

A Novel XML Document Structure Comparison Framework based-on Sub-

tree Commonalities and Label Semantics

Joe Tekli a ,1
 and Richard Chbeir b

a
 ICMC Computer Science and Statistics Institute, University of Sao Paulo, 13566-590 Sao Carlos, SP, Brazil

b LE2I Laboratory UMR-CNRS, University of Bourgogne, 21078 Dijon Cedex France

ABSTRACT

XML similarity evaluation has become a central issue in the database and information communities, its applications ranging over document

clustering, version control, data integration and ranked retrieval. Various algorithms for comparing hierarchically structured data, XML

documents in particular, have been proposed in the literature. Most of them make use of techniques for finding the edit distance between

tree structures, XML documents being commonly modeled as Ordered Labeled Trees. Yet, a thorough investigation of current approaches

led us to identify several similarity aspects, i.e., sub-tree related structural and semantic similarities, which are not sufficiently addressed

while comparing XML documents. In this paper, we provide an integrated and fine-grained comparison framework to deal with both

structural and semantic similarities in XML documents (detecting the occurrences and repetitions of structurally and semantically similar

sub-trees), and to allow the end-user to adjust the comparison process according to her requirements. Our framework consists of four main

modules for i) discovering the structural commonalities between sub-trees, ii) identifying sub-tree semantic resemblances, iii) computing

tree-based edit operations costs, and iv) computing tree edit distance. Experimental results demonstrate higher comparison accuracy with

respect to alternative methods, while timing experiments reflect the impact of semantic similarity on overall system performance.

© 2002 Elsevier Science. All rights reserved.

Keywords: XML, Semi-structured Data, Structural Similarity, Tree Edit Distance, Semantic similarity, Information Retrieval, Vector Space Model.

1. Introduction
1

In the past few years, XML has emerged as the main standard

for data exchange on the Web. The ever-increasing amount of

information available on the Internet has reflected the need to

bring more structure and semantic richness, and thus more

flexibility, in representing data, which is where W3C‟s XML

(eXtensible Markup Language) comes to play. The use of

XML covers data description and storage (e.g., complex

multimedia objects such as SVG images [86], X3D graphics

[82], MPEG-7 meta-data [50] …), database information

interchange, data filtering, as well as web services interaction.

Owing to the increasing web exploitation of XML, XML

document comparison becomes a central issue in the database

and information retrieval communities. The applications of

XML document comparison range over: change management

and data warehousing (finding, scoring and browsing changes

between different versions of a document, support of temporal

queries and index maintenance) [12-14], data integration

(identifying and merging similar documents to provide a more

complete view of the data) [29, 39], XML retrieval (finding

and ranking results according to their similarity) [66, 90], as

1 Corresponding author. Tel: +55-16-33739677, Fax: +55-16-33739751 ;

E-mail address: joe.tekli@icmc.usp.br, jtekli@gmail.com

 The author is currently with the Antonine University (UPA), Lebanon

well as the clustering of XML documents gathered from the

web [16, 55] which would improve storage indexing [68] and

thus positively affect the retrieval process.

The main goal of our study is the comparison of

rigorously structured heterogeneous XML documents, i.e.,

documents originating from different data-sources and not

conforming to the same grammar (DTD/XSD), which is the

case of a lot of XML documents found on the Web [55]. In

fact, a range of solutions for comparing semi-structured

(XML) data has been proposed in the literature. On one hand,

most algorithms make use of techniques for finding the edit

distance between tree structures [12, 16, 55], XML documents

being treated as Ordered Labeled Trees (OLTs) [85]. On the

other hand, some works have focused on extending

conventional information retrieval methods, e.g., [5, 11], so as

to provide efficient XML similarity assessment. In this study,

we bound our presentation to the former group of methods,

i.e., edit distance based approaches, since they target

rigorously structured XML documents and are usually more

fine-grained, mainly exploited in data-warehousing, version

control, structural querying and XML classification and

clustering applications (Information retrieval based methods,

on the other hand, target loosely structured XML data with

long text fields – text-rich, and are usually coarse-grained,

mainly useful for fast simple XML retrieval [26, 28]). We

particularly focus on comparing XML document structures,

i.e., the structural disposition and ordering of element/attribute

tag names
1
 (central in XML structural classification and

clustering applications, e.g., [10, 55]), and disregard XML

contents (i.e., element/attribute values). In short, we view

XML document structure comparison as an independent line

of study, as well as an essential and indispensable step to

consequently address element/attribute contents efficiently. In

this context, two main problems arise:

 Elements‟ structural similarity: this consists in

considering parent/child relationships and ordering

among XML elements, identified by their tag labels. In

essence, a thorough investigation of the most recent and

efficient XML structural similarity approaches [12, 16,

55] led us to pinpoint certain cases where the

comparison outcome is inaccurate. These inaccuracies

correspond to undetected sub-tree structural similarities,

as we will see in the motivating examples.
 Elements‟ semantic similarity: this consists in evaluating

the semantic meanings of XML element/attribute labels.

Most existing XML comparison approaches focus

exclusively on the structure of XML documents,

ignoring the semantics involved. However, evaluating

the semantic relatedness between documents (mainly

those published on the Web) is of key importance to

improving search results: finding related documents, and

given a set of documents, effectively ranking them

according to their similarity [44].

The relevance of semantic similarity in Web search

mechanisms, as well as the increasing use of XML-based

structured documents on the Web, motivated us to study XML

similarity in both its structural and semantic facets and to

provide a hybrid XML similarity method for comparing

heterogeneous XML documents. We aim to develop a

parameterized XML comparison approach able to i) efficiently

detect XML structural similarity (preliminary work has

appeared in [74, 76]), ii) consider semantic relatedness while

comparing XML documents, and iii) allow the user to tune

XML comparison according to the scenario and application

requirements by assigning more importance to either structural

or semantic similarity (using an input structural/semantic

parameter). The contributions of our study can be summarized

as follows. First, we provide a unified framework in which we

extend and combine existing structure comparison approaches,

mainly those provided in [12, 55], in order to consider the

various sub-tree structural similarities while comparing XML

document trees. Second, we expand XML structural similarity

evaluation, combining the traditional vector space model in

information retrieval [47] and semantic similarity assessment

[41], to consider sub-tree semantic similarities in comparing

XML documents. Such similarities encompass the evaluation

of semantic relatedness between XML node labels w.r.t. (with

respect to) a reference semantic information source. Third, we

implement our framework as an experimental prototype to test

and evaluate our approach. Experimental results reflect our

method‟s high accuracy and performance levels in comparison

with existing solutions.

1 Note that the XML tree structure is different from topological tree structure

since it relies on labels (i.e., element/attribute tag names) in identifying

corresponding tree nodes, whereas the latter only considers the

interconnections among nodes, disregarding the nodes labels.

The remainder of this paper is organized as follows.

Section 2 reviews background and related works in XML

structural comparison and semantic similarity evaluation.

Section 3 presents motivation examples highlighting different

kinds of undetected XML similarities to be addressed in our

study. Section 4 develops our integrated XML document

comparison approach. Section 5 provides theoretical and

computational comparative analyses, evaluating our method

against existing solutions. Section 6 presents our prototype and

experimental tests. Section 7 concludes with ongoing works.

2. Background

2.1 XML Data Model

XML documents represent hierarchically structured

information and are generally modeled as Ordered Labeled

Trees or OLTs (Fig. 1). In a traditional DOM (Document

Object Model) ordered labeled tree [85], nodes represent XML

elements, and are labeled with corresponding element tag

names, ordered following their order of appearance in the

document. Attributes usually appear as children of their

encompassing element nodes, sorted by attribute name, and

appearing before all sub-element siblings [55, 90]. Other types

of nodes, such as entities, comments and notations, are

commonly disregarded in most XML comparison approaches,

e.g., [12, 16, 23, 31, 55], since they underline complementary

information and are not part of the core XML data.

<?XML>

 <Academy>

 <Faculty>

 <Department name= “Engineering”>

 <Foundation>1940</Foundation>

 <Director>John Cramer</Director>

 </Department>

 </Faculty>

 </Academy>

a. XML Document. b. XML document tree (OLT).

Fig. 1. A sample XML document with corresponding OLT.

In general, element/attribute values are disregarded when

evaluating the structural properties of heterogeneous XML

documents (originating from different data-sources and not

conforming to the same grammar), so as to perform XML

structural classification/clustering [16, 31, 55, 58] or structural

querying (i.e., querying the structure of documents,

disregarding content [6, 64]). Nonetheless, values are usually

taken into account with methods dedicated to XML change

management [13, 14], data integration [29, 40], and XML

structure-and-content querying applications [66, 67], where

documents tend to have similar structures (probably

conforming to the same grammar [36, 83]).

2.2 Structural Similarity and Tree Edit Distance

Various methods for estimating the similarities between

hierarchically structured data, particularly between XML

documents, have been proposed in the literature. Most of them

exploit the concept of tree edit distance, deriving, in one way

or another, the dynamic programming techniques for finding

the edit distance between strings [37, 81, 84].

In the following, we provide the basic notions related to

the concept of tree edit distance, and briefly review the

corresponding literature.

Director

Academy

Faculty

Department

John Cramer

Name

Engineering

Foundation

1940

Structure

only

2.2.1 Tree Edit Distance: Basic Notions and Concepts

Hereunder, we provide two basic definitions describing the

concept of tree edit distance.

Definition 1 – Edit Script: It is a sequence of edit

operations ES = op1, op2, …, opk . When applied to a tree

T, the resulting tree T‟ is obtained by applying edit operations

of the edit script ES to T, following their order of appearance

in the script. By assigning a cost, CostOp, to each edit operation,

the cost of an edit script is defined as the sum of the costs of its

component operations: CostES = | |

i

ES

Opi=1
Cost [7, 12] ●

Definition 2 – Tree Edit Distance: The edit distance

between two trees A and B is defined as the minimum cost of

all edit scripts that transforms A to B, TED(A, B)=Min{CostES}.

Thus, the problem of comparing two trees A and B, i.e.,

evaluating the structural similarity between A and B, is defined

as the problem of computing the corresponding tree edit

distance, i.e., minimum cost edit script [89] ●

As for tree edit operations, they can be classified in two

groups: atomic operations and complex operations [16]. An

atomic edit operation on a tree (i.e., rooted ordered labeled

tree) is either the deletion of an inner/leaf node, the insertion

of an inner/leaf node, or the replacement (i.e., update) of a

node by another one. A complex tree edit operation is a set of

atomic tree edit operations, treated as one single operation,

e.g., the insertion of a whole tree as a sub-tree in another tree

(which amounts to a sequence of atomic node insertion

operations), the deletion of a whole tree (i.e., a sequence of

atomic node deletion operations), or moving a sub-tree from

one position into another in its containing tree (i.e., a sequence

of atomic node insertion/deletion operations). In Section 4.1,

we provide the formal definitions for each of the tree edit

operations utilized in our approach.

2.2.2 Current Tree Edit Distance Methods

Tree edit distance algorithms can be distinguished by the set of

edit operations that they allow as well as their overall

complexity/performance and optimality/efficiency levels.

Early approaches: In [72], the author introduces the first

non-exponential algorithm to compute the edit distance

between ordered labeled trees, allowing insertion, deletion and

substitution (relabeling) of inner nodes and leaf nodes. The

resulting algorithm has a complexity of O(|A||B|× depth(A)
2
×

depth(B)
2
) when finding the edit distance between two trees A

and B (|A| and |B| denote tree cardinalities while depth(A) and

depth(B) are the depths of the trees). Similarly, early

approaches in [70, 89] allow insertion, deletion and relabeling

of nodes anywhere in the tree. Yet, they remain greedy in

complexity. For instance, the algorithm in [70] is of O(|A||B|×

depth(A) × depth(B)). In addition, the approaches in [70, 72,

89] were not developed in the XML context, and thus might

yield results that are not appropriate to XML data.

Quality Versus Performance: In [13, 14], the authors

restrict insertion and deletion operations to leaf nodes and add

a move operator that can relocate a sub-tree, as a single edit

operation, from one parent to another. Yet, algorithms in [13,

14] do not guarantee optimal results. In [13], the documents

being compared should match specific criterions and

assumptions without which the algorithm would yield

suboptimal results. The algorithm‟s complexity simplifies to

O(n×e + e
2
), where n is the total number of leaf nodes in the

trees being compared and e is the corresponding weighted edit

distance
1
. On the other hand, the authors in [14] trade some

quality (the edit distance obtained is not always minimal, some

sets of move operations not being optimal) to get an algorithm

which runs in average linear time: O(N log(N)) where N is the

number of nodes in the compared trees.

Methods in [13, 14] were developed for XML change

management and version control. They consider XML

element/attribute values (XML structure-and-content, ‎Fig.

1.b) in contrast with remaining methods in this section which

target the structural properties of XML documents (structure-

only).

Combining efficiency and performance: The approach

provided in [12] restricts insertion and deletion operations to

leaf nodes (which are viewed as natural operations in the XML

context [16]), and allows the relabeling of nodes anywhere in

the tree, while disregarding the move operation. The proposed

algorithm is a direct application of the famous Wagner-Fisher

algorithm [81] which optimality has been accredited in a broad

variety of computational applications [2, 84]. It is also among

the fastest tree edit distance algorithms available. Chawathe

[12] extends his algorithm for external-memory computations

and identifies respective I/O, RAM and CPU costs. The overall

complexity of Chawathe‟s algorithm is of O(N
2
).

Sub-tree similarity: In [55], the authors stress the

importance of identifying sub-tree structural similarities in

XML comparison, due to the frequent presence of repeated

and optional elements in XML document trees. Repeating

elements often induce multiple occurrences of similar

element/attribute sub-trees (presence of optional

elements/attributes) or identical sub-trees in the same

document (such as sub-trees B1 and B2 in XML tree B, Fig. 2)

which reflects the need to consider these sub-tree

resemblances while comparing documents.

Fig. 2. Sample XML trees, with sub-tree repetitions.

The authors in [55] extend the approach of Chawathe [12]

by adding two new operations: insert tree and delete tree, to

discover sub-tree similarities, making use of the contained in

relation between trees/sub-trees. A tree S is said to be

contained in a tree T if all nodes of S occur in T, with the same

1 Let S = op1, op2, …, opn be the cheapest sequence of edit

operations that transforms tree A to B, then the weighted edit

distance is given by e = ∑ 1≤ i ≤ n wi where wi, for 1≤ i ≤ n, is equal to

1 if opi is an insert or delete operation, and 0 otherwise.

a

b

c d

e

f g
C1 C2

Tree C

a

Tree B

b

c d

b

c d
B1 B2

a

b

c

Tree A

d
A1

parent/child edge relationship and node order. Following [55],

when comparing two trees A and B, a sub-tree S may be

inserted (deleted) in A only if S is already contained in the

source tree A (destination tree B). Therefore, the proposed

approach captures the sub-tree structural similarities between

XML trees A/B in ‎Fig. 2, transforming A to B in a single edit

operation (inserting sub-tree B2 in A, sub-tree B2 occurring in

tree A as A1), which is less costly (and thus yields a lower

distance, i.e., higher similarity) than transforming A to C,

which requires three operations (inserting nodes e, f and g).

The overall complexity of the algorithm in [55] simplifies

to O(N
2
), including a pre-computation phase for determining

the costs of tree insert/delete operations (which is of O(2×N +

N
2
) time). Structural clustering experiments in [55] show that

the proposed algorithm outperforms those in [12, 89].

Structural summaries: On the other hand, Dalamagas et

al. [16] provide an edit distance algorithm combining features

from both [12, 55] and propose to apply it on XML tree

structural summaries, instead of whole trees, in order to gain in

performance. Structural summaries are produced using a

special repetition/nesting reduction process (e.g., the structural

summary of tree B of Fig. 2 would be tree A). The algorithm is

of O(N
2
) time. Experimental results in [16] show improved

clustering quality w.r.t. Chawathe‟s algorithm [12]. Note that

while it might be useful for structural clustering tasks,

Dalamagas et al.‟s reduction process yields inaccurate

comparison results in the general case (e.g., Dist(A, B) = 0

despite their differences) which is why it is disregarded in the

remainder of our discussions.

Other methods to XML structural similarity have also

been proposed. They exploit various techniques (e.g., edge

matching [38], path similarity [58], the Fast Fourier Transform

[23], and entropy [31], etc.), usually providing approximations

of (more complex and accurate) tree edit distance approaches.

Such tree edit distance alternative and approximation methods

have been thoroughly investigated in [77], and thus will not be

covered in this paper. Here, we consider tree edit distance to

be the “optimal” technique for assessing similarity among

structured documents [9], and hence focus on tree edit distance

for XML structural comparison.

2.3 Semantic Similarity

Measures of semantic similarity are of key importance in

evaluating the effectiveness of Web search mechanisms in

finding and ranking results [44]. In the fields of Natural

Language Processing (NLP) and Information Retrieval (IR),

knowledge bases (i.e., ontologies, thesauri and/or taxonomies,

such as ODP [44], Roget‟s thesaurus [88], WordNet [48], etc.)

provide a framework for organizing words/expressions into a

semantic space [33]. A knowledge base usually comes down to

a semantic network made of a set of concepts representing

groups of words/expressions (or URLs such as with ODP), and

a set of links connecting the concepts, representing semantic

relations (synonymy, hyponymy, etc. [48, 61], Fig. 3). Hence,

evaluating semantic similarity between words/expressions

comes down to comparing the underlying concepts in the

semantic space.

Indeed, several methods have been proposed to determine

semantic similarity between concepts (and consequently

related terms) in a knowledge base (semantic network). They

can be categorized as: edge-based approaches and node-based

approaches [33].

Fig. 3. A (weighted) taxonomy fragment extracted from WordNet.

The numbers next to concepts represent concept frequencies

(computed based on the Brown text corpus [25]).

2.3.1 Edge-based Approaches

Edge-based methods underline an intuitive and straightforward

way to evaluate semantic similarity in a semantic network.

They generally estimate similarity as the shortest path (in

edges, or number of nodes) between the two concepts being

compared: the shorter the path from one node to another, the

more similar they are [34, 35, 57]. On the other hand, the

authors in [71, 87] evaluate semantic similarity between two

concepts by identifying their most specific common ancestor.

The similarity measures employed consider the distance

between the compared nodes and their common ancestor, as

well as the distance separating the common ancestor from the

root of the semantic network.

However, a known problem with edge-based approaches

is that they often rely on the idea that links, in the semantic

network, represent uniform distances [33, 60]. In real semantic

networks, the distance covered by a single link can vary with

regard to network density, node depth and information content

of corresponding nodes [61]. The authors in [33] add that link

distances could also vary according to link type (i.e., semantic

relation type). In an attempt to solve the varying distance

problem, the authors in [33, 61] suggest weighting links

according to the above mentioned characteristics.

2.3.2 Node-based Approaches

Node-based approaches get round the problem of varying link

distances by incorporating an additional knowledge source:

corpus statistical analysis, to augment the information already

present in the semantic network. In fact, with node-based

approaches, the definition of similarity is estimated as the

maximum amount of information content they share in

common [33, 60]. In a hierarchical semantic network (i.e.,

taxonomy, cf. Fig. 3), this common information carrier can be

identified as the most specific common ancestor (also known

as Lowest Common Ancestor, or LCA) that subsumes both

concepts being compared [60] (e.g., LCA(Lecturer, Professor)

= Educator in Fig. 3). Consequently, the similarity between

two concepts is defined as the information content of their

Person; Individual

Adult

Professional

Educator

Academic Lecturer

Enrollee

Student;

Scholar

PhD Student

Leader

Superior

Supervisor

Worker

12

13 8

21

25

25

12

28

29

2

3

4 2

62

Entity 260 = N, total number of word occurrences

 for underlying concepts

Concept (Synonym Set)

Unit 81

Structure 78

Building

Complex
2

2 Plant

1 Factory

Establishment 17

8 Academy College 9

Employee 1

Professor

Hyponymy (IsA) relations

lowest common ancestor, obtained by estimating its

probability of occurrences in a large text corpus [60].

Definition 3 – Information Content: In information

theory, the information content of a concept or class c is

quantified as the negative log likelihood –log p(c) where p(c)

is the probability of encountering an instance of c [60] ●

Definition 4 – Probability of a Concept: It is generally

quantified with respect to the frequency of occurrence of the

words/expressions, subsumed by the corresponding concept, in

a given corpus [33, 60] ●

Slightly different mathematical formulations [33, 60] have

been utilized to compute concept probabilities. Here, we

present the basic formulation by Resnik [60]:

Freq(c)
p(c) =

N

(1) .

 Freq(c) = ∑ count(w) : Number of occurrences of words

 subsumed by c, in a given corpus,

 N: Total number of words encountered in the corpus.

Since in hierarchical semantic networks (i.e., taxonomies,

consisting mainly of hierarchical semantic relationships, e.g.,

Is-A, Part-Of…), concepts subsume those lower in the

hierarchy, Freq(c) and consequently p(c) increase as one

moves up the hierarchy (the occurrence of a word is counted

for its corresponding concept, as well as the concept‟s

ancestors). Thus, following Definition 4, nodes higher in the

hierarchy (with higher probabilities) are less informative (more

abstract). If the semantic network has a root node (otherwise a

virtual root is usually added), then its probability would be

equal to 1, its information content being equal to 0.

 Fig. 3 depicts an extract of WordNet weighted with pre-

computed concept frequencies based on a sample text corpus

(e.g., Brown Corpus of American English [25]). Formula (2)

presents a variation of the node-based measures by Resnik [60]:

 SimNode(w1, w2,) = SimNode(c1, c2, SN) = – log(p(c0)) (2) .

 c1 and c2 are the semantic concepts corresponding to

the words (expressions) w1 and w2 being compared
1
,

 c0 is the most specific common ancestor of c1 and c2,

 p(c0), the occurrence probability of concept c0 (cf.

 Definition 4, Formula (1)),

 SN

underlines the weighted semantic network (cf.

 Fig. 3), i.e., a semantic network SN augmented with

concept frequencies (i.e., concept weights).

Following Resnik [60], the semantic similarity between

two concepts in the semantic network is approximated by the

information content of their most specific common ancestor.

Resnik‟s experiments [60] show that his similarity measure is

a better predictor of human word similarity ratings, in

comparison with a variant of the edge-based methods [35, 57].

1
 Semantic concepts are identified after several linguistic pre-processing

operations such as tokenization, stemming, and word sense

disambiguation. These are briefly discussed in Section 4.1.

Improving on Resnik‟s method [60], Lin [41] presents a

formal definition of the intuitive notion of similarity, and

derives an information content measure from a set of

predefined assumptions regarding commonalities and

differences. Following [41], the commonality between two

concepts is underlined by the information content of their

lowest common ancestor (identified by Resnik‟s measure

[60]). However, the difference between concepts depends on

their own information contents (disregarded in [60]):

0
1 2

1 2

2 log p(c)
Sim (c , c , SN) =

log p(c) + log p(c)
Lin

(3) .

 c0 is the most specific common ancestor of c1 and c2,

 p(c0) denotes the occurrence probability of concept c0.

When comparing two concepts c1 and c2, Lin‟s measure

[41] takes into account each concept‟s information content

(-log p(c1) + -log p(c2)), as well as the information content of

their most specific common ancestor (-log p(c0)), in a way to

increase with commonality (information content of c0) and

decrease with difference (information content of c1 and c2).

Lin‟s experiments [41] show that the latter information content

measure yields higher correlation with human judgment in

comparison with Resnik‟s [60] measure. Furthermore, Lin‟s

measure which targets hierarchical structures, i.e., taxonomies

(as most existing semantic similarity measures) is generalized

in [44] to deal with ontologies of hierarchical (made by Is-A

links) and non-hierarchical components (made by cross links

of different types, e.g., RelatedTo…). Another interesting

extension of Lin‟s measure is provided in [24] to semantically

compare two groups of concepts, and to evaluate concept

similarity in geographic information systems [15]. A more

recent variation of Lin‟s measure was introduced in [69],

providing a new approach to compute information content

based solely on the hierarchical structure of a semantic

network (namely WordNet [48]), disregarding corpus statistics.

2.4 Integrating Structural and Semantic Similarity

In recent years, there have been a few attempts to integrate

semantic and structural similarity assessment in the XML

comparison process. The INEX (INitiative for the Evaluation

of XML Retrieval
2
) campaigns have stressed the relevance of

semantic similarity assessment in XML retrieval. One of the

early approaches to propose such a method is [78], where the

authors make use of a textual similarity operator and utilize

Oracle‟s InterMedia text retrieval system to improve XML

similarity search. In a recent extension of their work [65], the

authors define a generic ontological model, built on WordNet,

to account for semantic similarity (instead of utilizing Oracle

InterMedia). However, INEX related approaches focus on

textual similarity (i.e., similarity between element/attribute

values made of long text fields) which is out of the scope of

our study since in structure-based similarity, values are

commonly disregarded.

Recent XML structure-based methods in [6, 64] identify

the need to support tag similarity (synonyms and stems)

instead of tag syntactic equality while comparing XML

documents. In [42], the authors introduce a structure and

2
 http://inex.is.informatik.uni-duisburg.de/

w  words(c)

content based method for comparing XML documents having

the same grammar (i.e., not heterogeneous), and consider

semantic similarity evaluation between element/attribute

values, using a variation of the edge-based methods. In [73],

the authors introduce a hybrid XML similarity approach

integrating Chawathe‟s tree edit distance algorithm [12], with

semantic similarity using Lin‟s measure [41] to compare XML

tag names. Methods in [42, 73] produce asymmetric similarity

measures.

2.5 Discussion

On one hand, various methods have been proposed to evaluate

XML structural similarity (i.e., comparing the hierarchical

relations and ordering among XML elements, identified by

their labels). Most methods in this family are based on the

concept of tree edit distance as an optimal technique to

compare structured data. On the other hand, a range of

techniques have been developed for semantic similarity

evaluation (comparing word/expression concepts in a

reference knowledge base). Most methods in this category

compare the information content values of concepts in a

semantic network. Nonetheless, despite the rich literatures in

XML similarity and semantic similarity, few methods have

addressed the problem of integrating XML structure and XML

tag (or value) semantics to improve similarity evaluation. That

is probably due to the relative novelty of the XML

semantic/structural similarity problem. As will be shown in the

following sections, various kinds of XML (sub-tree related)

structure and semantic similarities remain unaddressed by

most existing methods. Taking into account such resemblances

would obviously amend XML comparison effectiveness.

Note that the issue of integrating structural and semantic

similarity evaluation has also been investigated in the contexts

of schema matching/integration [3, 4, 18], as well as ontology

mapping/mediation [46, 51, 52]. Yet, while comparable to

tree-based XML documents, schemas and ontologies often

underline more intricate graph structures, and thus require

graph-based algorithms and heuristics in evaluating similarity,

which are out of the scope of this paper (here, we limit our

presentation to XML tree-based approaches).

3. Motivations

The main objective of this study is to provide a fine-grained

method that captures both structural and semantic similarities

when comparing XML document structures. Hereunder, we

discuss the motivations of our work, highlighting the relevance

of structural and semantic similarity evaluation in XML

document comparison. We specifically focus on similarities

left unaddressed in current approaches, which we aim to

capture with our XML document similarity measure.

3.1. Structural Similarity

XML documents can encompass many optional and repeated

elements [55]. Such elements induce recurring sub-trees of

similar or identical structures. As a result, algorithms for

comparing XML documents should be aware of such

repetitions/similarities to effectively assess structural similarity.

Our examination of existing XML structural comparison

approaches, particularly fine-grained approaches based on tree

edit distance, e.g., [12, 16, 55], have led us to identify certain

cases where sub-tree structural similarities are disregarded.

These undetected similarities can be distinguished as:

 Repetitions of structurally similar sub-trees,

 Structural similarity between sub-trees occurring at

different depths,

 Similarity between a sub-tree on one hand, and the

whole XML tree on the other,

 Repetitions of leaf node sub-trees.

Fig. 4. Dummy XML trees, depicting various kinds of sub-tree

structural similarities.

The authors in [55] make use of tree insertion and tree

deletion operations, coupled with the contained in relation

between trees, to capture sub-tree repetitions, such as the case

of XML trees A/B and A/C mentioned in Section 2.2.2

(repetition of sub-tree B1). Yet, when the containment relation

is not fulfilled, certain structural similarities are ignored.

Consider, for instance, trees A and D in Fig. 4. Here, the

XML document sub-trees being repeated are not contained in

the source tree, but are similar (e.g., D2 and A1 are similar).

Since D2 is not contained in A, it is inserted via four edit

operations instead of one (insert tree), while transforming A to

D, ignoring the fact that part of D2 (sub-tree of nodes b, c, d
1
)

is identical to A1. Therefore, equal distances are obtained when

comparing trees A/D and A/E, disregarding A/D‟s structural

resemblances (here, we assume the general case where atomic

insertion/deletion operations are of unit costs, =1):

 Dist(A, D) = CostIns(h) + CostIns(b) + CostIns(c) +

CostIns(d) + CostIns(h) = 1 + 4 = 5

 Dist(A, E) = CostIns(h) + CostIns(e) + CostIns(f) +

CostIns(g) + CostIns(h) = 1 + 4 = 5

1 In the examples, we designate nodes by their labels for simplicity.

a

b c c

Tree P

a

b b b

Tree N

a

b c

Tree M

a

b

Tree L

b b

Tree K

a

h

i j

Tree J

m

g

h i

G2

j

a

Tree H

G1
m

b

c d

G2

f

a

Tree G

G1
b

c

Tree I

d

a

Tree E

b

c d

D1 D2

h

e

f g h

a

Tree D

b

c d

D1 D2

h

b

c d h

a

b

c d
F1

e

Tree F

a

b

c d

e

f g
C1 C2

Tree C

a

Tree B

b

c d

b

c d
B1 B2

a

b

c

Tree A

d
A1

Other types of sub-tree structural similarities that are

missed by existing approaches can also be identified when

comparing trees F/G and F/H, as well as F/I and F/J. The F,

G, H case is different than its predecessor (the A, D, E case) in

that the sub-trees sharing structural similarities (F1 and G2)

occur at different depths (whereas with A/D, A1 and D2 are at

the same depth). Here, the approaches in [12, 16, 55] for

instance yield identical distance values when comparing trees

F and G, as well as F and H, disregarding the structural

similarity between sub-trees F1 and G2 (in comparison with F1

and H2):

 Dist(F, G) = Dist(F, H) = 7, which is the cost of

updating node b, transforming it into m, deleting

nodes c, d and e of tree F, and inserting sub-tree G2

(H2) into tree F.

On the other hand, the F, I, J case differs from the

previous ones since structural similarities occur not only

among sub-trees, but also at the sub-tree/tree level (e.g.,

between sub-tree F1 and tree I). Such similarities are usually

disregarded with existing methods, e.g., [12, 16, 55]:

 Dist(F, I) = Dist(F, J) = 6, which is the cost of

updating root node a of tree F, transforming it into b

(h), updating node b into c (i), deleting nodes c, d and

e, and inserting node c (j) into tree I (J).

In addition, none of the approaches mentioned above is

able to effectively compare documents made of repeating leaf

node sub-trees. For example, following [12, 16, 55], identical

similarity values are obtained when comparing document K, of

 Fig. 4, to documents L and M. That is because most existing

approaches consider minimum unit (=1) operations costs,

regardless of the leaf nodes involved in the operations.

 Dist(K, L) = CostIns(b) = 1

 Dist(K, M) = CostIns(c) = 1

Nonetheless, one can realize that document trees K and L

are more similar than K and M, node b of tree K appearing

twice in tree L, and only once in XML tree M. Likewise,

identical distances are attained when comparing document

trees K/N and K/P, despite the fact that the node b is repeated

three times in tree N, and only once in tree P. In this study, we

explicitly mention the case of leaf node repetitions since i) leaf

nodes are a special kind of sub-trees: single node sub-trees, ii)

leaf node repetitions are usually as frequent as sub-tree

repetitions in XML documents, and iii) detecting leaf node

repetitions would help increase the discriminative power of

XML comparison methods as described in the above examples.

3.2. Semantic Similarity

In order to stress the need for semantic relatedness assessment

in XML document comparison, we first report from [73] the

sample XML document trees in Fig. 5. Using classic edit

distance computations (e.g., [12, 16, 55]), the same structural

similarity value is obtained when document X is compared to

documents Y and Z:

 Dist(X, Y) = Dist(X, Z) = 3, corresponding to the

cost of updating root node of label Academy

transforming it into College (Factory), updating node

Professor transforming it into Lecturer (Supervisor),

and deleting node Student.

However, despite having similar structural characteristics,

one can easily recognize that sample document X shares more

semantic characteristics with document Y than with Z. For

instance, node labels Academy-College and Professor-

Lecturer, from documents X and Y, can be commonly viewed

as semantically more similar than Academy-Factory and

Professor-Supervisor, from documents X and Z (considering a

domain independent semantic network such as WordNet [48],

describing concepts found in everyday language,). Therefore,

taking into account the semantic factor in XML similarity

computations would obviously amend similarity results.

Fig. 5. Sample XML document trees, with semantically

meaningful node labels.

The example in ‎Fig. 5 underlines semantic similarities

between XML nodes with identical structural positions (i.e.,

identical depth and ordering). Such relatively simple semantic

similarities have been covered in [73]. The authors in [73]

complement Chawathe‟s tree edit distance algorithm [12], with

a „semantic cost scheme‟ taking into account semantic

similarities between XML node labels in assigning edit

operations costs. They make use of Lin‟s semantic similarity

measure developed in [41], provided a given reference

semantic network. Nonetheless, the approach in [12] was not

designed to capture sub-tree repetitions and resemblances,

making use of single node-based edit operations (i.e., node

update, leaf node insertion and leaf node deletion, cf. Section

‎2.2.2). The same goes for its extension in [73] which is not

concerned with repetitions of semantically similar sub-trees.

Fig. 6. Sample XML trees with sub-tree semantic similarities.

Worker Professor

Institution

Supervisor

Tree P’

PhD Student Professor

Institution

Lecturer

Tree‎N’

Supervisor Professor

Institution

Tree M’

Lecturer Professor

Institution

Tree‎L’

Professor

Institution

Tree‎K’

Worker Supervisor

Factory

Tree J’

Scholar Lecturer

College

Tree‎I’

PhD Student Professor

Institution

Academy

Worker Supervisor

Factory

Tree C’

C‟1 C‟2

PhD Student Professor

Institution

Academy

Scholar Lecturer

College

Tree‎B’

B‟1 B‟2

Worker Supervisor

Institution

Factory

Branch

Tree H’

H‟1

H‟2

Scholar Lecturer

Institution

College

Branch

Tree‎G’

G‟1

G‟2

PhD Student Professor

Institution

Academy

Tree‎A’

A‟1

Tree Z

Factory

Division

Branch

Supervisor

Tree Y

College

Division

Branch

Lecturer Student Professor

Academy

Division

Branch

Tree X

Consider the sample XML document trees in ‎Fig. 6. Here,

as with the sub-tree structural similarity examples mentioned

in the previous section, different types of undetected sub-tree

semantic similarities can also be identified:

 Occurrence of semantically similar sub-trees,

 Semantic similarity between sub-trees occurring at

different depths,

 Semantic similarity between a sub-tree on one hand,

and the whole XML tree on the other,

 Occurrence of semantically similar leaf node sub-trees.

Recall the A, B, C and A, D, E comparison cases in ‎Fig. 4.

XML trees A and B (likewise A and D) are structurally more

similar than A and C (respectively A and E) due to the

occurrence of structurally identical (similar) sub-trees, i.e., A2

(D2) in tree B (tree D). In ‎Fig. 6, XML document trees A‟, B‟

and C‟ underline a similar scenario. While trees B‟ and C‟ are

structurally indistinguishable w.r.t. tree A‟, one can realize that

A‟ is semantically more similar to B‟, than to C‟. Sub-tree A‟1

made of nodes Academy, Professor and PhD Student is

semantically similar to sub-tree B‟2 (made of nodes College,

Lecturer and Scholar) in tree B‟, while it is semantically

different than sub-tree C‟2 (of nodes Factory, Supervisor and

Worker) in tree C‟ (w.r.t. a generic reference semantic network

such as WordNet [48]). In other words, instead of only

considering the occurrence and repetition of identical or

structurally similar sub-trees (as discussed in the previous

section), there is a need to consider the occurrences of sub-

trees that are semantically similar as well.

In addition, as with the sub-tree structural similarity

examples in Fig. 4, similar types of sub-tree semantic

similarities can be identified when comparing trees A‟/G‟ and

A‟/H‟, A‟/I‟ and A‟/J‟, K‟/L‟ and K‟/M‟, as well as K‟/N‟ and

K‟/P‟. The A‟, G‟, H‟ case is different in that the sub-trees

sharing semantic similarities (A‟1 and G‟2) occur at different

depths. The A‟, I‟, J‟ case differs from its predecessors in that

semantic similarities occur, not only among sub-trees, but also

at the sub-tree/tree level (e.g., between sub-tree A‟1 and tree I).

On the other hand, the K‟, L‟, M‟ and K‟, N‟, P‟ cases

correspond to leaf node semantic similarities. Here, one can

realize that document trees K‟ and L‟ are more similar than K‟

and M‟, node Professor of tree K‟ being semantically more

similar to node Lecturer in tree L‟, than to node Supervisor in

tree M‟. Likewise for K‟/N‟ with respect to K‟/P‟ (node

Professor in K‟ is semantically similar to Lecturer and PhD

Student in tree N‟ while it is relatively different from nodes

Supervisor and Worker in tree P‟). Hence, we identify the need

to detect, not only the occurrences of identical leaf nodes (as

discussed in the previous section), but also the occurrences of

leaf nodes baring semantically similar labels. Detecting such

similarities would obviously amend comparison accuracy.

4. Proposal

We view the problem of XML document structure comparison

as that of detecting the occurrences and repetitions of

structurally/semantically similar sub-trees. In sub-trees, we

underline structures made of multiple nodes, as well as single

leaf nodes. Thus, we aim to provide a unified and fine-grained

method to deal with both structural and semantic resemblances

left addressed by existing comparison methods. Our XML

comparison method consists of four main algorithms:

i. Struct_CBS for identifying the Structural

Commonality Between two Sub-trees,

ii. Sem_RBS for quantifying the Semantic Resemblance

Between two Sub-trees,

iii. TOCXDoc for computing the Tree edit distance

Operations Costs,

iv. TEDXDoc for computing the Tree Edit Distance

between XML document trees.

In short, the TOC algorithm makes use of Struct_CBS and

Sem_RBS to structurally and semantically compare all sub-

trees in the XML documents being compared. The produced

sub-tree similarity results are consequently exploited as edit

operations costs (particularly tree insertion and tree deletion

costs, which are central to detecting the occurrences and

repetitions of similar sub-trees), in an adapted version of [55]‟s

main edit distance algorithm, which we identify as TED (cf.

‎Fig. 15). Hence, the inputs to our XML comparison approach

are as follows:

 The XML document trees to be compared,

 Parameter α enabling the user to assign more

importance to the structural or semantic aspects of

the XML documents being treated,

 A reference (weighted) semantic network SN , for

semantic similarity evaluation.

Consequently, the method outputs the similarity between

the XML document trees being compared. Our method‟s

overall architecture is depicted in Fig. 7.

Fig. 7. Simplified activity diagram of our XML similarity approach.

Note that the introduction of two separate algorithms:

Struct_CBS to evaluate structure, and Sem_RBS to evaluate

semantics (instead of one single hybrid algorithm), is a design

choice to: i) emphasize the modularity of our approach

(allowing to easily integrate additional algorithms in the

future, considering other XML-related information, such as

element/attribute values and/or hyperlinks), and ii) enable the

user to easily parameterize the similarity measure (assigning

more importance to either structure or semantics) following

her notion of similarity. In addition, note that Struct_CBS and

Sem_RBS can be applied to whole trees. However, in our

study, their use is coupled with sub-trees so as to capture the

various kinds of sub-tree similarities.

In the remainder of this section, we detail each of the

algorithms and processes mentioned above. Section 4.6

TOC

Struct-CBS

TED

XML Doc 2

Sem_RBS

Sim(T1, T2)

XML Doc 1

Parameter α

Reference SN

XML Tree Parsing

and Linguistic

Pre-Processing

T1

T2

XML Document Tree Comparison

formally defines our XML document similarity measure, and

evaluates its properties w.r.t. the formal definition of

similarity. Consequently, time and space complexity analyses

are discussed in Section 4.7.

4.1. Preliminaries

As described in Section 2.1, XML documents represent

hierarchically structured information and can be modeled as

Ordered Labeled Trees (OLTs) [85]. Recall that in our study,

an XML document is represented as an OLT with a node

corresponding to each XML element and attribute. Attribute

nodes appear as children of their encompassing element nodes,

sorted by attribute name, and appearing before all sub-element

siblings. As mentioned previously, we disregard

element/attribute values while studying the structural

properties of heterogeneous XML documents (structure-only

XML comparison).

Definition 5 – Ordered Labeled Tree: It is a rooted tree

in which the nodes are labeled and ordered. We denote by T[i]

the i
th
 node of T in preorder traversal, T[i]. its label, and

T[i].d its depth. R(T)=T[0] designates the root node of tree T ●

Definition 6 – Sub-tree: Given two trees T and T‟, T‟ is a

sub-tree of T if all nodes of T‟ occur in T, with the same

parent/child edge relationship and node order, such as no

additional nodes occur in the embedding of T‟ (e.g., F1 in

 Fig. 4 is a sub-tree of F, whereas tree I does not qualify as a

sub-tree of F since node e occurs in its embedding in F) ●

Definition 7 – First level sub-tree: Given a tree T with

root p of degree k, the first level sub-trees, T1, …, Tk of T are

the sub-trees rooted at the children nodes of p, p1, …, pk ●

Definition 8 – Ld-pair representation of a node: It is

defined, as the pair (, d) where  and d are respectively the

node‟s label and depth in the tree. We use p. and p.d to refer

to the label and the depth of an ld-pair node p respectively ●

Definition 9 – Ld-pair representation of a tree: It is the

list, in preorder, of the ld-pairs of its nodes (cf. Fig. 8). Given

a tree in ld-pair representation T = (t1, t2, …, tn), T[i] refers to

the i
th
 node ti of T. Thus, T[i]. and T[i].d denote, respectively,

the label and the depth of the i
th
 node of T, i designating the

preorder traversal rank of node T[i] in T ●

Note that the ld-pair tree representation was introduced

by Chawathe in [12], and will be exploited in our study in

comparing XML sub-trees (cf. Section 4.2, Struct-CBS).

A1 = ((b, 0), (c, 1), (d, 1))

A11 = (c, 0)

A12 = (d, 1)

B2 = ((b, 0), (c, 1), (d, 1))

B21 = (c, 0)

B22 = (d, 0)

B1 = ((b, 0), (c, 1), (d, 1))

B11 = (c, 0)

B12 = (d, 0)

C1 = ((b, 0), (c, 1), (d, 1))

C11 = (c, 0)

C12 = (d, 0)

C2 = ((e, 0), (f, 1), (g, 1))

C21 = (f, 0)

C22 = (g, 0)

Fig. 8. Ld-pair representations of all sub-trees in XML trees A, B,

and C of Fig. 4.

In the following, we present the definitions of the tree edit

operations utilized in our approach (adapted from [12, 55]).

Definition 10 – Atomic node operations: An atomic

operation is an edit operation applied on a single tree node.

Our approach exploits three atomic operations: leaf node

insertion (introducing a new leaf node in the tree), leaf node

deletion (removing a leaf node from the tree), and node update

(modifying the label on an existing tree node):

- Insert leaf node: Let p be a node in a tree T, and let

T1, …, Tm be the first level sub-trees of p. Given a

node x not belonging to T, Ins(x, i, p, ) is a node

insertion applied to T, inserting x as the i
th
 child of p,

yielding T‟ with first level sub-trees T1, …, Ti-1, x,

Ti+1,…, Tm+1, where  is the label of x.

- Delete leaf node: Given a leaf node x in a tree T,

Del(x) is a node deletion operation applied to T that

removes x from T, yielding tree T‟ with first level sub-

trees T1, … , Ti-1, Ti+1, … , Tm.

- Update node: Given a node x in tree T, and a label ,

Upd(x, ) is a node update operation applied to x

resulting in T‟ which is identical to T except that in T‟,

x bears  as its label. The update operation could be

also formulated as follows: Upd(x, y) where y.

denotes the new label to be assumed by x ●

Note that the update operation in our approach targets

nodes of identical structural positions, i.e., nodes having

identical depth and ordering in the trees being compared,

transforming the label of one node into that of the other.

Definition 11 – Complex tree operations: A complex

tree edit operation is an edit operation applied on a sub-tree of

nodes. Our approach exploits two complex operations: tree

insertion and tree deletion:

- Insert Tree : Given a tree A and a tree T with an inner

node p having first level sub-trees T1, T2, …, Tm,

InsTree(A, i, p) is a tree insertion applied to T, inserting

A as the i
th

 sub-tree of p, thus yielding T‟ with first level

sub-trees T1, …, Ti-1, A, Ti+1, …, Tm+1 .

- Delete Tree : Given a tree A and a tree T with an inner

node p, A being the i
th
 sub-tree of p, DelTree(A, p) is a

tree deletion operation applied to T that yields T‟ with

first level sub-trees T1, … , Ti-1, Ti+1, … , Tm ●

In addition, we provide the formal definition of a

semantic network, adopted in our study.

Definition 12 – Semantic network: It can be formally

represented as a 3-tuple SN=(C, E, R, f) where:

 C: set of concepts, synonym sets as in WordNet [48].

 E: set of edges connecting the concepts, E c cV ×V .

 R: set of semantic relations, R = {Is-A, Has-A, Part-

Of, Has-Part…}, the synonymous words/expressions

being integrated in the concepts themselves.

 f : function designating the nature of edges, f:E R.

We designate by SN a weighted semantic network, i.e., a

semantic network SN augmented with concept frequencies (cf.

 Fig. 3), based on a given text corpus (e.g., the Brown Corpus

of American English [25]) ●

Note that XML element/attribute tag names generally

consist of single words, simple concatenations of words

(usually not more than two terms per label [79], using the

underscore delimiter or Java-style upper/lower case letters to

distinguish the individual terms), and/or word abbreviations

[59, 79]. Nonetheless, semantically meaningful XML labels

are usually obtained after several linguistic pre-processing

operations such as tokenization (parsing names into tokens

based on punctuation and case, to form simple expressions,

e.g., PhD_Std  PhD Student), expansion (identifying

abbreviations and acronyms, e.g., CEO  Chief Executive

Officer) and stemming (reducing inflected or derived words to

their stem, i.e., base or root, e.g., housing, housed  house)

[17, 43]. In the case of polysemous words (i.e., words with

multiple senses), word sense disambiguation techniques, e.g.

[54, 56, 79], can be exploited in order to select the semantic

concept that most likely describes the meaning of the label in

the given XML document. Note that linguistic pre-processing

operations are executed offline [79], using dedicated thesauri

and/or dictionaries (in our case, WordNet), and do not affect

the performance of our comparison approach (Fig. 7).

4.2. Structural Similarity between Sub-trees (Struct-CBS)

As shown in Section 3.1, sub-tree structural similarities are

usually left undetected in current XML comparison

approaches. In [55], the authors were the first to address the

issue and were able to detect certain basic sub-tree structural

similarities using tree insertion and tree deletion operations,

coupled with the tree contained in relation (cf. Section 2.2.2).

Nonetheless, when the containment relation is not fulfilled,

various structural similarities are ignored, as discussed in the

motivation examples.

Here, in order to capture the various kinds of sub-tree

structural similarities pinpointed in Section 3.1, we identify

the need to replace the tree contained in relation, making up a

necessary condition for executing tree insertion and deletion

operations in [55], by introducing the notion of structural

commonality between two sub-trees.

Definition 13 – Structural commonality between sub-

trees: Given two sub-trees A = (a1, …, am) and B = (b1, …, bn),

we define the structural commonality between A and B,

designated by StructCom(A, B), as the set of pairs of nodes N

form A and B, N={(ar, bu)}  A×B, such that  ar  A, bu  B,

ar and bu occur in A and B respectively, with the same label,

depth and relative order (in preorder traversal). For 1 ≤ r ≤ m

and 1 ≤ u ≤ n:

(1) ar . = bu.

(2) ar.d = bu.d

(3) For any (as, bv)  N such as r ≤ s , then u ≤ v ●

Following ‎Definition 13, the problem of finding the

structural commonality between two sub-trees SbTi and SbTj is

equivalent to finding the maximum number of structurally

matching nodes in SbTi and SbTj (|StructCom(SbTi, SbTj)|).

However, the problem of finding the edit distance between

SbTi and SbTj comes down to identifying the minimal number

of edit operations that can transform SbTi to SbTj. Those are

dual problems since identifying the edit distance between two

sub-trees (trees) underscores, in a roundabout way, their

maximum number of matching nodes. In other words, the

greater the edit distance, the larger the edit script, the greater

the number of edit operations, the greater the number of node

transformations, the lesser the number of matching nodes.

Therefore, we introduce in Fig. 9 the pseudo-code of our

Struct_CBS algorithm, based on the edit distance concept, to

identify the structural commonality between sub-trees

(similarly to the approach provided in [53], in which the author

develops an edit distance based approach for computing the

longest common sub-sequence between two strings). In

Struct_CBS, sub-trees are treated in their ld-pair

representations (cf. Definition 9, Fig. 8). Using the ld-pair

tree representations, sub-trees are transformed into modified

sequences (ld-pairs), making them suitable for standard edit

distance computations. The algorithm starts by computing the

sum of the costs of deleting every node in the source sub-tree

(Fig. 9, line 3), and inserting every node of the destination tree

(line 4). Consequently, it identifies the set of insertion/deletion

operations having the minimum overall cost (lines 5-15).

Structurally matching nodes are associated null costs (line 10).

Note that the update operation is specifically disregarded in

Struct-CBS, in order to allow the identification of structurally

matching nodes (line 10). Consequently, the overall sum of the

minimum operations‟ costs (i.e., minimum cost edit script, cf.

 Definition 2) underlines an edit distance, i.e.,

Dist[|SBTi|][|SbTj|], between the sub-trees SbTi and SbTj being

compared. Hence, the maximum number of matching nodes

between SbTi and SbTj, |StructCom (SbTi, SbTj)|, is identified

w.r.t. the edit distance score:

 Total number of deletions: we delete all nodes of SbTi

except those having matching nodes in SbTj,

Deletions

 = |SbTi| - |StructCom(SbTi , SbTj)|

 Total number of insertions: we insert into SbTi all nodes

of SbTj except those having matching nodes in SbTi,

Insertions

 = |SbTj| - |StructCom(SbTi , SbTj)|

 Following Struct_CBS, using constant unit costs (=1) for

node insertion and deletion operations, the edit distance

between sub-trees SbTi and SbTj becomes as follows:

Dist[|SbTi|][|SbTj|]=
Deletions

 1 +
Insertions

 1

 =|SbTi|+|SbTj| - 2×|StructCom(SbTi, SbTj)|

Therefore:

|StructCom(SbTi, SbTj)| = | |+| | - [| |][| |]

2

ji j iSbT SbT Dist SbT SbT (4)

Algorithm Struct_CBS

Input: SbTi and SbTj // Sub-trees in ld-pair representations
Output: Struct_CBS(SbTi, SbTj) // Normalized structural commonality

Begin

Dist[][] = new [0...|SbTi|][0…|SbTj|] 1
Dist[0] = 0 2

For (n = 1 ; n ≤ |SbTi| ; n++) {Dist[n][0] = Dist[n-1][0] + CostDel(SbTi[n])} 3

For (m = 1 ; m ≤ |SbTj| ; m++) {Dist[0][m] = Dist[0][m-1] + CostIns(SbTj[m])} 4

For (n = 1 ; n ≤ |SbTi| ; n++) 5
{ 6

For (m = 1 ; m ≤ |SbTj| ; m++) 7
{ 8

Dist[n][m] = Min{ 9

If (SbTi[n].d = SbTj[m].d & SbTi[n]. = SbTj[m].) { Dist[n-1][m-1] }, 10

Dist[n-1][m] + CostDel(SbTi[n]), // Simplified node 11
Dist[n][m-1] + CostIns(SbTj[m]) // operations syntaxes. 12
 } 13

} 14
} 15

Return

i j i j

i j

 | | + | | | | | |

(| | ,| |)

[][]SbT SbT Dist SbT SbT

2× SbT SbT Max

 // Normalized commonality 16

End

Fig. 9. Algorithm Struct_CBS for identifying the structural

commonality between sub-trees.

To obtain structural commonality values comprised in the

[0, 1] interval, we normalize |StructCom(SbTi, SbTj)| via

corresponding sub-tree cardinalities, Max(|SbTi|, |SbTj|). Thus:


i j

i j

(SbT , SbT)|
0

Max(|SbT | , |SbT |)

| StructCom


When there is no structural

commonality:

|StructCom(SbTi, SbTj)| = 0


i j

i j

(SbT , SbT)|
1

Max(|SbT | , |SbT |)

| StructCom


When sub-trees are identical:

|StructCom(SbTi, SbTj)| =

|SbTi| = |SbTj|

‎Table 1 shows the detailed computations and results of

applying Struct_CBS to sample sub-trees A1 and D1 of ‎Fig. 4

(reported in ‎Fig. 10).

Table 1. Detailed computations, following Struct_CBS, when

applied on sub-trees A1 and D1.

 0 D1[1] (b, 0) D1[2] (c, 1) D1[3] (d, 1) D1[4] (h, 1)

0 0 1 2 3 4

A1[1] (b, 0) 1 0 1 2 3

A1[2] (c, 1) 2 1 0 1 2

A1[3] (d, 1) 3 2 1 0 1

Fig. 10. Sample sub-trees bearing structural commonalities.

The first line of the distance matrix, i.e., Dist[0][],

corresponds to the sum of the costs of inserting every node of

the destination sub-tree D1. Likewise, the first column,

Dist[][0], underlines the sum of the costs of deleting every

node of A1. Consequently, the algorithm identifies the

combination of insertion/deletion operations of minimum

overall cost (cf. Fig. 9, lines 7-18) in populating the remainder

of the matrix, Dist[|A1|][|D1|] underlining the final distance

value. Note that in ‎Table 1, matching nodes are highlighted,

while the (final) distance value is emphasized in italic format.

Having Dist[|A1|][|D2|] = 1:

3 + 4 - 1
 = 3

2 2

| |+| | - [| |][| |]
| (,)| = =

1 2 1 2

1 2

A D Dist A D
StructCom A D ,

(nodes b, c, d). Consequently, Struct_CBS(A1, D1) =
3

 = 0.75
4

.

Similarly,
1

= 0.25
4

| (,)|
(,) = =

(| | | |)

2 2

2 2

i j

StructCom C G
Struct_CBS C G

Max SbT , SbT

(having |StructCom(C2, G2)|=1).

Note that applying Struct_CBS to leaf node sub-trees

comes down to comparing corresponding sub-tree root node

labels (leaf node sub-trees consisting of sub-trees made of

single nodes: the sub-tree root nodes themselves, bearing

identical (=0) depth and ordering scores). For instance,

Struct_CBS(A11, D11) = 1, since sub-trees A11 and D11 consist of

leaf nodes of label c. Similarly, when computing the

commonality between a leaf node sub-tree (e.g., A11) and a

non-leaf node sub-tree (e.g., D1), Struct_CBS compares the

label of the root of the former (R(A11), the leaf node itself) to

that of the latter (R(D1)):

 Struct_CBS(A11, D1) = 0, roots of A11 (leaf node)

and D1 having different labels,

 Struct_CBS(E22, H2) = 1/4 = 0.25 having

|StructCom(E22, H2)| = 1 (since R(E22) = R(H2) = g)

and Max(|E22|, |H2|) = 4.

4.3. Semantic Resemblance between Sub-trees (Sem-RBS)

In addition to sub-tree structural commonalities (i.e.,

considering parent/child relationships and ordering among

XML elements, identified by their labels), we aim to consider

sub-tree semantics in XML similarity evaluation (i.e., semantic

meaning of sub-tree node labels). For the sake of clearness, we

use expression „semantic resemblance‟, in the remainder of the

paper, to avoid confusion between semantic and structural

similarity, the latter designated as „structural commonality‟.

Various methods for detecting the semantic similarity

between pairs of words/expressions, based on a given

reference semantic network, have been proposed (cf. Section

‎2.3). Nonetheless, capturing the semantic relatedness between

two sets of words/expressions (e.g., node labels of two sub-

trees) has not been effectively covered in the literature. To our

knowledge, two complementary approaches have tackled the

issue, i.e., [15, 24], developed in the context of concept

similarity of ontology management systems [24], and concept

similarity in geographic information systems [15]. While

theoretically sound, the solution provided in [15, 24] does not

seem practical, since it requires a minimum of O(N!) time (a

detailed mathematical analysis is provided in [75]).

Hence, to capture the semantic resemblance between two sub-

trees, we provide a new approach entitled Sem_RBS, that

combines the traditional vector space model in information

retrieval [47], with semantic similarity evaluation (cf. Section

‎2.3). In detail, we proceed as follows. When comparing two

sub-trees SbTi and SbTj, each would be represented as a vector

Sub-tree H2

g

h i j

Sub-tree E22

g b

c d

Sub-tree G2

f

Sub-tree C2

e

f g

Sub-tree D1

b

c d h

D11

Sub-tree A1

b

c d

A11

V (
iV and

jV respectively) with weights underlining the

semantic similarities between their corresponding node labels.

Recall, that XML tag names undergo several linguistic pre-

processing operations (including tokenization, expansion,

stemming, and word sense disambiguation, cf. Section 4.1) so

as to obtain semantically meaningful labels prior to the

comparison process.

Definition 14 – Sub-tree Vectors: Given two sub-trees

SbTi and SbTj, we define corresponding sub-tree vectors
iV

and
jV in a space which dimensions represent, each, a single

node label r  SbTi U SbTj, such as 1 < r < n where n is the

number of distinct node labels in both SbTi and SbTj. The

coordinate of a sub-tree vector
iV on dimension r is noted

 ()
i

r
V

w , underlining the semantic weight of label r in SbTi ●

Definition 15 – Semantic Sub-tree Node Weight: The

semantic weight of a node vr in vector
iV , representing sub-

tree SbTi, is composed of two factors: a node/vector similarity

factor Sim(vr ,

iV) and a depth D-factor(vr) factor:

 ()

i
r

V
w v = Sim(vr ,

iV) × D-factor(vr)  [0, 1] (5)

 Sim(vr ,

iV) quantifies the semantic similarity between

the label vr. of node vr and sub-tree vector
iV . It is

computed as the maximum semantic similarity between

label vr. and all node labels of SbTi w.r.t. a reference

(weighted) semantic network SN (cf. ‎Definition 12).

Formally:

v Vi
Sim(,)= Max (Sim (. , , SN)) ir Label r 0 1v V v v. [,]


 (6)

When vr  SbTi, Sim(vr ,

iV) = 1 underlines the node‟s

occurrence in SbTi.

 D-factor underlines the semantic influence of node depth

on XML semantic similarity. It follows the intuition that

information placed near the root node of an XML

document is more important than information further

down in the hierarchy [6, 90]. Thus, node labels higher

in the XML tree hierarchy should have a greater

semantic influence than their lower counterparts. This

could be mathematically concretized using Formula ‎(7),

adapted from [90]:

r

r

1
 - (v) =

1 + v .d
D factor [0, 1]

 (7) .

where vr.d underlines the depth of node vr in the

document ●

As for the label semantic similarity measure, SimLabel, our

investigation of the literature (Section 2.3) led us to consider

Lin‟s method [41] in our XML comparison process (i.e.,

SimLabel ≡ SimLin). Lin‟s measure was proven efficient in

evaluating semantic similarity, in comparison with its

predecessors, i.e., [60, 87]. Its performance and theoretical

basis are recognized and generalized by [44] to deal with

hierarchical and non-hierarchical structures. However, it is

important to note that our XML similarity approach is not

sensitive, in its definition, to the semantic similarity measure

used. Yet, choosing a performing measure would yield better

similarity judgment.

Having transformed XML sub-trees into semantically

weighted vectors, the semantic relatedness between two sub-

trees can be evaluated using a measure of similarity between

vectors such as the inner product, the cosine measure, the

Jaccard measure, etc. Here, we adopt the cosine measure

widely exploited in information retrieval [8, 63]:

,- () = Cos() ji
i j

Sem RBS SbT , SbT V V [0,1] (8) .

where
iV and

jV are the semantically weighted vectors

corresponding to SbTi and SbTj respectively.

Algorithm Sem_RBS consists in building the vector space

corresponding to the sub-trees being compared, as well as

computing the semantic and cosine measures as explained

above. It takes as input the sub-trees SbTi and SbTj to be

compared, and the reference semantic network SN , and

generates the sub-tree semantic similarity score ( [0, 1]).

Sem_RBS‟s pseudo-code is a straightforward consequence of

 Definition 14 and Definition 15, and is thus omitted for

clearness of presentation (it can be found in [75]).

Sample computation examples when comparing sub-trees

A’1/B’2 and A’1/C’2 of Fig. 11 (reported from Fig. 6) are shown

hereunder.

Fig. 11. Sample sub-trees bearing semantic resemblances.

When comparing A‟1 and B‟2, the corresponding vector

space consists of 6 dimensions corresponding to each distinct

node label in both sub-trees: Academy, Professor, PhD

Student, College, Lecture and Scholar. Thus, 6-dimensional

vectors VA‟1 and VB‟2 are produced:

 Academy Professor PhD Student College Lecturer Scholar

VA‟1 1 1 1 0.7970 0.7674 0.8402

VB‟2 0.7970 0.7674 0.8402 1 1 1

a. Node label semantic similarity values.

 Academy Professor PhD Student College Lecturer Scholar

VA‟1 1 0.5 0.5 0.7970 0.3837 0.4201

VB‟2 0.7970 0.3837 0.4201 1 0.5 0.5

b. Final weights, i.e., Sim × D-factor.

Fig. 12. Sub-tree vectors when comparing sub-trees A‟1 and B‟2.

Semantic similarity values are computed following Lin‟s

semantic similarity measure [41] (cf. Formula ‎(3)). Here, in

computing label semantic similarities, we exploit the weighted

semantic network in Fig. 3. Similarity values, following [41],

between pairs Academy/College, Professor/Lecturer, and PhD

Student/ Scholar are computed as follows:

2 log p()
Sim (,) =

log p() + log p()
Lin

Establishment
Academy College

Academy College

Worker Supervisor

Factory

Sub-Tree C’2

Scholar Lecturer

College

Sub-Tree B’2

PhD Student Professor

Academy

Sub-Tree A’1

17
2 log ()

260= = 0.7970
8 9

log () + log ()
260 260

Likewise, Sim (,) = 0.7674
Lin

Professor Lecturer and

Sim (,) = 0.8402.
Lin

PhD Student Scholar

Recall that the semantic weight of a given node vr, of

label r, in vector
iV , is computed as the maximum semantic

similarity between r and all node labels of
iV (cf. ‎Definition

15). In our example, SimLin(Academy, College) underlines the

maximum similarity value between label Academy and all

labels of vector
 B'2V , and vice-versa for College and

 A'1V .

The same is true for node labels Professor and Lecturer, as

well as PhD Student and Scholar, w.r.t.
 B'2V and

 A'1V

respectively (Fig. 12.b). Thus, final vector weights are

obtained by multiplying both semantic similarity and depth

factors SimLabel×D-factor as shown in Fig. 12.c (‎Definition

15). Hence, the semantic resemblance between sub-trees A‟1

and B‟2, w.r.t. the reference semantic network SN in ‎Fig. 3:

, = 0.9754.- () = Cos()
1 2 A' 1 B' 2

Sem RBS A' , B' V V

Similarity, when comparing sub-trees A‟1 and C‟2, the

corresponding vector space consists of 6 dimensions

corresponding to each distinct node label in both sub-trees:
 Academy Professor PhD Student Factory Supervisor Worker

VA‟1 1 1 1 0.2662 0.3608 0.3608

VC‟2 0.2662 0.3608 0.3608 1 1 1

a. Node label semantic similarity values.

 Academy Professor PhD Student Factory Supervisor Worker

VA‟1 1 0.5 0.5 0.2662 0.1804 0.1804

VC‟2 0.2662 0.1804 0.1804 1 0.5 0.5

b. Semantic weights, i.e., SN-factor × D-factor.

Fig. 13. Sub-tree vectors when comparing sub-trees A‟1 and C‟2.

Semantic similarities between pairs of labels are computed

following Lin [41] (‎Fig. 13.a):

2 log p()
Sim (,) = = 0.2662

log p() + log p()
Lin

Structure
Academy Factory

Academy Factory

Likewise, 0.3608Sim (,)
Lin

Professor Supervisor  and

Sim (,) = 0.3608.
Lin

PhD Student Worker

Consequently, semantic

resemblance: , 0.5303.- () = Cos()
1 2 A' 1 C' 2

Sem RBS A' , C' V V 

Results show that sub-tree A‟1 (made of node labels

Academy, Professor and PhD Student) is semantically more

similar to sub-tree B‟2 (College, Lecturer, Scholar) than C‟2

(Factory, Supervisor, Worker).

4.4. Tree Edit Operations Costs (TOC)

As stated previously, TOC (‎Fig. 14) is an algorithm dedicated

to computing tree edit distance operations costs, particularly

the costs of tree insertion and tree deletion operations (cf.

‎Definition 11, including single node insertions/deletions

costs), which are central to detecting sub-tree similarities when

comparing two XML document trees (note that the use and

cost of the update operation, cf. ‎Definition 10, are discussed

in the following section). TOC combines the structural

commonalities (Struct_CBS) and semantic resemblances

(Sem_RBS) between each pair of sub-trees (SbTi and SbTj) in

the source and destination XML trees (A and B) respectively,

assigning tree insert/delete operations costs accordingly.

Consequently, these costs are exploited via an adaptation of

Nierman and Jagadish‟s main edit distance algorithm [55]

(Fig. 15) providing an improved and more accurate XML

document similarity measure.

Following TOC, the similarity between two XML sub-

trees, SS(SbTi, SbTj), is evaluated as the weighted average of

their structural commonality (Struct_CBS) and semantic

resemblance (Sem_RBS) scores:

SS(SbTi , SbTj ,α) =

j i j-_ (SbT , SbT) + () _ (SbT , SbT)iStruct CBS Sem RBS  1

where α  [0, 1] is provided as input.

(9) .

The user can thus assign more importance to either structural

or semantic similarities by varying parameter α  [0, 1]:

 For α=1, TOC will only consider structural

commonalities in computing operations costs

(via Struct_CBS).

 For α = 0, only sub-tree semantic resemblances will

be considered in computing operations costs

(via Sem_RBS).

The fine-tuning of parameter α so as to effectively

combine sub-tree structure similarity (Struct-CBS) and

semantic similarity (Sem-RBS) comes down to an optimization

problem such as α should be chosen to maximize the overall

sub-tree similarity function (cf. Formula ‎(9)). This can be

solved using a number of known techniques that apply

machine learning in order to identify the best weights for a

given problem class [20, 22, 32, 45, 49]. The main idea with

this family of techniques is to assign a higher (lower) weight

with higher (lower) similarity values, acting like contrast

filters in image processing by increasing the contrast on input

matrixes. Providing such a capability, in addition to manual

tuning, would enable the user to parameterize and adapt the

XML comparison process following the scenario at hand,

giving more emphasis to the structural or (inclusive) semantic

aspects of the XML documents being compared. We do not

further address the fine-tuning of parameter α here since it is

out of the scope of this paper (and will be addressed in an

upcoming technical study).

Thus, following TOC, tree operations costs vary as follows:

2

InsTree/ DelTree
Del

All nodes of SbTi i j
all SbT Tj

,
i

+ { (SbT , SbT)}
Cost SbT Cost() = ()

x SSMax
x




 1

1

 Maximum insert/delete sub-tree cost:

- CostInsTree/DelTree(SbTi) = Ins/Del
All nodes of SbTi

 Cost () 1
x

x 

 Minimum insert/delete sub-tree cost:
(10)

- CostInsTree/DelTree(SbTi) = Ins/Del
All nodes of SbTi

1

2
 Cost ()

x

x 

Lemma 1. Following TOC, the maximal insert/delete tree

operation cost for a given sub-tree SbTi (attained when no sub-

tree structural commonalities nor semantic resemblances with

SbTi are identified in the source/destination tree) is the sum of

the costs (unit costs, =1)
1
 of inserting/deleting every individual

node of SbTi (the proof is evident) ●

Lemma 2. Following TOC, the minimal insert/delete tree

operation cost for SbTi (attained when a sub-tree identical to

SbTi is identified in the source/destination tree respectively) is

equal to half its insert/delete tree maximum cost ●

The minimal tree operation cost is defined in such a way

in order to guarantee that the cost of inserting/deleting a non-

leaf node sub-tree will never be less than the cost of

inserting/deleting a single node (single node operations having

unit costs). In fact, TOC is based on the intuition that tree

operations are more costly than node operations.
1

Proof: The smallest non-leaf node sub-tree that can be

treated via a tree operation is a sub-tree consisting of two

nodes. For such a tree, the minimum insert/delete tree

operation cost would be equal to 1 (its maximum cost being

equal to 2), equivalent to the cost of inserting/deleting a single

node. That is the lowest tree operation cost attainable, for a

non-leaf node sub-tree, following TOC 

Hence, for leaf node sub-trees, the maximum insert/delete

tree operation cost is equal to 1, the cost of inserting/deleting

the single node at hand:

 CostInsTree/DelTree(SbTi) = CostIns/Del(x)  1=1, when SbTi

is made of single node x.

The minimum cost for inserting/deleting a single node

sub-tree is equal to 0.5, half its maximum insert/delete cost:

 CostInsTree/DelTree(SbTi) = CostIns/Del(x)  1/2 = 0.5 , SbTi

consisting of single node x.

This is essential in order to detect the similarities and

repetitions among leaf node sub-trees (such as with the K, L, M

and K, N, P comparison cases in ‎Fig. 4, discussed in the

motivation section).

1 An intuitive and natural way has been usually used to assign single node

operation costs and consists of considering identical unit costs for insertion

and deletion operations [13, 55].

 Algorithm TOC

 Input: A , B // XML document trees

 α // Parameter for weighting Struct_CBS and Sem_RBS

 SN // Weighted semantic network

 Output: {CostDelTree} U {CostInsTree} // Delete tree and insert tree operations costs

 Begin

For each sub-tree SbTi in A (including A) // Traversing the sub-trees of A 1
{ 2

CostDelTree(SbTi) =

i

x

x
Del

All nodes of SbT

Cost () 3

For each sub-tree SbTj in B (including B) // Traversing the sub-trees of B 4
{ 5

CostInsTree(SbTj) =

j

x

x
Ins

All nodes of SbT

Cost () 6

CostDelTree(SbTi) = Min{ CostDelTree(SbTi),

i i j

SSx

x



Del

All nodes of SbT ,

1
Cost ()

1 + (SbT , SbT)
} 7

CostInsTree(SbTj) = Min{ CostInsTree(SbTj),

i jj

SS

x



Ins

All nodes of SbT ,

1
Cost ()

1 + (SbT , SbT) x

} 8

} 9
} 10

Return {CostInsTree} U {CostDelTree} 11

 End

Fig. 14. Tree edit distance Operations Costs (TOC) algorithm.

On one hand, note that in our approach, single node

insertions/deletions are undertaken via tree insert/delete

operations (cf. ‎Definition 11) applied on leaf node sub-trees.

Insert/delete node operations (cf. ‎Definition 10), which are

assigned unit costs as with traditional edit distance approaches,

are only utilized to compute tree insertion/deletion operations

costs (cf. Struct_CBS in Fig. 9, and TOC in ‎Fig. 14 - lines 3

and 6). They do not however contribute to the dynamic

programming procedure adopted in our edit distance approach

(similarly to [16, 55], cf. TED algorithm in Fig. 15).

On the other hand, algorithm TOC exploits tree

insertion/deletion operations to identify not only the

structural/semantic similarities between sub-trees (SbTi, SbTj)

but also the similarities between the sub-trees and the whole

XML trees (A and B) being compared (cf. ‎Fig. 14, lines 1 and

4). This is necessary when one of the trees involved in the

comparison process shares structural/semantic similarities with

one (or more) of the sub-trees encompassed in the other XML

document tree (e.g., the F, I, J case in ‎Fig. 4 where tree I is

structurally similar to sub-tree F1, and the A‟, I‟, J‟ case in ‎Fig.

6 where tree I‟ is semantically similar to sub-tree A‟1).

Nonetheless, note that inserting/deleting the whole destination/

source trees is not allowed in our approach (cf. algorithm TED

in Fig. 15). In fact, by allowing such operations, one could

delete the entire source tree in one step and insert the entire

destination tree in a second step, which completely undermines

the purpose of the insert/delete tree operations.

To sum up, TOC computes the costs of tree insertion and

deletion operations based on their corresponding sub-trees‟

structural commonality and semantic resemblance values

(maximum values inducing minimum tree operations costs), to

be exploited in the main tree edit distance algorithm (TED).

4.5. Tree Edit Distance (TED)

The pseudo-code of the tree edit distance algorithm TED,

utilized in our study, is developed in ‎Fig. 15. It is an

adaptation of Nierman and Jagadish‟s main edit distance

process [55]. In addition to tree insertion/deletion operations

costs which vary w.r.t. the structural/semantic similarities

between XML sub-trees, TED exploits update operations costs

(Fig. 15, line 4) in computing the distance between two XML

document trees. In short, the algorithm recursively goes

through the sub-trees of both XML document trees being

compared, combining node update, tree insertion and tree

deletion operations so as to identify those of minimal cost. The

node update operation (Definition 10) is applied to the roots of

the XML trees being compared, as well as the roots of each

pair of sub-trees considered in the recursive process (Fig. 15,

line 4), whereas tree insertion and tree deletion operations are

applied to corresponding first-level sub-trees (Fig. 15, lines 5-

6, 13-14). Recall that the insertion/deletion of single nodes are

undertaken via tree insertion/deletion operations applied on

leaf node sub-trees (as described in the previous section).

While tree insertion/deletion operations‟ costs allow

detecting the structural and semantic similarities between

XML sub-trees (cf. TOC), the update operation cost is central

in evaluating the similarity between the roots of the XML

document trees being compared, as well as the roots of XML

sub-trees considered in the recursive process (TED).

With classical edit distance approaches, the cost of the

update operation underlines the equality/difference between

node labels:

 Minimum cost when the compared element labels are

identical, CostUpd(a, b) = 0 when a. = b.

 Maximum unit cost otherwise, i.e. CostUpd(a, b) = 1

when a.≠ b.

Nonetheless, to consider the semantic similarities between

element labels (not only label equality/difference) in our study,

we extend the update operation cost scheme as follows:

 CostUdp(a, b, α) =

 - (a.d)
[1 - (1-) ((a. , b. , SN))] a. b.

1 + - (a.d)

 0 otherwise

Label

D fact
Sim if

D fact






 
   

 
  

 where α  [0, 1]

(11)

Parameter α (which is the same utilized in TOC) allows

assigning more importance to either structural or semantic

similarities:

 For α = 1, we only consider label equality/difference

in computing the cost of the update operation, as with

traditional structural edit distance approaches,

 For α = 0, node semantic similarities will be

considered in computing the update operation cost.

Here, the operation cost varies in the [0, 1] interval

w.r.t. the semantic similarity between the concerned

node labels and corresponding depths (note that

nodes treated via the update operation are of the same

depth, i.e., a.d = b.d).

Algorithm TED

Input: A and B // XML document trees to be compared

 {CostDelTree} U {CostInsTree} // Sub-tree deletion/insertion operations costs
 α // Parameter for structural/semantic weighting,

 SN // Weighted semantic network

Output: TED(A, B) // Edit distance between A and B

Begin

M = Degree(A) // The number of first level sub-trees in A. 1
N = Degree(B) // The number of first level sub-trees in B. 2

Dist [][] = new [0...M][0…N] 3
Dist[0][0] = CostUpd(R(A), R(B), α) // Update operation 4

For (i = 1 ; i ≤ M ; i++) { Dist[i][0] = Dist[i-1][0] + CostDelTree(Ai) } 5
For (j = 1 ; j ≤ N ; j++) { Dist[0][j] = Dist[0][j-1] + CostInsTree(Bj) } 6

For (i = 1 ; i ≤ M ; i++) 7
{ 8

For (j = 1 ; j ≤ N ; j++) 9
 { 10

Dist[i][j] = min{ 11

Dist[i-1][j-1] + TEDXDoc(Ai, Bj, {CostDelTree} U {CostInsTree}, α,

SN) 12

Dist[i-1][j] + CostDelTree(Ai), 13
Dist[i][j-1] + CostInsTree(Bj) 14

 } 15
 } 16
 } 17

Return Dist[M][N] // ≡ TED(A, B) 18

End

Fig. 15. Tree edit distance algorithm (TED).

Consider for instance document trees X, Y and Z in ‎Fig. 5.

With α= 0, the corresponding root update operations costs

would be as follows:

 CostUpd(R(X), R(Y)) = 1 – (SimLin(Academy, College) × 1)

 = 0.2030

 CostUpd(R(X), R(Z)) = 1 – (SimLin(Academy, Factory) × 1)

 = 0.7337

It is clear that the cost of updating Academy and College

is lesser than that of transforming Academy into Factory,

identifying the fact that the former couple is more semantically

similar than the latter (Detailed computation examples are

developed in the Appendix).

Here, as with Sem-RBS, we exploit Lin‟s measure [41] to

assess the semantic similarity between node labels (i.e.,

SimLabel ≡ SimLin). However, recall that its use is not mandatory.

We use it since it is among the most efficient measures

available, as discussed previously.

4.6. XML Document Similarity Measure (SimXDoc)

In our study, we adopt the formal definition of similarity as the

inverse of a distance function [21], i.e., tree edit distance.

Given XML document trees A, B and C:

XDoc

TED(A, B)
Sim (A, B) = 1

|A| + |B|


(12) .

Note that TED(A, B) ≡ TED(A, B, {CostInsTree} U

{CostDelTree}, α, SN), and likewise SimXDoc(A, B) ≡ SimXDoc(A,

B, α, SN), following our algorithms. Yet, we omit the α, SN

 and {CostInsTree} U {CostDelTree} input parameters in

Formula (12) for ease of presentation.

Our similarity measure is consistent with the formal

definition of similarity [21, 44], and comes down to a

generalized metric – i.e., a similarity (distance) function

satisfying all metric properties except for triangular inequality:

i. SimXDoc(A, B)  [0, 1].

ii. SimXDoc (A, B) = 1  A and B are identical.

iii. SimXDoc (A, B) = 0  A and B have no common

characteristics
1
,

iv. Similarity increases with the commonality between

A and B, and decreases with their difference.

v. SimXDoc (A, A) = 1  similarity is reflexive.

vi. SimXDoc (A, B) = SimXDoc (B, A)  similarity is

symmetric.

In fact, triangular inequality is controversially discussed

and is usually domain and application-oriented [21]:

vii. SimXDoc (A, C) ≥ SimXDoc (A, B) × SimXDoc (B, C)

 Triangular inequality.

Regarding semantic similarity in particular, most methods

in the literature (e.g., [60, 87], cf. Section 2.3) including Lin

[41], do not satisfy triangular inequality. An example by

Tversky [80], reported by Maguitman et al. in [44], illustrates

the impropriety of triangular inequality with an example about

the similarity between countries: “Jamaica is similar to Cuba

(geographical proximity); Cuba is similar to Russia (political

affinity); but Jamaica and Russia are not similar at all”.

And since we evaluate semantic similarity via Lin‟s measure

[41] in our approach, our integrated semantic/structural

approach does not transitively satisfy triangular inequality.

Note that when parameter α=1, i.e., when our approach is

utilized as a purely structural XML comparison method (i.e.,

only Struct_CBS is taken into account), our method behaves

similarly to existing XML structural comparison methods, e.g.,

[12, 16, 55], provided that the distance values generated by the

latter are evaluated via the similarity variant in Formula ‎(12).

4.7. Overall Complexity

4.7.1. Time Complexity

The overall complexity of our integrated structural and

semantic similarity approach simplifies to

O(|A|×|B|×|SN|×Depth(SN)), where |A| and |B| denote the

cardinalities of the compared trees, |SN| the cardinality of the

semantic network exploited for semantic similarity assessment,

and Depth(SN) its maximum depth. It is computed as follows:

 Struct_CBS algorithm for the identification of the

structural commonality between two sub-trees is of

complexity: O(|SbTi|×|SbTj|) where |SbTi| and |SbTj|

denote the cardinalities of the compared sub-trees.

 Sem_RBS for identifying the semantic resemblance

between two sub-trees is of complexity:

O(|SbTi|×|SbTj|×|SN|×Depth(SN)). Note that O(|SN|×

1 SimXDoc(A, B) = 0, means that computing the distance between A and B,

consists of deleting all the nodes of the source tree, and then inserting all

the nodes of the destination tree, i.e., TED(A, B) = |A| + |B|.

Depth(SN)) underlines the time complexity of the

semantic similarity measure itself [41].

 TOC algorithm for computing the costs of tree

insert/delete operations, which makes use of

Struct_CBS and Sem_RBS in identifying the structural

commonalities and semantic resemblances between

sub-trees in the source and destination trees, is of time

complexity
1 2| | | |

1 1

 (| | | | | | ())
T T

i j

i j

 O SbT SbT SN Depth SN
 

   

and simplifies to O(|A|×|B|×|SN|×Depth(SN)). The

mathematical proof is provided in [75].

 The edit distance algorithm TED (an adaptation of the

algorithm in [55]) which utilizes the results obtained by

TOC (tree operations costs), is of complexity

O(|A|×|B|×|SN|×Depth(SN)).

When disregarding semantic similarity assessment, i.e.,

when input parameter α=1 (thus disregarding algorithm

Sem_RBS), our approach simplifies to O(|A|×|B|), similarly to

existing XML-based tree edit distance comparison approaches,

e.g., [12, 16, 55].

4.7.2. Space Complexity

As for memory usage, our approach requires RAM space to

store the XML document trees being compared, as well as the

distance matrixes and semantic vectors being computed. It

simplifies to O(|A|×|B|) space (similarly to existing

approaches, e.g., [12, 16, 55]) since:

 Struct_CBS requires |SbTi|×|SbTj| space for storing the

distance matrix when identifying the structural

commonalities between any two sub-trees SbTi and

SbTj. Hence, space complexity is of O(|SbTi|×|SbTj|).

 Sem_RBS requires 2×(|SbTi|+|SbTj|) space for handling

corresponding sub-tree vectors, each vector being of

maximal dimension |SbTi| + |SbTj|. Hence, Sem_RBS is

of O(|SbTi|+|SbTj|). Note that the semantic network is

not stored in local memory, but is stored on disk (and is

managed via a database system, cf. Section 6.6.1), and

thus does not contribute to space complexity.

 TOC is of
1 2| | | |

1 1

 (| | | |)
T T

i j

i j

 O SbT SbT
 

  space, for storing the

various distance matrixes (Struct_CBS) and sub-tree

vectors (Sem_RBS) between each pair of sub-trees in

the source and destination XML trees. This simplifies

to O(|A|×|B|) as shown in the previous section.

 The edit distance algorithm TED is of O(|A|×|B|) space

complexity.

5. Comparison with Existing Approaches

In the following, we provide both theoretical and

computational comparative analyses, evaluating our XML

document similarity method against existing approaches.

5.1. Formal Comparison

A formal mathematical comparison shows that some existing

methods are lower bounds of our approach. This property

conveys the fact that our method reduces edit operations costs

following sub-tree similarities, and affects overall similarity

values accordingly, whereas existing approaches usually

exploit maximum edit operations costs regardless of the

presence of sub-tree similarities, hence producing minimum

similarity scores.

Theorem. Let A and B be XML trees, and
TED(,)

Sim(,) = 1
| | + | |

A B
A B

A B
 , then:

 SimChawathe(A, B) ≤ SimXDoc(A, B)

 SimDalamagas et al.(A, B) ≤ SimXDoc(A, B)

Proof:

 Proving that Chawathe‟s algorithm [12] is a lower

bound of our XML comparison method is straight

forward. When computing the distance between two

trees using Chawathe‟s approach [12], all sub-trees

are inserted/deleted via single node insertion/deletion

operations regardless of the sub-tree similarities at

hand. The costs of these insertions/deletions are

equivalent to the maximum tree insertion/deletion

operations costs following our TOC algorithm (Section

 4.4), which yield a maximum edit distance, thus a

minimum similarity value between the compared trees.

In other words, Chawathe‟s algorithm [12] always

yields similarity values lesser or equal to those

computed via our approach.

 Proving that Dalamagas et al.‟s algorithm [16] is a

lower bound of our XML comparison method is also

trivial. Indeed, the costs of tree insertion/deletion

operations in [16] are computed as the sum of the costs

of inserting/deleting all individual nodes in the

considered sub-trees. These costs come down to the

maximum tree operations costs computed following our

method. Consequently, Dalamagas et al.‟s algorithm

[16] always yields similarity values that are lesser or

equal to those computed via our method. Note that we

do not consider the method‟s repetition/nesting

reduction process in our analysis since it yields

inaccurate comparison results in the general case (cf.

Section 2.2.2) 

As for Nierman and Jagadish‟s approach in [55], tree

insertion/deletion operations costs are affected by the tree

contained-in relation (cf. Section 2.2.2). Maximum costs (i.e.,

the costs of inserting/deleting all single nodes in the

considered sub-trees) are attained when the contained-in

relation is not verified. Otherwise, when the contained-in

relation is verified, tree operations costs are minimal, and

amount to the cost of inserting/deleting leaf nodes (normally

unit costs, =1)
1
. Hence, we cannot mathematically conclude

that the measure in [55] is a lower bound (or upper bound) of

1
 Please note that the minimum tree operation cost is not formally defined

in [55]. We acquired this information from the authors.

our XML comparison method since sub-tree costs are

computed differently. In other words, the approach in [55] can

yield similarity scores which are higher/lower than those

produced by our method regardless of the similarities detected

(since different mathematical cost schemes are utilized).

However, it is clear that Nierman and Jagadish‟s approach

only considers the contained-in relation between sub-trees

while varying tree operations costs. On the other hand, our

algorithm detects fined-grained structural and semantic

similarities between sub-trees, among which the structural

containment relation. Thus, our approach is able to detect a

wider set or similarities w.r.t. the method in [55]. Thus, if we

assume that sub-tree insertion/deletion costs in [55] are

defined in accordance with our method (applying TOC while

confining to the tree containment relation for instance, i.e., we

only compute sub-tree insertion/deletion costs when the

contained-in relation is verified), or vice-versa (assigning unit

costs to tree operations used in our approach – instead of

applying TOC – whenever sub-tree similarities are detected),

then Nierman and Jagadish‟s algorithm would clearly yield

similarity values that are lesser or equal to those obtained via

our method.

Regarding the approach by Tekli et al. in [73], it focuses

on the special case of semantic similarities between pairs of

single node labels, particularly those having identical

structural positions. Such similarities are covered in our

current study, in the context of wider sub-tree semantic

resemblances (an inner node would be treated as the root of its

underlying sub-tree, whereas a leaf node would be simply

viewed as a leaf node sub-tree). Yet, we cannot provide a

formal mathematical comparison between both methods. In

fact, node insertion/deletion operations costs are computed in a

particular manner in [73], taking into account the semantic

similarity between the node‟s label and that of its parent in the

source/destination document tree. Thus, the approach in [73]

yields similarity values that are not quantitatively comparable

to those produced via our current method. Consider or instance

XML document trees X, Y and Z in the example of Fig. 5:

 SimTekli et al.(X, Y) = 0.9432 > Sim Tekli et al.(X, Z) = 0.8741

 SimXDoc(X, Y) = 0.9093 > Sim XDoc(X, Z) = 0.8352

Both methods detect that trees X and Y are semantically

more similar than X and Z, w.r.t. the semantic network in Fig.

3. Yet, the similarity values are different, underlining that the

methods are not quantitatively comparable.

5.2. Similarity Results for Motivating Examples

Hereunder, we present XML distance/similarity values

obtained when applying our approach to treat the various XML

comparison examples presented throughout the paper. Results

in both ‎Table 2 and ‎Table 3 show that our XML similarity

method is able to efficiently detect the various kinds of

structural and semantic resemblances mentioned throughout

the paper, which are left unaddressed by existing approaches

(i.e., identical similarity values are obtained with existing

approaches, despite the presence of structural and/or semantic

similarities – values are omitted for ease of presentation), to

the exception of a few cases detected by existing methods

(discussed in Section ‎3).

Computational details are provided in the Appendix.

Table 2. Distance/similarity values obtained when comparing

structurally similar documents, with parameter α set to 1

(Struct_CBS is exploited in computing tree operations costs).

 Our Approach N. & J.

[55]

Dalamagas et

al. [16]

Chawathe

[12] Distance Similarity

A/B 1.5 0.8636
Detected

N
o
t d

etected

N
o
t d

etected

A/C 3 0.7272

A/D 3.2856 0.7473

N
o
t d

etected

A/E 5 0.6154

F/G 5 0.5455

F/H 7 0.3636

F/I 4.2857 0.4643

F/J 6 0.25

K/L 0.5 0.9

K/M 1 0.8

K/N 1 0.8333

K/P 2 0.6667

Table 3. Distance/similarity values obtained when comparing

semantically related documents with parameter  set to 0

(Sem_RBS is exploited in computing tree operations costs).

Our Approach N. &

J. [55]

Dalamagas et

al. [16]

Chawathe

[12]

Tekli et

al. [73] Distance Similarity

X/Y 0.8161 0.9093

N
o
t d

etected

N
o
t d

etected

N
o
t d

etected

Detected
X/Z 1.4836 0.8352

A‟/B‟ 1.5189 0.8619 Not

detected A‟/C‟ 1.9604 0.8218

A‟/G‟ 2.3495 0.7389
Detected

A‟/H‟ 2.6641 0.7039

A‟/I‟ 3.0162 0.5691 N
o
t d

etected

A‟/J‟ 3.3308 0.5242

K‟/L‟ 0.5087 0.8983

K‟/M‟ 0.6103 0.8779

K‟/N‟ 1.0749 0.8208

K‟/P‟ 1.2205 0.7966

6. Experimental Evaluation

6.1. Prototype

We have developed a prototype system, entitled XS3 (XML

Structural and Semantic Similarity)
1
, to test, evaluate and

validate our XML document comparison method, including

implementations of its most recent alternatives in the literature.

The XS3 prototype, implemented using C#.Net, is made of

four independent and interactive components, as well as

various comparison and application modules:

- The parser component starts by verify the integrity of

XML documents, undertaking lexical pre-processing and

transforming documents into ordered labeled trees.

- The similarity evaluation component consists of several

autonomous algorithms, including our approach and

some of its most prominent alternatives which we refer

to as Chawathe [12], N & J [55], DCWS [16], and TCY

[73]. It is extensible to other approaches.

- The Synthetic XML generator produces sets of XML

documents based on specific user requirements. It is an

adaptation of the IBM XML documents generator
2

accepting as input: a DTD document, a MaxRepeats
3

value designating the maximum number of times a node

will appear as child of its parent (when * or + options are

encountered in the DTD), as well as a NbDocs value

underscoring the number of documents to be produced.

1
 Available at http://www.u-bourgogne.fr/Dbconf/XS3

2
 http://www.alphaworks.ibm.com

3
 A greater MaxRepeats increases the probability of attaining variability with

optional and repeatable elements when generating XML documents.

- Furthermore, a taxonomic analyzer component was

introduced to compute semantic similarity values

between words (expressions) in a given semantic

reference (e.g., WordNet [108]), to be subsequently

exploited in evaluating XML element/attribute label

similarity. It currently includes semantic measures

developed in [97, 165] and is extensible to others.

In addition, XS3 includes four XML document

comparison modules, One to One, One to Many, Many to

Many (consequently enabling XML document clustering), and

Set comparison (for computing average inter-set and intra-set

similarities, and evaluating clustering quality). The latter are

thoroughly described in the following sections.

6.2. Evaluation Metrics

6.2.1. Background

How to experimentally evaluate the quality of an XML

similarity method remains a debatable issue, especially in

information retrieval. To our knowledge, the definition of

standardized XML similarity evaluation metrics remains a hot

topic in the INEX evaluation campaigns
4
. A few XML

evaluation techniques have been proposed in the literature [16,

23, 55]. All of them use XML grammars (DTDs or XSDs) as

reference for detecting structurally similar XML documents.

In [23], the authors compute inter-set and intra-set

average similarities between documents corresponding to

different DTDs and assess the attained scores to the a priori

known DTDs. Results are depicted in a matrix where element

(i, j) underscores the average similarity value, Sim(Si, Sj),

corresponding to every pair of distinct documents such that the

first belongs to set Si (DTDi) and the second to set Sj (DTDj).

The authors in [16, 55] make use of clustering methods in

order to group together structurally similar documents and

subsequently evaluate how closely the obtained clusters

correspond to the actual XML grammars. In addition, the

authors in [16] adapt two metrics popular in information

retrieval: precision and recall [62], in performing XML

structural clustering evaluation. In the following, we report the

definitions of those metrics and propose a method for

extending their usage to obtain consistent experimental results.

6.2.2. Metrics Used

Owing to the proficient usage of their traditional predecessors

in classic information retrieval evaluation, we make use of the

precision (PR) and recall (R) metrics defined in [16], to

evaluate the effectiveness of our approach and compare it to

existing methods.

Following Dalamagas et al. [16], for an extracted cluster

Ci that corresponds to a given XML grammar Gi (the

cluster/grammar mapping issue is addressed subsequently):

 ai is the number of XML documents in Ci that indeed

correspond to Gi (correctly clustered documents).

 bi is the number of documents in Ci that do not

correspond to Gi (miss-clustered).

4 http://inex.is.informatik.uni-duisburg.de/

 ci is the number of XML documents not in Ci,

although they correspond to Gi (documents that should

have been clustered in Ci).

Consequently, given n: the total number of generated clusters:

1

1 1

 +

n

i
i

n n

i i
i i

a
PR [0,1]

a b



 


 
 

 and
1

1 1

 +

n

i
i

n n

i i
i i

a
R [0,1]

a c



 


 
 

 (13) .

High precision denotes that the clustering task achieved

high accuracy, grouping together documents that actually

correspond to the XML grammars mapped to the clusters.

High recall means that very few documents are not in the

appropriate cluster where they should have been. In addition to

comparing one approach‟s precision improvement to another‟s

recall, it is a common practice to consider the F-value, which

represents the harmonic mean of precision and recall:

 2
- =

 +

PR R
F value [0,1]

PR R

 
 (14) .

Therefore, as with traditional information retrieval

evaluation, high precision and recall, and thus high F-value

(indicating in our case excellent clustering quality)

characterize a good similarity method.

6.3. Mapping Grammars to Clusters

Mapping XML grammars to XML document clusters comes

down to mapping the groups of documents corresponding to

each grammar (which we identify as original grammar

clusters) to those created by the clustering process (which we

identify as extracted clusters, or simply clusters). To get such

a mapping, we compute the average intra-set similarity values

between each original grammar cluster and extracted cluster

and then identify the pairs of matching grammars/extracted

clusters following the highest values. Note that in the

following sections, the term cluster will always refer to

extracted cluster.

6.4. Clustering XML Documents

In our experiments, we chose the well known single link

hierarchical clustering method [27, 30] although any form of

clustering could be utilized. Given n XML documents, we

construct a fully connected graph G with n vertices (XML

documents) and (n×(n-1))/2 weighted edges. The weight of an

edge corresponds to the similarity between the connected

vertices. Consequently, the single link clusters for a similarity

threshold si are identified by deleting all the edges with

weights < si. Therefore, the single link clusters will group

together XML documents that have pair-wise similarity values

greater or equal than si.

However, unlike Dalamagas et al. in [16], we do not utilize

a stopping rule to determine the most appropriate clustering

level for the single link hierarchies, and thereafter obtain only

one PR/R doublet for analysis with each clustering experiment.

Instead, we compute a whole series of PR/R doublets. Those

series correspond to the different clustering sets obtained by

varying the clustering threshold in the [0, 1] interval. In other

words, we construct a dendrogram (cf. Fig. 16) such as:

 For the initial clustering level, where the similarity

threshold s1=0 (or s1 = minimum similarity attainable

between any pair of documents), XML documents

appear in one global cluster: the starting one.

 For the final clustering level, where the similarity

threshold sn=1 (with n the total number of levels, i.e.,

number of clustering sets in the dendrogram), each

distinct document will appear in a different cluster.

 Intermediate clustering sets will be identified for

thresholds si / s1<si<sn.

Then, we compute precision (PR) and recall (R) for each

clustering set identified in the dendrogram, thus constructing

PR and R graphs that describe the system‟s evolution

throughout the clustering process. We also compute average

precision and recall values: Ave(PR) and Ave(R), considering

the whole dendrogram, on the basis of the obtained series,

providing yet another indicator of clustering quality.

A sample dendrogram underlining the clustering

evolution of 15 XML documents of the SIGMOD Record
1
 (5

sampled from each of the OrdinaryIssuePage.dtd,

ProceedingsPage.dtd and SigmodRecord.dtd grammars), is

shown in Fig. 16.

Fig. 16. Dendrogram and detailed PR/R computations when clustering

15 XML documents sampled from the SIGMOD record (here,

clustering is based on structure, i.e., α = 1).

6.5. Experimental Results

We conducted experiments on real and synthetic XML

documents to test our XML comparison method. Results

indicate that our approach yields improved clustering quality

(i.e., comparison quality) than current approaches, w.r.t. both

XML structural and semantic features. We detail each set of

experiments in the following sub-sections.

1 Available at http://www.sigmod.org/record/xml/

Ord5

Ord1

Ord2

Ord3

Ord4

Ord5

Pro1

Pro2

Pro3

Pro4

Pro5

Sig1

Sig2

Sig3

Sig4

Sig5

Ord1

Ord2

Ord3

Ord4

Pro2

Pro3

Pro4

Pro5

Sig1

Sig2

Sig3

Sig4

Sig3

Pro1

Sig1

Sig2

Sig3

Sig4
Sig5

Sig4

Sig5

Sig1
Sig3

Sig2

Sig1

Sig5

Pro1

Pro3

Pro5

Pro2
Pro4

Ord1

Ord2

Ord4

Ord5

Ord3

Pro1

Pro3

Pro5

Pro2

Pro4

Sig1

Sig3

Sig2

Sig4

Sig5

Pro2

Pro3

Pro4

Pro5

Ord3

Pro1

Ord1

Ord2

Ord4

Ord5

Sig1

Sig2

Sig3

Pro2

Pro3

Pro4

Pro5

Pro1

Sig4

Sig5

Pro2

Pro3

Pro4

Pro5

Pro1

Pro2

Pro3

Pro4

Pro5

Pro1

Sig2

Sig4

Sig5

Sig1

Sig3

Sig2

Sig4

Sig5

Threshold

PR =

R =

0.0023

0.3333

1

0.0052

1

1

0.0078

1

0.8667

0.0117

1

0.8

0.0263

1

0.5333

0.0395

1

0.4667

0.049

1

0.2667

0.0592

0.2

∑a =

∑b =

5

10

15

0

13

0

12

0

8

0

7

0

4

0 0

∑c = 0 0 2 3 7 8 11 12

Ord5

Ord1

Ord2

Ord3

Ord4

Ord1

Ord2

Ord4

Ord5

Ord3

Ord1

Ord2

Ord4

Ord5

Ord3

Ord1

Ord2

Ord4

Ord5

Ord3

Cluster mapped to OrdinaryIssuePage

Cluster mapped to ProceedingsPage

Cluster mapped to SigmodRecord

Cluster not mapped to any grammar

3

1

Level 1 & 2 3 & 4 5 6 & 7 8 9 10 …, 14

6.5.1. Structural Similarity Evaluation

To test our method‟s effectiveness in evaluating XML

structural similarity, we conducted experiments on two sets of

750 documents, generated from 25 real-case
1
 and synthetic

XML grammars, using our adaptation of the IBM XML

documents generator. We varied the MaxRepeats parameter to

determine the number of times a node will appear as a child of

its parent node. For a real dataset, we considered the online

version of the ACM SIGMOD Record. We experimented on a

set of 104 documents corresponding to OrdinaryIssuePage.dtd

(30 documents), ProceedingsPage.dtd (47 documents) and

SigmodRecord.dtd (27 documents)
2
. The characteristics of the

document sets used are summarized in Table 4 and Table 5.

Table 4. Characteristics of the SIGMOD Record document set.

Grammars

(DTDs)

Number of

Documents

Average Node

Depth (per doc)

Average nb of

Elements (per doc)

Average nb of

Attributes (per doc)

OrdinaryIssuePage 30 5.4997 179.9776 82.8333

ProceedingsPage 47 3.6739 264.5957 118.1277

SigmodRecord 27 5.7793 332.6667 210.2593

Table 5. Characteristics of synthetic XML document sets.

Document set
Number of

Documents

Average Node

Depth (per doc)

Average Number of

Nodes (per doc)

MaxRepeats = 5 750 3.68 17.7067

MaxRepeats = 10 750 3.68 36.9133

Precision, recall and F-value graphs are presented in

Figures 17, 18 and 19. Corresponding Ave(PR), Ave(R) and

Ave(F-value) values are reported in Table 6.

Fig. 17. PR, R and F-Value graphs for clustering real SIGMOD

Record XML documents.

Fig. 18. PR, R and F-Value graphs for clustering documents of

synthetic set 1 (MaxRepeats = 5).

1 From http://www.xmlfiles.com and http://www.w3schools.com.
2

 We found only one XML file conforming to the SigmodRecord.dtd grammar:

SigmodRecord.xml. However, due to its relatively large size (479KB) in

comparison with the XML documents corresponding to the other two DTDs

(10KB of average size per document), we carefully decomposed

SigmodRecord.xml to several documents, creating a set of XML documents

conforming to SigmodRecord.dtd.

Fig. 19. PR, R and F-value graphs for clustering documents of

synthetic set 2 (MaxRepeats = 10).

Table 6. Average PR, R and F-values obtained by varying the

clustering threshold between [0, 1].

 SIGMOD Set 1 (MaxRepeats=5) Set 2 (MaxRepeats =10)

 PR R F-value PR R F-value PR R F-value

Chawathe 0.8782 0.3910 0.5411 0.2502 0.4737 0.3619 0.2783 0.3769 0.3276

DCWS 0.8782 0.3931 0.5432 0.2581 0.4838 0.3709 0.2779 0.3821 0.3300

N & J 0.8637 0.4268 0.5713 0.2334 0.6162 0.4248 0.2234 0.4177 0.3205

Our App.

(α=1)
0.8782 0.4326 0.5797 0.2341 0.6262 0.4302 0.2203 0.4656 0.3430

Results, with respect to all three data sets, indicate that

our approach yields improved global clustering quality (i.e.,

structural comparison quality) in comparison with current

alternative approaches. For the SIGMOD Record document

set, our method yields an average overall precision higher than

that of N & J and identical to those achieved by DCWS and

Chawathe‟s algorithms. As for recall, our approach shows

better results than N & J, DCWS as well as Chawathe. In fact,

average F-value results underline our method‟s higher

clustering efficiency (i.e., comparison quality). For the

synthetic datasets, our method yields average precision levels

lower than those achieved by its predecessors, to the exception

of the first synthetic dataset (MaxRepeats=5) where our

approach outranks N&J‟s average precision level. However,

our method consistently maintains recall levels higher than

those of its alternatives. In cases where higher/lower

precision/recall levels are obtained simultaneously, the F-

value measure is fundamental in assessing the overall loss and

gain in average precision/recall, and evaluating result quality.

For both synthetic datasets, our method yields higher average

F-values in comparison with N&J, DCWS, and Chawathe.

Note that the low precision levels obtained with the

synthetic datasets are probably due to utilizing relatively

similar grammars (we explicitly used grammars baring sub-

tree similarities) in generating the document sets. Similar

grammars would induce similar documents. Such documents

could thus be easily miss-clustered if their structural

similarities are detected, which is the case when using our

approach (the clusters include the right documents as well as

additional similar ones). Existing approaches disregard various

kinds of similarities, e.g., sub-tree similarities, which is why

they tend to distinguish documents that are in fact similar.

Such undetected similarities might yield better precision levels

(smaller clusters including only portions of correctly clustered

documents). Nonetheless, they consistently yield lower recall

values (lots of documents are not in the appropriate clusters

where they should have been).

6.5.2. Evaluation of Structural and Semantic Similarity

Various experiments were conducted in order to validate our

approach‟s ability of integrating semantic similarity evaluation

in XML document comparison. In addition to hierarchical

clustering [30], we utilized the inter-set/intra-set average

similarity technique introduced in [23] which seemed effective

in evaluating the semantic relatedness between groups of XML

documents. We exploited (extracts of) WordNet as the

reference semantic network, weighted based on the Brown

Corpus of American English [25]
1
. Synthetic XML documents

generated based on real and synthetic XML grammars
2
 were

considered (All test documents and grammars are published

online
3
 to facilitate future comparative evaluations). We

selected general purpose XML grammars describing real world

data, to allow relevant semantic evaluation using WordNet

(which is a general purpose semantic reference describing

every day English language [48]). Otherwise, it would be

useless to evaluate the semantics of XML labels given a

reference that does not encompass corresponding semantic

concepts (for instance, it would be futile to compare XML

documents describing protein sequences, using the general

purpose WordNet, since most semantic concepts related to

protein descriptions do not exist in WordNet, and require a

dedicated semantic reference).

Note that the number of documents utilized in our

combined semantic/structural similarity evaluation is reduced

w.r.t. the structural similarity experiments, because of the

complexity of the semantic similarity process due to traversing

the reference semantic network (as shown in Section ‎6.6.1).

6.5.2.1. XML Document Clustering Experiments

Clustering experiments were conducted on six sets of 15 XML

documents, generated based on 9 DTD grammars (some of

which are shown in Fig. 26), using our XML documents

generator. We varied the MaxRepeats parameter between 5

and 10. The characteristics of the produced document sets are

summarized in Table 7. PR, R and F-value graphs are

presented in Figures 20 - 25. Corresponding Ave(PR), Ave(R)

and Ave(F-value) values are reported in Tables 8 and 9.

Table 7. Characteristics of synthetic XML document sets.

Doc

sets

Max

Repeats
Grammars

N° of

Docs

Avg Depth

(per doc)

Avg Number of

Nodes (per doc)

S1 5 Academy.dtd, College.dtd, Factory.dtd 15 2.1672 10.6667

S2 5 InstA.dtd, InstB.dtd, InstC.dtd 15 1.465 9.2

S3 5 InstK.dtd, InstL.dtd, InstM.dtd 15 0.7433 4.1333

S4 10 Academy.dtd, College.dtd, Factory.dtd 15 2.252 9.9333

S5 10 InstA.dtd, InstB.dtd, InstC.dtd 15 1.5459 19

S6 10 InstK.dtd, InstL.dtd, InstM.dtd 15 0.8361 6.5333

Fig. 20. PR, R, and F-value graphs for clustering documents of S1.

1
 http://www.cogsi.princeton.edu/cgi-bin/webwn.

2
 From http://www.xmlfiles.com and http://www.w3schools.com.

3
 www.u-bourgogne.fr/DbConf/XS3

Fig. 21. PR, R, and F-value graphs for clustering documents of S2.

Fig. 22. PR, R, and F-value graphs for clustering documents of S3.

Fig. 23. PR, R, and F-value graphs for clustering documents of S4.

Fig. 24. PR, R, and F-value graphs for clustering documents of S5.

Fig. 25. PR, R, and F-value graphs for clustering documents of S6.

Table 8. Average PR, R and F-values obtained by varying the

clustering threshold between [0, 1].

 S1 S2 S3

 PR R F-value PR R F-value PR R F-value

Chawathe 0.9231 0.3714 0.5297 0.9048 0.5238 0.6635 0.8254 0.6508 0.7278

DCWS 0.9231 0.3714 0.5297 0.9048 0.5238 0.6635 0.8254 0.6508 0.7278

N & J 0.9241 0.3873 0.5458 0.9048 0.5397 0.6761 0.8254 0.6508 0.7278

Our App. (α=1) 0.9365 0.3968 0.5574 0.9048 0.5714 0.7005 0.8254 0.7079 0.7622

Our‎App.‎(α=0) 0.9060 0.4730 0.6215 0.9048 0.6127 0.7306 0.7937 0.7556 0.7741

Our‎App.‎(α=0.5) 0.9206 0.4571 0.6109 0.9048 0.6032 0.7238 0.8254 0.7397 0.7802

Table 9. Average PR, R and F-values obtained by varying the

clustering threshold between [0, 1].

 S4 S5 S6

 PR R F-value PR R F-value PR R F-value

Chawathe 0.9524 0.2571 0.4049 0.9524 0.3048 0.4616 0.9048 0.5175 0.6584

DCWS 0.9312 0.2921 0.4447 0.9524 0.3048 0.4618 0.9048 0.5175 0.6584

N & J 0.9394 0.2794 0.4307 0.9524 0.3143 0.4726 0.9048 0.5175 0.6584

Our App. (α=1) 0.8933 0.3587 0.5119 0.9524 0.3714 0.5344 0.9048 0.5937 0.7169

Our‎App.‎(α=0) 0.8942 0.4413 0.5909 0.9365 0.4095 0.5699 0.8730 0.6571 0.7499

Our‎App.‎(α=0.5) 0.9049 0.4079 0.5623 0.9524 0.3873 0.5507 0.9048 0.6254 0.7396

Results, w.r.t. all six data sets, underline our approach‟s

improved global clustering quality (i.e., XML comparison

quality) in comparison with alternative approaches, when it is

exploited as a purely structural comparison method (parameter

α=1), and specifically when it is utilized as an integrated

structural and semantic similarity method (α=0 and α=0.5).

 When α=1, the system only considers sub-tree

structural similarities (via Struct_CBS, cf. ‎Fig. 9) in

the comparison process.

 When α=0, the system only considers sub-tree

semantic resemblances (via Sem_RBS, cf. Section ‎4.3),

disregarding sub-tree structural similarities in the

comparison process.

 When α=0.5, the system equally consider sub-tree

structural and semantic features in the comparison

process. In other words, all kinds of sub-tree

similarities, structural and semantic (detailed in

Sections 4.2 and 4.3), are detected, both

Struct_CBS and Sem_RBS algorithms being

executed.

In fact, our integrated structural and semantic similarity

approach consistently maintains higher recall levels, in

comparison with its structural version (α=1), N & J, DCWS as

well as Chawathe. As for precision, our method tends to yield

average levels that are identical to those attained using existing

comparison methods, which is underlined in the results

corresponding to sets S2, S3, S5, and S6. In a few cases, it

achieved lower precision, i.e., with sets S1 and S4.

Nonetheless, in all six tests, average F-value results,

characterizing both precision and recall levels simultaneously,

underline our method‟s effectiveness w.r.t. its alternatives

(with both α=0 and α=0.5). Note that similarly to the

structural evaluation results shown in the previous section, our

integrated method‟s low precision levels are due to utilizing

relatively similar grammars in generating the document sets:

we explicitly used grammars baring semantic sub-tree

similarities. On one hand, higher recall scores are sometimes

obtained with α=0 (Sem_RBS being considered with a

maximum unit weight), in comparison with the case where

α=0.5 (where both Struct_CBS and Sem_RBS are considered

with equal 0.5 weights, hence downscaling the impact of sub-

tree semantic relatedness, and thus missing certain sub-tree

semantic similarities when clustering documents). On the other

hand, since existing approaches disregard semantic

similarities, they tend to distinguish documents that are in fact

similar, and place them in separated clusters. Such undetected

similarities might yield better precision levels, i.e., smaller

clusters including portions of correctly clustered documents.

Nonetheless, they consistently yield lower recall values (and

consequently low F-values) since lots of documents are not in

the appropriate clusters where they should have been.

In the experiments above, we did not compare our

method‟s effectiveness to TCY [73] due to the latter‟s

asymmetric nature which is not suitable for applying our

clustering algorithms. However, we considered TCY in our

inter-set/intra-set evaluation experiments.

6.5.2.2. Inter-set & Intra-set Average Similarities Experiments

In the following, we present inter-set and intra-set average

similarity results when comparing 5 sets of XML documents.

Each set is made of 10 documents synthetically generated

w.r.t. the DTD grammars shown in Fig. 26, varying the

MaxRepeats factor between 5 and 10.

 <!DOCTYPE Academy [

 <!ELEMENT Academy (Unit+)>

 <!ELEMENT Unit (Branch?)>

 <!ELEMENT Branch (Professor?,

 PhDStudent+)>

 <!ELEMENT Professor (#PCDATA)>

 <!ELEMENT PhDStudent (#PCDATA)>]

 <!DOCTYPE College[

 <!ELEMENT College (Unit+)>

 <!ELEMENT Unit (Branch?)>

 <!ELEMENT Branch (Lecturer?,

 Scholar*)>

 <!ELEMENT Lecturer (#PCDATA)>

 <!ELEMENT Scholar (#PCDATA)>]

 <!DOCTYPE Factory [

 <!ELEMENT Factory (Unit+)>

 <!ELEMENT Unit(Branch?)>

 <!ELEMENT Branch (Supervisor?,

 Worker+)>

 <!ELEMENT Supervisor (#PCDATA)>

 <!ELEMENT Worker (#PCDATA)>]

 <!DOCTYPE EduInst [

 <!ELEMENT Institution (Academy+, College+)>

 <!ELEMENT Academy (Professor,

 PhDStudent)>

 <!ELEMENT College (Lecturer, Scholar)>

 <!ELEMENT Professor (#PCDATA)>

 <!ELEMENT PhDStudent (#PCDATA)>

 <!ELEMENT Lecturer (#PCDATA)>

 <!ELEMENT Scholar (#PCDATA)>]

<!DOCTYPE Inst [

<!ELEMENT Institution (Academy+, Factory+)>

 <!ELEMENT Academy (Professor, PhDStudent)>

 <!ELEMENT Factory (Supervisor, Worker)>

 <!ELEMENT Professor (#PCDATA)>

 <!ELEMENT PhDStudent (#PCDATA)>

 <!ELEMENT Supervisor (#PCDATA)>

 <!ELEMENT Worker (#PCDATA)>]

Fig. 26. Sample DTD grammars inducing sets of XML document.

Recall that a priori known DTD grammars (inducing

predefined document sets) serve as a reference for assessing

the similarity results [23]. Intra-set average similarities are

computed between documents of the same set Si, reported as

(i, i) values in the similarity matrix. Remaining (i, j) values

correspond to intra-set average similarities, computed between

documents belonging to sets Si and Sj. Results are shown in

Tables 10 and 11.

Note that we report our method‟s results when parameter

α = 0 (detecting sub-tree semantic resemblances) and α = 1

(detecting sub-tree structural similarities), and omit those

corresponding to α=0.5 (considering both sub-tree structural

and semantic features) since our aim here is to contrast our

system‟s capability in detecting XML semantic resemblance

w.r.t. structural similarity.

First of all, results show that our method, in both sub-tree

structural and semantic facets, produces intra-set average

similarity values underlining a straight distinction between

documents belonging to a given set (i.e., conforming to a given

grammar) and others outside that set, similarly to existing

XML comparison approaches.
Table 10. Average inter-set/intra-set similarities (tests conducted on

25 documents, 5 of each set, generated with MaxRepeats=5).

 a. Our approach – semantic b. Our approach - structural

 resemblance (α = 0). similarity (α = 1).

 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

S1 (Academy.dtd) 0.3288 0.2783 0.1495 0.0947 0.0926 0. 3222 0.1142 0.1059 0.0756 0.0756

S2 (College.dtd) 0.2783 0.3621 0.1458 0.0904 0.0866 0.1142 0.3523 0.1012 0.0746 0.0558

S3 (Factory.dtd) 0.1495 0.1458 0.3162 0.0826 0.0851 0.1059 0.1012 0.2988 0.0543 0.0730

S4 (EduInst.dtd) 0.09468 0.0904 0.0826 0.3932 0.1802 0.0756 0.0746 0.0543 0.3932 0.1216

S5 (Inst.dtd) 0.0926 0.0866 0.0851 0.1802 0.3932 0.0756 0.0558 0.0730 0.1216 0.3932

 c. TCY [73]. d. N & J [55].

 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

S1 (Academy.dtd) 0.4568 0.4315 0.2673 0.1676 0.1602 0.2321 0.1067 0.0975 0.0587 0.0587

S2 (College.dtd) 0.4319 0.4828 0.2709 0.1615 0.1518 0.1067 0.2901 0.0938 0.0558 0.0558

S3 (Factory.dtd) 0.2626 0.2659 0.4011 0.1444 0.1523 0.0975 0.0938 0.2160 0.0543 0.0549

S4 (EduInst.dtd) 0.1705 0.1723 0.1540 0.4429 0.3042 0.0587 0.0558 0.0543 0.3213 0.1177

S5 (Inst.dtd) 0.1654 0.1617 0.1647 0.3042 0.4429 0.0587 0.0558 0.0549 0.1177 0.3213

 e. DCWS [16]. f. Chawathe [12].

 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

S1 (Academy.dtd) 0.2169 0.1067 0.0975 0.0587 0.0587 0.2169 0.1067 0.0949 0.0587 0.0587

S2 (College.dtd) 0.1067 0.2644 0.0938 0.0558 0.0558 0.1067 0.2644 0.0910 0.0558 0.0558

S3 (Factory.dtd) 0.0975 0.0938 0.2069 0.0543 0.0543 0.0949 0.0910 0.1633 0.0539 0.0539

S4 (EduInst.dtd) 0.0587 0.0558 0.0543 0.2779 0.1143 0.0587 0.0558 0.0539 0.2779 0.1143

S5 (Inst.dtd) 0.0587 0.0558 0.0543 0.1143 0.2779 0.0587 0.0558 0.0539 0.1143 0.2779

Yet, when considering the semantics of XML sub-trees

(e.g., with parameter α=0), our approach captures the semantic

affinities between documents of different sets:

 Tables 10.a and 11.a show that document sets S1 and

S2 share more semantic resemblances than sets S1 and

S3, sets S1/S2 being structurally almost as similar as

S1/S3 (cf. Tables 10, 11 - b, d, e, f).

 Tables 10.a and 11.a also show that document set S1

shares more semantic meaning with set S4 than with

set S5, sets S1/S4 and S1/S5 being structurally identical

when factor MaxRepeats=5 (Tables 10, 11 - b, d, e, f).

Table 11. Average inter-set/intra-set similarities (tests conducted

on 25 documents, 5 of each set, with MaxRepeats = 10).

 a. Our approach – semantic b. Our approach - structural

 resemblance (α = 0). similarity (α = 1).

 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

S1 (Academy.dtd) 0.3991 0.2878 0.1755 0.0588 0.0628 0.3937 0.1233 0.1233 0.0416 0.0452

S2 (College.dtd) 0.2878 0.3091 0.1695 0.0574 0.0609 0.1233 0.3027 0.1169 0.0413 0.0358

S3 (Factory.dtd) 0.1755 0.1695 0.3089 0.0510 0.0599 0.1233 0.1169 0.3027 0.0326 0.0469

S4 (EduInst.dtd) 0.0588 0.0574 0.0510 0.3864 0.0856 0.0416 0.0413 0.0326 0.3036 0.0587

S5 (Inst.dtd) 0.0628 0.0609 0.0599 0.0856 0.3049 0.0452 0.0358 0.0469 0.0587 0.3049

 c. TCY [73]. d. N & J [55].

 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

S1 (Academy.dtd) 0.4373 0.3906 0.2855 0.1096 0.1073 0.2935 0.1195 0.1195 0.0333 0.0367

S2 (College.dtd) 0.3918 0.3740 0.2848 0.1074 0.1025 0.1195 0.2045 0.1125 0.0326 0.0358

S3 (Factory.dtd) 0.2781 0.2770 0.3529 0.0898 0.1119 0.1195 0.1125 0.2045 0.0326 0.0358

S4 (EduInst.dtd) 0.0939 0.0934 0.0883 0.458 0.1660 0.0333 0.0326 0.0326 0.2627 0.0564

S5 (Inst.dtd) 0.1034 0.1013 0.1006 0.1661 0.3445 0.0367 0.0358 0.0358 0.0564 0.2506

 e. DCWS [16]. f. Chawathe [12].

 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

S1 (Academy.dtd) 0.2869 0.1195 0.1195 0.0333 0.0367 0.1799 0.1051 0.1050 0.0333 0.0367

S2 (College.dtd) 0.1195 0.1942 0.1125 0.0326 0.0358 0.1051 0.1363 0.1005 0.0326 0.0357

S3 (Factory.dtd) 0.1195 0.1125 0.1942 0.0326 0.0358 0.1050 0.1005 0.1362 0.0326 0.0357

S4 (EduInst.dtd) 0.0333 0.0326 0.0326 0.2391 0.0545 0.0333 0.0326 0.0326 0.2391 0.0545

S5 (Inst.dtd) 0.0367 0.0358 0.0358 0.0545 0.2192 0.0367 0.0357 0.0357 0.0545 0.2192

Thus, as shown in the inter/intra-set similarity values,

semantic resemblances are left undetected using existing XML

comparison methods, i.e., N & J, DCWS and Chawathe.

Note that TCY [73] is able to capture certain semantic

similarities as shown in the results above. Yet, as discussed

previously, it disregards various sub-tree semantic resemblances

in comparing XML documents (cf. Section 3.2). In addition, it

is asymmetric (e.g., Sim(S1, S2) ≠ Sim(S2, S1) as shown in the

average inter-set similarity results), which is not in accordance

with the formal definition of similarity (Section 4.6).

6.6. Performance Evaluation

6.6.1. Verifying Complexity Levels

As shown in Section 4.7, our XML comparison method is of

O(|T1|×|T2|×|SN|×Depth(SN)) time complexity. It simplifies

to O(|T1|×|T2|) when semantic similarity evaluation is

disregarded (Sem_RBS is disregarded). We start by verifying

our approach‟s polynomial (quadratic) dependency on tree

size, i.e., O(|T1|×|T2|). Timing experiments were carried out on

a PC with an Intel Xeon 2.66 GHz processor with 2GB RAM.

As predicted, results in Fig. 27.a reflect an almost perfect

linear dependency on the size of each tree being compared.

a. Structural similarity evaluation

(Sem_RBS deactivated).

 b. Integrating semantic similarity

evaluation.

Fig. 27. Timing results.

On the other hand, when evaluating both structural and

semantic similarity (i.e, when both Struct_CBS and Sem_RBS

algorithms are considered), the size of the reference semantic

network, exploited while evaluating the semantic similarity

measure (e.g., Lin‟s measure [41]) to compute pair-wise XML

node label similarity, comes to play.

To our knowledge, timing analysis for Lin‟s measure [41]

was not carried out previously. Theoretically, it can be

estimated as O(|SN|×Depth(SN)) [41] due to traversing the

semantic network when searching for the lowest common

ancestor between two taxonomic nodes (cf. Section 2.3.2).

Thus, in order to reduce our method‟s overall complexity, we

pre-compute semantic similarities for each pair of nodes in the

taxonomy considered (which took about 20 seconds for the

WordNet fragment depicted in Fig. 3, and more than 5 CPU

hours for a 600 node semantic network) and store the results in

a dedicated indexed table (Oracle 9i DB)
1
. As a result,

Sem_RBS would access the indexed table to acquire semantic

values instead of traversing the taxonomy to compute semantic

similarity each time it is needed (pair-wise similarity values

are computed once, prior to XML document comparison). Due

to this process, we eliminated the impact of taxonomic depth

1 Oracle uses the B-Tree indexing technique.

on overall timing complexity. Timing results in Fig. 27.b

show that our approach becomes linearly dependent on the size

on the taxonomy considered, complexity simplifying from

O(|T1|×|T2|×|SN|×Depth(SN)) to O(|T1|×|T2|×|SN|).

As for space complexity, memory usage results confirm

that our approach is quadratic in the combined size of the trees

being compares, O(|T1|×|T2|), which underlines a linear

dependency on the size of each tree (memory usage graphs are

similar in overall shape to those depicted in ‎Fig. 27, and thus

are omitted for clearness of presentation, cf. [75] for details).

6.6.2. Comparison with Existing Approaches

In addition to verifying the complexity levels of our approach,

we assess its overall efficiency w.r.t. its most prominent

alternatives, e.g., N & J [55], DCWS [16] and Chawathe [12].

Results in Fig. 28 depict our method‟s time performance as a

structural similarity method, disregarding semantic evaluation

for fairness of comparison. Results demonstrate that our

method‟s time performance is closely comparable to those of

its alternatives, e.g., N & J [55], DCWS [16], and Chawathe

[12] (which are also of O(|T1|×|T2|) time). Note that

Chawathe‟s superior performance was expected since the

algorithm was originally conceived to provide higher

efficiency levels [12] (in order to allow efficient external-

memory computations, cf. Section ‎2.2.2), in comparison with

our study (as well as N & J [55] and DCWS [16]), which

targets result quality (e.g., clustering effectiveness [16, 55])

and higher comparison accuracy. Nonetheless, we are

currently investigating several techniques related to XML

similarity and performance enhancement, such as Prufer

sequence encoding [4], B-Tree indexing [19] and Entropy

[31], aiming to improve our method‟s performance level,

without however affecting its effectiveness and result quality.

Fig. 28. Time comparison with existing approaches.

7. Conclusion

In this paper, we propose a fine-grained similarity approach

for comparing rigorously structured XML documents. We

particularly target document structure (i.e., structure-only

XML, consisting of element/attribute tag names) and disregard

content (i.e., element/attribute values), central in structural

clustering/classification and structural querying applications.

Our method combines tree edit distance computations and

information retrieval semantic similarity assessment, so as to

capture the structural and semantic resemblances between

XML documents. We particularly focus on previously

unaddressed sub-tree structural and semantic similarities,

allowing the user to tune the comparison process according to

her requirements and needs. Our theoretical study and

experimental evaluation showed that our approach yields

improved similarity results w.r.t. existing alternatives. Timing

analysis underlined the impact of semantic similarity

assessment, due to traversing the semantic network at hand.

We showed our approach‟s applicability in a generic

Information Retrieval context (using fragments of WordNet).

Apparently, adding semantic assessment to the edit distance

computation process is a good thing, provided the semantic

network (i.e., knowledge base) considered is relevant w.r.t. the

documents at hand (WordNet is relevant for comparing

generic XML documents representing real world data, such as

those utilized in our experiments, but might not be useful when

comparing XML documents describing gene and protein

sequences [1], or multimedia MPEG-7 documents [50]…).

Achieving improved XML similarity results would require an

accurate, domain specific and complete semantic network,

which up till now, rarely exist. Besides, the complexity of the

semantic similarity process due to traversing the reference

semantic network remains a major drag to performance, to be

investigated in a dedicated future study.

In addition to improving the performance levels of our

method, we are also currently investigating various optimization

techniques, mostly based on machine learning such as

Hopfield Neural Networks [32], Sigmoid [20], and Harmony

[49], in order to enable a (semi-automatic) fine-tuning of our

XML comparison process, giving more/less emphasis to XML

structural and/or semantic properties (by calibrating parameter

α) following the nature of the XML documents being

compared. Other future directions include exploiting semantic

similarity to compare, not only the structure of XML

documents (element/attribute labels), but also their contents

(values). Here, XML Schemas, underlining element/attribute

data-types, come to play. In addition, we plan to extend our

method toward XML document/grammar comparison. Few

studies have addressed the latter issue, especially from a

semantic perspective, which remains virtually uncharted

territory.

Acknowledgements

We are grateful to the reviewers for their valuable comments

and suggestions which have allowed us to further improve the

manuscript‟s presentation, organization, and contents.

This work is funded in part by the Research Support

Foundation of the State of Sao Paulo, Brazil, FAPESP Post-

doctoral Fellowship n# 2010/00330-2.

References

[1] Adak S.; Batra V.S.; Bhardwaj D.N.; Kamesam P.V.; Kankar P.; Kurhekar

M.P. and Srivastrava B., A System for Knowledge Management in

Bioinformatics. Inter. Conf. on Information and Knowledge Management

(CIKM), 2002. pp. 638-641.

[2] Aho A.; Hirschberg D.; and Ullman J., Bounds on the Complexity of the

Longest Common Subsequence Problem. J. of the ACM, 1976. 23(1):1-12.

[3] Algergawy A.; Nayak R. Saake G., XML schema element similarity measures:

A schema matching context. Proc. of the Inter. Conf. on Ontologies,

DataBases, and Applications of Semantics (ODBASE 2009), 2009, 1246-1253.

[4] Algergawy A.; Schallehn E. and G. Saake, Improving XML schema matching

using Prufer sequences. Data and Knowledge Eng., 2009. 68(8):724–747.

[5] Amer-Yahia S.; Lakshmanan L.; and Pandit S., FleXPath: Flexible Structure

and Full-Text Querying for XML. Inter. ACM SIGMOD Conf., 2004, 83-94.

[6] Bertino E.; Guerrini G.; and Mesiti, M., A Matching Algorithm for Measuring

the Structural Similarity between an XML Documents and a DTD and its

Applications. Elsevier Info. Systems, 2004. (29):23-46.

[7] Bille P., A Survey on Tree Edit Distance and Related Problems. Theoretical

Computer Science, 2005. 337(1-3):217-239.

[8] Boughanem M., Introduction to Information Retrieval. Proc. of EARIA'06

(Ecole d‟Automne en Recherche d‟Information et Application), 2006. Ch 1.

[9] Buttler D., A Short Survey of Document Structure Similarity Algorithms. Proc.

of the Inter. Conf. on Internet Computing (ICOMP), 2004. pp. 3-9.

[10] Candillier L.; Tellier I.; and Torre F., Transforming XML Trees for Efficient

Classification and Clustering. Proc. of the Workshop of the Initiative for the

Evaluation of XML Retrieval (INEX), 2005, 469-480.

[11] Carmel D.; Efraty N.; Landau G.M.; Maarek Y.S. and Y. Mass, An Extension

of the Vector Space Model for Querying XML Documents via XML Fragments.

ACM SIGIR Workshop on XML and Information Retrieval, 2002. pp. 14-25.

[12] Chawathe S., Comparing Hierarchical Data in External Memory. Proc. of the

Inter. VLDB Conf., 1999. pp. 90-101.

[13] Chawathe S. et al., Change Detection in Hierarchically Structured

Information. Proc. of the Inter. ACM SIGMOD Conf. , 1996, 26-37. Montreal.

[14] Cobéna G.; Abiteboul S.; and Marian A., Detecting Changes in XML

Documents. IEEE Inter. Conf. on Data Engineering (ICDE), 2002, 41-52.

[15] D'Ulizia A.; Ferri F.; Formica A.; Grifoni P. and Rafanelli M., Structural

similarity in geographical queries to improve query answering. Proc. of the

2007 ACM Symposium on Applied Computing (SAC), 2007. pp. 19-23.

[16] Dalamagas T. et al., A Methodology for Clustering XML Documents by

Structure. Information Systems, 2006. 31(3):187-228.

[17] Do H. and Rahm E., COMA: A System for Flexible Combination of Schema

Matching Approaches. Inter. VLDB Conf. 2002. pp. 610-621.

[18] Do H. and Rahm E., Matching Large Schemas: Approaches and Evaluation.

Information Systems, 2007. 32(6): 857-885.

[19] DuChateau F.; Bellahsene Z.; Hunt E.; Roantree M., a.R.M., An Indexing

Structure for Automatic Schema Matching. Inter. Conf. on Data Engineering

(ICDE) - Workshops, 2007. pp. 485-491.

[20] Ehrig M. and Staab S., QOM - Quick Ontology Mapping. In Proc. of the Inter.

Semantic Web Conference (ISWC), 2004. pp. 683-697.

[21] Ehrig M. and Sure Y., Ontology Mapping - an Integrated Approach. Proc. of

the European Semantic Web Conference (ESWC), 2004, 76-91.

[22] Ehrig M.; Staab S. and Sure Y., Bootstrapping Ontology Alignment Methods

with APFEL. In Proc. of the Inter. WWW Conf., pp. 1148-1149.

[23] Flesca S.; Manco G.; Masciari E.; Pontieri L.; and Pugliese A., Detecting

Structural Similarities Between XML Documents. Proc. of the Inter. ACM

SIGMOD Workshop on The Web and Databases (WebDB), 2002, 55-60.

[24] Formica A. and Missikoff M., Concept Similarity in SymOntos: An Enterprise

Ontology Management Tool. The Computer Journal, 2002. 45(6), pp. 583-594.

[25] Francis W. N. and Kucera H., Frequency Analysis of English Usage. Houghton

Mifflin, Boston, 1982.

[26] Fuhr N. and Großjohann K., XIRQL: A Query Language for Information

Retrieval. Proc. of the ACM-SIGIR Conference, 2001, pp. 172-180.

[27] Gower J. C. and Ross G. J. S., Minimum Spanning Trees and Single Linkage

Cluster Analysis. Applied Statistics, 18, 1969, pp. 54-64.

[28] Grabs T. and Schek H.-J., Generating Vector Spaces On-the-fly for Flexible

XML Retrieval. ACM SIGIR Workshop on XML and IR, 2002. pp.4-13.

[29] Guha S.; Jagadish H.V.; Koudas N.; Srivastava D.; and Yu T., Approximate

XML Joins. Proc. of the Inter. ACM SIGMOD Conf., 2002. pp. 287-298.

[30] Halkidi M.;Batistakis Y. and Vazirgiannis M., Clustering Algorithms and

Validity Measures. Inter. Conf. on Scientific and Statistical Database

Management (SSDBM), 2001. pp 3-22.

[31] Helmer S., Measuring the Structural Similarity of Semistructured Documents

Using Entropy. The Inter. VLDB Conf., 2007, 1022-1032.

[32] Hopfield J. and Tank D., Neural Computation of Decisions in Optimization

Problems. Biological Cybernetics, 1985, 52(3):52–141.

[33] Jiang J. and Conrath D., Semantic Similarity based on Corpus Statistics and

Lexical Taxonomy. Proc. of the Inter. Conf. on Research in Computational

Linguistics, 1997.

[34] Leacock C. and Chodorow M., Combining Local Context and WordNet

Similarity for Word Sense Identification. WordNet: An Electronic Lexical

Database, Ch. 11, The MIT Press, Cambridge, 1998. pp. 265-263.

[35] Lee J.; Kim M.; and Lee Y., Information Retrieval Based on Conceptual

Distance in IS-A Hierarchies. Journal of Documentation, 1993. 49(2):188-207.

[36] Leitao L.; Calado P. and Weis M., Structure-Based Inference of XML

Similarity for Fuzzy Duplicate Detection. Proc. of the ACM Conf. on

Information and Knowledge Management (CIKM), 2007. pp. 293-302.

[37] Levenshtein V., Binary Codes Capable of Correcting Deletions, Insertions and

Reversals. Sov. Phys. Dokl., 1966. (6):707-710.

[38] Lian W. et al., An Efficient and Scalable Algorithm for Clustering XML

Documents by Structure. IEEE TKDE, 2004. 16(1):82-96.

[39] Liang W. and Yokota H., SLAX: An Improved Leaf-Clustering Based

Approximate XML Join Algorithm for Integrating XML Data at Subtree

Classes. Trans. of Information Processing Society of Japan, 2006. (47):47-57.

[40] Liang W.; and Yokota H., LAX: An Efficient Approximate XML Join Based on

Clustered Leaf Nodes for XML Data Integration. Proc. of the British National

Conference on Databases (BNCOD), 2005. pp. 82-97.

[41] Lin D., An Information-Theoretic Definition of Similarity. Proc. of the Inter.

Conf. on Machine Learning (ICML), 1998. pp. 296-304. Morgan Kaufmann.

[42] Ma Y. and Chbeir R., Content and Structure Based Approach for XML

Similarity. Inter. Conf. on Computer and Info. Tech. (ICCIT), 2005, 136-140.

[43] Madhavan J.; Bernstein P.; and Rahm E., Generic Schema Matching With

Cupid. Proce. of the Inter. VLDB Conf., 2001. pp. 49-58.

[44] Maguitman A.; Menczer F.; Roinestad H.; and Vespignani A., Algorithmic

Detection of Semantic Similarity. The Inter. WWW Conf., 2005. pp. 107-116.

[45] Marie A. and Gal A., Boosting Schema Matchers. In Proc. of the OTM 2008

Confederated Inter. Conferences, 2008, 283 – 300.

[46] Martino B. D., Semantic web services discovery based on structural ontology

matching. International Journal of Web and Grid Services, 2009. 5(1):46–65.

[47] McGill M., Introduction to Modern Information Retrieval. 1983. McGraw-

Hill, New York.

[48] Miller G., WordNet: An On-Line Lexical Database. Inter. Journal of

Lexicography, 1990. 3(4).

[49] Ming M.; Yefei P. and Michael S., A Harmony Based Adaptive Ontology

Mapping Approach. In Proc. of the Inter. Conf. on Semantic Web and Web

Services (SWWS'08), 2008, 336-342.

[50] Moving Pictures Experts Group. MPEG-7. [cited Jan 2011]

http://www.chiariglione.org/mpeg/standards/mpeg-7/.

[51] Muthaiyah S. and L. Kerschberg, A Hybrid Ontology Mediation Approach for

the Semantic Web. J. of E-Business Research (IJEBR), 2008. 4(4): 79-91.

[52] Muthaiyah S.; Barbulescu M. and L. Kerschberg, A Hybrid Similarity

Matching Algorithm for Mapping and Upgrading Ontologies via a Multi-Agent

System. Proc. of the WSEAS Inter. Conf. on Computers (CSCC), 2008.

[53] Myers E., An O(ND) Difference Algorithm and Its Variations. Algorithmica,

1986. 1(2):251-266.

[54] Navigli R. and Lapata M., Graph Connectivity Measures for Unsupervised

Word Sense Disambiguation. In Proc. of the Inter. Joint Conf. on Artificial

Intelligence (IJCAI), 2007, 1683-1688.

[55] Nierman A. and Jagadish H. V., Evaluating structural similarity in XML

documents. Proc. of ACM SIGMOD WebDB, 2002, pp. 61-66.

[56] Patwardhan S.; Banerjee S. and Pedersen T., SenseRelate:TargetWord – A

Generalized Framework forWord Sense Disambiguation. Proc. of the National

Conf. on Artificial intelligence, 2005. V. 4 (AAAI'05), 1692-1693.

[57] Rada R.; Mili H.; Bicknell E.; and Blettner M., Development and Application

of a Metric on Semantic Nets. IEEE Transactions on Systems, Man, and

Cybernetics, 1989. 19(1):17-30.

[58] Rafiei D. et al., Finding Syntactic Similarities between XML Documents. Inter.

Conf. on Database and Expert Systems Applications (DEXA), 2006, 512-516.

[59] Ray E.T., Introduction à XML, ed. O‟Reilly. 2001, Paris. p. 327.

[60] Resnik P., Using Information Content to Evaluate Semantic Similarity in a

Taxonomy. Proc. of the Inter. Joint Conf. on Artificial Intelligence (IJCAI),

1995. Vol 1, pp. 448-453.

[61] Richardson R. and Smeaton A., Using WordNet in a Knowledge-based

approach to information retrieval. The BCS-IRSG Colloquium on IR, 1995.

[62] Rijsbergen van C. J., Information Retrieval. 1979: Butterworths, London.

[63] Salton G. and Buckley C., Term-weighting approaches in automatic text

retrieval. Information Processing and Management, 1988. 24(5):513-523.

[64] Sanz I.; Mesiti M.; Guerrini G.; Berlanga La R.; and Berlanga Lavori R.,

Approximate Subtree Identification in Heterogeneous XML Documents

Collections. XML Symposium, 2005, 192-206.

[65] Schenkel R. et al., Semantic Similarity Search on Semistructured Data with the

XXL Search Engine Information Retrieval, 2005. (8):521-545.

[66] Schlieder T., Similarity Search in XML Data Using Cost-based Query

Transformations. Proc. of ACM SIGMOD WebDB, 2001, pp. 19-24.

[67] Schlieder T. and Meuss H., Querying and Ranking XML Documents. Journal

of the American Society for Information Science, Special Topic XML/IR,

2002. 53(6):489-503.

[68] Schöning H., Tamoni – A DBMS Designed for XML. IEEE Inter. Conf. on Data

Engineering (ICDE), 2001. pp. 149-154.

[69] Sebti A. and Barfroush A.A., A New Word Sense Similarity Measure in

Wordnet. Proceedings of the International Multiconference on Computer

Science and Information Technology (IMCSIT), 2008. pp. 369-373.

[70] Shasha D. and Zhang K., Approximate Tree Pattern Matching. Pattern

Matching in Strings, Trees and Arrays, Oxford Univ. Press, 1995. Ch. 14.

[71] Slimani T.; Ben Yaghlane B. and Mellouli K., A New Similarity Measure

based on Edge Counting. Proc. of World Academy of Science, Engineering

and Technology, Vol. 17, 2006. pp. 34-38.

[72] Tai K., The Tree-to-Tree correction problem. Journal of the ACM, 1979.

(26):422-433.

[73] Tekli J.; Chbeir R. and Yetongnon K., Semantic and Structure Based XML

Similarity: An Integrated Approach. Proc. of the Inter. Conf. on Management

of Data (COMAD), 2006, 32-43.

[74] Tekli J.; Chbeir R. and Yetongnon K., Efficient XML Structural Similarity

Detection using Sub-tree Commonalities. Proc. of the Brazilian Symp. on

Databases (SBBD) and SIGMOD DiSC, (Best paper), 2007, 116-130.

[75] Tekli J.; Chbeir R. and Yetongnon K., XML Document Comparison: Appendix.

Technical Report - LE2I CNRS Laboratory, Univ. of Bourgogne, 2010.

http://www.u-bourgogne.fr/Dbconf/XS3/XMLDocComparisonAppendix.pdf.

http://www.chiariglione.org/mpeg/standards/mpeg-7/

[76] Tekli J.; Chbeir R. and Yétongnon K., A Fine-grained XML Structural

Comparison Approach. Proc. of the Inter. Conf. on Conceptual Modeling

(ER), 2007. LNCS 4801, pp. 582-598.

[77] Tekli J.; Chbeir R. and Yétongnon K., An Overview of XML Similarity:

Background, Current Trends and Future Directions. Elsevier Computer

Science Review, 2009. 3(3):151-173.

[78] Theobald A. and Weikum G., Adding Relevance to XML. Proc. of the Inter.

ACM SIGMOD WebDB workshop, 2000. pp. 105-124.

[79] Theobald M.; Schenkel R. and Weikum G., Exploiting Structure, Annotation,

and Ontological Knowledge for Automatic Classification of XML Data. In

Proc. of the Inter. ACM SIGMOD WebDB workshop, 2003. pp. 1-6.

[80] Tversky, Features of Similarity. Psychological Review, 1977. 84(4):327-352.

[81] Wagner J. and Fisher M., The String-to-String correction problem. Journal of

the ACM, 1974. 21(1):168-173.

[82] Web 3D. X3D. http://www.web3d.org/x3d/. [cited 27 May 2009].

[83] Weis M. and Naumann F., Dogmatix Tracks down duplicates in XML. ACM

Inter. Conf. on Management of Data (SIGMOD), 2005, 431-442.

[84] Wong C. and Chandra A., Bounds for the String Editing Problem. Journal of

the ACM, 1976. 23(1):13-16.

[85] World Wide Web Consortium. The Document Object Model.

http://www.w3.org/DOM [cited 28 Jan 2011].

[86] World Wide Web Consortium. Scalable Vector Graphics (SVG).

http://www.w3.org/Graphics/SVG/. [cited 26 Jan 2011].

[87] Wu Z. and Palmer M., Verb Semantics and Lexical Selection. 32nd Annual

Meeting of the Associations of Computational Linguistics, 1994. pp. 133-138.

[88] Yaworsky D., Word-Sense Disambiguation Using Statistical Models of Roget's

Categories Trained on Large Corpora. Proc. of the Inter. Conf.on

Computational Linguistics (Coling), 1992. Vol 2, pp. 454-460. Nantes.

[89] Zhang K. and Shasha D., Simple Fast Algorithms for the Editing Distance

between Trees and Related Problems. SIAM Journal of Computing, 1989.

18(6):1245-1262.

[90] Zhang Z.; Li R.; Cao S.; and Zhu Y., Similarity Metric in XML Documents.

Knowledge Management and Experience Management Workshop, 2003.

Acknowledgement

The first author is partly funded by the Research Support

Foundation of the State of Sao Paulo (FAPESP), post-doctoral

fellowship n# 2010/00330-2.

Appendix - Computation Examples

In the following, we present two computation examples. The

first shows how our approach considers structural

commonalities in comparing XML trees. The second focuses

on semantic resemblances between sub-trees. Similarity results

for all XML motivation examples mentioned in Section ‎3 are

reported and discussed subsequently.

I. Structural Similarity Evaluation

In this example, we consider the case of dummy XML

document trees A, D and E in Fig. A. 1 (reported from ‎Fig. 4

of the main paper). Recall that trees D and E are considered

identical with respect to A following current approaches, i.e.,

[12, 16, 55], despite the fact that trees A/D share more

structural similarities than A/E (as discussed in Section ‎3.1).

Fig. A. 1. XML trees A, D and E reported from ‎Fig. 4.

In order to compare trees A/D, we start by executing

algorithm TOC which computes operations costs. Note that in

this example, parameter α is set to 1 since we only focus on

XML structural commonalities. In fact, node labels in trees A,

D and E are made of simple characters and have no semantic

meanings. Thus, it would be useless to consider Sem_RBS in

this case, which would obviously return null results.

CostUpd(R(A), R(D)) = 0, where R(A). = R(D). = „a‟

CostDelTree(A1) =

Del

1All nodes of A 1 1

1

1
Cost ()

 + _ (A , D)

x

x
Struct CBS



1
3 1.7143

1+0.75
= = 

Likewise, CostInsTree(D1) = CostInsTree(D2)= 4 × 1

1 + 0.75

= 2.2856

Related Struct-CBS computations are provided in Section ‎4.2

of the main paper.

Thus, when applied to XML trees A and D, with α=1, our

approach yields TED(A, D) = 3.2856 (cf. ‎Table A.1).

Table A.1. Computing TED between XML trees A and D.

 R(D) D1 D2

R(A) 0 2.2856 4.5712

A1 1.7143 1 3.2856

 Dist[0][0] = CostUpd(R(A), R(D)) = 0, R(A). = R(D). = „a‟.

 Dist[1][1] = 1, cost of transforming sub-tree A1 to D1

(inserting node h).

 TED(A, D) = Dist[1][2] = 2.2856 + Dist[1][1] = 3.2856,

inserting sub-tree D2 into tree A.

When applied to XML trees A and E, with α=1, our

approach yields TED(A, E) = 5, which amounts to the costs of:

 Inserting node h, which is of maximum unit cost

(=1) since h does share similarities with A,

 Inserting sub-tree E2, which is of maximum cost (=4)

since E2 does not share any structural similarities

with A (cf. ‎Table A.2).

Table A.2. Computing TED between XML trees A and E.

 R(E) E1 E2

R(A) 0 2.2856 6.2856

A1 1.7143 1 5

 Dist[1][1] = 1, transforming A1 into E1 (inserting node h).

 Dist[1][2] = 4 + Dist[1][1] = 5, cost of inserting sub-tree E2

into tree A.

Therefore, our approach is able to effectively compare

XML document trees A, D and E, underlining that document

trees A/D are more similar than A/E (pointing out structural

similarities that are not detected via existing approaches):

 SimXDoc(A, D) = 1 – TED(A, D)

|A| + |D|

= 1 – 3.2836

13

= 0.7474

 SimXDoc(A, E) = 1 – TED(A, E)

|A| + |E|

= 1 – 5

13

= 0.6154

Similarly to the case of XML trees A, D and E, our

approach detects the various kinds of XML tree structural

similarities identified in our motivation examples in Section

‎3.1 (results are reported in ‎Table 2 of the main paper).

a

Tree E

b

c d

E1 E2

h

e

f g h

a

Tree D

b

c d

D1 D2

h

b

c d h

a

b

c

Tree A

d
A1

http://www.web3d.org/x3d/
http://www.w3.org/DOM
http://www.w3.org/Graphics/SVG/

II. Integrating Semantic Similarity Evaluation

In this computation example, we consider the case of XML

trees A‟, B‟ and C‟ in ‎Fig. A. 2 (reported from ‎Fig. 6 of the

main paper). As discussed in motivation Section ‎3.2, trees B‟

and C‟ are structurally indistinguishable with respect to A‟

since they have different node labels. Yet, one can realize that

A‟/B‟ share more semantic similarities than A‟/C‟ (similarities

between sub-tree node labels Academy/College, Professor/

Lecturer, and PhD Student/Scholar, as discussed previously).

Note that in this example, parameter α is set to 0 since we

focus on sub-tree semantic resemblances. In fact, for the A‟,

B‟, C‟ case, it is useless to consider Struct_CBS since the

considered trees/sub-trees do not share structural similarities.

In other words, Struct_CBS would yield zero values (recall

that XML structure underlines the structural disposition and

ordering of element/attribute tag labels. Hence, label

disparities induce minimum structural similarity), which led us

to maximize the weight of Sem_RBS.

Fig. A. 2. XML trees A‟, B‟ and C‟ reported from ‎Fig. 6.

CostUpd(R(A‟), R(B‟)) = 0, since R(A‟). = R(B‟). =„Institution‟

CostDelTree(A‟1)=

Del

1All nodes of A' 1 1

31

× 1.5
1 _ 1+1

Cost () = =
+ (A' , B')

x Sem RBS

x

Likewise, CostInsTree(B‟1) = 1.5 (since A‟1 and B‟1 are identical).

CostInsTree(B‟2)=

Del

2All nodes of B'
1 2

31
1.5188

1 _ A B 1+0.9753
Cost () = =

+ (' , ')

x Sem RBS
x 

Related Sem_RBS computations are provided in Section ‎4.3 of

the main paper.

Table A.3. Computing TED

 between trees A‟ and B‟.

Table A.4. Computing TED

 between trees A‟ and C‟.

 R(B‟) B‟1 B‟2 R(C‟) C‟1 C‟2

R(A‟) 0 1.5 3.0188 R(A‟) 0 1.5 3.4403

A‟1 1.5 0 1.5188 A‟1 1.5 0 1.9604

Yet, when applied to trees A‟ and C‟ (α = 0), our

approach yields Dist(A‟, C‟)=1.9167:

CostUpd(R(A‟), R(C‟)) = 0, since R(A‟). = R(C‟). = „Institution‟

CostDelTree(A‟1) = CostInsTree(C‟1) = 1.5 (since sub-trees A‟1 and

C‟1 are identical).

CostInsTree(C‟2)=

Del

2All nodes of C' 1 2

31
1.9604

1 _ A C 1+0.5303
Cost () = =

+ (' , ')

x Sem RBS
x 

Related Sem_RBS computations are provided in Section ‎4.3 of

the main paper.

Therefore, our approach is able to efficiently compare

XML documents A‟, B‟ and C‟ underlining that documents

A‟/B‟ are more similar than A‟/C‟ (pointing out semantic

similarities that are disregarded via existing approaches):

 SimXDoc(A‟, B‟) = 1 – TED(A', B')

|A'| + |B'|

= 1–1.5189

11

= 0.8619

 SimXDoc(A‟, C‟) = 1 – TED(A', C')

|A'| + |C'|

= 1 – 1.9604

11

= 0.8218

Results for all motivation examples discussed throughout

the paper are reported in ‎Table 3 of the main manuscript.

PhD Student Professor

Institution

Academy

Scholar Lecturer

College

Tree‎B’

B‟1 B‟2

PhD Student Professor

Institution

Academy

Worker Supervisor

Factory

Tree C’

C‟1 C‟2

PhD Student Professor

Institution

Academy

A‟1

Tree‎A’

