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SOAP Processing Performance and Enhancement* 
 

Joe Tekli, Ernesto Damiani, Richard Chbeir, and Gabriele Gianini 

 

Abstract—The Web Services (WS) technology provides a comprehensive solution for representing, discovering and invoking 

services in a wide variety of environments, including SOA (Service Oriented Architectures) and grid computing systems. At the 

core of WS technology lie a number of XML-based standards, such as the Simple Object Access Protocol (SOAP), that have 

successfully ensured WS extensibility, transparency, and interoperability. Nonetheless, there is an increasing demand to 

enhance WS performance, which is severely impaired by XML’s verbosity. SOAP communications produce considerable 

network traffic, making them unfit for distributed, loosely coupled and heterogeneous computing environments such as the open 

Internet. Also, they introduce higher latency and processing delays than other technologies, like Java RMI and CORBA. WS 

research has recently focused on SOAP performance enhancement. Many approaches build on the observation that SOAP 

message exchange usually involves highly similar messages (those created by the same implementation usually have the same 

structure, and those sent from a server to multiple clients tend to show similarities in structure and content). Similarity evaluation 

and differential encoding have thus emerged as SOAP performance enhancement techniques. The main idea is to identify the 

common parts of SOAP messages, to be processed only once, avoiding a large amount of overhead. Other approaches 

investigate non-traditional processor architectures, including micro- and macro-level parallel processing solutions, so as further 

increase the processing rates of SOAP/XML software toolkits. This survey paper provides a concise, yet comprehensive review 

of the research efforts aimed at SOAP performance enhancement. A unified view of the problem is provided, covering almost 

every phase of SOAP processing, ranging over message parsing, serialization, de-serialization, compression, multicasting, 

security evaluation, and data/instruction-level processing.  

 

Index Terms—H.3.5.e. Web-based Services, H.3.5.F. XML/XSL/RDF, D.2.8.b. Performance Measures, H.3.4.d Performance 
Evaluation, H.2.0.a. Security, Integrity and Protection.    

 

——————————      —————————— 

1 INTRODUCTION

VER the past decade, web services have transformed 
the web from a publishing medium used to simply 
disseminate information, into an ubiquitous infrastruc-

ture that supports transaction processing [48]. The Web Ser-
vices (WS) technology differs from traditional software inte-
gration frameworks such as CORBA [54], DCOM [35] and 
Java RMI [66], in that WS utilize well-established and open 
Web protocols and formats, chiefly HTTP and XML [7], al-
lowing smooth interoperability among heterogeneous sys-
tems. Nonetheless, the very feature that makes WS universal-
ly usable, namely the adoption of the ubiquitous XML stan-
dard [7], makes it difficult to reach the performance lever 
required by large-scale processes and applications [12]. In 
this paper, we survey a number of issues related to WS per-
formance, particularly in the context of WS communications, 
discussing the main performance bottlenecks and possible 
improvements.1 

An individual web service generally comes down to a 
self-contained, modular application that can be described, 
published and invoked over the Internet, and executed on 
the remote system where it is hosted [61]. WS mainly rely on 
two standard XML schemata: 

 

 

 
 

 WSDL (Web Service Description Language) [10] 
which supports the machine-readable description of 
a web service’s interface. It allows the definition of 
XML grammar structures for describing WS as col-
lections of communication endpoints capable of ex-
changing messages.  

 SOAP (Simple Object Access Protocol) [82] is the 
protocol specification for message exchange among 
WS. It is based on the XML data model, and usually 
relies on existing application layer protocols (e.g., 
HTTP, FTP, SMTP…) for message negotiation and 
transmission.  

 

While these basic building blocks of WS technology are 
now firmly in place, performance issues have prevented us-
ing WS to implement large-scale distributed processes over 
large corporate networks or on the global Net. A major per-
formance bottleneck resides in SOAP message processing 
[68]. The reason for SOAP performance criticality is twofold: 

 On one hand, SOAP communication produces consi-
derable network traffic, and causes higher latency 
than competing technologies, like Java RMI and 
CORBA [38]. This is a central problem especially 
within wireless communication networks with their 
relatively low bandwidth and high latency [59], as 
well as the rising number of  mobile computing de-
vices (e.g., PDAs and mobile phones) increasing ser-
vice demand, and consequently network bandwidth 
consumption [48]. 

 On the other hand, and perhaps more importantly, 
the generation and parsing of SOAP messages, and 
their conversion to-and-from in-memory application 
data can be computationally very expensive [1, 4].   
In this paper we adopt the following terminology: 

O 
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the process of translating a memory object according 
to a serialization format into an XML object is called 
serialization. The process of converting an XML struc-
ture into a memory object will be called de-
serialization. For complex XML structures, both these 
processes are computationally expensive. In fact, the 
translation between in-memory numeric data of type 
double and the ASCII-based XML representation 
format has been shown to consume over 90% of the 
end-to-end SOAP message processing time [12], 
which proves critical for various kinds of WS appli-
cations, ranging over business transactions (e.g., on-
line booking and stock quote services), and scientific 
data processing (e.g., grid computing).  

 

Several techniques have been proposed to improve 
SOAP processing performance. Many of them exploit the 
well-known concepts of similarity and differential encoding 
to i) reduce processing time, in message parsing [45, 70, 71], 
serialization [4, 21], and de-serialization [1, 68], as well as to 
ii) reduce network traffic via SOAP message compression 
[81] and multicasting [6, 58, 59]. Similarity-based SOAP per-
formance enhancement is based on the straightforward ob-
servation that SOAP message exchanges usually involve 
highly similar messages. Messages created by the same im-
plementation usually have the same structure, and those sent 
from a server to multiple clients tend to show similarities in 
structure and content (e.g., stock quote services [59] involv-
ing a large number of similar transactions requesting the 
latest stock data, as well as online booking and meteorologi-
cal broadcast services [6]).  

Thus, various efforts have been undertaken to process 
SOAP messages taking into account their similarities. The 
main idea is to identify the common parts of SOAP messag-
es, to be processed once, regardless of the number of mes-
sages. Processing is only repeated for those parts which are 
different, avoiding a large amount of unnecessary overhead. 

Another source of overhead is checking SOAP messages 
against security policies. Recently, several research efforts 
have focused on the impact of WS-Security policy evaluation 
on SOAP messages. WS-Security policies [19] specify autho-
rizations, signature and encryption schemes on SOAP ele-
ments and contents, and may introduce substantial 
processing overhead without (or despite) ad-hoc perfor-
mance enhancement [6, 14, 71]. Indeed, evaluating WS-
Security policies can introduce an overhead much larger than 
standard WS invocation processing (6.9 times in average, 
according to [37]). A major portion of this overhead is related 
to the requirement of providing message level security (as 
opposed to channel-level security such as with TLS [79]) and 
to the XML encoding of message content. 

Other performance bottlenecks arise from the limited 
amount of parallelism available on a conventional processor. 
Efficient parsing of of SOAP and XML streams, as well as 
processing variable length encoded character streams would 
require hardware support for longer processing pipelines 
than standard CPUs can support. Handling XML streams 
entirely in software (for instance, by mapping processing 
pipeline stages to software threads) prevents the execution 
speed to be improved beyond a best processing rate of tens 
of clock cycles per character, and that best case performance 
can result in rates on the order of hundreds of clock cycles 

per character for many practical XML applications [78]. As a 
result, recent studies have addressed these performance bot-
tlenecks by investigating non-traditional processors, namely 
parallel processing architectures and ‚XML machines‛, e.g., 
[8, 23, 30]. 

 

The goal of this survey paper is to provide a unified 
view of the problem, connecting the different aspects and 
techniques related to SOAP processing performance en-
hancement, including similarity-based and differential en-
coding techniques, WS-Security policy evaluation, and XML 
parallel processing architectures. The remainder of the paper 
is organized as follows. Section 2 presents a glimpse on 
SOAP processing, introduces its performance metrics, and 
discusses its main bottlenecks. In Section 3, we categorize, 
discuss and compare some of the most prominent methods 
to SOAP performance enhancement. Section 4 discusses 
some ongoing challenges. Section 5 concludes the paper. 

2 WS AND SOAP PROCESSING PERFORMANCE 

Experience with Service Oriented Architectures (SOA) has 
shown that WS performance is a crucial success factor for 
large-scale business processes [48]. It becomes even more 
crucial when services are made available on the open Web, 
where (i) user requests to a certain service provid-
er/company tend to increase with the amount of information 
and services the company makes available online [49], and 
(ii) the fidelization of service consumers is on average lower 
than on a SOA infrastructure. If service latency becomes too 
high, clients may become frustrated and simply switch to 
another site or service offering the same functionality. Hence, 
WS performance problems can bring all kinds of undesired 
consequences, including financial and sales losses, decreased 
productivity and a bad reputation for a company [48]. More-
over, as the web evolves, mobile computing devices (e.g., 
PDAs and mobile phones) add another challenge to web 
services performance: wireless communication networks 
with their relatively low bandwidth and high latency [59]. 
Finally, current web systems and services are usually charac-
terized by integration with databases, scheduling and track-
ing systems (e.g., Google Maps), requiring altogether high 
performance levels [27].  

In the following, we first briefly present the key metrics 
which characterize WS performance levels. We subsequently 
discuss the various aspects of SOAP processing, and the cor-
responding performance bottlenecks.   
 

2.1 Evaluation Metrics 

Service-oriented infrastructures share some properties with 
component-based [26, 60] and web-based [47] applications, 
hence to some extent is it possible to apply existing resource 
metrics from the component-based software engineering and 
web applications domains in the context of SOA [60]. Name-
ly, it is possible to classify performance metrics in three main 
categories: delay, bandwidth and usage, with response time, 
throughput and network traffic [48, 59] as the most relevant 
metrics normally used to assess the performance of WS for 
each category respectively. Summary values of those metrics 
are normally obtained by aggregation in time and/or aggre-
gation in space, or concatenation in space. A taxonomy of the 
relevant metrics can be found in [72] and references therein. 
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Fig. 1. Outline of a classic SOAP remote service call processing chain. 
 

 
2.1.1 Response Time 

Response time (also called latency or end-to-end response time) 
is the time perceived by a client to obtain a reply for a re-
quest for a web service. It includes the network time (latency 
and transmission delays on the communication link), as well 
as the processing delays at the server end-point (service ex-
ecution) and at intermediary nodes (switching time intro-
duced by hubs, routers and modems) [48]. The process with 
the longest processing delay in the processing chain is usual-
ly the key determinant of response time, and is identified as 
bottleneck (or time-sink). Response time is measured in time 
units.  
 
2.1.2 Throughput 

While response time is a performance metric typically of 
interest to end-users, throughput, which is defined as the 
number of requests executed per unit of time (e.g., I/O oper-
ations per second), is of more interest to administrators. It is 
usually evaluated on the server side [48]. There are many 
possible throughput metrics depending on the definition of 
unit of work. It is common to distinguish between point-to-
point (or link) throughput (to quantify transport perfor-
mance), node throughput (to quantify processing perfor-
mance) and overall throughput in the system (a.k.a. consis-
tent throughput in the system) [60]. The overall system 
throughput is bound by the local throughput (link through-
put and nodal throughput) of the least performing compo-
nents in the transport and processing chain. Its basic unit of 
measure is byte/sec, however, for web service providers, it 
can be measured in req/sec – requests per seconds, 
HTTPops/sec – HTTP operations per seconds for web servers, 
or tps – transactions per seconds [71].  
 
2.1.3 Network Traffic 

The total network traffic for a communication scheme or 
session (e.g.,  conversation, i.e. a SOAP message exchange 
among two service end-points) consists of the total size of all 
session-related messages sent over the network for the dura-
tion of the communication [59]. In other words, it encom-
passes the total number of bytes (corresponding to all mes-
sages exchanged during the communication session being 
evaluated) that are transmitted over the network [81]. Other 
related performance metrics exist, including: average utiliza-
tion of a node, incoming/outgoing message rates, incom-
ing/outgoing traffic for a node or the overall message rate in 
the system, which can also be measured in bytes or number 
of messages. 2 
 

1 Most references in this paper address, in one way or another, web ser-

 

Over the past few years, several works have studied 
web service performance, e.g., [3, 22, 45, 68]1. Most of them 
focus on SOAP processing and message exchange as the ma-
jor players affecting web service performance levels. In the 
remainder of this section, we present a glimpse on SOAP 
processing, so as to pinpoint SOAP performance bottlenecks. 

 
2.2 A Glimpse on SOAP Processing 

SOAP (Simple Object Access Protocol) [29] was specifically 
conceived as a messaging protocol to support interdepen-
dent interactions between otherwise independent entities, 
namely WS [12]. It is based on XML [4] and can support a 
variety of message exchange patterns, including request-
response, one way messages, remote procedure calls, and 
peer-to-peer interactions [28].  

Fig. 1 depicts a simplified activity diagram describing a 
typical SOAP remote service call processing scenario. Given 
two end-point services, usually identified as client and appli-
cation server, an outgoing client SOAP message consists of a 
method invocation, a.k.a. (also known as) client SOAP re-
quest, underlining a client call for method destined to the 
application server. An outgoing server SOAP message con-
sists of a method response, a.k.a. server SOAP response, car-
rying the result of the action performed at the application 
server, following the corresponding method invocation. 
SOAP request and response messages are usually similar in 
structure. They both follow the same schema defined in the 
WSDL interface definitions of the services involved in the 
communication process. In general, a SOAP request/response 
message consists of a root node entitled Envelope, encompass-
ing too elements: Header and Body. Consider for instance the 
sample SOAP messages in Fig. 2. 

 Envelope provides the serialization context and na-
mespace information for elements and parameters 
utilized in the message. 

 Header contains auxiliary information which is not 
related to the method invocation (or response) itself, 
such as transaction management and client/server 
information (e.g., client/server addresses, URL of fi-
nal message destination). 

 Body contains the actual data carried in the SOAP 
message. It usually starts with a sub-element en-
titled with the method (or method response) name. 
The latter would encompass a child node for every 
parameter required to perform the local invocation. 

 

                                                                                                       
vice performance. We only give a few here for clearness of presentation. 
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a. SOAP request message. 
 

b. SOAP response message. 

 

Fig. 2. Sample SOAP request and response messages. 

 
As shown in Fig. 1, a common SOAP message exchange 

scenario consists of the following steps. First, a SOAP request 
message is created at the client side. Message creation re-
quires serialization which consists in converting between in-
memory application data representations and XML-based 
messages (Step 1). The request message is sent to the server 
application, usually via classic IP unicast routing (Step 2). At 
the server side, the message is first parsed, i.e., processed for 
lexical analysis (identifying characters and extracting tokens 
such as tags and contents) and validation (verifying the mes-
sage’s structural integrity w.r.t. the corresponding WSDL 
definition) (Step 3). The application server consequently eva-
luates its security policy rules on the received message, so as 
to identify and process those parts of the message which 
were assigned security constraints (authorization rules, sig-
nature verification…) (Step 4), followed by message de-
serialization (converting between XML and the in-memory 
data representation) in order to be processed via the service 
executer (Step 5). As for the SOAP response message, the 
same procedure is undertaken, but this time in the inverse 
direction. The response message is created, i.e., serialized 
(Step 6), sent back to the client service via unicast routing 
(Step 7), parsed (Step 8), evaluated w.r.t. the client security 
policy rules (Step 9), and de-serialized so as to transfer the 
processed data to the client service component (Step 10).  

 
2.3 SOAP Performance Bottlenecks 

SOAP’s XML-based nature, which makes the SOAP protocol 
universally usable, tends unfortunately to work against 
achieving high performance [12]. The impact of XML mes-
sage encoding on overall SOAP performance is omnipresent 
in almost every step of SOAP processing, underlining: i) high 
response time and low throughput in SOAP serialization [2, 
4], parsing [45, 70, 71], security evaluation [6, 14], and de-
serialization [1, 68], mainly due to XML processing and the 
conversion between in-memory data and the ASCII-based 
XML format, as well as ii) high network traffic and band-
width consumption during message transmission and 
routing [58, 59, 81], due to XML’s verbosity and redundant 
textual characteristics.  

To give an idea of the problem size at hand, we discuss 
the results of three studies, [17, 37, 81], evaluating the per-
formance levels of SOAP in comparison with existing inte-
gration technologies, namely CORBA [54] and Java RMI [66]. 
Fig. 3 depicts the response time for a SOAP service call 

processing, i.e., the time required to generate and send a ser-
vice request message and to receive its corresponding service 
response message, using two SOAP implementations (Java-
based, Microsoft VB 6.0 toolkits) [17], in comparison with 
similar procedures to remote method invocations using 
CORBA [54] and Java RMI [66]. Timing results in both Fig. 
3.a and Fig. 3.b show that SOAP performs very poorly in 
comparison with competing technologies. The time perfor-
mance gap increases significantly when exchanging numeric 
data (e.g., integer arrays in [17]), which is due to the expen-
sive process of converting in-memory numeric data to-and-
from ASCII-based XML [12]. Fig. 4 depicts network traffic 
created by SOAP (two Java-based and Microsoft .Net based 
toolkits were considered) [81], CORBA [54] and Java RMI 
[66], when varying the number of method invitations be-
tween two client and application server end-points. Results 
show that SOAP produces significantly more network traffic 
than existing technologies. It requires almost three times 
more bandwidth than Java-RMI and CORBA, the latter using 
dedicated binary encodings for message exchange, in com-
parison with SOAP’s XML-based textual format [81].  

 

 
 

 

 

 
 

a. Manipulating textual data. 
 

 

b. Manipulating numeric data. 
 

 

Fig. 3. Comparing SOAP response time, with CORBA [54] and Java 
RMI [66]. 

 

 
 

Fig. 4. Comparing SOAP service call network traffic, with CORBA [54] 
and Java RMI [66]. 

 
 

The need of encrypting and signing SOAP messages, 
which is of paramount importance especially when accessing 
services available on the open Net, has introduced additional 
delays. The WS-Security standard [19] is now widely used to 
express (in XML) the service providers’ policies regarding 
what parts of the SOAP XML tree need to be encrypted and 
signed. In a recent study [37], the authors evaluate the addi-
tional overhead introduced by WS-Security policy evaluation 
w.r.t. standard processing of SOAP invocations. Their results 
show that WS-Security increases SOAP response time by a 
factor of 3 on average, while SOAP messages when using 
WS-Security are 6.9 times larger than unsecured SOAP mes-
sages (affecting network traffic accordingly). 

 

<?XMLversion=“1.0”…?> 

<soap:Envelope  

   xmlns:xsd=“http://www.w3.org/...”> 

   … 

   <soap:Header> 

     … 

   </soap:Header> 

   <soap:body> 

        <OrderQuoteResponse> 

             <Price>20000<Price> 

             <Dealers> 

                  <Dealer> 

                      <Name>Milano Motors</Name> 

                      <Address>Via Kennedy</Address> 

                   <Dealer> 

              </Dealers> 

        <OrderQuoteResponse> 

   </soap:body> 

</soap:Envelope> 

 

Method 
response 

Method 
invocation 

<?XMLversion=“1.0”…?> 

<soap:Envelope  

   xmlns:xsd=“http://www.w3.org/...”> 

   … 

   <soap:Header> 

     … 

   </soap:Header> 

 

   <soap:body> 

        <OrderQuote> 

             <Product>Fiat</Product> 

             <Model>Punto</Model> 

             <Year>2009</Year> 

        </OrderQuote> 

   </soap:body> 

 

</soap:Envelope> 



OVERVIEW ON SIMILARITY-BASED SOAP PROCESSING PERFORMANCE ENHANCEMENT 5 

 

In addition to evaluating the performance bottlenecks of 
SOAP itself, related works in [8, 39, 78] (among others) have 
addressed the shortcomings of conventional hardware com-
puting architectures in handling XML-based data for large 
scale data sets and WS computing environments. They high-
light the limited amount of parallelism in XML processing: 
both at the data level [8, 78] (i.e., in processing multiple piec-
es of data with one instruction), and at the instruction level 
[39, 78] (i.e., executing multiple instructions concurrently, 
a.k.a. multi-processing). This family of hardware-based stu-
dies usually underlines the limitations of conventional pro-
cessors in providing an efficient enough solution to evaluate 
multiple conditions of various types in parallel, which is 
central in XML string and character processing (e.g., verify-
ing character integrity, whether an end tag matches a pre-
viously processed start tag, whether an attribute name is 
unique for a given element, and so on). 

Some works [12, 28] address transport protocol bind-
ings, namely the shortcomings of HTTP [24] as the appli-
cation layer protocol used with SOAP for message nego-
tiation and transmission. The authors in [12, 28] conclude 
that HTTP (specifically the earlier HTTP 1.0 version) ne-
gatively affects SOAP processing, and that it induces 
higher SOAP response time due to connection and mes-
sage transmission overheads. 

All relevant aspects of SOAP processing, the impact of 
the XML-based parallelism on SOAP performance, as well as 
the various solutions to SOAP performance enhancement to-
date, are detailed in the following sections. 

3 IMPROVING SOAP PROCESSING PERFORMANCE 

As mentioned previously, SOAP processing performance 
enhancement has been widely researched [6, 45, 58, 59, 70, 
71]. Many approaches build on the simple observation that 
SOAP message exchange usually involves a number of high-
ly similar messages. Invocations sent from the same client 
often reflect similar information needs, and thus similar 
SOAP message requests [21]. Likewise, messages sent from 
the same server to a single and/or multiple clients usually 
share strong similarities. Typical examples are various [6] 
such as stock quote services [59] (involving a large number 
of transactions requesting the latest stock data, hence similar 
stock quote request and response messages are processed), 
as well as online booking systems, and meteorological 
broadcast services [6], etc. 

Several proposals addressing SOAP performance en-
hancement exploit, in one way or another, the similarity be-
tween SOAP messages, in order to gain in performance, e.g., 
reducing execution time, increasing throughput, and saving 
on network traffic. The main idea is to identify the common 
parts of SOAP messages, to be processed once, regardless of 
the number of messages. 

We classify these solutions based on the performance 
metrics they target, and on the specific SOAP processing 
operations they address. 

 
3.1 Methods for Improving Service Execution Time 

Improving service execution time (i.e., attaining lower re-
sponse time and higher throughput), has been investigated 
in various aspects of SOAP processing, addressing serializa-
tion, parsing and de-serialization operations. 

3.1.1 SOAP Serialization 

As mentioned previously, the serialization of SOAP messag-
es consists in converting in-memory data types into XML. In 
this context, the main bottleneck consists in transforming in-
memory data of numeric types into the ASCII-based XML 
representation format [12]. Consequently, the authors in [4], 
building upon the findings in [12], introduce a method for 
differential SOAP serialization, called bSOAP. The main idea 
consists in storing the SOAP messages in a dedicated buffer, 
to be used as templates for future outcalls, instead of discard-
ing them after they have been sent over the wire. The mes-
sage is normally serialized and saved during the first invoca-
tion of the SOAP call. Subsequent calls which share identical 
or similar message structures, as the message in the buffer, 
would avoid a significant amount of processing by only se-
rializing the changes to the previously sent message. The 
authors address the problem of change tracking between in-
memory data, and their serialized representations. Dedicated 
indexed tables, i.e., DUTs (Data Update Tracking), are asso-
ciated with each serialized message, keeping track of the in-
memory location of each field in the original structure to be 
serialized, and its position in the serialized message. A dirty 
bit is associated with each field, to keep track of those fields 
whose values have changed since the last send, in order to 
check which parts of the last message could be reused. Expe-
rimental results in [4] confirm the approach’s better time 
performance, in comparison with regular serialization, and 
show that serialization time is linearly dependent on the per-
centage of in-memory values that must be re-serialized (re-
flected by the number of dirty bits that are changed). When 
the whole message has to be serialized, bSOAP’s serialization 
time is almost equivalent to that of existing SOAP toolkits, 
e.g., gSOAP [77] and XSOAP [63] (cf. Fig. 5.a). Nonetheless, 
when the exact message is to be sent again (i.e., when none of 
the dirty bits are changed), time performance gain is maxim-
al (almost 1000%, cf. Fig. 5.b).  

 

 

 

 
 

a. Comparing bSOAP, to alternative 
approaches, i.e., gSOAP [77] and 

XSOAP [63]. 

 

b. Serialization time, when various 
percent-tages of stored values are re-

serialized. 
 

Fig. 5. Time performance of bSOAP differential serialization            
(reported from [4]). 

 

In subsequent studies [2, 3], the authors address 
bSOAP’s buffer management, mainly padding, which con-
sists in stuffing the serialized message with white spaces to 
reduce the cost of message expansion when the latter is to be 
updated. Padding is useful when the new serialized form of 
some value does not fit in the current space allocation (e.g., 
the value of an integer variable i=3 which holds a single cha-
racter space, is to be updated to i=1003 in the new serialized 
message, which requires four character spaces). Hence, pad-
ding allows on-the-fly message expansion, DUT table entries 
being updated accordingly.  
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Various other SOAP buffer optimization techniques 
have been proposed [2, 3, 12, 77], namely chunking (dividing 
the SOAP message into chunks stored in different memory 
locations, to be processed separately) and streaming (pipe-
lined-send, each message chunk being sent as soon as it is 
serialized, thus allowing an overlap of computation and 
communication). However, even after these optimizations, 
the conversion from in-memory data to the ASCII represen-
tation (over 90% of the end-to-end time) remains the most 
critical bottleneck [12], which emphasizes the relevance of 
differential serialization [4]. 

An approach comparable to differential serialization [4] 
is introduced in [21]. It addresses client-side SOAP message 
caching and allows entire request messages to be cached and 
sent as is. It also allows partial caching by reusing cached 
messages with identical structures, updating element values 
for subsequent sends. Similarly to [4], it relies on dedicated 
indexed structures in detecting correspondences between 
cached and outgoing messages. Nonetheless, the approach in 
[21] does not address partial structural matches (i.e., caching 
messages with partially different structures) as in [4], but 
only caches messages with identical structures. In addition, 
the authors in [21] do not discuss how to handle mismatched 
data sizes that require message resizing and expansion. 

 
3.1.2 SOAP Parsing 

As mentioned previously, SOAP parsing consists in analyz-
ing the contents of the incoming SOAP message, to be conse-
quently transformed into their in-memory application format 
via the de-serialization component. In general, SOAP parsing 
consists in analyzing the characters in the SOAP message, 
extracting tokens such as tags and text, and then extracting 
and validating the underlying XML structure (cf. Fig. 6.a). 
These tasks can be achieved using functions of existing XML 
parsers such as DOM [84] and SAX [47]. 

In this context, a few studies have proposed using spe-
cial-purpose parsers, considering the particularities of XML 
and SOAP messages in order to amend performance. One of 
the earlier XML-based approaches promotes partial parsing 
[53], by i) extracting the XML document structure (node ref-
erences and hierarchical relations) in a pre-processing phase, 
and then ii) parsing only those parts of the document re-
quired by the application program, by looking up the docu-
ment structure. The authors in [53] show that performance 
improves only when document (application) coverage is less 
than 80%, and that it otherwise declines due to pre-
processing overhead. In [11, 74], the authors investigate the 
optimization of SOAP lexical analysis, using schema (WSDL) 
information, to more efficiently identify lexical tokens (e.g., 
tag names, attributes…). Yet, such methods only target lexi-
cal analysis, disregarding byte-level character encoding and 
validation optimizations [69]. On the other hand, XSOAP 
[63] targets validation optimization and attempts to improve 
SOAP message validation performance by only executing the 
validation process on those elements specific to SOAP, name-
ly Envelope, Header and Body. Remaining parts, which usually 
consist of classic XML tagging, are disregarded in order to 
gain in parsing time. However, when the corresponding ser-
vice requires complete message validation, the invalidated 
SOAP message parts have to be processed via a dedicated 
validation function to be added by the programmer in the 
service program [70], thus minimizing performance en-
hancement. A recent work [87] introduces a Table Driven 

XML (TDX) parser, that combines the lexical analysis and 
validation of SOAP XML messages in a single pass. The idea 
is to pre-record the states of an XML parser produced from 
the corresponding (Schema) WSDL service description, as 
grammar productions rules in tabular form, and then to util-
ize a runtime streaming parsing engine to break up the 
SOAP message into a token stream, to be processed for well-
formedness verification and validation at once. The authors 
in [87] show that their approach is more efficient than exist-
ing XML and SOAP toolkits where validation is enforced 
separately [5, 65, 77] (e.g., it runs six times faster than gSOAP 
[77]). Yet, TDX’s performance is shown to be comparable 
(and even lower) when evaluated against a non-validating 
schema-specific SOAP parsing approach [74]. 

 

 
a. Traditional SOAP (XML-based) parsing. 

 
 

b. Differential SOAP parsing. 
 

Fig. 6. SOAP parsing. 

 
Instead of focusing on a specific phase of SOAP parsing, 

such as lexical analysis, or limiting the range of SOAP ele-
ments validation, more recent proposals in [45, 70, 71] focus 
on differential parsing, exploiting the similarities between 
SOAP messages, in order to skip unnecessary parsing alto-
gether (including character encoding, lexical analysis, and 
validation) as depicted in Fig. 6.b. In the following, we dis-
cuss the main approaches to differential SOAP parsing.  

 
Template-based: T-SOAP [70] makes use of a prede-

fined template, modeled via a finite state automaton (FSA), 
memorizing the basic structure of the SOAP messages, ex-
tracted from the corresponding WSDL definition schema1. It 
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allows the identification of invariant and variable tag parts in 
the SOAP messages. Consequently, each incoming SOAP 
message is matched to the predefined template, and only 
those parts of the message, which correspond to variable 
parts in the template, are parsed (the invariant parts being 
already parsed in advance). While it induces a significant 
gain in processing time, in comparison with classic SAX [47] 
and DOM [84] parsers, a major limitation of T-SOAP [70] is 
its restriction to messages conforming to the same basic 
structure. In other words, a SOAP message with a structure 
different than that underlined in the predefined template 
would not benefit from T-SOAP [70] and would have to be 
parsed from scratch. 3 [34] 

 
Multiple Templates: In [45], the authors propose a more 

dynamic approach by managing multiple templates based on 
actual SOAP message structures, instead of using a single 
predefined schema structure. Incoming messages are first 
matched against the automaton, describing multiple message 
templates merged together. If the message matches any of 
the templates, then parsing is undertaken w.r.t. the variable 
parts of the corresponding template, similarly to [70]. Oth-
erwise, parsing is undertaken via an ordinary DOM-based 
processor [84], and a new template corresponding to the 
unmatched message is created and appended into the auto-
maton, to be exploited in upcoming parsing operations. 
While this technique provides more flexibility than T-SOAP 
[70], the authors in [45] underline that their method requires 
more memory for storing the combined automaton, and ad-
ditional processing time for updating the latter with new 
message templates. Experimental results in [45] show how-
ever that the proposed approach performs better, in time and 
memory usage, than classic SAX [47] and DOM [84] parsers.    

 
Detecting Repeatable Structures: An extension to the 

approach in [45] is provided in [71]. The authors in [71] in-
troduce an improved automaton, able to consider repeatable 
structures in SOAP messages, which are not considered in 
[45]. That is because the automaton in [45] is string-based 
and processes SOAP messages as a series of invariant and 
variable sections of string characters (i.e., byte sequences), 
whereas the new automaton in [71] considers the XML syn-
tax (e.g., XML tagging) in its definition of states and state 
transitions. Detecting repeatable structures allows reducing 
the number of templates to be appended to the automaton, 
the latter becoming more expressive. Consequently this al-
lows reducing memory and processing time needed for stor-
ing and updating the automaton respectively, thus further 
enhancing parsing performance. Experimental results in [71] 
show improved memory usage and time performance w.r.t. 
the approach in [45], as well as a classic DOM parser [84]. 
 

Note that both methods described in [45, 71] have been 
developed in the context of WS-Security processing. Their 
main objective is therefore to improve security policy evalua-
tion performance, by repetitively applying security rules 
only on those parts of SOAP messages which are different, 

 

1 A FSA is usually modeled as (P, Σ, ps, F, δ) where: P is a set of states, Σ 
the set of labels, ps   P is the start state, F   P is a set of final states, and 
δ: e × R   p is a transition function where e ∈ Σ, R is an expression 
over P, and p ∈ P [34]. Standard procedures for producing automatons 
and testing the membership of data instances w.r.t. automatons have 
been thoroughly studied in language theory [34]. 

processing the common parts only once. Yet, other methods 
aimed at improving security policy evaluation performance 
have been proposed in the context of SOAP message multi-
casting [6, 14] (which is discussed subsequently). Thus, for 
clearness of presentation, we disregard security aspects in 
this section, and provide a unified view of SOAP security 
policy evaluation performance, covering all related methods, 
in Section 3.3. 

 
3.1.3 SOAP De-serialization 

De-serialization is the process of converting XML messages 
to in-memory application objects, to be processed by the ser-
vice executor. It can be viewed as the symmetric function of 
serialization. Recall that with serialization, the SOAP mes-
sage is the target for recycling, whereas with de-serialization, 
the target is an application object. 

Approaches to improving SOAP de-serialization per-
formance build on the observation that memory object crea-
tion, based on SOAP XML messages, is an expensive task 
(mainly due to data-type transformation – conversion from 
ASCII-based textual representation to in-memory numeric 
types, and the processing of the XML tree hierarchy [68]). 
Hence, the main idea is to avoid fully de-serializing each 
incoming message, by exploiting already constructed objects 
which were de-serialized previously. In other words, de-
serialization is differential and is only applied to those por-
tions of the SOAP messages which have not been de-
serialized previously. To our knowledge, two studies have 
been developed in this direction, which we identify as auto-
maton-based [68] and checksum-based [1]. We also stumbled on 
a more recent approach, XML Screamer [39], which promotes 
tight integration between software layers to avoid unneces-
sary de-serialization processing. 

 
Automaton-based: The authors in [68] propose an au-

tomaton-based approach, consisting of two main functions. 
The first consists in generating an automaton based on in-
coming SOAP messages (similarly to SOAP parsing ap-
proaches in [45, 70]), and then conducting de-serialization in 
the usual way, creating a link between the defined automa-
ton and the application object. The second function is to 
match an incoming message with the existing automaton, 
and if matched, return the linked application object to the 
SOAP engine after partially de-serializing only the portions 
that differ from previous messages. The de-serialization ap-
proach described in [68] could exploit the methods in [45, 70, 
71] in building the de-serialization automaton. Recall that 
SOAP parsing and de-serialization are complementary oper-
ations, and allow SOAP message analysis (Fig. 1). 

 
Checksum-based: In [1], the authors propose to periodi-

cally checkpoint the state of the de-serializer and to compute 
checksums4 for portions of the incoming SOAP messages. In 
short, the de-serializer runs in one of two modes: regular and 
fast. In regular mode, the de-serializer processes SOAP mes-
sage tags and contents as a normal SOAP de-serializer, creat-
ing checkpoints and corresponding message portion check-
sums along the way. It switches to fast mode once it recog-
nizes that the parser state is the same as one that has been 
saved in a checkpoint. In fast mode, the de-serializer com-
pares the sequence of checksums against those associated to 
the most recently received message. If the checksums match, 
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then the already de-serialized objects corresponding to the 
portions of the SOAP message at hand are exploited in a 
straightforward manner, without additional processing. 
Otherwise, when a checksum mismatch occurs, the system 
switches from fast to regular mode, where it processes SOAP 
tags and contents as a normal de-serializer.4 

The authors discuss and experimentally validate the per-
formance of their approach, considering the relation between 
i) the amount of similarity between incoming messages, 
which otherwise determines the percentage of time the de-
serializer spends in fast mode, ii) how quickly the system can 
recognize the need to switch modes (from fast to regular, and 
vice-versa), and iii) the overhead of creating checkpoints, 
and comparing checksums. 

 

  
 

Fig. 7. Comparing regular de-

serialization and full differential de-

serialization time [1]. 

 

Fig. 8. Comparing XML Screamer 

[39] with traditional SOAP 

toolkits [5, 65]. 

 

On one hand, if the new message is completely different 
from the previous one (which is the worst case scenario), the 
differential de-serializer runs slightly slower than a normal 
de-serializer since it does the same work, plus the added 
work of calculating and comparing checksums. On the other 
hand, when all checksums match, i.e., when the new mes-
sage is identical to the previous one (which is the best case 
scenario), the cost of de-serialization is replaced by that of 
computing and comparing checksums, which is significantly 
faster (speedups up to 41 times have been recorded by the 
authors, cf. Fig. 7). The authors also mention that using 
checksums to match portions of SOAP messages can be er-
ror-prone, (since checksums themselves are not perfect by 
definition), but the possibility of changes going undetected is 
extremely low, in comparison with the substantial gain in 
performance.  
 

Note that both methods in [1, 68] have not been eva-
luated w.r.t. each other, so as to compare their relative im-
provements in SOAP de-serialization performance. 

 
XML Screamer: In a more recent study, the authors in-

troduce XML Screamer [39], an optimized system providing 
tight integration across levels of software, combining: i) 
schema-based XML parsing (character encoding, token ex-
traction, and validation) and ii) de-serialization, in one single 
processing layer (as opposed to separate layers - Fig. 6.a), in 
order to avoid unnecessary data processing, copying 
(to/from memory), and data-type transformations.  The au-
thors adopt a design principle requiring that each character 
and/or string in the input document be ‘visited’ only once (if 

 

1 A checksum is a fixed size datum computed from a block of digital data 
(of fixed and/or variable size) to detect accidental errors that may occur 
during transmission or storage [50]. 

possible), so as to reduce repeatable scans of the same data 
and corresponding unnecessary overhead (e.g., tests to verify 
whether a character is an angle bracket ‘>’, or an expected 
element name character, are performed only once following 
[39], whereas such tests are repeated multiple times - during 
parsing, and de-serialization - in traditional XML/SOAP 
toolkits). Experimental results in [39] show that XML Screa-
mer delivers from 2.3 to 5.3 times the throughput of tradi-
tional SOAP toolkits [5, 65] (cf. Fig. 8). 

 
Note that the combination of software layer integration 

optimization [39], with similarity-based SOAP parsing [45, 
70, 71] and de-serialization [1, 68], has not been investigated 
to date. We believe this to be a very interesting research topic 
which could yield promising performance improvements in 
the near future. 

 

3.2 Methods for Reducing Network Traffic 

Another major drawback of using SOAP is its voracity for 
bandwidth, compared to competing solutions such as COR-
BA [54] and Java RMI [66]. Even though today’s networks 
can be powerful enough to provide sufficient bandwidth, the 
latter remains crucial in several applications, namely in mo-
bile computing [59] (e.g., wireless and cellular platforms), as 
well as sensor networks [81]. In this context, the problem of 
SOAP bandwidth reduction has been investigated on two 
levels: i) SOAP compression [81] in order to reduce message 
size prior to transmission, and ii) SOAP multicasting [58, 59] 
so as to optimize SOAP traffic travelling on the wire.   

 

3.2.1 SOAP Compression 

Various methods have been proposed for classic text and 
XML compression, namely gzip [20], WBXML [46], XMILL 
[42], and  ESAX [9]. Text compression techniques (e.g., gzip) 
could be exploited with XML-based data (e.g., SOAP), since 
the latter are usually stored as ASCII-based text files. None-
theless, a comparative study conducted in [81] showed that 
existing compression methods for classic XML documents 
might not always be appropriate in the context of SOAP. 
That is due to the fact that SOAP messages are of relatively 
smaller sizes (a few kilobytes), in comparison with other 
kinds of XML-based documents (e.g., SVG [85], MPEG-7 
[52]…, usually in the order of hundreds of kilobytes). Hence, 
existing compression methods might yield coding tables (i.e., 
tables mapping symbols to their bit codes) which require 
more space than the original SOAP messages themselves [81] 
(cf. Fig. 9.a). In other words, compression results for large 
files are not necessarily transferable to small files, which is 
the case of SOAP messages. Following this observation, the 
authors in [81] propose a differential compression frame-
work specifically aimed toward SOAP messages, exploiting 
the similarities between SOAP messages sent or received by 
the same service. The approach is based on XML differential 
encoding, which basically means that only the differences 
between SOAP messages should be sent over the wire. In 
brief, the authors exploit the WSDL schema definition to 
generate a SOAP message skeleton (the same would be 
available at the sender/receiver sides) describing the struc-
ture and tagging of corresponding SOAP messages (i.e., 
SOAP element/attribute names and corresponding par-
ent/child relations, disregarding values). Consequently, only 
the differences between the SOAP message and the prede-
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fined skeleton are transmitted, along with corresponding 
SOAP message element/attribute values. The differences in 
structure and tagging, as well as element/attribute values, 
are consequently patched to the same skeleton at the receiver 
side in order to reconstruct the original message.  

The authors argue that the effectiveness of their method 
depends on the degree of resemblance between the generat-
ed skeleton and the actual SOAP messages, which strictly 
influences compression rate: a higher resemblance yields 
smaller difference files, which in turn underlines a higher 
compression rate. They test two existing implementations of 
XML diff encoding tools (XUpate [41] and DUL [51]) in their 
experimental evaluation, proving that their approach yields 
better compression rates than existing XML-based compres-
sion techniques (Fig. 9).  

 

  

 

a. Compression results on small 
files. 

b. Compression results on relatively 

larger files. 
 

Fig. 9. Comparing the effectiveness of differential SOAP compression, 
in comparison with alternative text-based (gzip [20]) and XML-

based (XMILL [42]) techniques. 

 

The authors evaluate the execution speed of their ap-
proach, and show that it is slower that gzip [20], which in-
troduces a major computational burden w.r.t. service execu-
tion time. In fact, gzip itself has been shown to be computa-
tionally expensive, exceeding the combined cost of XML se-
rialization and data transport over LANs [28, 73]. Thus, 
while SOAP compression seems central in reducing network 
traffic, particularly when network bandwidth is very limited, 
its execution time underlines an equally serious drawback, 
which (to our knowledge) remains an open problem. 

 
3.2.2 SOAP Multicasting 

Another approach to reduce SOAP network bandwidth con-
sumption would be to perform multicasting, a well-known 
technique that allows to conserve network bandwidth in 
applications where the same data is to be transmitted to mul-
tiple clients [86]. The main idea is to avoid sending replicated 
unicast messages over the wire by simultaneously delivering 
identical messages to a group of destinations, in a single ag-
gregate message, only creating copies when the network 
links to the multiple destinations split [59, 86]. In general, 
multicasting would be effective when the number of receiv-
ers for a given service is sufficiently large and there is suffi-
cient commonality in their interests, which happens to be the 
usual case with SOAP [59].  

In this context, the authors in [59] put forward SMP, a 
Similarity-based SOAP Multicasting Protocol. It is built on 
top of SOAP unicast, and does not rely on low level (IP) mul-
ticast, in order to avoid complex network configurations at 
intermediate nodes (hubs and routers). In addition, SMP’s 
main contribution and originality consists in grouping and 
transmitting together similar SOAP messages, and not only 

identical messages such as with traditional (IP) multicasting. 
An SMP message consists of two parts: SMP header and SMP 
body. The SMP header stores the addresses of destinations to 
which the messages should be sent. The SMP body is com-
posed, in turn, of two parts: the common part section contain-
ing common values of the messages, and distinctive part sec-
tion containing the different parts of each message. The ag-
gregate SMP message is consequently encapsulated within 
the body of a classic SOAP message, which header encom-
passes the address of the next router along the path to all 
intended recipients. Each midway router would parse the 
SMP header and examine its routing table to decide the next 
hops for each client address. The router then separates client 
addresses into groups, splits the SMP message accordingly, 
and forwards the appropriate information to the next hop. 
The SMP message is split so that only relevant information 
(i.e., information destined to the designated clients) is sent 
down the stream path. During splitting, multiple copies of 
the input message are first produced, one for each down-
stream link that the router connects to. The client list in each 
newly generated message header includes only those desti-
nations that will be routed through that hop. Distinctive 
items in the original SMP message are analyzed and re-
moved if they are not intended for clients beyond the next 
hop. The common part is obviously replicated in all outgoing 
messages. If the next hop connects directly to an end-point 
service, a standard SOAP unicast message is extracted from 
SMP and sent to the client service component. 

The authors exploit an XML-based similarity measure 
[44] to quantify the resemblance between SOAP messages, so 
as to only aggregate the most similar ones. In addition, a 
dedicated indexing technique is also introduced to reduce 
SOAP message size by omitting full tag names and leverag-
ing the organization of common and distinct parts in the 
SMP message. 

In a subsequent study [58], the authors propose an en-
hanced routing protocol to further improve the performance 
of their SMP multicasting approach. In their original propos-
al [59], they used Dijkstra’s Open Shortest Path First (OSPF) 
routing algorithm, which routes the message using the 
shortest path from a source to a destination. In their later 
study [58], the authors introduce tc-SMP (traffic constrained 
SMP) exploiting a similarity-based routing algorithm for 
transmitting messages following paths which maximize 
shared links between highly similar messages. This allows 
optimizing SMP network traffic distribution and thus further 
reducing overall network traffic (cf. Fig. 10.a).  

 

  
 

a. Total network traffic. 
 

b. Average response time. 
 

Fig. 10. Comparing network traffic and average response time with 
tc-SMP [58], SMP [59], traditional multicasting and unicast (re-

ported from [58]). 
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The authors also evaluate the performance penalty, in 
response time, of tc-SMP and SMP over traditional multicast-
ing (simply multicasting identical messages) and unicast 
transmissions (cf. Fig. 10.b). It is mainly due to the 
processing overhead required to measure the similarity be-
tween messages and aggregate similar ones (for both tc-SMP 
and SMP), as well as setting up the routing tree (in the case 
of tc-SMP). In short, results show that tc-SMP induces an 
average 3.5 to 5 times reduction in network traffic, compared 
to an average 2.5 times increase in average response time, 
which is considered acceptable by the authors, particularly in 
scenarios where bandwidth is limited such as with wireless 
and sensor networks. 

In addition to network traffic optimization with classic 
SOAP message communications, differential SOAP multi-
casting (SMP) has been recently investigated in the context of 
secure SOAP message exchange [6, 14], in order to improve 
SOAP security policy evaluation performance. 

 
3.3 Improving SOAP Security Policy Evaluation 
Performance 

In the past few years, the growing demand on mission-
critical WS applications (e.g., financial transactions, stock 
market…), has underlined an urgent need to provide trust-
worthy and secure services [48]. Nonetheless, security provi-
sion may introduce a substantial additional overhead, which 
has motivated researchers to start investigating the impact of 
security policy evaluation on WS performance.  

WS-Security policy evaluation [19] consists in checking 
and verifying the access and usage security constraints de-
fined on SOAP messages. It is performed both at the client 
and server application end-points, each w.r.t. its own policy 
rules (cf. Fig. 1). A WS-Security policy usually underlines a 
set of rules (actions), specifying security constraints (e.g., 
authorizations, signatures, encryption…) on particular SOAP 
elements and contents [6, 15]. A security policy rule can be 
characterized in a 3-tuple entity: (subject, object, rule), where 
subject identifies the users to whom the rule applies, object 
identifies to which messages, or portions of messages, the 
corresponding policy rule applies, and rule specifies the ac-
tions (e.g., access, signature or encryption [6]) authorized for 
the policy subject (user), on the policy object. Consider for 
instance the XML-based security rules in Fig. 11. The first 
rule allows service points with role ‘booking agency’ to 
access encrypted credit card numbers of client requests, whe-
reas the second rule denies subjects with role ‘customer’ 
from accessing credit card numbers of other clients. 
 

 

1 <subject><role>BookingAgency</role></subject> 
   <object>//BookingConfirmation/CreditCardNb</object> 
   <rule> 
        <Access>Allowed</Access> 
        <Encrytption>AES</Encryption> 
   </rule> 
 

2 <subject><role>Customer</role></subject> 
   <object>//BookingConfirmation/CreditCardNb</object> 
   <rule> 
          <Access>Denied</Access> 
   </rule> 

 

Fig. 11. Sample SOAP security policy rules (expressed in XML). 

 
The need for evaluating WS-Security policies may intro-

duce additional overhead, which in some cases dwarfs the 
latency of standard SOAP message processing.  The results 

of [37] show that WS-Security policy evaluation can cause: i) 
an increase in SOAP response time by a factor of 3 on aver-
age, ii) a substantial increase in network traffic (SOAP mes-
sages size) by a factor 6.9 in overall (regardless of the type of 
data, e.g., integer, double, string…, being exchanged). In this 
context, a few proposals have addressed the issue of improv-
ing SOAP security policy evaluation performance through 
improving other underlying techniques, namely parsing [45, 
71], caching [76] and multicasting [6, 14]. Methods for im-
proving SOAP parsing performance, e.g. [45, 71], consist in 
parsing and simultaneously processing the SOAP message 
for security evaluation, providing the de-serializer module 
with the parsed output message (or parts of the message) the 
destination client is allowed to access. Simultaneous parsing 
and security policy evaluation is undertaken via automatons 
(cf. Section 3.1.2) which consider both the parser context and 
security context, at the same time, for each incoming SOAP 
message. In other words, security-enabled parser automa-
tons identify SOAP events (e.g., opening element tag, ele-
ment text…) which correspond to classic parsing events, as 
well as their corresponding policy rules (e.g., authorization, 
signature or encryption schemes, allowing security 
processing), so as to process SOAP messages accordingly. 
These methods have been discussed in Section 3.1.2.  

In [76], the authors investigate various techniques for 
WS-Security performance optimization, including digest-
based caching, pre-hashing, and on-demand canonicaliza-
tion. They propose to store the de-serialized objects of digi-
tally signed XML messages in cache, and then match the IDs 
and digest hash values of inbound elements to the objects in 
the cache, to be retrieved and utilized in case of a cache hit. 
Similarly, the digest hash value for each signed element in 
the outbound message is stored in the cache, along with its 
serialized content, so as to re-serialize and re-hash (in subse-
quent message exchanges) only those objects which are dif-
ferent. The authors show that the digest-caching and pre-
hashing methods reduce overhead by a factor of 3 to 4 [76], 
at the expense of increased memory use (which they do not 
experimentally quantify). The authors also investigate on-
demand canonicalization [75] (i.e., re-canonicalizing contents 
only when the signature verification fails), and show that it 
effectively improves performance when more than 88% of 
the WS-Security messages need not be re-canonicalized (oth-
erwise, it might introduce additional overhead) [76].  

Approaches in [6, 14] discuss and compare different 
scenarios where SOAP multicasting, namely SMP [59], could 
improve policy evaluation performance. In [14], the authors 
focus on a single sender/receiver SOAP message exchange 
scenario. They discuss how policy evaluation could be per-
formed on an aggregate SMP message so as to only repeat 
policy evaluation processing on the SMP common part sec-
tion once. Following the authors, security policy evaluation 
would be only repeated on those parts of the SOAP messages 
which are distinctive, inducing a substantial gain in 
processing time. In a subsequent study [6], the authors ex-
tend their discussion to multiple scenarios, with multiple 
senders/receivers, and investigate different approaches to 
improve SOAP signing/encryption through multicasting. 
They discuss different strategies for achieving optimal order-
ing of signing and multicasting operations, such as Sign-Join-
Split-Verify and Join-Sign-Split-Verify. Fig. 12 depicts the clas-
sic approach, and the one ultimately adopted by the authors. 
They conclude that the best strategy, minimizing processing 
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time and thus maximizing the gain in performance, would be 
to i) first aggregate the SOAP messages (Join), ii) process the 
aggregate SMP message for signing/encryption (Sign), iii) 
transmit the signed/encrypted aggregate message to the 
receiver where it is first checked w.r.t. the latter’s policy rules 
and processed for signature recognition and decryption (Ve-
rify), and then iv) decompose the SMP message to recon-
struct the original SOAP messages (Split, cf. Fig. 12.b). 

 

 
 

a. Traditional approach. 
 

 
* 

b. Proposed approach. 
 

Fig. 12.  Different scenarios to security policy evaluation. 

 
Experimental results to quantify the actual gain in per-

formance are not provided in [6], the corresponding proto-
typical implementation being under development. Indeed, 
research on the interplay between WS-Security policy evalu-
ation and SOAP multicasting is still at a preliminary stage. 

 
3.4 Parallelization and Hardware Approaches 

Despite of the various kinds of software optimizations to 
improve SOAP and XML processing performance, no parser 
software can process input faster than its supporting hard-
ware accesses data. With most current XML software toolkits, 
the maximum processing rate usually attains a best of tens of 
clock cycles per character [39] (a simple character-scanning 
loop runs at about 100 Mbytes/second on a 1 GHz Pentium 
processor, which amounts to 10 cycles/byte [39]), and that for 
many XML applications can result in processing rates of the 
order of hundreds of clock cycles per character (traditional 
parsers, e.g., [5, 65], perform in the range of 2.5–6 Mbytes of 
input per second or 160–400 cycles/byte, with a penalty of 
between 16x and 40x [39]). Recent benchmarking works in 
[32, 33] demonstrate that most existing implementations of 
WS do not scale well when the size of the SOAP/XML docu-
ment being processed is increased. The authors in [32, 33] 
argue that most existing software toolkits are typically de-
signed to process small-sized XML datasets, and thus are not 
suited for large-scale computing applications, e.g., [25, 62]. 
Hence, recent studies have attempted to alleviate the limita-
tions of XML software performance bottlenecks by applying 
non-traditional parallel processor architectures, e.g., [8, 23, 
30, 36, 55, 78]. On one hand, general-purpose (scalar) proces-
sors are characterized by the sequential nature of instruction 
execution, where instructions are selected based on their 
sequential memory addresses, conditions being evaluated 
one at a time. On the other hand, XML processing usually 
requires the evaluation of multiple conditions of various 
types that can occur simultaneously, namely during XML 
string and character parsing (e.g., verifying character integri-
ty, whether an end tag matches a previously processed start 
tag, whether an attribute name is unique for a given element, 
and so on). Hence, the nature and frequency at which XML 
processing conditions occur result in a less predictable in-

struction flow, which calls for higher processing parallelism 
to improve performance [8, 78].  

Parallel processing solutions can be roughly classified 
according to the level at which the hardware supports paral-
lelism [13], namely: bit-level, data-level, and instruction-
level. In addition to single-node parallelism, a.k.a. micro-
parallelism (achieved on a single computer system, with 
multiple processing units connected via the same bus and 
sharing the same memory), recent XML-related studies [23, 
30, 31] have addressed cluster computing, a.k.a. macro-
parallelism (i.e., distributed computing on large datasets of 
computer clusters). In the following, we provide a concise 
overview of the most prominent XML and SOAP parallel 
processing methods in the literature, roughly organized fol-
lowing the type of parallelism they achieve. 

 

Bit-Level Parallelism: It consists in increasing the pro-
cessor word size (i.e., the amount of bits the processor can 
manipulate per cycle) and optimizing the inner-processor 
architecture so as to reduce the number of instructions the 
processor must execute to perform operations on variables 
whose sizes are greater than the length of the word, and thus 
gain in processing rate. In this context, the authors in [78] 
introduce ZUXA, an XML accelerator engine which provides 
a processing model optimized for conditional execution in 
combination with dedicated instructions for XML character 
and string-processing functions. It is based on a programma-
ble XML Finite State Machine technology, B-FSM, specifically 
tailored to provide high XML processing performance (a 
processing rate of one state transition per clock cycle), wide 
input and output vectors (with words of at least 64 bits for 
each transition), storage efficiency (to allow cost-efficient use 
of fast on-chip memory technologies), as well as full pro-
grammability (supporting fast incremental updates, allowing 
dynamic addition/removal of states and transitions), and 
scalability to tens of thousands of states and state transition 
rules. Related hardware solutions have been developed in 
the industrial arena, e.g., Datapower [16], which exploits 
Just-In-Time virtual machine technology [40] and ASICs cus-
tomized for XML processing.  

 

Data-Level Parallelism: Also known as SIMD (Simple 
Instruction Multiple Data), data-level parallelism describes 
computer systems with multiple processing elements that 
perform the same operation on multiple data simultaneously. 
An application that may take advantage of data-level paral-
lelism is one where the same operation is being executed on 
a large number of data points, which is a common operation 
in many multimedia applications (e.g., image/video render-
ing and filtering), as well as in XML parsing and lexical anal-
ysis (e.g., reading input characters, and identifying string 
tokens). Parabix [8] is an XML parser designed to exploit the 
data-level parallelism capabilities of modern processors to 
deliver performance improvements over the traditional byte-
at-a-time parsing technology. A byte-oriented character data 
is first transformed to a set of 8 parallel bit streams, each 
stream comprising one bit per character code unit. Character 
validation, transcoding, and lexical item stream formation 
are all then carried out in parallel using bitwise logic and 
shifting operations. Byte-at-a-time scanning loops in the 
parser are replaced by bit scan loops that can advance by as 
many as 64 positions with a single instruction. Experimental 
results in [8] show that Parabix performs substantially better 
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than traditional XML parsers: ranging from twice as fast as 
Expat [65], to an order of magnitude faster than Xerces [5]. 
 

Instruction-Level Parallelism: It is a processing para-
digm which underlines the re-ordering and combination of 
instructions into instruction sets, which are then executed in 
parallel without affecting the result of the program. Instruc-
tion-level parallelism could be achieved in a number of ways 
to improve XML parsing performance, namely through i) 
pipelining, and/or ii) multi-processing (a.k.a. superscalar 
computing) [13]. On one hand, pipelining allows splitting the 
processing of an instruction into a series of independent 
steps, executed in parallel by different threads. On the other 
hand, multi-processing allows the execution of more than 
one instruction during a clock cycle, by simultaneously dis-
patching multiple instructions to redundant execution units 
on the processor. Superscalar processors are identified as 
multi-core when their constituent processing units are em-
bedded in the same processor chip. While pipelining may 
provide significant speedup, XML software pipelining is 
often hard to implement due to synchronization and memo-
ry access bottlenecks, and to the difficulties of balancing the 
pipeline stages [55]. Hence, most studies in the context of 
XML and WS have focused on multi-processing solutions. 
One prominent approach is the Meta-DFA project [43, 56], 
introducing a parallelization method that uses a two-stage 
DOM parser. The main idea is to divide the XML document 
into chunks, such as multiple threads would work on the 
chunks independently. The first stage consists in pre-parsing 
the XML document, to determine its logical tree structure 
(made of start and end tag node references). This structure is 
then used in a subsequent stage to divide the XML document 
such that the divisions between the chunks occur at well-
defined points in the XML grammar. As the chunks are 
parsed, the results are then merged. In a following study 
[55], the authors investigate static partitioning and load-
balancing in order to minimize thread synchronization over-
head. The authors in [56] show that their technique is effec-
tive and scales to large numbers of cores (up to 30 cores). 
Nonetheless, the authors discuss that while DOM-style pars-
ing can be intuitive and convenient with applications requir-
ing random access/manipulation of XML-based data, none-
theless, it can also be memory-intensive, both in the amount 
of memory used (to store the DOM structure), and in the 
high overhead of memory management [43, 55]. 

In a related project by Head et al., the Piximal toolkit [23, 
30, 31] presents a parallelized SAX parsing solution, focusing 
on a different class of applications than the DOM-based Me-
ta-DFA project, tailored around event-streams and fast se-
quential access of XML-based data. Piximal conducts parsing 
dynamically, and generates as output a sequence of SAX 
events. It results in a larger number of parser states and state 
transitions, underlining more opportunities for paralleliza-
tion optimization, and scaling well with increasing numbers 
of processing cores. Experimental results demonstrate that 
the level of speedup obtainable using Piximal’s micro-level 
parallelization techniques can be limited due to: i) memory 
bandwidth, which could become a bottleneck [31], and ii) the 
amount of computation required to parse the input, which 
would induce little performance gain if the computation re-
quired is small in comparison to the time required to access 
the bytes of the input in memory [23]. Hence, the authors     
in [23, 30, 31] also address macro-level parallelism.               

They investigate the distributed processing of large-scale 
XML data stored in a cluster, by applying Google’s MapRe-
duce processing paradigm [18]. The simplicity and robust-
ness of the MapReduce model, as well as its relaxed syn-
chronization constraints, tend to work favorably for large-
scale XML data sets and WS computing environments [23]. 
Experimental results on Piximal’s macro-level parallelization 
technique show that securing additional resources for each 
thread by distributing the workload to a cluster of machines 
using MapReduce can increase performance [23, 30, 31]. 
Nonetheless, the authors also show that if not enough 
processing is taking place on each cluster, the latter would be 
burdened with redundancy checks and network traffic for 
just small chunks of input. The authors conclude that when 
computation is not sufficient enough to offset communica-
tion latencies due to the number of running computers, a 
single node, which minimally suffers from the same condi-
tion, would perform better than a cluster of computers. 

4  ONGOING CHALLENGES 

Despite the wide array of techniques proposed to enhance 
SOAP processing performance, yet various challenges and 
limitations remain unaddressed. Three major hurdles remain 
to the wide adoption of similarity-based techniques. 

First, while similarity-based methods have been shown 
in many cases to produce a significant gain in speed-up 
when many similar messages are involved [69], as well as a 
noticeable reduction in network traffic [58], nonetheless, si-
milarity computations can sometimes introduce additional 
overhead on their own (as shown with SOAP compression 
[81] and multicasting [58, 59]), especially when the SOAP 
messages being processed are fairly different (i.e., not similar 
to the documents processed before). Hence, a comprehensive 
empirical analysis addressing the trade-off between: i) the 
amount of additional processing overhead, and ii) the 
amount of processing time and network traffic reduction, 
induced by similarity-based approaches, is required in order 
to identify and better understand each method’s optimum 
usage constraints (e.g., percentage of similar SOAP messag-
es, amount of inner-message similarities, number of messag-
es, and so on). 

Secondly, interference and synergy between different 
similarity-based techniques is not yet completely unders-
tood. One can realize that the various techniques covered in 
the paper are not mutually exclusive, but are rather comple-
mentary. For instance, similarity-based methods to SOAP 
serialization, parsing, and de-serialization could very well 
exploit XML parallel processing architectures so as to better 
improve their clock cycle character processing rates. In addi-
tion, software-based methods could make use of tight inte-
gration architectures, such as in [39], so as to avoid re-
peated/unnecessary data processing, copying to/from 
memory buffers, and expensive data-type transformations 
(ASCII/UTF to in-memory types, and vice-versa). In this 
context, recent efforts have been made toward combining 
efficient SOAP multicasting, on one hand, with fast security 
policy evaluation on the other hand (as discussed in Section 
3.3). Nonetheless, corresponding techniques are still in their 
preliminary stages. Comparative theoretical and experimen-
tal studies are required to better understand the interplay 
and actual gain in performance between WS-Security policy 
evaluation and SOAP multicasting. 
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TABLE 1.  

Characteristics of Existing (Similarity-based) SOAP Performance Enhancement Approaches. 
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 Abu-Ghazaleh 

et al. [4] 

bSOAP, differential serializer: 
- DUTs (Data Update Tracking), tracking between in-memory data, and their serialized representa-

tions. 

- Dirty bits to identify fields whose values changed, recognizing parts to be reused. 
Abu-Ghazaleh 

et al. [2, 3] 
bSOAP buffer management: 

- Padding and chunk overlaying to allow on-the-fly message expansion. 

Devaram and 

Andersen [21] 

Client-side SOAP message caching: 
- Indexing structures to detect correspondences between cached and outgoing messages. 

- Does not address partial structural matches (only caches identical structures). 

P
ar

si
n

g
 

Zhang and Van 

Engelen [87] 

TDX: Table Driven XML parsing 
- Combining the lexical analysis and validation 

- Pre-recording parser states as grammar productions in tabular form, and breaking up the SOAP 

message into a token stream  

Takeuchi et al. 

[70] 

T-SOAP, template-based differential parser: 
- Predefined template, modeled via a finite state automaton (FSA). 

- Identification of invariant/variable tag parts in the SOAP messages. 

- Variable parts are only parsed. 

Makino et al. [45] 

Multi-template differential parser: 
- Appending new templates to the FSA, 

- More flexible than T-SOAP [70] (bound to one single template), 

- Requires more memory that T-SOAP. 

Teraguchi 

et al. [71] 

Detecting repeatable structures: 
- Improved XML-based automaton, to consider repeatable structures in SOAP messages, in compari-

son with string-based ones in [45, 70], 

- More expressive automaton, reducing memory and time consumption. 

 Kostoulas et al.   

[39] 

XML Screamer: 
- Tight integration across software levels, 

- Combines parsing and de-serialization in one layer, so as to avoid unnecessary data processing, 

copying (to/from memory), and data-type transformation. 

D
e-

S
er

ia
li

za
ti

o
n

 Suzumura 

et al. [68] 

Automaton-based approach: 
- Classic de-serialization and automaton creation, 

- Matching messages to automaton and only de-serialising those different portions (could comple-

ment parsers in [45, 70, 71]) 

Abu-Ghazaleh 

and Lewis [1] 

Checksum-based approach: 
- Regular mode, periodically checkpointing de-serialiser state, 

- Compare checkpoints, and switches to fast mode, when parser state is similar to state saved in pre-

vious checkpoint, 
- Checksumming is fast, yet error prone. 

 

Makino et al. 

[45], Teraguchi et 

al. [71] 

Security-based SOAP message parsing: 
- Automatons to consider both the parser context and security context, 

- Identifying SOAP events (tags, text…) and their corresponding policy rules (authorizations, signa-

tures…) 
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Damiani and 

Marrara [14] 

 

Security-based SOAP multicasting: 
- Single sender-receiver scenario, 

- Policy evaluation on aggregate SMP message [59], 

- Policy evaluation repeated only on those parts of SOAP messages which are different. 

Azzini et al. [6] 

Security-based SOAP multicasting: 
- Multiple senders/receivers scenario 

- Different approaches to improve SOAP signature/encryption (Sign-Join-Split-Verify, Join-Sign-Split-

Verify…), 

- Best strategy is join-sign-verify-split. 

 Van Engelen and 
Zhang [76] 

WS-Security performance optimization: 
- Digest-based cashing, storing and using de-serialized digitally signed objects, 

- Pre-hashing, storing and using digest values of digitally signed objects, 

- On-demand canonicalization, re-canonicalizating contents only when the signature verification fails. 

C
o
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-
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Werner et al. [81] 

Differential compression: 
- XML differential encoding (tree edit distance), 

- Identifying differences between SOAP messages and predefined WSDL-based SOAP templates, 

- Only differences are transmitted, 
- Patching differences with the same skeleton at the receiver side, to reconstruct the original message. 
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Phan et al. [59] 

SMP, Similarity-based SOAP Multicasting Protocol: 
- Built on top of IP unicast (avoiding complex network configurations), 

- Grouping and transmitting together similar SOAP messages (not only identical ones such as with 

classic multicasting), 

- SMP message encapsulated in classic SOAP message, with common and distinct parts. 

Phan et al. [58] 

tc-SMP, traffic constrained SMP: 
- Enhanced routing protocol for transmitting messages following paths which maximize shared links 

between highly similar messages, 

- Reducing traffic in comparison with the OSPF-based SMP [59]. 
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TABLE 2.  

Characteristics of SOAP and XML-based Parallellization and Hardware related approaches. 
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Approach Features 
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Van Lunteren et 

al. [78] 

ZUXA XML Accelerator Engine: 
- Increasing processor word size, i.e., the amount of bits the processor can manipulate per cycle, 

- Optimized for conditional execution with dedicated instructions for XML character processing, 

- Based on a programmable State Machine technology, B-FSM, tailored to provide high XML proces-

sing performance, wide input/output vectors, storage efficiency, as well as full programmability. 

D
at

a-
le
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el

 

Cameron et al. 

[8] 

PARABIX: 
- Designed to exploit the data-level parallelism, 

- Byte-oriented character data is first transformed to a set of 8 parallel bit streams, each stream com-

prising one bit per character code unit, 

- Character validation, transcoding, and lexical item stream formation are all then carried out in 

parallel using bitwise logic and shifting operations. 
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st
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ct
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 Pan et al. [43, 56] 

Meta-DFA: 
- Two-stage DOM parser : i) pre-parsing to determine its logical XML tree structure, and then  ii) divi-

ding the XML document such that the divisions between the chunks occur at well-defined points in 

the XML grammar, 

- Merges results as the chunks are parsed, 

- Exploits static partitioning and load-balancing to minimize thread synchronization overhead, 

- Considerably scalable (up to of 30 cores). 

Head et al. [23, 

30, 31] 

Piximal: 
- Introduces a parallelized SAX parser, tailored around event-stream XML data (different class of 

applications than the DOM-based Meta-DFA), 

- Larger number of parser states, thus more opportunity for parallelization and scalability with in-

creasing numbers of cores (in comparison with Meta-DFA), 

- Speed-up could be limited due to: i) memory bandwidth, and ii) the amount of computation requi-

red to parse the input (if the computation required is small in comparison to the time required to 

access the bytes of the input in memory). 
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Head et al. [23, 30, 31] 

Piximal, with cluster computing: 
- Exploits distributed processing of large-scale XML data stored in a cluster, by applying Google’s 

MapReduce processing paradigm [18], 

- Introduces relaxed synchronization constraints, which tend to work favorably for large-scale XML 

data sets and WS computing environments, 

- Experiments show that macro-parallelism can increase performance (in comparison with micro-

parallelism). Yet, if not enough processing is taking place on each cluster, the latter would be bur-

dened with redundancy checks and network traffic for just small chunks of input, and could per-

form worst than a single node, 
- Examining computation costs to determine the best computation strategy. 

 

 
Thirdly, and perhaps more importantly, interference 

may arise between SOAP similarity-based multicasting de-
scribed in this paper and attempts at boosting SOAP perfor-
mance via custom protocol bindings. 

Several commercial SOAP engines, including Noemax 
and Sun Metro, are based on custom protocol bindings that 
exploit information on the XML stream data to improve the 
performance of transport layer protocols. In these implemen-
tations of SOAP, HTTP binding has been dropped altogether 
in favor of an integrated SOAP/TCP transport where each 
message sent during a communication session is accompa-
nied only by new entries (if any) to the XML Infoset vocabu-
lary [67]. The vocabulary is a table that associates string val-
ues with identifiers. In this context, the technique used to 
reduce the size of the XML text encoding is to enter string 
values (such as XML markup) in the vocabulary and substi-
tute all occurrences of these string values in the document 
with their corresponding identifier. This vocabulary-based 
technique is sometime coupled with GZIP compression [20] 
of messages, and is a major competitor of similarity-based 
multicasting when non-standard protocol bindings are ac-
ceptable - e.g., on clusters or grids [80] when no firewall tra-
versal is required. However, the effect of using similarity-
based SOAP multicasting in the context of custom 
SOAP/TCP bindings is still largely unexplored, but, great 
potential have been shown by enhancements in the underly-
ing HTTP transport protocol (particularly in the context of 
HTTP 1.1) to reduce the overhead of creating a new connec-
tion for every SOAP message (with persistent connections 

and message chunking [12, 28]), as well as by ongoing inves-
tigations in XML-based binary encodings for SOAP [57, 64, 
83]. In short, techniques to SOAP performance enhancement 
are yet to be further improved and perfected, promising fur-
ther performance improvements in the near future, which 
presents an overwhelming motivation to do research in this 
field. 

5  CONCLUSION 
 

In this survey paper, we have given an overview of current 
research related to SOAP processing performance enhance-
ment, focusing on similarity-based approaches, as well as 
WS-Security optimizations, and XML parallel processing 
architectures. We provide a concise, yet comprehensive re-
view of how different techniques have been exploited to en-
hance SOAP performance in almost every phase of SOAP 
processing, ranging over message parsing [45, 70, 71], seriali-
zation [4, 21], de-serialization [1, 68], compression [81], mul-
ticasting [6, 58, 59], security evaluation [6, 14], and da-
ta/instruction-level processing [8, 55, 78] (cf. Tables 1 and 
2). Most methods build on the observation that SOAP mes-
sage exchange usually involves highly similar messages 
(messages created by the same implementation usually have 
the same structure, and those sent from a server to multiple 
clients tend to show similarities in structure and content). 
The main idea is then to identify the common parts of SOAP 
messages, to be processed once, only repeating the 
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processing for parts which are different, and substantially 
reducing SOAP processing overhead. Other approaches in-
vestigate non-traditional processor architectures, including 
micro- and macro-level parallel processing solutions, so as 
further increase the processing rates of SOAP/XML software 
toolkits. In addition, we have also discussed some of the 
main challenges and possible future research directions, cov-
ering SOAP software and parallel architecture integration, as 
well as custom protocol bindings. 

We hope that the unified presentation of SOAP-related 
performance enhancement techniques in this paper will fos-
ter further research on the subject. [12, 50] 
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