximate Matching Between XML Documents and Schemata. The Asia Pacific Web Conf., 2006. pp. 425-436.

[80] Xing G. et al., Computing Edit Distances Between an XML Document and a Schema and its Application in Document

Classification. Proceedings of SAC 06, Dijon, France, 2006. pp. 831-835. ACM.

[81] Zhang K. et al., Approximate Tree Matching in the Presence of Variable Length Don‟t Cares. Journal of Algorithms, 1994. (16)

33-66.

[82] Zhang K. and Shasha D., Simple Fast Algorithms for the Editing Distance between Trees and Related Problems. SIAM Journal

of Computing, 1989. 18(6):1245-1262.

[83] Zhang Z. et al. , Similarity Metric in XML Documents. Knowledge Management and Experience Management Workshop, 2003.

[84] Zirn C. et al., Distinguishing between Instances and Classes in the Wikipedia Taxonomy. European Semantic Web Conference

(ESWC), 2008. 376-387.

http://www.w3.org/DOM

39

Appendixes

Appendix I. Mathematical Analysis regarding the Disjunctive Normal Form (DNF)

In the following, we consider three common configurations of ‗Or‘ operator expressions: i) concatenated, ii)

encapsulated, and iii) mixed; which usually appear in real XML grammars (based on empirical analyses in [11, 23, 38],

as well as the grammars utilized in our own experiments, described in Section 5 of the main paper). In the following,

we show on one hand that with concatenated and/or encapsulated configurations, the number of conjunctive

declarations resulting from the DNF representation of a grammar expression is linear in the number of ‗Or‘ operators

involved, denoted Nb(Or). On the other hand, we show that mixed declarations might induce, in certain specific cases,

an exponential increase in the number of conjunctive grammars.

I.1. Grammars with Concatenated „Or‟ expressions

These correspond to grammars containing alternative expressions where „Or‟ operators appear exclusively at the same

level within the same grammar expression: <!ELEMENT A(B|C|D|…)> such as „A‟ is the root node, or an inner node in

the grammar, and „B‟, „C‟, „D‟, … are either: i) single node declaration, ii) empty node declarations, or iii) sequence

expressions (i.e., expressions of elements connected via the „And‟ operators). Given an XML grammar G consisting

solely of concatenated ‗Or‘ expressions (i.e., yielding the maximum Nb(Or) possible following this configuration), and

based on the inductive mathematical reasoning in Table I, the maximum number of conjunctive grammars NG resulting

from the DNF representation of G, DNF(G) = {C}G, is equal to:

NG = Nb(Or) + 1 such as NG = |G| - 1 and Nb(Or) = |G|-2 (i) .

Table I. XML Grammars made of concatenated „Or‟ operators, such as the number of „Or‟ operators,

and consequently the number of conjunctive grammars NG, are maximized.

Grammar expressions Nb(Or) |G| NG |CG|

<ELEMENT root (a | b)>

1 3 2 2

 <ELEMENT root (a | b | c)>

2 4 3 2

 <ELEMENT root(a | b | c | d)>

3 5 4 2

 <ELEMENT root(a | b | c | d | e)>

4 6 5 2

 <ELEMENT root(a | b | c | d | e | f)>

5 7 6 2

…

Recursively, |G|-2 |G| |G|-1 2

I.2. Grammars with Encapsulated „Or‟ expressions

These are grammars containing alternative expressions where „Or‟ operators are encapsulated in each other, such as no

two „Or‟ operators appear at the same structural level. Such grammars are of the form: <!ELEMENT A(B|C)>

<!ELEMENT B(E|F)> <! ELEMENT E(H|I)> … where „A‟ is the root node or an inner node, and ‗B‟, „C‟, „E‟, … are

either i) single node declaration, ii) empty node declarations, or iii) sequence expressions (i.e., expressions of elements

connected via the „And‟ operators). Thus, given an XML grammar G consisting solely of encapsulated ‗Or‘ expressions

(i.e., yielding the maximum Nb(Or) possible following this configuration), and based on the inductive mathematical

reasoning in Table II, the maximum number of conjunctive grammars NG resulting from DNF(G) = {C}G, is equal to:

NG = Nb(Or) + 1 such as NG =
| | 1

2

G 
 and Nb(Or) =

| | - 1

2

G

(ii) .

Table II. Grammars made of encapsulated „Or‟ operators, such as the number of ‗Or‟ operators,

and consequently the number of conjunctive grammars NG, are maximized.

Grammar expressions Nb(Or) |G| NG | CG |

 <ELEMENT root (a | b)> 1 3 2 2

 <ELEMENT root (a | b)>

 <ELEMENT a (c | d)>
2 5 3 3

 <ELEMENT root(a | b)>

 <ELEMENT b (c | d)>

 <ELEMENT c (e | f)>

3 7 4 4

 <ELEMENT root(a | b)>

 <ELEMENT b (c | d)>

 <ELEMENT c (e | f)>

 <ELEMENT e (g | h)>

4 9 5 5

 <ELEMENT root(a | b)>

 <ELEMENT b (c | d)>

 <ELEMENT c (e | f)>

 <ELEMENT e (g | h)>

 <ELEMENT g (h | i)>

5 11 6 6

…

Recursively,
| |-G 1

2

 |G|
| |G + 1

2

| |G + 1

2

 Elsevier Information Sciences Journal

40

I.3. Grammars with mixed expressions

These are grammars made of expressions containing both sequence (And) and alternative (Or) expressions. Here, 2

main configurations can occur, which we identify as: i) And-Or expressions, and ii) Or-And expressions.

 And-Or expressions – These are of the form E = (A1 | A2 | … | An) where each Bi consists of a sequence

expression, denoted Bi = (B1, B2,…, Bm). These come down to the cases of concatenated and/or encapsulated

‗Or‘ expressions described above, since sequence expressions are not affected via the DNF representation and

can be processed as single node declarations.

 Or-And expressions – these are of the form E = (A1, A2, …, An) where each Ai consists of an alternative

expression, denoted Ai = (B1 | B2 |…| Bm). Here, one can realize that the number of conjunctive expressions

resulting from the DNF representation of E is exponential in the number of Ai expressions in E (i.e., the

cardinality of E w.r.t. the main ‗And‘ sequence operator):

 NE = |Ai|
|E|

 = m
n
 such as Nb(Or) = |E| (|Ai|-1) = n  (m-1) (iii) .

Consequently, a grammar G containing multiple mixed expressions Ei, transformed into its DNF representation,

would inherently yield an exponential increase in the number of conjunctive grammars NG (in comparison with the

linear dependencies described in the concatenated and encapsulated cases discussed above).

To summarize, the number of conjunctive grammars NG resulting from the DNF representation of an XML

grammar G remains linear in the number of ‗Or‘ operators involved in G, in many practical cases including:

concatenated ‗Or‘ expressions, encapsulated ‗Or‘ expressions, and mixed And-Or expressions. However, an

exponential increase in NG can occur in the case of mixed Or-And expressions. Here, note that mixed expressions

(including both And-Or and Or-And declarations) only cover 12.65% of grammar expressions used in real XML

grammars [11, 23, 38].

Appendix II. XML Grammar_to_Tree Algorithm

The pseudo-code of our algorithm for transforming an XML grammar into its tree representation, entitled

XGram_to_Tree, is shown in Fig. I. Given an XML grammar G, an XML document tree D to be compared with the

grammar, and our set of transformation rules {R} (cf. Table 1 and Table 2), the algorithm first runs the grammar G

through the general transformation rules (rules 1 to 3, cf. Table 1) so as to flatten repeatable expressions, eliminating

all cardinality constraints associated to the And and Or operators (cf. Fig. I, line 1, the rules being recursively applied

on the input grammar G until no further transformations are possible). Then, the algorithm runs the resulting (flattened)

grammar G1 though the one-to-one transformation rules (rules 2+, 3+, and 4, cf. Table 2), handling

MaxOccurs=„unbounded‟ and recursive expressions w.r.t. the XML document tree at hand (line 2). Subsequently, the

algorithm transforms the resulting grammar G2 into its disjunctive normal form, DNF(G2) = {C}G2 (line 3) and then

represents each resulting conjunctive XML grammar as a single rooted ordered labeled tree (lines 4-8).

Algorithm XGram_to_Tree

Input: G // XML grammar

 D // XML Document tree (to be compared with G)

 {R} // Set of transformation rules, cf. Table 1 and Table 2

Output: GramTreeSet // Set of conjunctive grammar trees representing G

Begin

 Repeat G
iR

 G1 i = 1, 2, 3 While (G1 ≠ G) // Applying general transformation rules in Table 11

1

 Repeat G1
()j DR

 G2 j = 2+, 3+, 4 While (G2 ≠ G1) // Applying one-to-one transformation rules in Table 21

2

 {C}G = DNF(G2) // Transforming the simplified grammar into its Disjunctive Normal Form 3

 For each Ci 

{C}G 4
 { 5

 Ci_Tree = Conjunctive_Gram_Tree_Representation(Ci) // following our tree model, cf. Definition 16

6
 GramTreeSet U Ci_Tree 7
 } 8

 Return GramTreeSet // Set of conjunctive grammar trees representing G 9

End

Fig. I. Pseudo-code of XGram_to_Tree, for transforming an XML grammar into its tree representation.

———
1
 Recall that the rule application order is irrelevant since the rules follow the Extended Church-Rosser (ECR) property.

41

Appendix III. Definitions of Edit Operations used in our TEDXDoc_XGram Approach

Definition 1 - Insert Leaf Node: Let T be a tree with a node p  NT, and let T1, …, Tm be the first level sub-trees

corresponding to node p (i.e., sub-trees rooted at the children of node p). Given a node x not belonging to T, x T,

Ins(x, i, p, ) is a node insertion operation applied to T, inserting x as the i
th
 leaf child of p. In the transformed tree T‟,

node p will have T1,…, Ti-1, x, Ti+1 ,…, Tm+1 as its first level sub-trees, with the label of inserted leaf node x ●

Definition 2 – Delete Leaf Node: Given a leaf node x in tree T, i.e., x  NT such as x.Deg = 0, Del(x) is a node

deletion operation applied to T, yielding T‟ where node p will have first level sub-trees T1, … , Ti-1, Ti+1, … , Tm ●

Definition 3 – Update Node (Label): Given a node x in tree T, x  NT, and a label , Upd(x, ) is a node (label)

update operation applied to x resulting in T‟ which is identical to T except that in T‟, x bears  as its label. The update

operation could be also formulated as follows: Upd(x, y) where y. denotes the new label to be assumed by x ●

Definition 4 – Insert Tree: Let T be a tree, with a node p  NT, and let T1, …, Tm be the first level sub-trees of

node p. Given a tree A not belonging to T, InsTree(A, i, p) is a tree insertion operation applied to T, inserting A as the i
th

sub-tree of p. In the transformed tree T‟, node p will have T1, …, Ti-1 , A, Ti +1, …, Tm+1 as its first level sub-trees ●

Definition 5 – Delete Tree: Let T be a tree with a node p  NT, having a tree A as the i
th
 first level sub-tree of p,

DelTree(A) is a tree deletion operation applied to T, yielding T‟ where node p will have first level sub-trees T1,…, Ti-1,

Ti+1, … , Tm ●

Appendix IV. Properties of our XML Document/Grammar Similarity Measure

IV.1. Tree Edit Distance Minimality Property

Given an XML tree D and a conjunctive grammar tree C, one can transform D into a document tree conforming to C

using any of an infinite number of edit scripts (e.g., repeatedly inserting and deleting the same node and/or sub-tree,

etc.). Such edit scripts are obviously meaningless in the context of our study since we aim to identify the minimum cost

edit script: that applies the fewer and minimum cost operations transforming D into a document tree valid w.r.t. C. In

other words, if we consider L(C) to be the set of document trees generated by grammar C (i.e., the language of

grammar C), then we aim to identifying the minimum distance (cost) necessary to transform document tree D into any

document D‟  L(C). Hence, the distance minimality property carries immediately from our definition of tree edit

distance (cf. TEDXDoc_XGram in Fig. 12) and serves as the main directive in defining our TEDXDoc_XGram algorithm.

IV.2. Similarity Measure Metric Properties

Our similarity measure in formula (5) is consistent with the formal definition of similarity, as a (semi-) metric function

satisfying (in part) the metric properties of Reflexivity, Minimality, Symmetricity and Triangular Inequality. Here, note

that while XML documents and XML grammars are different in nature (i.e., XML documents underline data instances,

whereas XML grammars underline data type), yet an XML document tree, following our model, comes down to a

conjunctive XML grammar tree free of cardinality constraints operators (i.e, when all elements of the grammar tree are

associated default constraints MinOccurs = MaxOccurs = 1, which are equivalent to null constraints and can be

omitted). This allowed us to verify the following metric properties:

i. SimXDoc_XGram(D, G)  [0, 1]
1
.

ii. SimXDoc_XGram(D, G) = 1  XML document tree D conforms to grammar G (G

⊨ D).

iii. SimXDoc_XGram(D, D) = 1  Reflexivity.

iv. SimXDoc_XGram(D1, D2) ≤ SimXDoc_XGram(D, D)  Minimality.

v. SimXDoc_XGram(D1, D2) = SimXDoc_XGram(D2, D1)  Symmetricity.

vi. SimXDoc_XGram(D1, D3) ≥ SimXDoc_XGram(D1, D2) × SimXDoc_XGram(D2, D3)  Triangular inequality,

(i.e., TEDXDoc_XGram(D1, D3) ≤ TEDXDoc_XGram(D1, D2) + TEDXDoc_XGram(D2, D3)).

Note that our measure is a semi-metric (and not a full metric) since: i) it does not allow comparing two grammars

(i.e., Sim(G1, G2)), nor ii) using a grammar as the first parameter of the similarity measure (Sim(G, D) is not allowed,

i.e., we cannot transform grammar G so that it includes in its language document D. We do it the other way around:

transforming D so that it becomes D

⊨ C). Comparing/transforming grammars is out of the scope of this study.

———
1
 In practice, we will hardly ever obtain TEDXDoc_XGram = . Hence, SimXDoc_XGram values will hardly ever reach 0. Note that alternative

similarity formulas, such as SimXDoc_XGram(D, G) = 1 – (TEDXDoc_XGram(D, G) / (|D| + |G|)) could be used to bring similarity values to a limited

range, where SimXDoc_XGram = 0 is more practically attainable. Yet, such a formula would violate the triangular inequality metric property,

which is why it is disregarded in this approach.

 Elsevier Information Sciences Journal

42

Appendix V. Detailed Computation Examples

V.1. Extended TED Recurrence (TED
+
) Computations

Consider the example in Fig. 14. Fig. 14.a depicts the computation of Dist[1, 1] between partial document tree E<1>

and partial grammar tree C<1> and has been described in detail in the main paper (in short, no changes need to be

made to E<1> since C<1>

⊨ E<1>). Fig. 14.b depicts the computation of Dist[1, 2] between partial document tree

E<1> and C<2>. Computing the  factor consists of deleting sub-tree E1 (consisting of leaf node a), which cost =1.

Computing the  factor consists in inserting 2 occurrences of sub-tree C2, in order to fulfill the corresponding

R(C2).MinOccurs = 2 constraint in the transformed partial document tree E<1> to obtain C<2>

⊨ E<1>‟. Computing

the  factor consists in evaluating the edit distance between sub-tree E2, the (only existing) match candidate with

grammar sub-tree C2 (NbOcc[2] = 1). Nonetheless, NbOcc[2] < R(C2).MinOccurs=2 shows that one more occurrence of

C2 is required to appear in E<1> to obtain C<2>

⊨ E<1>‟. Thus, 1 is applied to account for the remaining sub-tree

occurrence, yielding  = 3, which is the cost of inserting an occurrence of C1 into E<1>. Consequently, Dist[1, 2] =

Min(, , ) =  = 3, indicating that the minimum (cost) amount of change required to transform E<1> in order to

obtain C<2>

⊨ E<1>‟ is to insert an additional occurrence of C2 in E<1>.

Similarly, consider Fig. 14.c which depicts the computation of Dist[4, 2] between partial document tree F<4> and

partial grammar tree C<2>. Computing the  factor consists in deleting sub-tree F4, which cost = 2. Computing the 

consists in inserting 2 occurrences of sub-tree C2, in order to fulfill the corresponding R(C2).MinOccurs = 2 constraint.

Computing the  factor consists in evaluating the edit distance between document sub-trees F2, F3, F4 on one hand,

which are the consecutive first-level sub-trees in F<4> which could match C2, and grammar sub-tree C2 on the other

hand. Here, NbOcc[2]=3  [R(C1).MinOccurs=2, R(C1).MaxOccurs=3], thus 2 is applied. This yields cost = 1,

indicating that C2
⊨ {F2, F3} (inducing no edit distance cost, TEDXDoc_XGram(F2, C2) + TEDXDoc_XGram (F3, C2) = 0), while

C2 | F4, requiring the inserting of node e (TEDXDoc_XGram(F4, C2) = CostInsTree(C22) = 1) to obtain C2
⊨ F4‟. Then,

Dist[4, 2] = Min(, , ) =  = 1, indicating that the minimum (cost) amount of change required to transform F<4> in

order to obtain C<2>

⊨ F<4>‟, is to insert node e under sub-tree F4.

V.2. Complete TEDXDoc_Gram Matrix Computations

Consider the edit distance matrixes in Fig. 15, depicting all recurrences when running the TEDXDoc_Gram algorithm to

compare document trees D, E, F with grammar C of Fig. 13.

 Fig. 14.a depicts the computation of TEDXdoc_Xgram(D, C) and has been discussed in detail in the main paper (in

short, TEDXdoc_Xgram(D, C) = 0  SimXdoc_XGram(D, C) = 1 / (1+TEDXDoc_XGram(D, C)) = 1  C ⊨ D).

 Fig. 14.b depicts TEDXDoc_XGram(E, C) = 3  SimXdoc_XGram(E, C) = 1 / (1 + TEDXDoc_XGram(E, C)) = 0.25 

C
0.25

| E, i.e., document tree E approximately validates C with a similarity score = 0.25. Here, Dist[0, 0] = 0 since

the document and grammar tree roots match. Dist[1, 1] = Dist[0, 0] + TEDXDoc_XGram(E1, C1)  CostUpd(R(E1)., R(C1).)

= 0 since C1 ⊨ D1. Dist[2, 2] = Dist[1, 1] + TEDXDoc_XGram(E2, C2) + CostInsTree(C2) (R(C2).MinOccurs – NbOcc[2]) = 0

+ 0 + 3 = 3, since D2 is the only (exact) match of C2, C2
⊨ D2, (NbOcc[2] = 1) whereas the minimum number of

occurrences of C2 required to appear in the document tree is R(C2).MinOccurs = 2 (thus we need to consider the cost of

inserting an additional occurrence of C2, i.e., CostInsTree(C2) = 3, in order to obtain C<2>

⊨ D<2>‟). Dist[3, 3] = Dist[2,

2] + TEDXDoc_XGram(E3, C3) = CostUpd(R(E3)., R(C3).) = 3 + 0 since C3
⊨ E3 (given that one occurrence of C3 is

required, and has actually appeared in the document tree). To sum up, TEDXDoc_XGram(E, C) = 3  C
0.25

| E

highlights the cost of inserting one additional occurrence of sub-tree C2 into document tree E, to obtain C ⊨ E‟.

 Fig. 14.c depicts TEDXDoc_XGram(F, C) = 4  SimXDoc_XGram(F, C) = 1 / (1 + TEDXDoc_XGram(F, C)) = 0.2 

C

|»

0.2
E. Here, Dist[0, 0] = 0 since the document and grammar tree roots match. Dist[1, 1] = Dist[0, 0] +

TEDXDoc_XGram(F1, C1)  CostUpd(R(F1)., R(C1).) = 0 since C1
⊨ F1. Dist[4, 2] = Dist[1, 1] + TEDXDoc_XGram(F2, C2) +

TEDXDoc_XGram(F3, C2) + TEDXDoc_XGram(F4, C2) = 0 + 0 + 0 + 1 = 1 since C2
⊨ { F2, F3} whereas C2 | F4 requiring the

insertion of node e (TEDXDoc_XGram(F4, C2) = CostInsTree(C22) = 1) in order to obtain C2 ⊨ F4 (having

NbOcc[2]=R(C3).MaxOccurs = 3, i.e., 3 occurrences of C2 are allowed to appear, and have actually appeared in the

document tree). Dist[5, 2] = Dist[4, 2] + CostDelTree[5] = 1 + 3 = 4, considering the cost of deleting sub-tree F5, since F5

is considering as an additional yet unwanted occurrence of sub-tree C2 (NbOcc[2]=4 > R(C3).MaxOccurs=3).

Dist[6, 3] = Dist[5, 2] + TEDXDoc_XGram(F6, C3) = 4, where TEDXDoc_XGram(F6, C3)  CostUpd(R(F6)., R(C3).) = 0 since C3

⊨ F6. To sum up, TEDXDoc_XGram(F, C) = 4  C

|»

0.2
E underlines the costs of i) inserting node e in sub-tree F4, and

ii) deleting sub-tree F5 from document tree F, in order to obtain C ⊨ F‟. This means that F requires more costly

transformations conform to grammar tree C in comparison with document tree E.

In addition, consider a simple variation of grammar C where sub-tree C‟2‘s root node is assigned

R(C2).MaxOccurs =  instead of MaxOccurs = 3 (all other nodes remaining the same). In this case, the edit distance

43

table in Fig. 14.c would remain the same except for: Dist[5, 2] = Dist[4, 2] + TEDXDoc_XGram(F5, C2) = 1 + 1 = 2, where:

Dist[4, 2] = 1 underlines the cost of inserting node e under sub-tree F4 in order to obtain C2
⊨ F4‟ (similarly to the

previous example), and TEDXDoc_XGram(F5, C2)  CostUpd(R(F52)., R(C22).) = 1, transforming node label f into e in sub-

tree F5 (TEDXDoc_XGram(F5, C2) = CostUpd(R(F52)., R(C22).,)= 1) in order to obtain C2 ⊨ F5‟. In other words, F5 is now

considered as an (approximate) occurrence of sub-tree C2, since an infinite number of occurrences of C2 is accepted in

the grammar tree (NbOcc[2]=4 < R(C2).MaxOccurs = ), in comparison with Example 3 where F5 was an unwanted

occurrence (to be deleted from F in order to obtain C

⊨ F‟). To sum up, having R(C2).MaxOccurs = ,

TEDXDoc_XGram(F, C) = 2  C
0.334

| F, designating the costs of i) inserting node e under sub-tree F4, and ii) updating

node label f into e in sub-tree F5 (having C2 | { F4, F5}) in order to obtain C ⊨ F‟.

V.3. Edit Distance Matrixes concerning the Running Example (in Section 4.4.3).

Table III. Tree edit distance computations when comparing XML document tree D and XML conjunctive grammar tree CI.
1

R(CI)

(Paper)

CI 1

(Category,

MinOccurs=0)

CI 2

(Title)

CI 3

(sub-tree of root Author,

MinOccors=2 MaxOccurs=10)

CI 4

(Version)

CI 5

(Length,

MinOccurs=0)

CI 6

(sub-tree of root url,

MinOccurs=0 MaxOccurs=)

R(D)
(Paper)

0 0 1 9 10 10 10

D1
(Title)

1 1 0 8 9 9 9

D2

 (sub-tree of root Publisher)
4 4 3 4 5 5 5

D3
(Version)

5 5 4 5 4 4 4

D4
(Length)

6 6 5 6 5 4 4

D5

 (sub-tree of root url)
12 12 11 12 11 10 4

Table IV. Tree edit distance computations when comparing XML document tree D and XML conjunctive grammar tree CII.

R(CII)

(Paper)

CII 1

(Category,

MinOccurs=0)

CII 2

(Title)

CII 3

(Publisher)

CII 4

(Version)

CII 5 (Length,

MinOccurs=0)

CII 6

 (sub-tree of root url,

MinOccurs=0

MaxOccurs=)

R(D)
(Paper)

0 0 1 2 3 3 3

D1
(Title)

1 1 0 1 2 2 2

D2
 (sub-tree of root

Publisher)

4 4 3 2 3 3 3

D3
(Version)

5 5 4 3 2 2 2

D4
(Length)

6 6 5 4 3 2 2

D5

 (sub-tree of root url)
12 12 11 10 9 8 2

Table V. Tree edit distance computations when comparing XML document tree D and XML conjunctive grammar tree CIII.

R(CIII)

(Paper)

CIII 1

(Category,

MinOccurs=0)

CIII 2

(Title)

CIII 3

(sub-tree of root

Publisher)

CIII 4

(Version)

CIII 5

(Length,

MinOccurs=0)

CIII 6

 (sub-tree of root url,

MinOccurs=0

MaxOccurs=)

R(D)

(Paper)
0 0 1 2 3 3 3

D1
(Title)

1 1 0 1 2 2 2

D2
(sub-tree of root Publisher)

4 4 3 0 1 1 1

D3
(Version)

5 5 4 1 0 1 1

D4
(Length)

6 6 5 2 1 0 0

D5
(sub-tree of root url)

12 12 11 8 7 6 0

———
1
 Recall that MinOccurs = 1 and MaxOccurs = 1 designate default values which are equivalent to null constraints, and thus can be omitted in

the edit distance matrixes (for ease of presentation).

