
 1

SOAP Processing Performance and Enhancement*

Joe Tekli, Ernesto Damiani, Richard Chbeir, and Gabriele Gianini

Abstract—The Web Services (WS) technology provides a comprehensive solution for representing, discovering and invoking

services in a wide variety of environments, including SOA (Service Oriented Architectures) and grid computing systems. At the

core of WS technology lie a number of XML-based standards, such as the Simple Object Access Protocol (SOAP), that have

successfully ensured WS extensibility, transparency, and interoperability. Nonetheless, there is an increasing demand to

enhance WS performance, which is severely impaired by XML’s verbosity. SOAP communications produce considerable

network traffic, making them unfit for distributed, loosely coupled and heterogeneous computing environments such as the open

Internet. Also, they introduce higher latency and processing delays than other technologies, like Java RMI and CORBA. WS

research has recently focused on SOAP performance enhancement. Many approaches build on the observation that SOAP

message exchange usually involves highly similar messages (those created by the same implementation usually have the same

structure, and those sent from a server to multiple clients tend to show similarities in structure and content). Similarity evaluation

and differential encoding have thus emerged as SOAP performance enhancement techniques. The main idea is to identify the

common parts of SOAP messages, to be processed only once, avoiding a large amount of overhead. Other approaches

investigate non-traditional processor architectures, including micro- and macro-level parallel processing solutions, so as further

increase the processing rates of SOAP/XML software toolkits. This survey paper provides a concise, yet comprehensive review

of the research efforts aimed at SOAP performance enhancement. A unified view of the problem is provided, covering almost

every phase of SOAP processing, ranging over message parsing, serialization, de-serialization, compression, multicasting,

security evaluation, and data/instruction-level processing.

Index Terms—H.3.5.e. Web-based Services, H.3.5.F. XML/XSL/RDF, D.2.8.b. Performance Measures, H.3.4.d Performance
Evaluation, H.2.0.a. Security, Integrity and Protection.

—————————— ——————————

1 INTRODUCTION

VER the past decade, web services have transformed
the web from a publishing medium used to simply
disseminate information, into an ubiquitous infrastruc-

ture that supports transaction processing [48]. The Web Ser-
vices (WS) technology differs from traditional software inte-
gration frameworks such as CORBA [54], DCOM [35] and
Java RMI [66], in that WS utilize well-established and open
Web protocols and formats, chiefly HTTP and XML [7], al-
lowing smooth interoperability among heterogeneous sys-
tems. Nonetheless, the very feature that makes WS universal-
ly usable, namely the adoption of the ubiquitous XML stan-
dard [7], makes it difficult to reach the performance lever
required by large-scale processes and applications [12]. In
this paper, we survey a number of issues related to WS per-
formance, particularly in the context of WS communications,
discussing the main performance bottlenecks and possible
improvements.1

An individual web service generally comes down to a
self-contained, modular application that can be described,
published and invoked over the Internet, and executed on
the remote system where it is hosted [61]. WS mainly rely on
two standard XML schemata:

 WSDL (Web Service Description Language) [10]
which supports the machine-readable description of
a web service’s interface. It allows the definition of
XML grammar structures for describing WS as col-
lections of communication endpoints capable of ex-
changing messages.

 SOAP (Simple Object Access Protocol) [82] is the
protocol specification for message exchange among
WS. It is based on the XML data model, and usually
relies on existing application layer protocols (e.g.,
HTTP, FTP, SMTP…) for message negotiation and
transmission.

While these basic building blocks of WS technology are
now firmly in place, performance issues have prevented us-
ing WS to implement large-scale distributed processes over
large corporate networks or on the global Net. A major per-
formance bottleneck resides in SOAP message processing
[68]. The reason for SOAP performance criticality is twofold:

 On one hand, SOAP communication produces consi-
derable network traffic, and causes higher latency
than competing technologies, like Java RMI and
CORBA [38]. This is a central problem especially
within wireless communication networks with their
relatively low bandwidth and high latency [59], as
well as the rising number of mobile computing de-
vices (e.g., PDAs and mobile phones) increasing ser-
vice demand, and consequently network bandwidth
consumption [48].

 On the other hand, and perhaps more importantly,
the generation and parsing of SOAP messages, and
their conversion to-and-from in-memory application
data can be computationally very expensive [1, 4].
In this paper we adopt the following terminology:

O

* Work Supported in part by Fondazione Cariplo, and Japan Society for the
 Promotion of Science (JSPS).

 Joe Tekli is with the Department of Science and Technology, Shizuoka Uni-

versity, Hamamatsu, 432-8011 Japan. Email: jtekli@gmail.com
 Ernesto Damiani and Gabriele Gianini are with the Department of Informa-

tion and Technology, Università degli Studi di Milano, Crema, 65 - 26013
Italy. E-mails: {ernesto.damiani, gabriele.gianini}@unimi.it.

 Richard Chbeir is with the LE2I Laboratory UMR-CNRS, University of
Bourgogne, Dijon, 21000 France. Email: richard.chbeir@u-bourgogne.fr

2

the process of translating a memory object according
to a serialization format into an XML object is called
serialization. The process of converting an XML struc-
ture into a memory object will be called de-
serialization. For complex XML structures, both these
processes are computationally expensive. In fact, the
translation between in-memory numeric data of type
double and the ASCII-based XML representation
format has been shown to consume over 90% of the
end-to-end SOAP message processing time [12],
which proves critical for various kinds of WS appli-
cations, ranging over business transactions (e.g., on-
line booking and stock quote services), and scientific
data processing (e.g., grid computing).

Several techniques have been proposed to improve
SOAP processing performance. Many of them exploit the
well-known concepts of similarity and differential encoding
to i) reduce processing time, in message parsing [45, 70, 71],
serialization [4, 21], and de-serialization [1, 68], as well as to
ii) reduce network traffic via SOAP message compression
[81] and multicasting [6, 58, 59]. Similarity-based SOAP per-
formance enhancement is based on the straightforward ob-
servation that SOAP message exchanges usually involve
highly similar messages. Messages created by the same im-
plementation usually have the same structure, and those sent
from a server to multiple clients tend to show similarities in
structure and content (e.g., stock quote services [59] involv-
ing a large number of similar transactions requesting the
latest stock data, as well as online booking and meteorologi-
cal broadcast services [6]).

Thus, various efforts have been undertaken to process
SOAP messages taking into account their similarities. The
main idea is to identify the common parts of SOAP messag-
es, to be processed once, regardless of the number of mes-
sages. Processing is only repeated for those parts which are
different, avoiding a large amount of unnecessary overhead.

Another source of overhead is checking SOAP messages
against security policies. Recently, several research efforts
have focused on the impact of WS-Security policy evaluation
on SOAP messages. WS-Security policies [19] specify autho-
rizations, signature and encryption schemes on SOAP ele-
ments and contents, and may introduce substantial
processing overhead without (or despite) ad-hoc perfor-
mance enhancement [6, 14, 71]. Indeed, evaluating WS-
Security policies can introduce an overhead much larger than
standard WS invocation processing (6.9 times in average,
according to [37]). A major portion of this overhead is related
to the requirement of providing message level security (as
opposed to channel-level security such as with TLS [79]) and
to the XML encoding of message content.

Other performance bottlenecks arise from the limited
amount of parallelism available on a conventional processor.
Efficient parsing of of SOAP and XML streams, as well as
processing variable length encoded character streams would
require hardware support for longer processing pipelines
than standard CPUs can support. Handling XML streams
entirely in software (for instance, by mapping processing
pipeline stages to software threads) prevents the execution
speed to be improved beyond a best processing rate of tens
of clock cycles per character, and that best case performance
can result in rates on the order of hundreds of clock cycles

per character for many practical XML applications [78]. As a
result, recent studies have addressed these performance bot-
tlenecks by investigating non-traditional processors, namely
parallel processing architectures and ‚XML machines‛, e.g.,
[8, 23, 30].

The goal of this survey paper is to provide a unified
view of the problem, connecting the different aspects and
techniques related to SOAP processing performance en-
hancement, including similarity-based and differential en-
coding techniques, WS-Security policy evaluation, and XML
parallel processing architectures. The remainder of the paper
is organized as follows. Section 2 presents a glimpse on
SOAP processing, introduces its performance metrics, and
discusses its main bottlenecks. In Section 3, we categorize,
discuss and compare some of the most prominent methods
to SOAP performance enhancement. Section 4 discusses
some ongoing challenges. Section 5 concludes the paper.

2 WS AND SOAP PROCESSING PERFORMANCE

Experience with Service Oriented Architectures (SOA) has
shown that WS performance is a crucial success factor for
large-scale business processes [48]. It becomes even more
crucial when services are made available on the open Web,
where (i) user requests to a certain service provid-
er/company tend to increase with the amount of information
and services the company makes available online [49], and
(ii) the fidelization of service consumers is on average lower
than on a SOA infrastructure. If service latency becomes too
high, clients may become frustrated and simply switch to
another site or service offering the same functionality. Hence,
WS performance problems can bring all kinds of undesired
consequences, including financial and sales losses, decreased
productivity and a bad reputation for a company [48]. More-
over, as the web evolves, mobile computing devices (e.g.,
PDAs and mobile phones) add another challenge to web
services performance: wireless communication networks
with their relatively low bandwidth and high latency [59].
Finally, current web systems and services are usually charac-
terized by integration with databases, scheduling and track-
ing systems (e.g., Google Maps), requiring altogether high
performance levels [27].

In the following, we first briefly present the key metrics
which characterize WS performance levels. We subsequently
discuss the various aspects of SOAP processing, and the cor-
responding performance bottlenecks.

2.1 Evaluation Metrics

Service-oriented infrastructures share some properties with
component-based [26, 60] and web-based [47] applications,
hence to some extent is it possible to apply existing resource
metrics from the component-based software engineering and
web applications domains in the context of SOA [60]. Name-
ly, it is possible to classify performance metrics in three main
categories: delay, bandwidth and usage, with response time,
throughput and network traffic [48, 59] as the most relevant
metrics normally used to assess the performance of WS for
each category respectively. Summary values of those metrics
are normally obtained by aggregation in time and/or aggre-
gation in space, or concatenation in space. A taxonomy of the
relevant metrics can be found in [72] and references therein.

OVERVIEW ON SIMILARITY-BASED SOAP PROCESSING PERFORMANCE ENHANCEMENT 3

Fig. 1. Outline of a classic SOAP remote service call processing chain.

2.1.1 Response Time

Response time (also called latency or end-to-end response time)
is the time perceived by a client to obtain a reply for a re-
quest for a web service. It includes the network time (latency
and transmission delays on the communication link), as well
as the processing delays at the server end-point (service ex-
ecution) and at intermediary nodes (switching time intro-
duced by hubs, routers and modems) [48]. The process with
the longest processing delay in the processing chain is usual-
ly the key determinant of response time, and is identified as
bottleneck (or time-sink). Response time is measured in time
units.

2.1.2 Throughput

While response time is a performance metric typically of
interest to end-users, throughput, which is defined as the
number of requests executed per unit of time (e.g., I/O oper-
ations per second), is of more interest to administrators. It is
usually evaluated on the server side [48]. There are many
possible throughput metrics depending on the definition of
unit of work. It is common to distinguish between point-to-
point (or link) throughput (to quantify transport perfor-
mance), node throughput (to quantify processing perfor-
mance) and overall throughput in the system (a.k.a. consis-
tent throughput in the system) [60]. The overall system
throughput is bound by the local throughput (link through-
put and nodal throughput) of the least performing compo-
nents in the transport and processing chain. Its basic unit of
measure is byte/sec, however, for web service providers, it
can be measured in req/sec – requests per seconds,
HTTPops/sec – HTTP operations per seconds for web servers,
or tps – transactions per seconds [71].

2.1.3 Network Traffic

The total network traffic for a communication scheme or
session (e.g., conversation, i.e. a SOAP message exchange
among two service end-points) consists of the total size of all
session-related messages sent over the network for the dura-
tion of the communication [59]. In other words, it encom-
passes the total number of bytes (corresponding to all mes-
sages exchanged during the communication session being
evaluated) that are transmitted over the network [81]. Other
related performance metrics exist, including: average utiliza-
tion of a node, incoming/outgoing message rates, incom-
ing/outgoing traffic for a node or the overall message rate in
the system, which can also be measured in bytes or number
of messages. 2

1 Most references in this paper address, in one way or another, web ser-

Over the past few years, several works have studied
web service performance, e.g., [3, 22, 45, 68]1. Most of them
focus on SOAP processing and message exchange as the ma-
jor players affecting web service performance levels. In the
remainder of this section, we present a glimpse on SOAP
processing, so as to pinpoint SOAP performance bottlenecks.

2.2 A Glimpse on SOAP Processing

SOAP (Simple Object Access Protocol) [29] was specifically
conceived as a messaging protocol to support interdepen-
dent interactions between otherwise independent entities,
namely WS [12]. It is based on XML [4] and can support a
variety of message exchange patterns, including request-
response, one way messages, remote procedure calls, and
peer-to-peer interactions [28].

Fig. 1 depicts a simplified activity diagram describing a
typical SOAP remote service call processing scenario. Given
two end-point services, usually identified as client and appli-
cation server, an outgoing client SOAP message consists of a
method invocation, a.k.a. (also known as) client SOAP re-
quest, underlining a client call for method destined to the
application server. An outgoing server SOAP message con-
sists of a method response, a.k.a. server SOAP response, car-
rying the result of the action performed at the application
server, following the corresponding method invocation.
SOAP request and response messages are usually similar in
structure. They both follow the same schema defined in the
WSDL interface definitions of the services involved in the
communication process. In general, a SOAP request/response
message consists of a root node entitled Envelope, encompass-
ing too elements: Header and Body. Consider for instance the
sample SOAP messages in Fig. 2.

 Envelope provides the serialization context and na-
mespace information for elements and parameters
utilized in the message.

 Header contains auxiliary information which is not
related to the method invocation (or response) itself,
such as transaction management and client/server
information (e.g., client/server addresses, URL of fi-
nal message destination).

 Body contains the actual data carried in the SOAP
message. It usually starts with a sub-element en-
titled with the method (or method response) name.
The latter would encompass a child node for every
parameter required to perform the local invocation.

vice performance. We only give a few here for clearness of presentation.

Client
Application

Server

Client
Component

Request Message
Generator

Serialization

Request Message Analyzer

De-serialization

Parsing

Service

Response Message
Generator

Serialization

Service Executor

 SOAP

SOAP message
routing

Security Policy
Evaluation

(1)

(3)

(5)

(6)
(9)

(2)

(7)

Request Message Analyzer

De-serialization

Parsing
Security Policy

Evaluation

(4)

(8)

(10)

Network

 SOAP
 Response

 Request

4

a. SOAP request message.

b. SOAP response message.

Fig. 2. Sample SOAP request and response messages.

As shown in Fig. 1, a common SOAP message exchange

scenario consists of the following steps. First, a SOAP request
message is created at the client side. Message creation re-
quires serialization which consists in converting between in-
memory application data representations and XML-based
messages (Step 1). The request message is sent to the server
application, usually via classic IP unicast routing (Step 2). At
the server side, the message is first parsed, i.e., processed for
lexical analysis (identifying characters and extracting tokens
such as tags and contents) and validation (verifying the mes-
sage’s structural integrity w.r.t. the corresponding WSDL
definition) (Step 3). The application server consequently eva-
luates its security policy rules on the received message, so as
to identify and process those parts of the message which
were assigned security constraints (authorization rules, sig-
nature verification…) (Step 4), followed by message de-
serialization (converting between XML and the in-memory
data representation) in order to be processed via the service
executer (Step 5). As for the SOAP response message, the
same procedure is undertaken, but this time in the inverse
direction. The response message is created, i.e., serialized
(Step 6), sent back to the client service via unicast routing
(Step 7), parsed (Step 8), evaluated w.r.t. the client security
policy rules (Step 9), and de-serialized so as to transfer the
processed data to the client service component (Step 10).

2.3 SOAP Performance Bottlenecks

SOAP’s XML-based nature, which makes the SOAP protocol
universally usable, tends unfortunately to work against
achieving high performance [12]. The impact of XML mes-
sage encoding on overall SOAP performance is omnipresent
in almost every step of SOAP processing, underlining: i) high
response time and low throughput in SOAP serialization [2,
4], parsing [45, 70, 71], security evaluation [6, 14], and de-
serialization [1, 68], mainly due to XML processing and the
conversion between in-memory data and the ASCII-based
XML format, as well as ii) high network traffic and band-
width consumption during message transmission and
routing [58, 59, 81], due to XML’s verbosity and redundant
textual characteristics.

To give an idea of the problem size at hand, we discuss
the results of three studies, [17, 37, 81], evaluating the per-
formance levels of SOAP in comparison with existing inte-
gration technologies, namely CORBA [54] and Java RMI [66].
Fig. 3 depicts the response time for a SOAP service call

processing, i.e., the time required to generate and send a ser-
vice request message and to receive its corresponding service
response message, using two SOAP implementations (Java-
based, Microsoft VB 6.0 toolkits) [17], in comparison with
similar procedures to remote method invocations using
CORBA [54] and Java RMI [66]. Timing results in both Fig.
3.a and Fig. 3.b show that SOAP performs very poorly in
comparison with competing technologies. The time perfor-
mance gap increases significantly when exchanging numeric
data (e.g., integer arrays in [17]), which is due to the expen-
sive process of converting in-memory numeric data to-and-
from ASCII-based XML [12]. Fig. 4 depicts network traffic
created by SOAP (two Java-based and Microsoft .Net based
toolkits were considered) [81], CORBA [54] and Java RMI
[66], when varying the number of method invitations be-
tween two client and application server end-points. Results
show that SOAP produces significantly more network traffic
than existing technologies. It requires almost three times
more bandwidth than Java-RMI and CORBA, the latter using
dedicated binary encodings for message exchange, in com-
parison with SOAP’s XML-based textual format [81].

a. Manipulating textual data.

b. Manipulating numeric data.

Fig. 3. Comparing SOAP response time, with CORBA [54] and Java
RMI [66].

Fig. 4. Comparing SOAP service call network traffic, with CORBA [54]
and Java RMI [66].

The need of encrypting and signing SOAP messages,
which is of paramount importance especially when accessing
services available on the open Net, has introduced additional
delays. The WS-Security standard [19] is now widely used to
express (in XML) the service providers’ policies regarding
what parts of the SOAP XML tree need to be encrypted and
signed. In a recent study [37], the authors evaluate the addi-
tional overhead introduced by WS-Security policy evaluation
w.r.t. standard processing of SOAP invocations. Their results
show that WS-Security increases SOAP response time by a
factor of 3 on average, while SOAP messages when using
WS-Security are 6.9 times larger than unsecured SOAP mes-
sages (affecting network traffic accordingly).

<?XMLversion=“1.0”…?>

<soap:Envelope

 xmlns:xsd=“http://www.w3.org/...”>

 …

 <soap:Header>

 …

 </soap:Header>

 <soap:body>

 <OrderQuoteResponse>

 <Price>20000<Price>

 <Dealers>

 <Dealer>

 <Name>Milano Motors</Name>

 <Address>Via Kennedy</Address>

 <Dealer>

 </Dealers>

 <OrderQuoteResponse>

 </soap:body>

</soap:Envelope>

Method
response

Method
invocation

<?XMLversion=“1.0”…?>

<soap:Envelope

 xmlns:xsd=“http://www.w3.org/...”>

 …

 <soap:Header>

 …

 </soap:Header>

 <soap:body>

 <OrderQuote>

 <Product>Fiat</Product>

 <Model>Punto</Model>

 <Year>2009</Year>

 </OrderQuote>

 </soap:body>

</soap:Envelope>

OVERVIEW ON SIMILARITY-BASED SOAP PROCESSING PERFORMANCE ENHANCEMENT 5

In addition to evaluating the performance bottlenecks of
SOAP itself, related works in [8, 39, 78] (among others) have
addressed the shortcomings of conventional hardware com-
puting architectures in handling XML-based data for large
scale data sets and WS computing environments. They high-
light the limited amount of parallelism in XML processing:
both at the data level [8, 78] (i.e., in processing multiple piec-
es of data with one instruction), and at the instruction level
[39, 78] (i.e., executing multiple instructions concurrently,
a.k.a. multi-processing). This family of hardware-based stu-
dies usually underlines the limitations of conventional pro-
cessors in providing an efficient enough solution to evaluate
multiple conditions of various types in parallel, which is
central in XML string and character processing (e.g., verify-
ing character integrity, whether an end tag matches a pre-
viously processed start tag, whether an attribute name is
unique for a given element, and so on).

Some works [12, 28] address transport protocol bind-
ings, namely the shortcomings of HTTP [24] as the appli-
cation layer protocol used with SOAP for message nego-
tiation and transmission. The authors in [12, 28] conclude
that HTTP (specifically the earlier HTTP 1.0 version) ne-
gatively affects SOAP processing, and that it induces
higher SOAP response time due to connection and mes-
sage transmission overheads.

All relevant aspects of SOAP processing, the impact of
the XML-based parallelism on SOAP performance, as well as
the various solutions to SOAP performance enhancement to-
date, are detailed in the following sections.

3 IMPROVING SOAP PROCESSING PERFORMANCE

As mentioned previously, SOAP processing performance
enhancement has been widely researched [6, 45, 58, 59, 70,
71]. Many approaches build on the simple observation that
SOAP message exchange usually involves a number of high-
ly similar messages. Invocations sent from the same client
often reflect similar information needs, and thus similar
SOAP message requests [21]. Likewise, messages sent from
the same server to a single and/or multiple clients usually
share strong similarities. Typical examples are various [6]
such as stock quote services [59] (involving a large number
of transactions requesting the latest stock data, hence similar
stock quote request and response messages are processed),
as well as online booking systems, and meteorological
broadcast services [6], etc.

Several proposals addressing SOAP performance en-
hancement exploit, in one way or another, the similarity be-
tween SOAP messages, in order to gain in performance, e.g.,
reducing execution time, increasing throughput, and saving
on network traffic. The main idea is to identify the common
parts of SOAP messages, to be processed once, regardless of
the number of messages.

We classify these solutions based on the performance
metrics they target, and on the specific SOAP processing
operations they address.

3.1 Methods for Improving Service Execution Time

Improving service execution time (i.e., attaining lower re-
sponse time and higher throughput), has been investigated
in various aspects of SOAP processing, addressing serializa-
tion, parsing and de-serialization operations.

3.1.1 SOAP Serialization

As mentioned previously, the serialization of SOAP messag-
es consists in converting in-memory data types into XML. In
this context, the main bottleneck consists in transforming in-
memory data of numeric types into the ASCII-based XML
representation format [12]. Consequently, the authors in [4],
building upon the findings in [12], introduce a method for
differential SOAP serialization, called bSOAP. The main idea
consists in storing the SOAP messages in a dedicated buffer,
to be used as templates for future outcalls, instead of discard-
ing them after they have been sent over the wire. The mes-
sage is normally serialized and saved during the first invoca-
tion of the SOAP call. Subsequent calls which share identical
or similar message structures, as the message in the buffer,
would avoid a significant amount of processing by only se-
rializing the changes to the previously sent message. The
authors address the problem of change tracking between in-
memory data, and their serialized representations. Dedicated
indexed tables, i.e., DUTs (Data Update Tracking), are asso-
ciated with each serialized message, keeping track of the in-
memory location of each field in the original structure to be
serialized, and its position in the serialized message. A dirty
bit is associated with each field, to keep track of those fields
whose values have changed since the last send, in order to
check which parts of the last message could be reused. Expe-
rimental results in [4] confirm the approach’s better time
performance, in comparison with regular serialization, and
show that serialization time is linearly dependent on the per-
centage of in-memory values that must be re-serialized (re-
flected by the number of dirty bits that are changed). When
the whole message has to be serialized, bSOAP’s serialization
time is almost equivalent to that of existing SOAP toolkits,
e.g., gSOAP [77] and XSOAP [63] (cf. Fig. 5.a). Nonetheless,
when the exact message is to be sent again (i.e., when none of
the dirty bits are changed), time performance gain is maxim-
al (almost 1000%, cf. Fig. 5.b).

a. Comparing bSOAP, to alternative
approaches, i.e., gSOAP [77] and

XSOAP [63].

b. Serialization time, when various
percent-tages of stored values are re-

serialized.

Fig. 5. Time performance of bSOAP differential serialization
(reported from [4]).

In subsequent studies [2, 3], the authors address
bSOAP’s buffer management, mainly padding, which con-
sists in stuffing the serialized message with white spaces to
reduce the cost of message expansion when the latter is to be
updated. Padding is useful when the new serialized form of
some value does not fit in the current space allocation (e.g.,
the value of an integer variable i=3 which holds a single cha-
racter space, is to be updated to i=1003 in the new serialized
message, which requires four character spaces). Hence, pad-
ding allows on-the-fly message expansion, DUT table entries
being updated accordingly.

6

Various other SOAP buffer optimization techniques
have been proposed [2, 3, 12, 77], namely chunking (dividing
the SOAP message into chunks stored in different memory
locations, to be processed separately) and streaming (pipe-
lined-send, each message chunk being sent as soon as it is
serialized, thus allowing an overlap of computation and
communication). However, even after these optimizations,
the conversion from in-memory data to the ASCII represen-
tation (over 90% of the end-to-end time) remains the most
critical bottleneck [12], which emphasizes the relevance of
differential serialization [4].

An approach comparable to differential serialization [4]
is introduced in [21]. It addresses client-side SOAP message
caching and allows entire request messages to be cached and
sent as is. It also allows partial caching by reusing cached
messages with identical structures, updating element values
for subsequent sends. Similarly to [4], it relies on dedicated
indexed structures in detecting correspondences between
cached and outgoing messages. Nonetheless, the approach in
[21] does not address partial structural matches (i.e., caching
messages with partially different structures) as in [4], but
only caches messages with identical structures. In addition,
the authors in [21] do not discuss how to handle mismatched
data sizes that require message resizing and expansion.

3.1.2 SOAP Parsing

As mentioned previously, SOAP parsing consists in analyz-
ing the contents of the incoming SOAP message, to be conse-
quently transformed into their in-memory application format
via the de-serialization component. In general, SOAP parsing
consists in analyzing the characters in the SOAP message,
extracting tokens such as tags and text, and then extracting
and validating the underlying XML structure (cf. Fig. 6.a).
These tasks can be achieved using functions of existing XML
parsers such as DOM [84] and SAX [47].

In this context, a few studies have proposed using spe-
cial-purpose parsers, considering the particularities of XML
and SOAP messages in order to amend performance. One of
the earlier XML-based approaches promotes partial parsing
[53], by i) extracting the XML document structure (node ref-
erences and hierarchical relations) in a pre-processing phase,
and then ii) parsing only those parts of the document re-
quired by the application program, by looking up the docu-
ment structure. The authors in [53] show that performance
improves only when document (application) coverage is less
than 80%, and that it otherwise declines due to pre-
processing overhead. In [11, 74], the authors investigate the
optimization of SOAP lexical analysis, using schema (WSDL)
information, to more efficiently identify lexical tokens (e.g.,
tag names, attributes…). Yet, such methods only target lexi-
cal analysis, disregarding byte-level character encoding and
validation optimizations [69]. On the other hand, XSOAP
[63] targets validation optimization and attempts to improve
SOAP message validation performance by only executing the
validation process on those elements specific to SOAP, name-
ly Envelope, Header and Body. Remaining parts, which usually
consist of classic XML tagging, are disregarded in order to
gain in parsing time. However, when the corresponding ser-
vice requires complete message validation, the invalidated
SOAP message parts have to be processed via a dedicated
validation function to be added by the programmer in the
service program [70], thus minimizing performance en-
hancement. A recent work [87] introduces a Table Driven

XML (TDX) parser, that combines the lexical analysis and
validation of SOAP XML messages in a single pass. The idea
is to pre-record the states of an XML parser produced from
the corresponding (Schema) WSDL service description, as
grammar productions rules in tabular form, and then to util-
ize a runtime streaming parsing engine to break up the
SOAP message into a token stream, to be processed for well-
formedness verification and validation at once. The authors
in [87] show that their approach is more efficient than exist-
ing XML and SOAP toolkits where validation is enforced
separately [5, 65, 77] (e.g., it runs six times faster than gSOAP
[77]). Yet, TDX’s performance is shown to be comparable
(and even lower) when evaluated against a non-validating
schema-specific SOAP parsing approach [74].

a. Traditional SOAP (XML-based) parsing.

b. Differential SOAP parsing.

Fig. 6. SOAP parsing.

Instead of focusing on a specific phase of SOAP parsing,

such as lexical analysis, or limiting the range of SOAP ele-
ments validation, more recent proposals in [45, 70, 71] focus
on differential parsing, exploiting the similarities between
SOAP messages, in order to skip unnecessary parsing alto-
gether (including character encoding, lexical analysis, and
validation) as depicted in Fig. 6.b. In the following, we dis-
cuss the main approaches to differential SOAP parsing.

Template-based: T-SOAP [70] makes use of a prede-

fined template, modeled via a finite state automaton (FSA),
memorizing the basic structure of the SOAP messages, ex-
tracted from the corresponding WSDL definition schema1. It

SOAP Template (s) SOAP message

Character encoding

Validation and Event

construction

Lexical analysis

Different

parts

Recorded

 events

Generated

events

Parser events

Traditional parser

Event rendering

Similarity Evaluation and Diff calculator

Matched

parts

01011110101000100100101111001001001 Bytes

Characters

Character encoding

Lexical analysis

Validation and Event construction

„<‟„S‟„O‟„A‟„P‟„:‟„E‟„n‟„v‟„e‟„l‟„o‟…

StartTag = “SOAPEnvelope”…Text =”Fiat”…
Parser

Events

<SOAP:Envelope>…<Product>Fiat</Product>…</SOAP:Envelope>

“<”SOAP:Envelope”“>”…“<”“Product”“>”“Fiat”…
Lexical

tokens

OVERVIEW ON SIMILARITY-BASED SOAP PROCESSING PERFORMANCE ENHANCEMENT 7

allows the identification of invariant and variable tag parts in
the SOAP messages. Consequently, each incoming SOAP
message is matched to the predefined template, and only
those parts of the message, which correspond to variable
parts in the template, are parsed (the invariant parts being
already parsed in advance). While it induces a significant
gain in processing time, in comparison with classic SAX [47]
and DOM [84] parsers, a major limitation of T-SOAP [70] is
its restriction to messages conforming to the same basic
structure. In other words, a SOAP message with a structure
different than that underlined in the predefined template
would not benefit from T-SOAP [70] and would have to be
parsed from scratch. 3 [34]

Multiple Templates: In [45], the authors propose a more

dynamic approach by managing multiple templates based on
actual SOAP message structures, instead of using a single
predefined schema structure. Incoming messages are first
matched against the automaton, describing multiple message
templates merged together. If the message matches any of
the templates, then parsing is undertaken w.r.t. the variable
parts of the corresponding template, similarly to [70]. Oth-
erwise, parsing is undertaken via an ordinary DOM-based
processor [84], and a new template corresponding to the
unmatched message is created and appended into the auto-
maton, to be exploited in upcoming parsing operations.
While this technique provides more flexibility than T-SOAP
[70], the authors in [45] underline that their method requires
more memory for storing the combined automaton, and ad-
ditional processing time for updating the latter with new
message templates. Experimental results in [45] show how-
ever that the proposed approach performs better, in time and
memory usage, than classic SAX [47] and DOM [84] parsers.

Detecting Repeatable Structures: An extension to the

approach in [45] is provided in [71]. The authors in [71] in-
troduce an improved automaton, able to consider repeatable
structures in SOAP messages, which are not considered in
[45]. That is because the automaton in [45] is string-based
and processes SOAP messages as a series of invariant and
variable sections of string characters (i.e., byte sequences),
whereas the new automaton in [71] considers the XML syn-
tax (e.g., XML tagging) in its definition of states and state
transitions. Detecting repeatable structures allows reducing
the number of templates to be appended to the automaton,
the latter becoming more expressive. Consequently this al-
lows reducing memory and processing time needed for stor-
ing and updating the automaton respectively, thus further
enhancing parsing performance. Experimental results in [71]
show improved memory usage and time performance w.r.t.
the approach in [45], as well as a classic DOM parser [84].

Note that both methods described in [45, 71] have been
developed in the context of WS-Security processing. Their
main objective is therefore to improve security policy evalua-
tion performance, by repetitively applying security rules
only on those parts of SOAP messages which are different,

1 A FSA is usually modeled as (P, Σ, ps, F, δ) where: P is a set of states, Σ
the set of labels, ps P is the start state, F P is a set of final states, and
δ: e × R p is a transition function where e ∈ Σ, R is an expression
over P, and p ∈ P [34]. Standard procedures for producing automatons
and testing the membership of data instances w.r.t. automatons have
been thoroughly studied in language theory [34].

processing the common parts only once. Yet, other methods
aimed at improving security policy evaluation performance
have been proposed in the context of SOAP message multi-
casting [6, 14] (which is discussed subsequently). Thus, for
clearness of presentation, we disregard security aspects in
this section, and provide a unified view of SOAP security
policy evaluation performance, covering all related methods,
in Section 3.3.

3.1.3 SOAP De-serialization

De-serialization is the process of converting XML messages
to in-memory application objects, to be processed by the ser-
vice executor. It can be viewed as the symmetric function of
serialization. Recall that with serialization, the SOAP mes-
sage is the target for recycling, whereas with de-serialization,
the target is an application object.

Approaches to improving SOAP de-serialization per-
formance build on the observation that memory object crea-
tion, based on SOAP XML messages, is an expensive task
(mainly due to data-type transformation – conversion from
ASCII-based textual representation to in-memory numeric
types, and the processing of the XML tree hierarchy [68]).
Hence, the main idea is to avoid fully de-serializing each
incoming message, by exploiting already constructed objects
which were de-serialized previously. In other words, de-
serialization is differential and is only applied to those por-
tions of the SOAP messages which have not been de-
serialized previously. To our knowledge, two studies have
been developed in this direction, which we identify as auto-
maton-based [68] and checksum-based [1]. We also stumbled on
a more recent approach, XML Screamer [39], which promotes
tight integration between software layers to avoid unneces-
sary de-serialization processing.

Automaton-based: The authors in [68] propose an au-

tomaton-based approach, consisting of two main functions.
The first consists in generating an automaton based on in-
coming SOAP messages (similarly to SOAP parsing ap-
proaches in [45, 70]), and then conducting de-serialization in
the usual way, creating a link between the defined automa-
ton and the application object. The second function is to
match an incoming message with the existing automaton,
and if matched, return the linked application object to the
SOAP engine after partially de-serializing only the portions
that differ from previous messages. The de-serialization ap-
proach described in [68] could exploit the methods in [45, 70,
71] in building the de-serialization automaton. Recall that
SOAP parsing and de-serialization are complementary oper-
ations, and allow SOAP message analysis (Fig. 1).

Checksum-based: In [1], the authors propose to periodi-

cally checkpoint the state of the de-serializer and to compute
checksums4 for portions of the incoming SOAP messages. In
short, the de-serializer runs in one of two modes: regular and
fast. In regular mode, the de-serializer processes SOAP mes-
sage tags and contents as a normal SOAP de-serializer, creat-
ing checkpoints and corresponding message portion check-
sums along the way. It switches to fast mode once it recog-
nizes that the parser state is the same as one that has been
saved in a checkpoint. In fast mode, the de-serializer com-
pares the sequence of checksums against those associated to
the most recently received message. If the checksums match,

8

then the already de-serialized objects corresponding to the
portions of the SOAP message at hand are exploited in a
straightforward manner, without additional processing.
Otherwise, when a checksum mismatch occurs, the system
switches from fast to regular mode, where it processes SOAP
tags and contents as a normal de-serializer.4

The authors discuss and experimentally validate the per-
formance of their approach, considering the relation between
i) the amount of similarity between incoming messages,
which otherwise determines the percentage of time the de-
serializer spends in fast mode, ii) how quickly the system can
recognize the need to switch modes (from fast to regular, and
vice-versa), and iii) the overhead of creating checkpoints,
and comparing checksums.

Fig. 7. Comparing regular de-

serialization and full differential de-

serialization time [1].

Fig. 8. Comparing XML Screamer

[39] with traditional SOAP

toolkits [5, 65].

On one hand, if the new message is completely different
from the previous one (which is the worst case scenario), the
differential de-serializer runs slightly slower than a normal
de-serializer since it does the same work, plus the added
work of calculating and comparing checksums. On the other
hand, when all checksums match, i.e., when the new mes-
sage is identical to the previous one (which is the best case
scenario), the cost of de-serialization is replaced by that of
computing and comparing checksums, which is significantly
faster (speedups up to 41 times have been recorded by the
authors, cf. Fig. 7). The authors also mention that using
checksums to match portions of SOAP messages can be er-
ror-prone, (since checksums themselves are not perfect by
definition), but the possibility of changes going undetected is
extremely low, in comparison with the substantial gain in
performance.

Note that both methods in [1, 68] have not been eva-
luated w.r.t. each other, so as to compare their relative im-
provements in SOAP de-serialization performance.

XML Screamer: In a more recent study, the authors in-

troduce XML Screamer [39], an optimized system providing
tight integration across levels of software, combining: i)
schema-based XML parsing (character encoding, token ex-
traction, and validation) and ii) de-serialization, in one single
processing layer (as opposed to separate layers - Fig. 6.a), in
order to avoid unnecessary data processing, copying
(to/from memory), and data-type transformations. The au-
thors adopt a design principle requiring that each character
and/or string in the input document be ‘visited’ only once (if

1 A checksum is a fixed size datum computed from a block of digital data
(of fixed and/or variable size) to detect accidental errors that may occur
during transmission or storage [50].

possible), so as to reduce repeatable scans of the same data
and corresponding unnecessary overhead (e.g., tests to verify
whether a character is an angle bracket ‘>’, or an expected
element name character, are performed only once following
[39], whereas such tests are repeated multiple times - during
parsing, and de-serialization - in traditional XML/SOAP
toolkits). Experimental results in [39] show that XML Screa-
mer delivers from 2.3 to 5.3 times the throughput of tradi-
tional SOAP toolkits [5, 65] (cf. Fig. 8).

Note that the combination of software layer integration

optimization [39], with similarity-based SOAP parsing [45,
70, 71] and de-serialization [1, 68], has not been investigated
to date. We believe this to be a very interesting research topic
which could yield promising performance improvements in
the near future.

3.2 Methods for Reducing Network Traffic

Another major drawback of using SOAP is its voracity for
bandwidth, compared to competing solutions such as COR-
BA [54] and Java RMI [66]. Even though today’s networks
can be powerful enough to provide sufficient bandwidth, the
latter remains crucial in several applications, namely in mo-
bile computing [59] (e.g., wireless and cellular platforms), as
well as sensor networks [81]. In this context, the problem of
SOAP bandwidth reduction has been investigated on two
levels: i) SOAP compression [81] in order to reduce message
size prior to transmission, and ii) SOAP multicasting [58, 59]
so as to optimize SOAP traffic travelling on the wire.

3.2.1 SOAP Compression

Various methods have been proposed for classic text and
XML compression, namely gzip [20], WBXML [46], XMILL
[42], and ESAX [9]. Text compression techniques (e.g., gzip)
could be exploited with XML-based data (e.g., SOAP), since
the latter are usually stored as ASCII-based text files. None-
theless, a comparative study conducted in [81] showed that
existing compression methods for classic XML documents
might not always be appropriate in the context of SOAP.
That is due to the fact that SOAP messages are of relatively
smaller sizes (a few kilobytes), in comparison with other
kinds of XML-based documents (e.g., SVG [85], MPEG-7
[52]…, usually in the order of hundreds of kilobytes). Hence,
existing compression methods might yield coding tables (i.e.,
tables mapping symbols to their bit codes) which require
more space than the original SOAP messages themselves [81]
(cf. Fig. 9.a). In other words, compression results for large
files are not necessarily transferable to small files, which is
the case of SOAP messages. Following this observation, the
authors in [81] propose a differential compression frame-
work specifically aimed toward SOAP messages, exploiting
the similarities between SOAP messages sent or received by
the same service. The approach is based on XML differential
encoding, which basically means that only the differences
between SOAP messages should be sent over the wire. In
brief, the authors exploit the WSDL schema definition to
generate a SOAP message skeleton (the same would be
available at the sender/receiver sides) describing the struc-
ture and tagging of corresponding SOAP messages (i.e.,
SOAP element/attribute names and corresponding par-
ent/child relations, disregarding values). Consequently, only
the differences between the SOAP message and the prede-

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(i

n
 M

B
/S

ec
)

Test ID (varying docs/schemas)

Xerces Expat Screamer

OVERVIEW ON SIMILARITY-BASED SOAP PROCESSING PERFORMANCE ENHANCEMENT 9

fined skeleton are transmitted, along with corresponding
SOAP message element/attribute values. The differences in
structure and tagging, as well as element/attribute values,
are consequently patched to the same skeleton at the receiver
side in order to reconstruct the original message.

The authors argue that the effectiveness of their method
depends on the degree of resemblance between the generat-
ed skeleton and the actual SOAP messages, which strictly
influences compression rate: a higher resemblance yields
smaller difference files, which in turn underlines a higher
compression rate. They test two existing implementations of
XML diff encoding tools (XUpate [41] and DUL [51]) in their
experimental evaluation, proving that their approach yields
better compression rates than existing XML-based compres-
sion techniques (Fig. 9).

a. Compression results on small
files.

b. Compression results on relatively

larger files.

Fig. 9. Comparing the effectiveness of differential SOAP compression,
in comparison with alternative text-based (gzip [20]) and XML-

based (XMILL [42]) techniques.

The authors evaluate the execution speed of their ap-
proach, and show that it is slower that gzip [20], which in-
troduces a major computational burden w.r.t. service execu-
tion time. In fact, gzip itself has been shown to be computa-
tionally expensive, exceeding the combined cost of XML se-
rialization and data transport over LANs [28, 73]. Thus,
while SOAP compression seems central in reducing network
traffic, particularly when network bandwidth is very limited,
its execution time underlines an equally serious drawback,
which (to our knowledge) remains an open problem.

3.2.2 SOAP Multicasting

Another approach to reduce SOAP network bandwidth con-
sumption would be to perform multicasting, a well-known
technique that allows to conserve network bandwidth in
applications where the same data is to be transmitted to mul-
tiple clients [86]. The main idea is to avoid sending replicated
unicast messages over the wire by simultaneously delivering
identical messages to a group of destinations, in a single ag-
gregate message, only creating copies when the network
links to the multiple destinations split [59, 86]. In general,
multicasting would be effective when the number of receiv-
ers for a given service is sufficiently large and there is suffi-
cient commonality in their interests, which happens to be the
usual case with SOAP [59].

In this context, the authors in [59] put forward SMP, a
Similarity-based SOAP Multicasting Protocol. It is built on
top of SOAP unicast, and does not rely on low level (IP) mul-
ticast, in order to avoid complex network configurations at
intermediate nodes (hubs and routers). In addition, SMP’s
main contribution and originality consists in grouping and
transmitting together similar SOAP messages, and not only

identical messages such as with traditional (IP) multicasting.
An SMP message consists of two parts: SMP header and SMP
body. The SMP header stores the addresses of destinations to
which the messages should be sent. The SMP body is com-
posed, in turn, of two parts: the common part section contain-
ing common values of the messages, and distinctive part sec-
tion containing the different parts of each message. The ag-
gregate SMP message is consequently encapsulated within
the body of a classic SOAP message, which header encom-
passes the address of the next router along the path to all
intended recipients. Each midway router would parse the
SMP header and examine its routing table to decide the next
hops for each client address. The router then separates client
addresses into groups, splits the SMP message accordingly,
and forwards the appropriate information to the next hop.
The SMP message is split so that only relevant information
(i.e., information destined to the designated clients) is sent
down the stream path. During splitting, multiple copies of
the input message are first produced, one for each down-
stream link that the router connects to. The client list in each
newly generated message header includes only those desti-
nations that will be routed through that hop. Distinctive
items in the original SMP message are analyzed and re-
moved if they are not intended for clients beyond the next
hop. The common part is obviously replicated in all outgoing
messages. If the next hop connects directly to an end-point
service, a standard SOAP unicast message is extracted from
SMP and sent to the client service component.

The authors exploit an XML-based similarity measure
[44] to quantify the resemblance between SOAP messages, so
as to only aggregate the most similar ones. In addition, a
dedicated indexing technique is also introduced to reduce
SOAP message size by omitting full tag names and leverag-
ing the organization of common and distinct parts in the
SMP message.

In a subsequent study [58], the authors propose an en-
hanced routing protocol to further improve the performance
of their SMP multicasting approach. In their original propos-
al [59], they used Dijkstra’s Open Shortest Path First (OSPF)
routing algorithm, which routes the message using the
shortest path from a source to a destination. In their later
study [58], the authors introduce tc-SMP (traffic constrained
SMP) exploiting a similarity-based routing algorithm for
transmitting messages following paths which maximize
shared links between highly similar messages. This allows
optimizing SMP network traffic distribution and thus further
reducing overall network traffic (cf. Fig. 10.a).

a. Total network traffic.

b. Average response time.

Fig. 10. Comparing network traffic and average response time with
tc-SMP [58], SMP [59], traditional multicasting and unicast (re-

ported from [58]).

0

25

50

75

100

125

150

175

M
e

ss
ag

e
 s

iz
e

 (
in

 B
yt

e
s)

0

25

50

75

100

125

150

175

200

225

M
e

ss
ag

e
 s

iz
e

 (
in

 K
B

)

10

The authors also evaluate the performance penalty, in
response time, of tc-SMP and SMP over traditional multicast-
ing (simply multicasting identical messages) and unicast
transmissions (cf. Fig. 10.b). It is mainly due to the
processing overhead required to measure the similarity be-
tween messages and aggregate similar ones (for both tc-SMP
and SMP), as well as setting up the routing tree (in the case
of tc-SMP). In short, results show that tc-SMP induces an
average 3.5 to 5 times reduction in network traffic, compared
to an average 2.5 times increase in average response time,
which is considered acceptable by the authors, particularly in
scenarios where bandwidth is limited such as with wireless
and sensor networks.

In addition to network traffic optimization with classic
SOAP message communications, differential SOAP multi-
casting (SMP) has been recently investigated in the context of
secure SOAP message exchange [6, 14], in order to improve
SOAP security policy evaluation performance.

3.3 Improving SOAP Security Policy Evaluation
Performance

In the past few years, the growing demand on mission-
critical WS applications (e.g., financial transactions, stock
market…), has underlined an urgent need to provide trust-
worthy and secure services [48]. Nonetheless, security provi-
sion may introduce a substantial additional overhead, which
has motivated researchers to start investigating the impact of
security policy evaluation on WS performance.

WS-Security policy evaluation [19] consists in checking
and verifying the access and usage security constraints de-
fined on SOAP messages. It is performed both at the client
and server application end-points, each w.r.t. its own policy
rules (cf. Fig. 1). A WS-Security policy usually underlines a
set of rules (actions), specifying security constraints (e.g.,
authorizations, signatures, encryption…) on particular SOAP
elements and contents [6, 15]. A security policy rule can be
characterized in a 3-tuple entity: (subject, object, rule), where
subject identifies the users to whom the rule applies, object
identifies to which messages, or portions of messages, the
corresponding policy rule applies, and rule specifies the ac-
tions (e.g., access, signature or encryption [6]) authorized for
the policy subject (user), on the policy object. Consider for
instance the XML-based security rules in Fig. 11. The first
rule allows service points with role ‘booking agency’ to
access encrypted credit card numbers of client requests, whe-
reas the second rule denies subjects with role ‘customer’
from accessing credit card numbers of other clients.

1 <subject><role>BookingAgency</role></subject>
 <object>//BookingConfirmation/CreditCardNb</object>
 <rule>
 <Access>Allowed</Access>
 <Encrytption>AES</Encryption>
 </rule>

2 <subject><role>Customer</role></subject>
 <object>//BookingConfirmation/CreditCardNb</object>
 <rule>
 <Access>Denied</Access>
 </rule>

Fig. 11. Sample SOAP security policy rules (expressed in XML).

The need for evaluating WS-Security policies may intro-

duce additional overhead, which in some cases dwarfs the
latency of standard SOAP message processing. The results

of [37] show that WS-Security policy evaluation can cause: i)
an increase in SOAP response time by a factor of 3 on aver-
age, ii) a substantial increase in network traffic (SOAP mes-
sages size) by a factor 6.9 in overall (regardless of the type of
data, e.g., integer, double, string…, being exchanged). In this
context, a few proposals have addressed the issue of improv-
ing SOAP security policy evaluation performance through
improving other underlying techniques, namely parsing [45,
71], caching [76] and multicasting [6, 14]. Methods for im-
proving SOAP parsing performance, e.g. [45, 71], consist in
parsing and simultaneously processing the SOAP message
for security evaluation, providing the de-serializer module
with the parsed output message (or parts of the message) the
destination client is allowed to access. Simultaneous parsing
and security policy evaluation is undertaken via automatons
(cf. Section 3.1.2) which consider both the parser context and
security context, at the same time, for each incoming SOAP
message. In other words, security-enabled parser automa-
tons identify SOAP events (e.g., opening element tag, ele-
ment text…) which correspond to classic parsing events, as
well as their corresponding policy rules (e.g., authorization,
signature or encryption schemes, allowing security
processing), so as to process SOAP messages accordingly.
These methods have been discussed in Section 3.1.2.

In [76], the authors investigate various techniques for
WS-Security performance optimization, including digest-
based caching, pre-hashing, and on-demand canonicaliza-
tion. They propose to store the de-serialized objects of digi-
tally signed XML messages in cache, and then match the IDs
and digest hash values of inbound elements to the objects in
the cache, to be retrieved and utilized in case of a cache hit.
Similarly, the digest hash value for each signed element in
the outbound message is stored in the cache, along with its
serialized content, so as to re-serialize and re-hash (in subse-
quent message exchanges) only those objects which are dif-
ferent. The authors show that the digest-caching and pre-
hashing methods reduce overhead by a factor of 3 to 4 [76],
at the expense of increased memory use (which they do not
experimentally quantify). The authors also investigate on-
demand canonicalization [75] (i.e., re-canonicalizing contents
only when the signature verification fails), and show that it
effectively improves performance when more than 88% of
the WS-Security messages need not be re-canonicalized (oth-
erwise, it might introduce additional overhead) [76].

Approaches in [6, 14] discuss and compare different
scenarios where SOAP multicasting, namely SMP [59], could
improve policy evaluation performance. In [14], the authors
focus on a single sender/receiver SOAP message exchange
scenario. They discuss how policy evaluation could be per-
formed on an aggregate SMP message so as to only repeat
policy evaluation processing on the SMP common part sec-
tion once. Following the authors, security policy evaluation
would be only repeated on those parts of the SOAP messages
which are distinctive, inducing a substantial gain in
processing time. In a subsequent study [6], the authors ex-
tend their discussion to multiple scenarios, with multiple
senders/receivers, and investigate different approaches to
improve SOAP signing/encryption through multicasting.
They discuss different strategies for achieving optimal order-
ing of signing and multicasting operations, such as Sign-Join-
Split-Verify and Join-Sign-Split-Verify. Fig. 12 depicts the clas-
sic approach, and the one ultimately adopted by the authors.
They conclude that the best strategy, minimizing processing

OVERVIEW ON SIMILARITY-BASED SOAP PROCESSING PERFORMANCE ENHANCEMENT 11

time and thus maximizing the gain in performance, would be
to i) first aggregate the SOAP messages (Join), ii) process the
aggregate SMP message for signing/encryption (Sign), iii)
transmit the signed/encrypted aggregate message to the
receiver where it is first checked w.r.t. the latter’s policy rules
and processed for signature recognition and decryption (Ve-
rify), and then iv) decompose the SMP message to recon-
struct the original SOAP messages (Split, cf. Fig. 12.b).

a. Traditional approach.

*

b. Proposed approach.

Fig. 12. Different scenarios to security policy evaluation.

Experimental results to quantify the actual gain in per-

formance are not provided in [6], the corresponding proto-
typical implementation being under development. Indeed,
research on the interplay between WS-Security policy evalu-
ation and SOAP multicasting is still at a preliminary stage.

3.4 Parallelization and Hardware Approaches

Despite of the various kinds of software optimizations to
improve SOAP and XML processing performance, no parser
software can process input faster than its supporting hard-
ware accesses data. With most current XML software toolkits,
the maximum processing rate usually attains a best of tens of
clock cycles per character [39] (a simple character-scanning
loop runs at about 100 Mbytes/second on a 1 GHz Pentium
processor, which amounts to 10 cycles/byte [39]), and that for
many XML applications can result in processing rates of the
order of hundreds of clock cycles per character (traditional
parsers, e.g., [5, 65], perform in the range of 2.5–6 Mbytes of
input per second or 160–400 cycles/byte, with a penalty of
between 16x and 40x [39]). Recent benchmarking works in
[32, 33] demonstrate that most existing implementations of
WS do not scale well when the size of the SOAP/XML docu-
ment being processed is increased. The authors in [32, 33]
argue that most existing software toolkits are typically de-
signed to process small-sized XML datasets, and thus are not
suited for large-scale computing applications, e.g., [25, 62].
Hence, recent studies have attempted to alleviate the limita-
tions of XML software performance bottlenecks by applying
non-traditional parallel processor architectures, e.g., [8, 23,
30, 36, 55, 78]. On one hand, general-purpose (scalar) proces-
sors are characterized by the sequential nature of instruction
execution, where instructions are selected based on their
sequential memory addresses, conditions being evaluated
one at a time. On the other hand, XML processing usually
requires the evaluation of multiple conditions of various
types that can occur simultaneously, namely during XML
string and character parsing (e.g., verifying character integri-
ty, whether an end tag matches a previously processed start
tag, whether an attribute name is unique for a given element,
and so on). Hence, the nature and frequency at which XML
processing conditions occur result in a less predictable in-

struction flow, which calls for higher processing parallelism
to improve performance [8, 78].

Parallel processing solutions can be roughly classified
according to the level at which the hardware supports paral-
lelism [13], namely: bit-level, data-level, and instruction-
level. In addition to single-node parallelism, a.k.a. micro-
parallelism (achieved on a single computer system, with
multiple processing units connected via the same bus and
sharing the same memory), recent XML-related studies [23,
30, 31] have addressed cluster computing, a.k.a. macro-
parallelism (i.e., distributed computing on large datasets of
computer clusters). In the following, we provide a concise
overview of the most prominent XML and SOAP parallel
processing methods in the literature, roughly organized fol-
lowing the type of parallelism they achieve.

Bit-Level Parallelism: It consists in increasing the pro-
cessor word size (i.e., the amount of bits the processor can
manipulate per cycle) and optimizing the inner-processor
architecture so as to reduce the number of instructions the
processor must execute to perform operations on variables
whose sizes are greater than the length of the word, and thus
gain in processing rate. In this context, the authors in [78]
introduce ZUXA, an XML accelerator engine which provides
a processing model optimized for conditional execution in
combination with dedicated instructions for XML character
and string-processing functions. It is based on a programma-
ble XML Finite State Machine technology, B-FSM, specifically
tailored to provide high XML processing performance (a
processing rate of one state transition per clock cycle), wide
input and output vectors (with words of at least 64 bits for
each transition), storage efficiency (to allow cost-efficient use
of fast on-chip memory technologies), as well as full pro-
grammability (supporting fast incremental updates, allowing
dynamic addition/removal of states and transitions), and
scalability to tens of thousands of states and state transition
rules. Related hardware solutions have been developed in
the industrial arena, e.g., Datapower [16], which exploits
Just-In-Time virtual machine technology [40] and ASICs cus-
tomized for XML processing.

Data-Level Parallelism: Also known as SIMD (Simple
Instruction Multiple Data), data-level parallelism describes
computer systems with multiple processing elements that
perform the same operation on multiple data simultaneously.
An application that may take advantage of data-level paral-
lelism is one where the same operation is being executed on
a large number of data points, which is a common operation
in many multimedia applications (e.g., image/video render-
ing and filtering), as well as in XML parsing and lexical anal-
ysis (e.g., reading input characters, and identifying string
tokens). Parabix [8] is an XML parser designed to exploit the
data-level parallelism capabilities of modern processors to
deliver performance improvements over the traditional byte-
at-a-time parsing technology. A byte-oriented character data
is first transformed to a set of 8 parallel bit streams, each
stream comprising one bit per character code unit. Character
validation, transcoding, and lexical item stream formation
are all then carried out in parallel using bitwise logic and
shifting operations. Byte-at-a-time scanning loops in the
parser are replaced by bit scan loops that can advance by as
many as 64 positions with a single instruction. Experimental
results in [8] show that Parabix performs substantially better

C1

C2

S
p

li
t

Jo
in

V
er

if
y

 S1

S2
 S

ig
n

S
ig

n

C1

C2

S
ig

n

V
er

if
y

V

er
if

y

Jo
in

S
p
li

t

S1

S2

12

than traditional XML parsers: ranging from twice as fast as
Expat [65], to an order of magnitude faster than Xerces [5].

Instruction-Level Parallelism: It is a processing para-
digm which underlines the re-ordering and combination of
instructions into instruction sets, which are then executed in
parallel without affecting the result of the program. Instruc-
tion-level parallelism could be achieved in a number of ways
to improve XML parsing performance, namely through i)
pipelining, and/or ii) multi-processing (a.k.a. superscalar
computing) [13]. On one hand, pipelining allows splitting the
processing of an instruction into a series of independent
steps, executed in parallel by different threads. On the other
hand, multi-processing allows the execution of more than
one instruction during a clock cycle, by simultaneously dis-
patching multiple instructions to redundant execution units
on the processor. Superscalar processors are identified as
multi-core when their constituent processing units are em-
bedded in the same processor chip. While pipelining may
provide significant speedup, XML software pipelining is
often hard to implement due to synchronization and memo-
ry access bottlenecks, and to the difficulties of balancing the
pipeline stages [55]. Hence, most studies in the context of
XML and WS have focused on multi-processing solutions.
One prominent approach is the Meta-DFA project [43, 56],
introducing a parallelization method that uses a two-stage
DOM parser. The main idea is to divide the XML document
into chunks, such as multiple threads would work on the
chunks independently. The first stage consists in pre-parsing
the XML document, to determine its logical tree structure
(made of start and end tag node references). This structure is
then used in a subsequent stage to divide the XML document
such that the divisions between the chunks occur at well-
defined points in the XML grammar. As the chunks are
parsed, the results are then merged. In a following study
[55], the authors investigate static partitioning and load-
balancing in order to minimize thread synchronization over-
head. The authors in [56] show that their technique is effec-
tive and scales to large numbers of cores (up to 30 cores).
Nonetheless, the authors discuss that while DOM-style pars-
ing can be intuitive and convenient with applications requir-
ing random access/manipulation of XML-based data, none-
theless, it can also be memory-intensive, both in the amount
of memory used (to store the DOM structure), and in the
high overhead of memory management [43, 55].

In a related project by Head et al., the Piximal toolkit [23,
30, 31] presents a parallelized SAX parsing solution, focusing
on a different class of applications than the DOM-based Me-
ta-DFA project, tailored around event-streams and fast se-
quential access of XML-based data. Piximal conducts parsing
dynamically, and generates as output a sequence of SAX
events. It results in a larger number of parser states and state
transitions, underlining more opportunities for paralleliza-
tion optimization, and scaling well with increasing numbers
of processing cores. Experimental results demonstrate that
the level of speedup obtainable using Piximal’s micro-level
parallelization techniques can be limited due to: i) memory
bandwidth, which could become a bottleneck [31], and ii) the
amount of computation required to parse the input, which
would induce little performance gain if the computation re-
quired is small in comparison to the time required to access
the bytes of the input in memory [23]. Hence, the authors
in [23, 30, 31] also address macro-level parallelism.

They investigate the distributed processing of large-scale
XML data stored in a cluster, by applying Google’s MapRe-
duce processing paradigm [18]. The simplicity and robust-
ness of the MapReduce model, as well as its relaxed syn-
chronization constraints, tend to work favorably for large-
scale XML data sets and WS computing environments [23].
Experimental results on Piximal’s macro-level parallelization
technique show that securing additional resources for each
thread by distributing the workload to a cluster of machines
using MapReduce can increase performance [23, 30, 31].
Nonetheless, the authors also show that if not enough
processing is taking place on each cluster, the latter would be
burdened with redundancy checks and network traffic for
just small chunks of input. The authors conclude that when
computation is not sufficient enough to offset communica-
tion latencies due to the number of running computers, a
single node, which minimally suffers from the same condi-
tion, would perform better than a cluster of computers.

4 ONGOING CHALLENGES

Despite the wide array of techniques proposed to enhance
SOAP processing performance, yet various challenges and
limitations remain unaddressed. Three major hurdles remain
to the wide adoption of similarity-based techniques.

First, while similarity-based methods have been shown
in many cases to produce a significant gain in speed-up
when many similar messages are involved [69], as well as a
noticeable reduction in network traffic [58], nonetheless, si-
milarity computations can sometimes introduce additional
overhead on their own (as shown with SOAP compression
[81] and multicasting [58, 59]), especially when the SOAP
messages being processed are fairly different (i.e., not similar
to the documents processed before). Hence, a comprehensive
empirical analysis addressing the trade-off between: i) the
amount of additional processing overhead, and ii) the
amount of processing time and network traffic reduction,
induced by similarity-based approaches, is required in order
to identify and better understand each method’s optimum
usage constraints (e.g., percentage of similar SOAP messag-
es, amount of inner-message similarities, number of messag-
es, and so on).

Secondly, interference and synergy between different
similarity-based techniques is not yet completely unders-
tood. One can realize that the various techniques covered in
the paper are not mutually exclusive, but are rather comple-
mentary. For instance, similarity-based methods to SOAP
serialization, parsing, and de-serialization could very well
exploit XML parallel processing architectures so as to better
improve their clock cycle character processing rates. In addi-
tion, software-based methods could make use of tight inte-
gration architectures, such as in [39], so as to avoid re-
peated/unnecessary data processing, copying to/from
memory buffers, and expensive data-type transformations
(ASCII/UTF to in-memory types, and vice-versa). In this
context, recent efforts have been made toward combining
efficient SOAP multicasting, on one hand, with fast security
policy evaluation on the other hand (as discussed in Section
3.3). Nonetheless, corresponding techniques are still in their
preliminary stages. Comparative theoretical and experimen-
tal studies are required to better understand the interplay
and actual gain in performance between WS-Security policy
evaluation and SOAP multicasting.

OVERVIEW ON SIMILARITY-BASED SOAP PROCESSING PERFORMANCE ENHANCEMENT 13

TABLE 1.

Characteristics of Existing (Similarity-based) SOAP Performance Enhancement Approaches.

Performance
SOAP

Processing
Approach Features

R
ed

u
ci

n
g

 R
es

po
n

se
 t

im
e

an
d

 i
n

cr
ea

si
n

g
 T

hr
ou

gh
pu

t

S
er

ia
li

za
ti

o
n

 Abu-Ghazaleh

et al. [4]

bSOAP, differential serializer:
- DUTs (Data Update Tracking), tracking between in-memory data, and their serialized representa-

tions.

- Dirty bits to identify fields whose values changed, recognizing parts to be reused.
Abu-Ghazaleh

et al. [2, 3]
bSOAP buffer management:

- Padding and chunk overlaying to allow on-the-fly message expansion.

Devaram and

Andersen [21]

Client-side SOAP message caching:
- Indexing structures to detect correspondences between cached and outgoing messages.

- Does not address partial structural matches (only caches identical structures).

P
ar

si
n

g

Zhang and Van

Engelen [87]

TDX: Table Driven XML parsing
- Combining the lexical analysis and validation

- Pre-recording parser states as grammar productions in tabular form, and breaking up the SOAP

message into a token stream

Takeuchi et al.

[70]

T-SOAP, template-based differential parser:
- Predefined template, modeled via a finite state automaton (FSA).

- Identification of invariant/variable tag parts in the SOAP messages.

- Variable parts are only parsed.

Makino et al. [45]

Multi-template differential parser:
- Appending new templates to the FSA,

- More flexible than T-SOAP [70] (bound to one single template),

- Requires more memory that T-SOAP.

Teraguchi

et al. [71]

Detecting repeatable structures:
- Improved XML-based automaton, to consider repeatable structures in SOAP messages, in compari-

son with string-based ones in [45, 70],

- More expressive automaton, reducing memory and time consumption.

 Kostoulas et al.

[39]

XML Screamer:
- Tight integration across software levels,

- Combines parsing and de-serialization in one layer, so as to avoid unnecessary data processing,

copying (to/from memory), and data-type transformation.

D
e-

S
er

ia
li

za
ti

o
n

 Suzumura

et al. [68]

Automaton-based approach:
- Classic de-serialization and automaton creation,

- Matching messages to automaton and only de-serialising those different portions (could comple-

ment parsers in [45, 70, 71])

Abu-Ghazaleh

and Lewis [1]

Checksum-based approach:
- Regular mode, periodically checkpointing de-serialiser state,

- Compare checkpoints, and switches to fast mode, when parser state is similar to state saved in pre-

vious checkpoint,
- Checksumming is fast, yet error prone.

Makino et al.

[45], Teraguchi et

al. [71]

Security-based SOAP message parsing:
- Automatons to consider both the parser context and security context,

- Identifying SOAP events (tags, text…) and their corresponding policy rules (authorizations, signa-

tures…)

R
ed

u
ci

n
g

 N
et

w
or

k
tr

af
fi

c

S
ec

u
ri

ty

P
o

li
cy

E

v
al

u
at

io
n

Damiani and

Marrara [14]

Security-based SOAP multicasting:
- Single sender-receiver scenario,

- Policy evaluation on aggregate SMP message [59],

- Policy evaluation repeated only on those parts of SOAP messages which are different.

Azzini et al. [6]

Security-based SOAP multicasting:
- Multiple senders/receivers scenario

- Different approaches to improve SOAP signature/encryption (Sign-Join-Split-Verify, Join-Sign-Split-

Verify…),

- Best strategy is join-sign-verify-split.

 Van Engelen and
Zhang [76]

WS-Security performance optimization:
- Digest-based cashing, storing and using de-serialized digitally signed objects,

- Pre-hashing, storing and using digest values of digitally signed objects,

- On-demand canonicalization, re-canonicalizating contents only when the signature verification fails.

C
o

m
-

p
re

ss
io

n

Werner et al. [81]

Differential compression:
- XML differential encoding (tree edit distance),

- Identifying differences between SOAP messages and predefined WSDL-based SOAP templates,

- Only differences are transmitted,
- Patching differences with the same skeleton at the receiver side, to reconstruct the original message.

M
u

lt
ic

as
ti

n
g

Phan et al. [59]

SMP, Similarity-based SOAP Multicasting Protocol:
- Built on top of IP unicast (avoiding complex network configurations),

- Grouping and transmitting together similar SOAP messages (not only identical ones such as with

classic multicasting),

- SMP message encapsulated in classic SOAP message, with common and distinct parts.

Phan et al. [58]

tc-SMP, traffic constrained SMP:
- Enhanced routing protocol for transmitting messages following paths which maximize shared links

between highly similar messages,

- Reducing traffic in comparison with the OSPF-based SMP [59].

14

TABLE 2.

Characteristics of SOAP and XML-based Parallellization and Hardware related approaches.

Performance
SOAP

Processing
Approach Features

M
ic

ro
-P

ar
al

le
li

sm

B
it

-l
ev

el

Van Lunteren et

al. [78]

ZUXA XML Accelerator Engine:
- Increasing processor word size, i.e., the amount of bits the processor can manipulate per cycle,

- Optimized for conditional execution with dedicated instructions for XML character processing,

- Based on a programmable State Machine technology, B-FSM, tailored to provide high XML proces-

sing performance, wide input/output vectors, storage efficiency, as well as full programmability.

D
at

a-
le

v
el

Cameron et al.

[8]

PARABIX:
- Designed to exploit the data-level parallelism,

- Byte-oriented character data is first transformed to a set of 8 parallel bit streams, each stream com-

prising one bit per character code unit,

- Character validation, transcoding, and lexical item stream formation are all then carried out in

parallel using bitwise logic and shifting operations.

In
st

ru
ct

io
n

-l
ev

el
 Pan et al. [43, 56]

Meta-DFA:
- Two-stage DOM parser : i) pre-parsing to determine its logical XML tree structure, and then ii) divi-

ding the XML document such that the divisions between the chunks occur at well-defined points in

the XML grammar,

- Merges results as the chunks are parsed,

- Exploits static partitioning and load-balancing to minimize thread synchronization overhead,

- Considerably scalable (up to of 30 cores).

Head et al. [23,

30, 31]

Piximal:
- Introduces a parallelized SAX parser, tailored around event-stream XML data (different class of

applications than the DOM-based Meta-DFA),

- Larger number of parser states, thus more opportunity for parallelization and scalability with in-

creasing numbers of cores (in comparison with Meta-DFA),

- Speed-up could be limited due to: i) memory bandwidth, and ii) the amount of computation requi-

red to parse the input (if the computation required is small in comparison to the time required to

access the bytes of the input in memory).

M
ac

ro
-P

ar
al

le
li

sm

Head et al. [23, 30, 31]

Piximal, with cluster computing:
- Exploits distributed processing of large-scale XML data stored in a cluster, by applying Google’s

MapReduce processing paradigm [18],

- Introduces relaxed synchronization constraints, which tend to work favorably for large-scale XML

data sets and WS computing environments,

- Experiments show that macro-parallelism can increase performance (in comparison with micro-

parallelism). Yet, if not enough processing is taking place on each cluster, the latter would be bur-

dened with redundancy checks and network traffic for just small chunks of input, and could per-

form worst than a single node,
- Examining computation costs to determine the best computation strategy.

Thirdly, and perhaps more importantly, interference

may arise between SOAP similarity-based multicasting de-
scribed in this paper and attempts at boosting SOAP perfor-
mance via custom protocol bindings.

Several commercial SOAP engines, including Noemax
and Sun Metro, are based on custom protocol bindings that
exploit information on the XML stream data to improve the
performance of transport layer protocols. In these implemen-
tations of SOAP, HTTP binding has been dropped altogether
in favor of an integrated SOAP/TCP transport where each
message sent during a communication session is accompa-
nied only by new entries (if any) to the XML Infoset vocabu-
lary [67]. The vocabulary is a table that associates string val-
ues with identifiers. In this context, the technique used to
reduce the size of the XML text encoding is to enter string
values (such as XML markup) in the vocabulary and substi-
tute all occurrences of these string values in the document
with their corresponding identifier. This vocabulary-based
technique is sometime coupled with GZIP compression [20]
of messages, and is a major competitor of similarity-based
multicasting when non-standard protocol bindings are ac-
ceptable - e.g., on clusters or grids [80] when no firewall tra-
versal is required. However, the effect of using similarity-
based SOAP multicasting in the context of custom
SOAP/TCP bindings is still largely unexplored, but, great
potential have been shown by enhancements in the underly-
ing HTTP transport protocol (particularly in the context of
HTTP 1.1) to reduce the overhead of creating a new connec-
tion for every SOAP message (with persistent connections

and message chunking [12, 28]), as well as by ongoing inves-
tigations in XML-based binary encodings for SOAP [57, 64,
83]. In short, techniques to SOAP performance enhancement
are yet to be further improved and perfected, promising fur-
ther performance improvements in the near future, which
presents an overwhelming motivation to do research in this
field.

5 CONCLUSION

In this survey paper, we have given an overview of current
research related to SOAP processing performance enhance-
ment, focusing on similarity-based approaches, as well as
WS-Security optimizations, and XML parallel processing
architectures. We provide a concise, yet comprehensive re-
view of how different techniques have been exploited to en-
hance SOAP performance in almost every phase of SOAP
processing, ranging over message parsing [45, 70, 71], seriali-
zation [4, 21], de-serialization [1, 68], compression [81], mul-
ticasting [6, 58, 59], security evaluation [6, 14], and da-
ta/instruction-level processing [8, 55, 78] (cf. Tables 1 and
2). Most methods build on the observation that SOAP mes-
sage exchange usually involves highly similar messages
(messages created by the same implementation usually have
the same structure, and those sent from a server to multiple
clients tend to show similarities in structure and content).
The main idea is then to identify the common parts of SOAP
messages, to be processed once, only repeating the

OVERVIEW ON SIMILARITY-BASED SOAP PROCESSING PERFORMANCE ENHANCEMENT 15

processing for parts which are different, and substantially
reducing SOAP processing overhead. Other approaches in-
vestigate non-traditional processor architectures, including
micro- and macro-level parallel processing solutions, so as
further increase the processing rates of SOAP/XML software
toolkits. In addition, we have also discussed some of the
main challenges and possible future research directions, cov-
ering SOAP software and parallel architecture integration, as
well as custom protocol bindings.

We hope that the unified presentation of SOAP-related
performance enhancement techniques in this paper will fos-
ter further research on the subject. [12, 50]

ACKNOWLEDGMENT

This work was supported in part by Fondazione Cariplo 2007
Capitale Umano di Eccellenza research grant, and Japan Society
for the Promotion of Science (JSPS) 2010 research fellowship n.
PE10006.

References

[1] Abu-Ghazaleh N. and Lewis M.J., Differential Deserialization for

Optimized SOAP Performance. Proceedings of the ACM/IEEE

Conference on Supercomputing, 2005. pp. 21-31, Seattle.

[2] Abu-Ghazaleh N., M.J.L., and M. Govindaraju. , Performance of

Dynamic Resizing of Message Fields for Differential Serialization of

SOAP Messages. Proceedings of the International Symposium

on Web Services and Applications, 2004. pp. 783-789.

[3] Abu-Ghazaleh N.; Govindaraju M. and Lewis M.J., Optimizing

Performance of Web Services with Chunk-Overlaying and Pipelined-

Send. . Proceedings of the International Conference on Internet

Computing (ICIC), 2004. pp. 482-485.

[4] Abu-Ghazaleh N.; Lewis M.J. and Govindaraju M., Differential

Serialization for Optimized SOAP Performance. Proceedings of the

13th International Symposium on High Performance Distri-

buted Computing (HPDC'04), 2004. pp. 55-64.

[5] Apache Foundation. Xerces XML Parser. Available from

http://xerces.apache.org/, [cited Nov 2010].

[6] Azzini A.; Marrara S.; Jensen M. and Schwenk J., Extending the

Similarity-Based XML Multicast Approach with Digital Signatures.

Proceedings of the 2009 ACM Workshop on Secure Web Servic-

es (SWS'09), 2009. pp. 45-52, Chicago.

[7] Bray T.; Paoli J.; Sperberg-McQueen C.; Mailer Y.; and Yergeau

F. Extensible Markup Language (XML) 1.0 - 5th Edition. W3C rec-

ommendation, 26 Novembre 2008, http://www.w3.org/TR/REC-

xml/, [cited November 2008].

[8] Cameron R.D.; Herdy K.S. and Lin D., PARABIX: High Perfor-

mance XML Parsing using Parallel Bit Stream Technology. . In Pro-

ceedings of the 2008 Conference of the Center for Advanced

Studies on Collaborative Research: Meeting of Minds (CAS-

CON '08), 2008. 17:222-235, ACM, New York, NY, USA.

[9] Cheney J., Compressing XML with Multiplexed Hierarchical PPM

Models. In Proceedings of the Data Compression Conference,

2001. pp. 163-173.

[10] Chinnici R.; Moreau J.J.; Ryman A. and Weerawarana S. Web

Services Description Language (WSDL) Version 2.0 Part 1: Core

Language, W3C Recommendation 26 June 2007,

http://www.w3.org/TR/wsdl20/, [cited 25 August 2009].

[11] Chiu K. and Lu W., A Compiler-based Approach to Schema-specific

XML Parsing. Proceedings of the Workshop on High Perfor-

mance XML Processing, New York., 2004.

[12] Chiu K.; Govindaraju M. and Bramley R., Investigating the Limits

of SOAP Performance for Scientific Computing. Proceedings of

ACM International Symposium on High Performance Distri-

buted Computing (HPDC), 2002. pp. 246-254, Edinburgh.

[13] Culler D.E.; Singh J.P. and Anoop Gupta, Parallel Computer Ar-

chitecture - A Hardware/Software Approach. 1999. Morgan Kauf-

mann Publishers, pp. 1100, ISBN 1-55860-343-3.

[14] Damiani E. and Marrara S., Efficient SOAP Message Exchange and

Evaluation Through XML Similarity. Proceedings of the 2008

ACM workshop on Secure Web Services (SWS'08), 2008, 29-36.

[15] Damiani E.; De Capitani di Vimercati; Paraboschi S. and Sama-

rati P., Securing SOAP E-Services. International Journal of Infor-

mation Security (IJIS), 2001. 1:100-115.

[16] Datapower. http://www.datapower.com/, [cited Nov 2010].

[17] Davis D. and Parashar M., Latency Performance of SOAP Imple-

mentations. Proceedings of the 2nd IEEE/ACM International

Symposium on Cluster Computing and the Grid, 2002, 407-412.

[18] Dean J. and Ghemawat S., MapReduce: Simplified Data Processing

on Large Clusters. Communications of the ACM, 2008.

51(1):107–113.

[19] Della-Libera G. et al., Web Services Security Policy Language (WS-

SecurityPolicy). V1.1 Specification, July 2005.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/spec

s/ws-secpol/ws-secpol.pdf [cited June 2010].

[20] Deutsch L.P., RFC 1952: GZIP file format specification version 4.3.

1996.

[21] Devaram K. and Andersen D., SOAP Optimization via Paramete-

rized Client-Side Caching Proceedings of the IEEE/ACM 2nd In-

ternational Symposium on Cluster Computing and the Grid

(CCGRID'02), 2002. pp. 439-312.

[22] Elfwing R.; Paulsson U. and Lundberg L., Performance of SOAP

in Web Service Environment Compared to CORBA. Proceedings of

the 9th Asia-Pacific Software Engineering Conference (AP-

SEC'02), 2002. pp. 84-94.

[23] Fadika Z.; Head M.R. and Govindaraju M., Parallel and Distri-

buted Approach for Processing Large-Scale XML Datasets. In Pro-

ceedings of 10th IEEE/ACM International Conference on Grid

Computing (GRID 2009), 2009. pp. 105-112, Banff, Alberta, Can-

ada.

[24] Fielding R.; Gettys J.; Mogul J.; Frystyk H.; Masinter L.; Leach

P.; Berners-Lee T., N.W.G. Hypertext Transfer Protocol -- HTTP/1.1

 http://www.ietf.org/rfc/rfc2616.txt, 1999, [cited May 2010].

[25] Gannon D.; Krishnan S.; Fang L.; Kandaswamy G.; Simmhan Y.

and Slominski A., On Building Parallel and Grid Applications:

Component Technology and Distributed Services. In proceedings of

the Second International Workshop on Challenges of Large Ap-

plications in Distributed Environments (CLADE ’04), 2004.

IEEE Computer Society, p. 44, Washington DC, USA.

http://xerces.apache.org/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/wsdl20/
http://www.datapower.com/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-secpol/ws-secpol.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-secpol/ws-secpol.pdf
http://www.ietf.org/rfc/rfc2616.txt

16

[26] Gao J.Z.; Tsao H.S.J. and Wu, Y., Testing and Quality Assurance

for Component-based Software. Artech House, 2003. pp. 439.

[27] Ginige A. and Murugesan S., Web Engineering: An Introduction.

IEEE Multimedia, 2001. 8(1):14-17.

[28] Govindaraju M.; Slominski A.; Chiu K.; Liu P.; Van Engelen R.;

Lewis M.J., Toward Characterizing the Performance of SOAP Tool-

kits. Procceedings of 5th IEEE/ACM International Workshop on

Grid Computing (GRID'04), Pittsburgh, 2004. pp. 365-372.

[29] Gudgin M.; Hadley M.; Mendelsohn N.; Moreau J.-J.; Canon

and Nielsen H.F. Simple Object Access Protocol 1.1

 http://www.w3.org/TR/SOAP, June 2003, [cited April 2010].

[30] Head M.R. and Govindaraju M., Parallel Processing of Large-Scale

XML-Based Application Documents on Multi-core Architectures

with PiXiMaL”. In Proceedings of the 4th IEEE International

Conference on e-Science, 2008. pp. 261-268, Indianapolis, USA.

[31] Head M.R. and Govindaraju M., Performance Enhancement with

Speculative Execution Based Parallelism for Processing Large-scale

XML-based Application Data. In Proceedings of International

Symposium on High Performance Distributed Computing

(HPDC 2009), 2009, pp. 21-30, Munich, Germany.

[32] Head M.R.; Govindaraju M.; Slominski A.; Liu P.; Abu-

Ghazaleh N.; Van Engelen R.; Chiu K. and Lewis M.J., A Bench-

mark Suite for SOAP-based Communication in Grid Web Services. In

Proceedings of the ACM/IEEE Conference on Supercomputing

(SC'05), 2005. pp. 19.

[33] Head M.R.; Govindaraju M.; Van Engelen R. and Zhang W.,

Benchmarking XML Processors for Applications in Grid Web Servic-

es. In Proceedings of the ACM/IEEE Conference on Supercom-

puting (SC'06), 2006. pp. 30.

[34] Hopcroft J. E.; Motwani R. and Ullman J. D., Introduction to

Automata Theory, Languages, and Computation. 2001. Addison

Wesley, 2nd edition.

[35] Horstmann M. and Kirtland M. DCOM Architecture. Microsoft

MSDN http://msdn.microsoft.com/en-us/library/ms809311.aspx

1997, [cited January 2010].

[36] Intel Corporation. Intel Core i7-800 Processor Series and the Intel

Core i5-700 Processor Series, [cited Nov 2010],

 download.intel.com/products/processor/corei7/319724.pdf.

[37] Juric M.B.; Rozman I.; Brumen B.; Colnaric M. and HerickoM.,

Comparison of Performance of Web Services, WS-Security, RMI, and

RMI–SSL. Journal of Systems and Software, 2006. Volume 79 ,

Issue 5, 689-700.

[38] Kohlhoff C. and Steele R., Evaluating SOAP for High Performance

Business Applications: Real-Time Trading Systems. Proceedings of

the World Wide Web (WWW) Conference, 2003. Budapest.

[39] Kostoulas M. G.; Matsa M.; Mendelsohn N.; Perkins E.; Heifets

A. and Mercaldi M., XML Screamer: An Integrated Approach to

High Performance XML Parsing, Validation and Deserialization. In

Proceedings of the 15th International Conference on World

Wide Web (WWW ’06), 2006. pp. 93–102.

[40] Kuznetsov E., Method and Apparatus of Data Exchange Using

Runtime Code Generator and Translator, US Patent 6, 772, 413 B2,

2004.

[41] Laux A. and Martin L., XUpdate Working Draft. XML:DB Initial-

tive, 2000.

[42] Liefke H. and Suciu D., XMill: An Efficient Compressor for XML

Data. University of Pennsylvania Technical Report MSCIS-99-

26., 2000.

[43] Lu W.; Chiu K. and Y. Pan, A Parallel Approach to XML Parsing.

In Proceedings of the 7th IEEE/ACM International Conference

on Grid Computing (Grid'06), 2006. pp. 223–230.

[44] Ma Y. and Chbeir R., Content and Structure Based Approach for

XML Similarity. Proceedings of the International Conference on

Computer and Information Technology (ICCIT), 2005. pp. 136-

140.

[45] Makino S.; Tatsubori M.; Tamura K. and Nakamura Y., Improv-

ing WS-Security Performance with a Template-Based Approach. Pro-

ceedings of the IEEE INternational Conference on Web Services

(ICWS'05), 2005. pp. 581-588.

[46] Martin B. and Jano B. WAP Binary XML Content Format. W3C

Note 24 June 1999 1999 [cited February 2010].

[47] Megginson D. et al. The Simple API for XML

http://www.megginson.com/SAX/, [cited February 2010].

[48] Menascé D.A. and Almeida V.A.F., Capacity Planning for Web

Services – Metrics, Models and Methods. 2002. p.556, Prentice Hall.

[49] Menascé D.A.; Almeida V.A.F. and Dowdy L.WL, Capacity

Planning and Performance Modeling: From Mainframes to Client-

Server Systems. Prentice Hall, Upper Saddle River, New Jersey

1994.

[50] Moon T.K., Error Correction Coding: Mathematical Methods and

Algorithms. New Jersey: John Wiley & Sons, 2005. pp. 756.

[51] Mouat A., XML Diff and Patch Utilities. CS4 Dissertation., 2002.

Edinburgh Scotland: Heriot-Watt University.

[52] Moving Pictures Experts Group. MPEG-7.

http://www.chiariglione.org/mpeg/standards/mpeg-7/ [cited

June 2010].

[53] Noga M. L.; Schott S. and Lowe W., Lazy XML Processing. In

Proceedings of the 2002 ACM Symposium on Document Engi-

neering (DocEng ’02), 2002. Virginia, USA.

[54] Object Management Group. The Common Object Request Broker:

Architecture and Specification. Version 3.0.3,

http://www.omg.org/technology/documents/formal/corba_2.ht

m 2004 [cited January 2010].

[55] Pan Y.; Lu W.; Zhang Y. and Chiu K., A Static Load-Balancing

Scheme for Parallel XML Parsing on Multicore CPUs. In Proceed-

ings of the 7th IEEE International Symposium on Cluster Com-

puting and the Grid (CCGrid '07), 2007. pp.351-362.

[56] Pan Y.; Zhang Y.; Chiu K. and Lu W., Parallel XML Parsing Using

Meta-DFAs. In Proc. of the IEEE Third Inter. Conf. on eScience

and Grid Computing (eScience'07), 2007 pp. 237-244.

[57] Paul Sandoz et al. Fast Web Services. 2003 [cited May 2010];

Available from:

 java.sun.com/developer/technicalArticles/WebServices/fastWS/.

[58] Phan K.A.; Bertok P.; Fry A. and Ryan C., Minimal Traffic-

Constrained Similarity-Based SOAP Multicast Routing Protocol.

OTM Confederated International Conferences, 2009. LNCS

4803, pp. 558-576.

[59] Phan K.A.; Tari Z.; and Bertok P., Similarity-Based SOAP Multi-

cast Protocol to Reduce Bandwidth and Latency in Web Services.

IEEE Transactions on Services Computing (IEEE TSC), 2008. Vol

1, No 2, pp. 88-103.

[60] Rud D.; Schmietendorf A. and Dumke, R., Product Metrics for

Service-Oriented Infrastructures. In Abran A., Bundschuh M., Buren

G., Dumke, R., eds.: Applied Software Measurement. Proc. of the In-

ternational Workshop on Software Metrics and DASMA Soft-

ware Metrik Kongress (IWSM/MetriKon'06). 2006. pp.161–174.

http://www.w3.org/TR/SOAP
http://msdn.microsoft.com/en-us/library/ms809311.aspx
http://download.intel.com/products/processor/corei7/319724.pdf
http://download.intel.com/products/processor/corei7/319724.pdf
http://www.megginson.com/SAX/
http://www.chiariglione.org/mpeg/standards/mpeg-7/
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm
http://java.sun.com/developer/technicalArticles/WebServices/fastWS/
http://java.sun.com/developer/technicalArticles/WebServices/fastWS/

OVERVIEW ON SIMILARITY-BASED SOAP PROCESSING PERFORMANCE ENHANCEMENT 17

[61] Sahai A. and Machiraju V., Enabling fo the Ubiquitous e-services

Vision on the Internet Hewlett-Packard Laboratories, HPL-2001-5,

2001.

[62] Singh G.; Bharathi S.; Chervenak A.; Deelman E.; Kesselman C.;

Manohar M.; Patil S. and Pearlman L., A Metadata Catalog Service

for Data Intensive Applications. In proceedings of the 2003

ACM/IEEE conference on Supercomputing., 2003. IEEE Com-

puter Society, 2003, p. 33, Washington DC, USA.

[63] Slominski A. XSOAP. 2004,

http://www.extreme.indiana.edu/xgws/xsoap/ [cited Feb 2010].

[64] SourceForge.NET. XML Binary Information Set (XBIS), [cited

May 2010], Available from: http://xbis.sourceforge.net/.

[65] SourceForge.NET. The Expat XML Parser. Available from

http://expat.sourceforge.net/ [cited Oct 2010].

[66] Sun. Java Remote Message Invocation (RMI),

http://java.sun.com/j2se/1.5.0/docs/guide/rmi/, 2005 [Jan 2010].

[67] Sun Microsystem, SOAP/TCP Specification v.1.0.

http://java.sun.com/webservices/reference/apis-docs/soap-tcp-

v1.0.pdf, May 2007.

[68] Suzumura T.; Takase T. and Tatsubori M., Optimizing Web Ser-

vices Performance by Differential Deserialization Proceedings of the

IEEE International Conference on Web Services (ICWS'05),

2005. Vol. 1, pp.185- 192.

[69] Takase T.; Miyashita H.; Tatsubori M. and Suzumura T., An

Adaptative, Fast and Safe XML Parser Based on Byte Sequence Me-

morization. Proceedings of the World Wide Web (WWW) Confe-

rence, 2005. pp. 692 - 701.

[70] Takeuchi Y.; Okamoto T.; Yokoyama K. and Matsuda S., A Diffe-

rential-Analysis Approach for Improving SOAP Processing Perfor-

mance. Proceedings of the IEEE International Conference on e-

Technology, e-Commerce and e-Service (EEE'05), 2005, 472-479.

[71] Teraguchi M.; Makino S.; Ueno K. and Chung H.V., Optimized

Web Services Security Performance with Differential Parsing. Pro-

ceedings of the 4th International Conference on Service-

Oriented Computing (ICSOC'06), 2006. pp. 277-288.

[72] Truong H.L; Dustdar S. and Fahringer T., Performance Metrics

and Ontologies for Grid Workflows. Future Generation Computer

Systems, 2007. 23:760–772.

[73] Van Engelen R., Pushing the SOAP Envelope with Web Services for

Scientic Computing. Proceedings of the International Conference

on Web Services (ICWS), 2003. pp. 346-352.

[74] Van Engelen R., Constructing Finite State Automata for High Per-

formance XML Web Services. Proceedings of the International

Conference on Internet Computing (ICIC), 2004. pp. 975-981.

[75] Van Engelen R., A framework for service-oriented computing with C

and C++ Web service components. ACM Transactions on Internet

Technology (ACM TOIT), 2008. 8(3):1-25, New York, NY, USA.

[76] Van Engelen R. and Zhang W., An Overview and Evaluation of

Web Services Security Performance Optimizations. In Proceedings

of IEEE International Conference on Web Services (ICWS), 2008.

pp. 137-144.

[77] Van Engelen R.A. and K. Gallivan K., The gSOAP Toolkit for Web

Services and Peer-To-Peer Computing Networks. In Proceedings of

the 2nd IEEE International Symposium on Cluster Computing

and the Grid (CCGrid2002), 2002. pp. 128-135, Berlin, Germany.

[78] Van Lunteren J.; Bostian J.; Carey B.; Engbersen T. and Larsson

C., XML Accelerator Engine The First International Workshop on

High Performance XML Processing, 2004. New-York, NY, USA.

[79] Viega J.; Messier M. and Chandra P., Network Security with

OpenSSL. O’Reilly, 2002.

[80] Wang N.; Welzl M. and Zhang L., A High Performance SOAP

Engine for Grid Computing. Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications

Engineering, 2009. Volume 2, pp. 1-8.

[81] Werner C.; Buschmann C. and Fischer S., WSDL-Driven SOAP

Compression. International Journal of Web Services Research,

2005. Vol. 2, Issue 1, pp. 18-35.

[82] Word Wide Web Consortium. SOAP Version 1.2. W3C Recom-

mendation (Second Edition) 2007, http://www.w3.org/TR/soap/

[cited February 2010].

[83] World Wide Web Consortium. XML Binary Characterization

Working Group, [cited May 2010], Available from:

http://www.w3.org/XML/Binary/.

[84] World Wide Web Consortium. The Document Object Model.

http://www.w3.org/DOM, [cited 28 May 2009].

[85] World Wide Web Consortium. Scalable Vector Graphics (SVG).

http://www.w3.org/Graphics/SVG/, [cited 26 May 2009].

[86] Zhang B.; Jamin S. and Zhang L., Host Multicast: A Framework

for Delivering Multicast to End Users. Proceedings of the IEEE

Conference on Computer Communications (INFOCOM'02),

2002. pp. 1366-1375.

[87] Zhang W. and Van Engelen R. A., A Table-Driven Streaming XML

Parsing Methodology for High-Performance Web Services. In Pro-

ceedings of the IEEE International Conference on Web Services

(ICWS’06), 2006. pp. 197–204.

Joe M. Tekli is a visiting researcher at the

Department of Science and Technology,

University of Shizuoka, Japan (since May

2010), and is a former post-doc of the Un-

viersity of Milan, Italy (2009). He holds a

holds a PhD in CS from the University of

Bourgogne, LE2I CNRS, France, acquired (in Oct. 2009) with

Highest Honors. He also holds a Research Masters in CS from

the University of Bourgogne (July 2006), and a Masters of

Engineering in Telecommunications from the Antonine Fa-

thers University, Lebanon (July 2005), both acquired with

Honors (ranked top of his class in both programs). He has

been awarded various prestigious postdoctoral fellowships, of

the FAPESP (Brazil), JSPS (Japan), and Fondazione Cariplo

(Italy). He was also awarded a PhD Fellowship of the Ministry

of Education (France), and a Masters Scholarship of the AUF

(France). His research activities cover XML processing, web

services, data semantics and taxonomies, data clustering and

classification, RSS integration, and multimedia fragmentation.

He is a member of IEEE and ACM SIGAPP French Chapter.

He is an organizing member of various international confe-

rences such as SITIS, ICDIM, MEDES and ACM SAC’06. His

research results have been published in various international

journals and conferences (e.g., Computer Science Review,

WWW Journal, ER, SBBD, WISE, ADBIS, COMAD, etc.).

http://www.extreme.indiana.edu/xgws/xsoap/
http://xbis.sourceforge.net/
http://expat.sourceforge.net/
http://java.sun.com/j2se/1.5.0/docs/guide/rmi/
http://java.sun.com/webservices/reference/apis-docs/soap-tcp-v1.0.pdf
http://java.sun.com/webservices/reference/apis-docs/soap-tcp-v1.0.pdf
http://www.w3.org/TR/soap/
http://www.w3.org/XML/Binary/
http://www.w3.org/DOM
http://www.w3.org/Graphics/SVG/

18

Ernesto Damiani is a professor at Università

degli Studi di Milano and the director of the

same University PhD program in computer

science. He has held visiting positions at a

number of international institutions. He has

done extensive research on advanced network

infrastructure and protocols, taking part in the design and

deployment of secure high-performance networking envi-

ronments. His areas of interest include business process re-

presentation, Web services security, processing of semi and

unstructured information, and semantics-aware content engi-

neering for multimedia. He is interested in models and plat-

forms supporting open source development. He has served

and is serving in all capacities on many congress, conference,

and workshop committees. He is a senior member of the IEEE.

In 2008 he was nominated ACM distinguished scientist and he

received the Chester Hall Award from the IEEE Societty on

Consumer Electronics. Web page www.dti.unimi.it/~damiani.

Dr. Richard Chbeir received his PhD in Com-
puter Science from the University of INSA-
FRANCE in 2001. The author became a mem-
ber of IEEE since 1999. He is currently an
Associate Professor in the Computer Science
Department of the Bourgogne University,

Dijon-France. His research interests are in the areas of distri-
buted multimedia database management, XML similarity and
rewriting, spatio-temporal applications, indexing methods,
multimedia access control models, security and watermark-
ing. Dr. CHBEIR has published (more than 80 peer-reviewed
publications) in international journals and books (IEEE Trans-
actions on SMC, Information Systems, Journal on Data Se-
mantics, Journal of Systems Architecture, etc.), conferences
(ER, WISE, SOFSEM, EDBT, ACM SAC, Visual, IEEE CIT,
FLAIRS, PDCS, etc.), and has served on the program commit-
tees of several international conferences (ICDIM, IEEE SITIS,
ACM SAC, IEEE ISSPIT, EuroPar, SBBD, etc.). He has been
organizing many international conferences and workshops
(ICDIM, CSTST, SITIS, etc.). He is currently the Chair of the
French Chapter ACM SIGAPP and the vice-chair of ACM
SIGAPP.

Gabriele Gianini, Ph.D., is Assistant Professor
at the Department of Information Technology
of the University of Milan where he is lecturer
of Probability and Statistics, and since 2005
Visiting Professor at the Free University of
Bolzano. He has been working between 1990

and 2000 at the Fermi National Accelerator Laboratory (Fer-
milab) in Chicago and at the CERN in Geneva. He is involved
in several research projects funded by the Italian Ministry of
Research and by the European Union.

