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ABSTRACT 

XML similarity evaluation has become a central issue in the database and information communities, its applications ranging over document 

clustering, version control, data integration and ranked retrieval. Various algorithms for comparing hierarchically structured data, XML 

documents in particular, have been proposed in the literature. Most of them make use of techniques for finding the edit distance between 

tree structures, XML documents being commonly modeled as Ordered Labeled Trees. Yet, a thorough investigation of current approaches 

led us to identify several similarity aspects, i.e., sub-tree related structural and semantic similarities, which are not sufficiently addressed 

while comparing XML documents. In this paper, we provide an integrated and fine-grained comparison framework to deal with both 

structural and semantic similarities in XML documents (detecting the occurrences and repetitions of structurally and semantically similar 

sub-trees), and to allow the end-user to adjust the comparison process according to her requirements. Our framework consists of four main 

modules for i) discovering the structural commonalities between sub-trees, ii) identifying sub-tree semantic resemblances, iii) computing 

tree-based edit operations costs, and iv) computing tree edit distance. Experimental results demonstrate higher comparison accuracy with 

respect to alternative methods, while timing experiments reflect the impact of semantic similarity on overall system performance. 
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1.  Introduction
1
 

In the past few years, XML has emerged as the main standard 

for data exchange on the Web. The ever-increasing amount of 

information available on the Internet has reflected the need to 

bring more structure and semantic richness, and thus more 

flexibility, in representing data, which is where W3C‟s XML 

(eXtensible Markup Language) comes to play. The use of 

XML covers data description and storage (e.g., complex 

multimedia objects such as SVG images [86], X3D graphics 

[82], MPEG-7 meta-data [50] …), database information 

interchange, data filtering, as well as web services interaction.  

Owing to the increasing web exploitation of XML, XML 

document comparison becomes a central issue in the database 

and information retrieval communities. The applications of 

XML document comparison range over: change management 

and data warehousing (finding, scoring and browsing changes 

between different versions of a document, support of temporal 

queries and index maintenance) [12-14], data integration 

(identifying and merging similar documents to provide a more 

complete view of the data) [29, 39], XML retrieval (finding 

and ranking results according to their similarity) [66, 90], as 
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well as the clustering of XML documents gathered from the 

web [16, 55] which would improve storage indexing [68] and 

thus positively affect the retrieval process. 

The main goal of our study is the comparison of 

rigorously structured heterogeneous XML documents, i.e., 

documents originating from different data-sources and not 

conforming to the same grammar (DTD/XSD), which is the 

case of a lot of XML documents found on the Web [55]. In 

fact, a range of solutions for comparing semi-structured 

(XML) data has been proposed in the literature. On one hand, 

most algorithms make use of techniques for finding the edit 

distance between tree structures [12, 16, 55], XML documents 

being treated as Ordered Labeled Trees (OLTs) [85]. On the 

other hand, some works have focused on extending 

conventional information retrieval methods, e.g., [5, 11], so as 

to provide efficient XML similarity assessment. In this study, 

we bound our presentation to the former group of methods, 

i.e., edit distance based approaches, since they target 

rigorously structured XML documents and are usually more 

fine-grained, mainly exploited in data-warehousing, version 

control, structural querying and XML classification and 

clustering applications (Information retrieval based methods, 

on the other hand, target loosely structured XML data with 

long text fields – text-rich, and are usually coarse-grained, 

mainly useful for fast simple XML retrieval [26, 28]). We 

particularly focus on comparing XML document structures, 



 

 

i.e., the structural disposition and ordering of element/attribute 

tag names
1
 (central in XML structural classification and 

clustering applications, e.g., [10, 55]), and disregard XML 

contents (i.e., element/attribute values). In short, we view 

XML document structure comparison as an independent line 

of study, as well as an essential and indispensable step to 

consequently address element/attribute contents efficiently. In 

this context, two main problems arise: 

 Elements‟ structural similarity: this consists in 

considering parent/child relationships and ordering 

among XML elements, identified by their tag labels. In 

essence, a thorough investigation of the most recent and 

efficient XML structural similarity approaches [12, 16, 

55] led us to pinpoint certain cases where the 

comparison outcome is inaccurate. These inaccuracies 

correspond to undetected sub-tree structural similarities, 

as we will see in the motivating examples. 
 Elements‟ semantic similarity: this consists in evaluating 

the semantic meanings of XML element/attribute labels. 

Most existing XML comparison approaches focus 

exclusively on the structure of XML documents, 

ignoring the semantics involved. However, evaluating 

the semantic relatedness between documents (mainly 

those published on the Web) is of key importance to 

improving search results: finding related documents, and 

given a set of documents, effectively ranking them 

according to their similarity [44]. 
 

The relevance of semantic similarity in Web search 

mechanisms, as well as the increasing use of XML-based 

structured documents on the Web, motivated us to study XML 

similarity in both its structural and semantic facets and to 

provide a hybrid XML similarity method for comparing 

heterogeneous XML documents. We aim to develop a 

parameterized XML comparison approach able to i) efficiently 

detect XML structural similarity (preliminary work has 

appeared in [74, 76]), ii) consider semantic relatedness while 

comparing XML documents, and iii) allow the user to tune 

XML comparison according to the scenario and application 

requirements by assigning more importance to either structural 

or semantic similarity (using an input structural/semantic 

parameter). The contributions of our study can be summarized 

as follows. First, we provide a unified framework in which we 

extend and combine existing structure comparison approaches, 

mainly those provided in [12, 55], in order to consider the 

various sub-tree structural similarities while comparing XML 

document trees. Second, we expand XML structural similarity 

evaluation, combining the traditional vector space model in 

information retrieval [47] and semantic similarity assessment 

[41], to consider sub-tree semantic similarities in comparing 

XML documents. Such similarities encompass the evaluation 

of semantic relatedness between XML node labels w.r.t. (with 

respect to) a reference semantic information source. Third, we 

implement our framework as an experimental prototype to test 

and evaluate our approach. Experimental results reflect our 

method‟s high accuracy and performance levels in comparison 

with existing solutions. 
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corresponding tree nodes, whereas the latter only considers the 

interconnections among nodes, disregarding the nodes labels. 

The remainder of this paper is organized as follows. 

Section  2 reviews background and related works in XML 

structural comparison and semantic similarity evaluation. 

Section  3 presents motivation examples highlighting different 

kinds of undetected XML similarities to be addressed in our 

study. Section  4 develops our integrated XML document 

comparison approach. Section  5 provides theoretical and 

computational comparative analyses, evaluating our method 

against existing solutions. Section  6 presents our prototype and 

experimental tests. Section  7 concludes with ongoing works. 

2. Background 

2.1 XML Data Model 
 

XML documents represent hierarchically structured 

information and are generally modeled as Ordered Labeled 

Trees or OLTs ( Fig. 1). In a traditional DOM (Document 

Object Model) ordered labeled tree [85], nodes represent XML 

elements, and are labeled with corresponding element tag 

names, ordered following their order of appearance in the 

document. Attributes usually appear as children of their 

encompassing element nodes, sorted by attribute name, and 

appearing before all sub-element siblings [55, 90]. Other types 

of nodes, such as entities, comments and notations, are 

commonly disregarded in most XML comparison approaches, 

e.g., [12, 16, 23, 31, 55], since they underline complementary 

information and are not part of the core XML data. 
 

  

<?XML> 

  <Academy> 

        <Faculty> 

             <Department name= “Engineering”> 

                  <Foundation>1940</Foundation> 

                  <Director>John Cramer</Director> 

           </Department> 

         </Faculty> 

  </Academy> 

 
a. XML Document. b. XML document tree (OLT). 

 
 

Fig. 1.  A sample XML document with corresponding OLT. 
 

In general, element/attribute values are disregarded when 

evaluating the structural properties of heterogeneous XML 

documents (originating from different data-sources and not 

conforming to the same grammar), so as to perform XML 

structural classification/clustering [16, 31, 55, 58] or structural 

querying (i.e., querying the structure of documents, 

disregarding content [6, 64]). Nonetheless, values are usually 

taken into account with methods dedicated to XML change 

management [13, 14], data integration [29, 40], and XML 

structure-and-content querying applications [66, 67], where 

documents tend to have similar structures (probably 

conforming to the same grammar [36, 83]).  
 

2.2 Structural Similarity and Tree Edit Distance 
 

Various methods for estimating the similarities between 

hierarchically structured data, particularly between XML 

documents, have been proposed in the literature. Most of them 

exploit the concept of tree edit distance, deriving, in one way 

or another, the dynamic programming techniques for finding 

the edit distance between strings [37, 81, 84].  

In the following, we provide the basic notions related to 

the concept of tree edit distance, and briefly review the 

corresponding literature. 
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2.2.1 Tree Edit Distance: Basic Notions and Concepts 
 

Hereunder, we provide two basic definitions describing the 

concept of tree edit distance.  

 

Definition 1 – Edit Script: It is a sequence of edit 

operations ES = op1, op2, …, opk . When applied to a tree 

T, the resulting tree T‟ is obtained by applying edit operations 

of the edit script ES to T, following their order of appearance 

in the script. By assigning a cost, CostOp, to each edit operation, 

the cost of an edit script is defined as the sum of the costs of its 

component operations: CostES = | |

i

ES

Opi=1
Cost [7, 12] ● 

 

Definition 2 – Tree Edit Distance: The edit distance 

between two trees A and B is defined as the minimum cost of 

all edit scripts that transforms A to B, TED(A, B)=Min{CostES}. 

Thus, the problem of comparing two trees A and B, i.e., 

evaluating the structural similarity between A and B, is defined 

as the problem of computing the corresponding tree edit 

distance, i.e., minimum cost edit script [89] ● 
 

As for tree edit operations, they can be classified in two 

groups: atomic operations and complex operations [16]. An 

atomic edit operation on a tree (i.e., rooted ordered labeled 

tree) is either the deletion of an inner/leaf node, the insertion 

of an inner/leaf node, or the replacement (i.e., update) of a 

node by another one. A complex tree edit operation is a set of 

atomic tree edit operations, treated as one single operation, 

e.g., the insertion of a whole tree as a sub-tree in another tree 

(which amounts to a sequence of atomic node insertion 

operations), the deletion of a whole tree (i.e., a sequence of 

atomic node deletion operations), or moving a sub-tree from 

one position into another in its containing tree (i.e., a sequence 

of atomic node insertion/deletion operations). In Section  4.1, 

we provide the formal definitions for each of the tree edit 

operations utilized in our approach. 
 

2.2.2  Current Tree Edit Distance Methods 
 

Tree edit distance algorithms can be distinguished by the set of 

edit operations that they allow as well as their overall 

complexity/performance and optimality/efficiency levels. 
 

Early approaches: In [72], the author introduces the first 

non-exponential algorithm to compute the edit distance 

between ordered labeled trees, allowing insertion, deletion and 

substitution (relabeling) of inner nodes and leaf nodes. The 

resulting algorithm has a complexity of O(|A||B|× depth(A)
2
× 

depth(B)
2
) when finding the edit distance between two trees A 

and B (|A| and |B| denote tree cardinalities while depth(A) and 

depth(B) are the depths of the trees). Similarly, early 

approaches in [70, 89] allow insertion, deletion and relabeling 

of nodes anywhere in the tree. Yet, they remain greedy in 

complexity. For instance, the algorithm in [70] is of O(|A||B|× 

depth(A) × depth(B)). In addition, the approaches in  [70, 72, 

89] were not developed in the XML context, and thus might 

yield results that are not appropriate to XML data. 
 

Quality Versus Performance: In [13, 14], the authors 

restrict insertion and deletion operations to leaf nodes and add 

a move operator that can relocate a sub-tree, as a single edit 

operation, from one parent to another. Yet, algorithms in [13, 

14] do not guarantee optimal results. In [13], the documents 

being compared should match specific criterions and 

assumptions without which the algorithm would yield 

suboptimal results. The algorithm‟s complexity simplifies to 

O(n×e + e
2
), where n is the total number of leaf nodes in the 

trees being compared and e is the corresponding weighted edit 

distance
1
. On the other hand, the authors in [14] trade some 

quality (the edit distance obtained is not always minimal, some 

sets of move operations not being optimal) to get an algorithm 

which runs in average linear time: O(N log(N)) where N is the 

number of nodes in the compared trees. 

Methods in [13, 14] were developed for XML change 

management and version control. They consider XML 

element/attribute values (XML structure-and-content, ‎Fig. 

1.b) in contrast with remaining methods in this section which 

target the structural properties of XML documents (structure-

only). 
 

Combining efficiency and performance: The approach 

provided in [12] restricts insertion and deletion operations to 

leaf nodes (which are viewed as natural operations in the XML 

context [16]), and allows the relabeling of nodes anywhere in 

the tree, while disregarding the move operation. The proposed 

algorithm is a direct application of the famous Wagner-Fisher 

algorithm [81] which optimality has been accredited in a broad 

variety of computational applications [2, 84]. It is also among 

the fastest tree edit distance algorithms available. Chawathe 

[12] extends his algorithm for external-memory computations 

and identifies respective I/O, RAM and CPU costs. The overall 

complexity of Chawathe‟s algorithm is of O(N
2
). 

 

Sub-tree similarity: In [55], the authors stress the 

importance of identifying sub-tree structural similarities in 

XML comparison, due to the frequent presence of repeated 

and optional elements in XML document trees. Repeating 

elements often induce multiple occurrences of similar 

element/attribute sub-trees (presence of optional 

elements/attributes) or identical sub-trees in the same 

document (such as sub-trees B1 and B2 in XML tree B,  Fig. 2) 

which reflects the need to consider these sub-tree 

resemblances while comparing documents. 
 

 

 

 

 

 
 

Fig. 2. Sample XML trees, with sub-tree repetitions. 
 

The authors in [55] extend the approach of Chawathe [12] 

by adding two new operations: insert tree and delete tree, to 

discover sub-tree similarities, making use of the contained in 

relation between trees/sub-trees. A tree S is said to be 

contained in a tree T if all nodes of S occur in T, with the same 

                                                 
1 Let S = op1, op2, …, opn  be the cheapest sequence of edit 

operations that transforms tree A to B, then the weighted edit 

distance is given by e = ∑ 1≤ i ≤ n wi  where wi, for 1≤ i ≤ n, is equal to 

1 if opi is an insert or delete operation, and 0 otherwise. 
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parent/child edge relationship and node order. Following [55], 

when comparing two trees A and B, a sub-tree S may be 

inserted (deleted) in A only if S is already contained in the 

source tree A (destination tree B). Therefore, the proposed 

approach captures the sub-tree structural similarities between 

XML trees A/B in ‎Fig. 2, transforming A to B in a single edit 

operation (inserting sub-tree B2 in A, sub-tree B2 occurring in 

tree A as A1), which is less costly (and thus yields a lower 

distance, i.e., higher similarity) than transforming A to C, 

which requires three operations (inserting nodes e, f and g). 

The overall complexity of the algorithm in [55] simplifies 

to O(N
2
), including a pre-computation phase for determining 

the costs of tree insert/delete operations (which is of O(2×N + 

N
2
) time). Structural clustering experiments in [55] show that 

the proposed algorithm outperforms those in [12, 89]. 
 

Structural summaries: On the other hand, Dalamagas et 

al. [16] provide an edit distance algorithm combining features 

from both [12, 55] and propose to apply it on XML tree 

structural summaries, instead of whole trees, in order to gain in 

performance. Structural summaries are produced using a 

special repetition/nesting reduction process (e.g., the structural 

summary of tree B of  Fig. 2 would be tree A). The algorithm is 

of O(N
2
) time. Experimental results in [16] show improved 

clustering quality w.r.t. Chawathe‟s algorithm [12]. Note that 

while it might be useful for structural clustering tasks, 

Dalamagas et al.‟s reduction process yields inaccurate 

comparison results in the general case (e.g., Dist(A, B) = 0 

despite their differences) which is why it is disregarded in the 

remainder of our discussions. 
 

Other methods to XML structural similarity have also 

been proposed. They exploit various techniques (e.g., edge 

matching [38], path similarity [58], the Fast Fourier Transform 

[23], and entropy [31], etc.), usually providing approximations 

of (more complex and accurate) tree edit distance approaches. 

Such tree edit distance alternative and approximation methods 

have been thoroughly investigated in [77], and thus will not be 

covered in this paper. Here, we consider tree edit distance to 

be the “optimal” technique for assessing similarity among 

structured documents [9], and hence focus on tree edit distance 

for XML structural comparison.  
 

2.3 Semantic Similarity 
 

Measures of semantic similarity are of key importance in 

evaluating the effectiveness of Web search mechanisms in 

finding and ranking results [44]. In the fields of Natural 

Language Processing (NLP) and Information Retrieval (IR), 

knowledge bases (i.e., ontologies, thesauri and/or taxonomies, 

such as ODP [44], Roget‟s thesaurus [88], WordNet [48], etc.) 

provide a framework for organizing words/expressions into a 

semantic space [33]. A knowledge base usually comes down to 

a semantic network made of a set of concepts representing 

groups of words/expressions (or URLs such as with ODP), and 

a set of links connecting the concepts, representing semantic 

relations (synonymy, hyponymy, etc. [48, 61],  Fig. 3). Hence, 

evaluating semantic similarity between words/expressions 

comes down to comparing the underlying concepts in the 

semantic space.  

Indeed, several methods have been proposed to determine 

semantic similarity between concepts (and consequently 

related terms) in a knowledge base (semantic network). They 

can be categorized as: edge-based approaches and node-based 

approaches [33]. 

 

 
 

Fig. 3.  A (weighted) taxonomy fragment extracted from WordNet. 

The numbers next to concepts represent concept frequencies 

(computed based on the Brown text corpus [25]). 
 

2.3.1 Edge-based Approaches 
 

Edge-based methods underline an intuitive and straightforward 

way to evaluate semantic similarity in a semantic network. 

They generally estimate similarity as the shortest path (in 

edges, or number of nodes) between the two concepts being 

compared: the shorter the path from one node to another, the 

more similar they are [34, 35, 57]. On the other hand, the 

authors in [71, 87] evaluate semantic similarity between two 

concepts by identifying their most specific common ancestor. 

The similarity measures employed consider the distance 

between the compared nodes and their common ancestor, as 

well as the distance separating the common ancestor from the 

root of the semantic network. 

However, a known problem with edge-based approaches 

is that they often rely on the idea that links, in the semantic 

network, represent uniform distances [33, 60]. In real semantic 

networks, the distance covered by a single link can vary with 

regard to network density, node depth and information content 

of corresponding nodes [61]. The authors in [33] add that link 

distances could also vary according to link type (i.e., semantic 

relation type). In an attempt to solve the varying distance 

problem, the authors in [33, 61] suggest weighting links 

according to the above mentioned characteristics.  
 

2.3.2 Node-based Approaches 
 

Node-based approaches get round the problem of varying link 

distances by incorporating an additional knowledge source: 

corpus statistical analysis, to augment the information already 

present in the semantic network. In fact, with node-based 

approaches, the definition of similarity is estimated as the 

maximum amount of information content they share in 

common [33, 60]. In a hierarchical semantic network (i.e., 

taxonomy, cf.  Fig. 3), this common information carrier can be 

identified as the most specific common ancestor (also known 

as Lowest Common Ancestor, or LCA) that subsumes both 

concepts being compared [60] (e.g., LCA(Lecturer, Professor) 

= Educator in  Fig. 3). Consequently, the similarity between 

two concepts is defined as the information content of their 
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lowest common ancestor, obtained by estimating its 

probability of occurrences in a large text corpus [60]. 
 

Definition 3 – Information Content: In information 

theory, the information content of a concept or class c is 

quantified as the negative log likelihood –log p(c) where p(c) 

is the probability of encountering an instance of c [60] ● 

Definition 4 – Probability of a Concept: It is generally 

quantified with respect to the frequency of occurrence of the 

words/expressions, subsumed by the corresponding concept, in 

a given corpus [33, 60] ●  

 

Slightly different mathematical formulations [33, 60] have 

been utilized to compute concept probabilities. Here, we 

present the basic formulation by Resnik [60]: 
 

 

            

Freq(c)
p(c) = 

N
 

(1) . 

 

 Freq(c) = ∑ count(w) : Number of occurrences of words 

                                            subsumed by c, in a given corpus, 

 N: Total number of words encountered in the corpus. 
 

Since in hierarchical semantic networks (i.e., taxonomies, 

consisting mainly of hierarchical semantic relationships, e.g., 

Is-A, Part-Of…), concepts subsume those lower in the 

hierarchy, Freq(c) and consequently p(c) increase as one 

moves up the hierarchy (the occurrence of a word is counted 

for its corresponding concept, as well as the concept‟s 

ancestors). Thus, following  Definition 4, nodes higher in the 

hierarchy (with higher probabilities) are less informative (more 

abstract). If the semantic network has a root node (otherwise a 

virtual root is usually added), then its probability would be 

equal to 1, its information content being equal to 0.  

 Fig. 3 depicts an extract of WordNet weighted with pre-

computed concept frequencies based on a sample text corpus 

(e.g., Brown Corpus of American English [25]). Formula  (2) 

presents a variation of the node-based measures by Resnik [60]: 
 

 SimNode(w1, w2, ) = SimNode(c1, c2, SN ) =  – log(p(c0)) (2) . 
 

 c1 and c2 are the semantic concepts corresponding to 

the words (expressions) w1 and w2 being compared 
1
, 

 c0 is the most specific common ancestor of c1 and c2, 

 p(c0), the occurrence probability of concept c0 (cf. 

 Definition 4, Formula  (1)), 

 SN

 

underlines the weighted semantic network (cf. 

 Fig. 3), i.e., a semantic network SN augmented with 

concept frequencies (i.e., concept weights). 

  
Following Resnik [60], the semantic similarity between 

two concepts in the semantic network is approximated by the 

information content of their most specific common ancestor. 

Resnik‟s experiments [60] show that his similarity measure is 

a better predictor of human word similarity ratings, in 

comparison with a variant of the edge-based methods [35, 57]. 

                                                 
1
 Semantic concepts are identified after several linguistic pre-processing 

operations such as tokenization, stemming, and word sense 

disambiguation. These are briefly discussed in Section  4.1. 

Improving on Resnik‟s method [60], Lin [41] presents a 

formal definition of the intuitive notion of similarity, and 

derives an information content measure from a set of 

predefined assumptions regarding commonalities and 

differences. Following [41], the commonality between two 

concepts is underlined by the information content of their 

lowest common ancestor (identified by Resnik‟s measure 

[60]). However, the difference between concepts depends on 

their own information contents (disregarded in [60]): 
 

0
1 2

1 2

2 log p(c )
Sim (c , c , SN)  = 

log p(c ) + log p(c )
Lin

 
(3) .  

 

 c0 is the most specific common ancestor of c1 and c2, 

 p(c0) denotes the occurrence probability of concept c0. 
 

When comparing two concepts c1 and c2, Lin‟s measure 

[41] takes into account each concept‟s information content     

(-log p(c1) + -log p(c2)), as well as the information content of 

their most specific common ancestor (-log p(c0)), in a way to 

increase with commonality (information content of c0) and 

decrease with difference (information content of c1 and c2). 

Lin‟s experiments [41] show that the latter information content 

measure yields higher correlation with human judgment in 

comparison with Resnik‟s [60] measure. Furthermore, Lin‟s 

measure which targets hierarchical structures, i.e., taxonomies 

(as most existing semantic similarity measures) is generalized 

in [44] to deal with ontologies of hierarchical (made by Is-A 

links) and non-hierarchical components (made by cross links 

of different types, e.g., RelatedTo…). Another interesting 

extension of Lin‟s measure is provided in [24] to semantically 

compare two groups of concepts, and to evaluate concept 

similarity in geographic information systems [15]. A more 

recent variation of Lin‟s measure was introduced in [69], 

providing a new approach to compute information content 

based solely on the hierarchical structure of a semantic 

network (namely WordNet [48]), disregarding corpus statistics.  
 

2.4 Integrating Structural and Semantic Similarity 
 

In recent years, there have been a few attempts to integrate 

semantic and structural similarity assessment in the XML 

comparison process. The INEX (INitiative for the Evaluation 

of XML Retrieval
2
) campaigns have stressed the relevance of 

semantic similarity assessment in XML retrieval. One of the 

early approaches to propose such a method is [78], where the 

authors make use of a textual similarity operator and utilize 

Oracle‟s InterMedia text retrieval system to improve XML 

similarity search. In a recent extension of their work [65], the 

authors define a generic ontological model, built on WordNet, 

to account for semantic similarity (instead of utilizing Oracle 

InterMedia). However, INEX related approaches focus on 

textual similarity (i.e., similarity between element/attribute 

values made of long text fields) which is out of the scope of 

our study since in structure-based similarity, values are 

commonly disregarded. 

Recent XML structure-based methods in [6, 64] identify 

the need to support tag similarity (synonyms and stems) 

instead of tag syntactic equality while comparing XML 

documents. In [42], the authors introduce a structure and 

                                                 
2
  http://inex.is.informatik.uni-duisburg.de/ 

w  words(c) 



 

 

content based method for comparing XML documents having 

the same grammar (i.e., not heterogeneous), and consider 

semantic similarity evaluation between element/attribute 

values, using a variation of the edge-based methods. In [73], 

the authors introduce a hybrid XML similarity approach 

integrating Chawathe‟s tree edit distance algorithm [12], with 

semantic similarity using Lin‟s measure [41] to compare XML 

tag names. Methods in [42, 73] produce asymmetric similarity 

measures. 
 

2.5 Discussion 
 

On one hand, various methods have been proposed to evaluate 

XML structural similarity (i.e., comparing the hierarchical 

relations and ordering among XML elements, identified by 

their labels). Most methods in this family are based on the 

concept of tree edit distance as an optimal technique to 

compare structured data. On the other hand, a range of 

techniques have been developed for semantic similarity 

evaluation (comparing word/expression concepts in a 

reference knowledge base). Most methods in this category 

compare the information content values of concepts in a 

semantic network. Nonetheless, despite the rich literatures in 

XML similarity and semantic similarity, few methods have 

addressed the problem of integrating XML structure and XML 

tag (or value) semantics to improve similarity evaluation. That 

is probably due to the relative novelty of the XML 

semantic/structural similarity problem. As will be shown in the 

following sections, various kinds of XML (sub-tree related) 

structure and semantic similarities remain unaddressed by 

most existing methods. Taking into account such resemblances 

would obviously amend XML comparison effectiveness.  

Note that the issue of integrating structural and semantic 

similarity evaluation has also been investigated in the contexts 

of schema matching/integration [3, 4, 18], as well as ontology 

mapping/mediation [46, 51, 52]. Yet, while comparable to 

tree-based XML documents, schemas and ontologies often 

underline more intricate graph structures, and thus require 

graph-based algorithms and heuristics in evaluating similarity, 

which are out of the scope of this paper (here, we limit our 

presentation to XML tree-based approaches). 

3. Motivations 

The main objective of this study is to provide a fine-grained 

method that captures both structural and semantic similarities 

when comparing XML document structures. Hereunder, we 

discuss the motivations of our work, highlighting the relevance 

of structural and semantic similarity evaluation in XML 

document comparison. We specifically focus on similarities 

left unaddressed in current approaches, which we aim to 

capture with our XML document similarity measure. 

3.1.  Structural Similarity 

XML documents can encompass many optional and repeated 

elements [55]. Such elements induce recurring sub-trees of 

similar or identical structures. As a result, algorithms for 

comparing XML documents should be aware of such 

repetitions/similarities to effectively assess structural similarity.  

Our examination of existing XML structural comparison 

approaches, particularly fine-grained approaches based on tree 

edit distance, e.g., [12, 16, 55], have led us to identify certain 

cases where sub-tree structural similarities are disregarded.  

These undetected similarities can be distinguished as: 
 

 Repetitions of structurally similar sub-trees, 

 Structural similarity between sub-trees occurring at 

different depths, 

 Similarity between a sub-tree on one hand, and the 

whole XML tree on the other, 

 Repetitions of leaf node sub-trees. 

 

 

 

 

 

 

   

 

  

 

 

 

 

 

 
 

 

Fig. 4. Dummy XML trees, depicting various kinds of sub-tree 

structural similarities. 
 

The authors in [55] make use of tree insertion and tree 

deletion operations, coupled with the contained in relation 

between trees, to capture sub-tree repetitions, such as the case 

of XML trees A/B and A/C mentioned in Section  2.2.2 

(repetition of sub-tree B1). Yet, when the containment relation 

is not fulfilled, certain structural similarities are ignored. 

Consider, for instance, trees A and D in  Fig. 4. Here, the 

XML document sub-trees being repeated are not contained in 

the source tree, but are similar (e.g., D2 and A1 are similar). 

Since D2 is not contained in A, it is inserted via four edit 

operations instead of one (insert tree), while transforming A to 

D, ignoring the fact that part of D2 (sub-tree of nodes b, c, d 
1
) 

is identical to A1. Therefore, equal distances are obtained when 

comparing trees A/D and A/E, disregarding A/D‟s structural 

resemblances (here, we assume the general case where atomic 

insertion/deletion operations are of unit costs, =1): 

 Dist(A, D) = CostIns(h) + CostIns(b) + CostIns(c) + 

CostIns(d) + CostIns(h) = 1 + 4 = 5 

 Dist(A, E) = CostIns(h) + CostIns(e)  + CostIns(f) + 

CostIns(g) + CostIns(h) = 1 + 4 = 5 

 

                                                 
1  In the examples, we designate nodes by their labels for simplicity. 
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Other types of sub-tree structural similarities that are 

missed by existing approaches can also be identified when 

comparing trees F/G and F/H, as well as F/I and F/J. The F, 

G, H case is different than its predecessor (the A, D, E case) in 

that the sub-trees sharing structural similarities (F1 and G2) 

occur at different depths (whereas with A/D, A1 and D2 are at 

the same depth). Here, the approaches in [12, 16, 55] for 

instance yield identical distance values when comparing trees 

F and G, as well as F and H, disregarding the structural 

similarity between sub-trees F1 and G2 (in comparison with F1 

and H2): 

 Dist(F, G) = Dist(F, H) = 7, which is the cost of 

updating node b, transforming it into m, deleting 

nodes c, d and e of tree F, and inserting sub-tree G2 

(H2) into tree F. 
 

On the other hand, the F, I, J case differs from the 

previous ones since structural similarities occur not only 

among sub-trees, but also at the sub-tree/tree level (e.g., 

between sub-tree F1 and tree I). Such similarities are usually 

disregarded with existing methods, e.g., [12, 16, 55]: 

 Dist(F, I) = Dist(F, J) = 6, which is the cost of 

updating root node a of tree F, transforming it into b 

(h), updating node b into c (i), deleting nodes c, d and 

e, and inserting node c (j) into tree I (J). 
 

In addition, none of the approaches mentioned above is 

able to effectively compare documents made of repeating leaf 

node sub-trees. For example, following [12, 16, 55], identical 

similarity values are obtained when comparing document K, of 

 Fig. 4, to documents L and M. That is because most existing 

approaches consider minimum unit (=1) operations costs, 

regardless of the leaf nodes involved in the operations. 

 Dist(K, L) = CostIns(b) = 1 

 Dist(K, M) = CostIns(c) = 1 
 

Nonetheless, one can realize that document trees K and L 

are more similar than K and M, node b of tree K appearing 

twice in tree L, and only once in XML tree M. Likewise, 

identical distances are attained when comparing document 

trees K/N and K/P, despite the fact that the node b is repeated 

three times in tree N, and only once in tree P. In this study, we 

explicitly mention the case of leaf node repetitions since i) leaf 

nodes are a special kind of sub-trees: single node sub-trees, ii) 

leaf node repetitions are usually as frequent as sub-tree 

repetitions in XML documents, and iii) detecting leaf node 

repetitions would help increase the discriminative power of 

XML comparison methods as described in the above examples. 

3.2.  Semantic Similarity 

In order to stress the need for semantic relatedness assessment 

in XML document comparison, we first report from [73] the 

sample XML document trees in  Fig. 5. Using classic edit 

distance computations (e.g., [12, 16, 55]), the same structural 

similarity value is obtained when document X is compared to 

documents Y and Z: 

 Dist(X, Y) = Dist(X, Z) = 3, corresponding to the 

cost of updating root node of label Academy 

transforming it into College (Factory), updating node 

Professor transforming it into Lecturer (Supervisor), 

and deleting node Student. 

 

However, despite having similar structural characteristics, 

one can easily recognize that sample document X shares more 

semantic characteristics with document Y than with Z. For 

instance, node labels Academy-College and Professor-

Lecturer, from documents X and Y, can be commonly viewed 

as semantically more similar than Academy-Factory and 

Professor-Supervisor, from documents X and Z (considering a 

domain independent semantic network such as WordNet [48], 

describing concepts found in everyday language,). Therefore, 

taking into account the semantic factor in XML similarity 

computations would obviously amend similarity results. 

   
 

Fig. 5. Sample XML document trees, with semantically 

meaningful node labels. 
 

The example in ‎Fig. 5 underlines semantic similarities 

between XML nodes with identical structural positions (i.e., 

identical depth and ordering). Such relatively simple semantic 

similarities have been covered in [73]. The authors in [73] 

complement Chawathe‟s tree edit distance algorithm [12], with 

a „semantic cost scheme‟ taking into account semantic 

similarities between XML node labels in assigning edit 

operations costs. They make use of Lin‟s semantic similarity 

measure developed in [41], provided a given reference 

semantic network. Nonetheless, the approach in [12] was not 

designed to capture sub-tree repetitions and resemblances, 

making use of single node-based edit operations (i.e., node 

update, leaf node insertion and leaf node deletion, cf. Section 

‎2.2.2). The same goes for its extension in [73] which is not 

concerned with repetitions of semantically similar sub-trees. 

  

 
 

 
 

 

  

    

   

 

Fig. 6. Sample XML trees with sub-tree semantic similarities. 

Worker Professor 

Institution 

Supervisor 

Tree P’ 

PhD Student Professor 

Institution 

Lecturer 

Tree‎N’ 

Supervisor Professor 

Institution 

Tree M’ 

Lecturer Professor 

Institution 

Tree‎L’ 

Professor 

Institution 

Tree‎K’ 

Worker Supervisor 

Factory 

Tree J’ 

Scholar Lecturer 

College 

Tree‎I’ 

PhD Student Professor 

Institution 

Academy 

Worker Supervisor 

Factory 

Tree C’ 

C‟1 C‟2 

PhD Student Professor 

Institution 

Academy 

Scholar Lecturer 

College 

Tree‎B’ 

B‟1 B‟2 

Worker Supervisor 

Institution 

Factory 

Branch 

Tree H’ 

H‟1 

H‟2 

Scholar Lecturer 

Institution 

College 

Branch 

Tree‎G’ 

G‟1 

G‟2 

PhD Student Professor 

Institution 

Academy 

Tree‎A’ 

A‟1 

Tree Z 

Factory 

Division 

Branch 

Supervisor 

Tree Y 

College 

Division 

Branch 

Lecturer Student Professor 

Academy 

Division 

Branch 

Tree X 



 

 

 

Consider the sample XML document trees in ‎Fig. 6. Here, 

as with the sub-tree structural similarity examples mentioned 

in the previous section, different types of undetected sub-tree 

semantic similarities can also be identified: 
 

 Occurrence of semantically similar sub-trees, 

 Semantic similarity between sub-trees occurring at 

different depths, 

 Semantic similarity between a sub-tree on one hand, 

and the whole XML tree on the other, 

 Occurrence of semantically similar leaf node sub-trees. 

 

Recall the A, B, C and A, D, E comparison cases in ‎Fig. 4. 

XML trees A and B (likewise A and D) are structurally more 

similar than A and C (respectively A and E) due to the 

occurrence of structurally identical (similar) sub-trees, i.e., A2 

(D2) in tree B (tree D). In ‎Fig. 6, XML document trees A‟, B‟ 

and C‟ underline a similar scenario. While trees B‟ and C‟ are 

structurally indistinguishable w.r.t. tree A‟, one can realize that 

A‟ is semantically more similar to B‟, than to C‟. Sub-tree A‟1 

made of nodes Academy, Professor and PhD Student is 

semantically similar to sub-tree B‟2 (made of nodes College, 

Lecturer and Scholar) in tree B‟, while it is semantically 

different than sub-tree C‟2 (of nodes Factory, Supervisor and 

Worker) in tree C‟ (w.r.t. a generic reference semantic network 

such as WordNet [48]). In other words, instead of only 

considering the occurrence and repetition of identical or 

structurally similar sub-trees (as discussed in the previous 

section), there is a need to consider the occurrences of sub-

trees that are semantically similar as well. 

In addition, as with the sub-tree structural similarity 

examples in  Fig. 4, similar types of sub-tree semantic 

similarities can be identified when comparing trees A‟/G‟ and 

A‟/H‟, A‟/I‟ and A‟/J‟, K‟/L‟ and K‟/M‟, as well as K‟/N‟ and 

K‟/P‟. The A‟, G‟, H‟ case is different in that the sub-trees 

sharing semantic similarities (A‟1 and G‟2) occur at different 

depths. The A‟, I‟, J‟ case differs from its predecessors in that 

semantic similarities occur, not only among sub-trees, but also 

at the sub-tree/tree level (e.g., between sub-tree A‟1 and tree I). 

On the other hand, the K‟, L‟, M‟ and K‟, N‟, P‟ cases 

correspond to leaf node semantic similarities. Here, one can 

realize that document trees K‟ and L‟ are more similar than K‟ 

and M‟, node Professor of tree K‟ being semantically more 

similar to node Lecturer in tree L‟, than to node Supervisor in 

tree M‟. Likewise for K‟/N‟ with respect to K‟/P‟ (node 

Professor in K‟ is semantically similar to Lecturer and PhD 

Student in tree N‟ while it is relatively different from nodes 

Supervisor and Worker in tree P‟). Hence, we identify the need 

to detect, not only the occurrences of identical leaf nodes (as 

discussed in the previous section), but also the occurrences of 

leaf nodes baring semantically similar labels. Detecting such 

similarities would obviously amend comparison accuracy. 

4. Proposal 

We view the problem of XML document structure comparison 

as that of detecting the occurrences and repetitions of 

structurally/semantically similar sub-trees. In sub-trees, we 

underline structures made of multiple nodes, as well as single 

leaf nodes. Thus, we aim to provide a unified and fine-grained 

method to deal with both structural and semantic resemblances 

left addressed by existing comparison methods. Our XML 

comparison method consists of four main algorithms: 
 

i. Struct_CBS for identifying the Structural 

Commonality Between two Sub-trees,  

ii. Sem_RBS for quantifying the Semantic Resemblance 

Between two Sub-trees, 

iii. TOCXDoc for computing the Tree edit distance 

Operations Costs, 

iv.  TEDXDoc for computing the Tree Edit Distance 

between XML document trees. 
 

In short, the TOC algorithm makes use of Struct_CBS and 

Sem_RBS to structurally and semantically compare all sub-

trees in the XML documents being compared. The produced 

sub-tree similarity results are consequently exploited as edit 

operations costs (particularly tree insertion and tree deletion 

costs, which are central to detecting the occurrences and 

repetitions of similar sub-trees), in an adapted version of [55]‟s 

main edit distance algorithm, which we identify as TED (cf. 

‎Fig. 15). Hence, the inputs to our XML comparison approach 

are as follows: 

 The XML document trees to be compared,  

 Parameter α enabling the user to assign more 

importance to the structural or semantic aspects of 

the XML documents being treated,  

 A reference (weighted) semantic network SN , for 

semantic similarity evaluation. 
 

Consequently, the method outputs the similarity between 

the XML document trees being compared. Our method‟s 

overall architecture is depicted in  Fig. 7.   

 

 
 

 

Fig. 7. Simplified activity diagram of our XML similarity approach. 

 

Note that the introduction of two separate algorithms: 

Struct_CBS to evaluate structure, and Sem_RBS to evaluate 

semantics (instead of one single hybrid algorithm), is a design 

choice to: i) emphasize the modularity of our approach 

(allowing to easily integrate additional algorithms in the 

future,  considering other XML-related information, such as 

element/attribute values and/or hyperlinks), and ii) enable the 

user to easily parameterize the similarity measure (assigning 

more importance to either structure or semantics) following 

her notion of similarity. In addition, note that Struct_CBS and 

Sem_RBS can be applied to whole trees. However, in our 

study, their use is coupled with sub-trees so as to capture the 

various kinds of sub-tree similarities. 
 

In the remainder of this section, we detail each of the 

algorithms and processes mentioned above. Section  4.6 
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formally defines our XML document similarity measure, and 

evaluates its properties w.r.t. the formal definition of 

similarity. Consequently, time and space complexity analyses 

are discussed in Section  4.7.  

4.1.  Preliminaries 

As described in Section  2.1, XML documents represent 

hierarchically structured information and can be modeled as 

Ordered Labeled Trees (OLTs) [85]. Recall that in our study, 

an XML document is represented as an OLT with a node 

corresponding to each XML element and attribute. Attribute 

nodes appear as children of their encompassing element nodes, 

sorted by attribute name, and appearing before all sub-element 

siblings. As mentioned previously, we disregard 

element/attribute values while studying the structural 

properties of heterogeneous XML documents (structure-only 

XML comparison). 
 

Definition 5 – Ordered Labeled Tree: It is a rooted tree 

in which the nodes are labeled and ordered. We denote by T[i] 

the i
th
 node of T in preorder traversal, T[i]. its label, and 

T[i].d its depth. R(T)=T[0] designates the root node of tree T ● 
 
Definition 6 – Sub-tree: Given two trees T and T‟, T‟ is a 

sub-tree of T if all nodes of T‟ occur in T, with the same 

parent/child edge relationship and node order, such as no 

additional nodes occur in the embedding of T‟ (e.g., F1 in    

 Fig. 4 is a sub-tree of F, whereas tree I does not qualify as a 

sub-tree of F since node e occurs in its embedding in F) ●  
 

Definition 7 – First level sub-tree: Given a tree T with 

root p of degree k, the first level sub-trees, T1, …, Tk of T are 

the sub-trees rooted at the children nodes of p, p1, …, pk ● 
 

Definition 8 – Ld-pair representation of a node: It is 

defined, as the pair (, d) where  and d are respectively the 

node‟s label and depth in the tree. We use p. and p.d to refer 

to the label and the depth of an ld-pair node p respectively ●  
 

Definition 9 – Ld-pair representation of a tree: It is the 

list, in preorder, of the ld-pairs of its nodes (cf.  Fig. 8). Given 

a tree in ld-pair representation T = (t1, t2, …, tn), T[i] refers to 

the i
th
 node ti of T. Thus, T[i]. and T[i].d denote, respectively, 

the label and the depth of the i
th
 node of T, i designating the 

preorder traversal rank of node T[i] in T ● 
 

Note that the ld-pair tree representation was introduced 

by Chawathe in [12], and will be exploited in our study in 

comparing XML sub-trees (cf. Section  4.2, Struct-CBS). 

 

A1 = ((b, 0), (c, 1), (d, 1)) 

A11 = (c, 0) 

A12 = (d, 1) 

 

 

B2 = ((b, 0), (c, 1), (d, 1)) 

B21 = (c, 0) 

B22 = (d, 0) 

B1 = ((b, 0), (c, 1), (d, 1)) 

B11 = (c, 0) 

B12 = (d, 0) 

 

C1 = ((b, 0), (c, 1), (d, 1)) 

C11 = (c, 0) 

C12 = (d, 0) 

C2 = ((e, 0), (f, 1), (g, 1)) 

C21 = (f, 0) 

C22 = (g, 0) 
 

 

Fig. 8.  Ld-pair representations of all sub-trees in XML trees A, B,     

and C of  Fig. 4. 

 

In the following, we present the definitions of the tree edit 

operations utilized in our approach (adapted from [12, 55]).  
 

Definition 10  – Atomic node operations: An atomic 

operation is an edit operation applied on a single tree node. 

Our approach exploits three atomic operations: leaf node 

insertion (introducing a new leaf node in the tree), leaf node 

deletion (removing a leaf node from the tree), and node update 

(modifying the label on an existing tree node): 
  

- Insert leaf node: Let p be a node in a tree T, and let  

T1, …, Tm be the first level sub-trees of p. Given a 

node x not belonging to T, Ins(x, i, p, ) is a node 

insertion applied to T, inserting x as the i
th
 child of p, 

yielding T‟ with first level sub-trees T1, …, Ti-1, x, 

Ti+1,…, Tm+1, where  is the label of x.  
 

- Delete leaf node: Given a leaf node x in a tree T, 

Del(x) is a node deletion operation applied to T that 

removes x from T, yielding tree T‟ with first level sub-

trees T1, … , Ti-1, Ti+1, … , Tm. 
 

- Update node: Given a node x in tree T, and a label , 

Upd(x, ) is a node update operation applied to x 

resulting in T‟ which is identical to T except that in T‟, 

x bears  as its label. The update operation could be 

also formulated as follows: Upd(x, y) where y. 

denotes the new label to be assumed by x ● 
 

Note that the update operation in our approach targets 

nodes of identical structural positions, i.e., nodes having 

identical depth and ordering in the trees being compared, 

transforming the label of one node into that of the other. 
 

Definition 11 – Complex tree operations: A complex 

tree edit operation is an edit operation applied on a sub-tree of 

nodes. Our approach exploits two complex operations: tree 

insertion and tree deletion: 
 

- Insert Tree : Given a tree A and a tree T with an inner 

node p having first level sub-trees T1, T2, …, Tm,  

InsTree(A, i, p) is a tree insertion applied to T, inserting 

A as the i
th

 sub-tree of p, thus yielding T‟ with first level 

sub-trees T1, …, Ti-1, A, Ti+1, …, Tm+1 . 
 

- Delete Tree : Given a tree A and a tree T with an inner 

node p, A being the i
th
 sub-tree of p, DelTree(A, p) is a 

tree deletion operation applied to T that yields T‟ with 

first level sub-trees T1, … , Ti-1, Ti+1, … , Tm ● 
 

In addition, we provide the formal definition of a 

semantic network, adopted in our study. 
 

Definition 12  – Semantic network: It can be formally 

represented as a 3-tuple SN=(C, E, R, f) where:  

 C: set of concepts, synonym sets as in WordNet [48]. 

 E: set of edges connecting the concepts, E  c cV ×V . 

 R: set of semantic relations, R = {Is-A, Has-A, Part-

Of, Has-Part…}, the synonymous words/expressions 

being integrated in the concepts themselves. 

 f : function designating the nature of edges,  f:E R. 
 



 

 

We designate by SN  a weighted semantic network, i.e., a 

semantic network SN augmented with concept frequencies (cf. 

 Fig. 3), based on a given text corpus (e.g., the Brown Corpus 

of American English [25]) ● 

 

Note that XML element/attribute tag names generally 

consist of single words, simple concatenations of words 

(usually not more than two terms per label [79], using the 

underscore delimiter or Java-style upper/lower case letters to 

distinguish the individual terms), and/or word abbreviations 

[59, 79]. Nonetheless, semantically meaningful XML labels 

are usually obtained after several linguistic pre-processing 

operations such as tokenization (parsing names into tokens 

based on punctuation and case, to form simple expressions, 

e.g., PhD_Std  PhD Student), expansion (identifying 

abbreviations and acronyms, e.g., CEO  Chief Executive 

Officer) and stemming (reducing inflected or derived words to 

their stem, i.e., base or root, e.g., housing, housed  house) 

[17, 43]. In the case of polysemous words (i.e., words with 

multiple senses), word sense disambiguation techniques, e.g. 

[54, 56, 79], can be exploited in order to select the semantic 

concept that most likely describes the meaning of the label in 

the given XML document. Note that linguistic pre-processing 

operations are executed offline [79], using dedicated thesauri 

and/or dictionaries (in our case, WordNet), and do not affect 

the performance of our comparison approach ( Fig. 7). 

4.2. Structural Similarity between Sub-trees (Struct-CBS) 

As shown in Section  3.1, sub-tree structural similarities are 

usually left undetected in current XML comparison 

approaches. In [55], the authors were the first to address the 

issue and were able to detect certain basic sub-tree structural 

similarities using tree insertion and tree deletion operations, 

coupled with the tree contained in relation (cf. Section  2.2.2). 

Nonetheless, when the containment relation is not fulfilled, 

various structural similarities are ignored, as discussed in the 

motivation examples. 

Here, in order to capture the various kinds of sub-tree 

structural similarities pinpointed in Section  3.1, we identify 

the need to replace the tree contained in relation, making up a 

necessary condition for executing tree insertion and deletion 

operations in [55], by introducing the notion of structural 

commonality between two sub-trees.  
 

Definition 13  – Structural commonality between sub-

trees: Given two sub-trees A = (a1, …, am) and B = (b1, …, bn), 

we define the structural commonality between A and B, 

designated by StructCom(A, B), as the set of pairs of nodes N 

form A and B, N={(ar, bu)}  A×B, such that  ar  A, bu  B, 

ar and bu occur in A and B respectively, with the same label, 

depth and relative order (in preorder traversal). For  1 ≤ r ≤ m  

and 1 ≤ u ≤ n: 

(1) ar . = bu.  

(2) ar.d = bu.d 

(3) For any (as, bv)  N such as r ≤ s , then  u ≤ v ● 
 

Following ‎Definition 13, the problem of finding the 

structural commonality between two sub-trees SbTi and SbTj is 

equivalent to finding the maximum number of structurally 

matching nodes in SbTi and SbTj (|StructCom(SbTi, SbTj)|). 

However, the problem of finding the edit distance between 

SbTi and SbTj comes down to identifying the minimal number 

of edit operations that can transform SbTi to SbTj. Those are 

dual problems since identifying the edit distance between two 

sub-trees (trees) underscores, in a roundabout way, their 

maximum number of matching nodes. In other words, the 

greater the edit distance, the larger the edit script, the greater 

the number of edit operations, the greater the number of node 

transformations, the lesser the number of matching nodes. 

Therefore, we introduce in  Fig. 9 the pseudo-code of our 

Struct_CBS algorithm, based on the edit distance concept, to 

identify the structural commonality between sub-trees 

(similarly to the approach provided in [53], in which the author 

develops an edit distance based approach for computing the 

longest common sub-sequence between two strings). In 

Struct_CBS, sub-trees are treated in their ld-pair 

representations (cf.  Definition 9,  Fig. 8). Using the ld-pair 

tree representations, sub-trees are transformed into modified 

sequences (ld-pairs), making them suitable for standard edit 

distance computations. The algorithm starts by computing the 

sum of the costs of deleting every node in the source sub-tree 

( Fig. 9, line 3), and inserting every node of the destination tree 

(line 4). Consequently, it identifies the set of insertion/deletion 

operations having the minimum overall cost (lines 5-15). 

Structurally matching nodes are associated null costs (line 10). 

Note that the update operation is specifically disregarded in 

Struct-CBS, in order to allow the identification of structurally 

matching nodes (line 10). Consequently, the overall sum of the 

minimum operations‟ costs (i.e., minimum cost edit script, cf. 

 Definition 2) underlines an edit distance, i.e., 

Dist[|SBTi|][|SbTj|], between the sub-trees SbTi and SbTj being 

compared. Hence, the maximum number of matching nodes 

between SbTi and SbTj, |StructCom (SbTi, SbTj)|, is identified 

w.r.t. the edit distance score: 
 

 Total number of deletions: we delete all nodes of SbTi 

except those having matching nodes in SbTj,           

Deletions

 = |SbTi| - |StructCom(SbTi , SbTj)|  

 

 Total number of insertions: we insert into SbTi all nodes 

of SbTj except those having matching nodes in SbTi, 

Insertions

 = |SbTj| - |StructCom(SbTi , SbTj)| 

 

 Following Struct_CBS, using constant unit costs (=1) for 

node insertion and deletion operations, the edit distance 

between sub-trees SbTi and SbTj becomes as follows: 

Dist[|SbTi|][|SbTj|]=
Deletions

 1   +
Insertions

 1  

                             =|SbTi|+|SbTj| - 2×|StructCom(SbTi, SbTj)| 
 

 

Therefore:    
          

 

|StructCom(SbTi, SbTj)| = | |+| | - [| |][| |]

2

ji j iSbT SbT Dist SbT SbT  (4)  



 

 

 
 

Algorithm Struct_CBS 
 

Input: SbTi and SbTj                       // Sub-trees in ld-pair representations 
Output: Struct_CBS(SbTi, SbTj)     // Normalized structural commonality 

 

Begin                                                                                                                                   
 

Dist[][] = new [0...|SbTi|][0…|SbTj|]                                                                    1                                                                                                                                         
Dist[0] = 0                                                                                                              2 
                                                                                                                                                  

For (n = 1 ; n ≤ |SbTi| ; n++)    {Dist[n][0] = Dist[n-1][0] + CostDel(SbTi[n])}        3                                                                                                    
                                                          

For (m = 1 ; m ≤ |SbTj| ; m++) {Dist[0][m] = Dist[0][m-1] + CostIns(SbTj[m])}       4 
 

For (n = 1 ; n ≤ |SbTi| ; n++)                                                                              5 
{                                                                                                                             6        

For (m = 1 ; m ≤ |SbTj| ; m++)                                                                      7 
{                                                                                                                    8  

Dist[n][m] = Min{                                                                                         9 

If (SbTi[n].d = SbTj[m].d & SbTi[n]. = SbTj[m].)  { Dist[n-1][m-1] },      10 

Dist[n-1][m] + CostDel(SbTi[n]),        // Simplified node                            11       
Dist[n][m-1] + CostIns(SbTj[m])        // operations syntaxes.                        12     
 }                                                                                                             13 

}                                                                                                                    14 
}                                                                                                                         15 

                                                                                                                                

Return  

 

  
i j i j

i j

 | | + | | | | | |

(| | ,| |)

[ ][ ]SbT SbT Dist SbT SbT

2× SbT SbT Max

     // Normalized commonality       16 

End                                                                                                                                                     
 

Fig. 9.  Algorithm Struct_CBS for identifying the structural 

commonality between sub-trees. 

 

To obtain structural commonality values comprised in the   

[0, 1] interval, we normalize |StructCom(SbTi, SbTj)| via 

corresponding sub-tree cardinalities, Max(|SbTi|, |SbTj|). Thus: 
 

 
i j

i j

(SbT , SbT )|
0

Max(|SbT | , |SbT |)

| StructCom
  

When there is no structural 

commonality: 

|StructCom(SbTi, SbTj)| = 0 

 
i j

i j

(SbT , SbT )|
1

Max(|SbT | , |SbT |)

| StructCom
  

When sub-trees are identical: 

|StructCom(SbTi, SbTj)| = 

|SbTi| = |SbTj| 

 

‎Table 1 shows the detailed computations and results of 

applying Struct_CBS to sample sub-trees A1 and D1 of ‎Fig. 4 

(reported in ‎Fig. 10). 

 
Table 1.  Detailed computations, following Struct_CBS, when 

applied on sub-trees A1 and D1. 
 

 0 D1[1] (b, 0) D1[2] (c, 1) D1[3] (d, 1) D1[4] (h, 1) 

0 0 1 2 3 4 

A1[1] (b, 0) 1 0 1 2 3 

A1[2] (c, 1) 2 1 0 1 2 

A1[3] (d, 1) 3 2 1 0 1 

 

      
 

Fig. 10. Sample sub-trees bearing structural commonalities. 
 

The first line of the distance matrix, i.e., Dist[0][], 

corresponds to the sum of the costs of inserting every node of 

the destination sub-tree D1. Likewise, the first column, 

Dist[][0], underlines the sum of the costs of deleting every 

node of A1. Consequently, the algorithm identifies the 

combination of insertion/deletion operations of minimum 

overall cost (cf.  Fig. 9, lines 7-18) in populating the remainder 

of the matrix, Dist[|A1|][|D1|] underlining the final distance 

value. Note that in ‎Table 1, matching nodes are highlighted, 

while the (final) distance value is emphasized in italic format. 

Having Dist[|A1|][|D2|] = 1: 

3 + 4 - 1
 = 3

2 2

| |+| | - [| |][| |]
| ( , )|  =  = 

1 2 1 2

1 2

A D Dist A D
StructCom A D , 

(nodes b, c, d). Consequently, Struct_CBS(A1, D1) = 
3

 = 0.75
4

.  

Similarly,
1

= 0.25
4

| ( , )|
( , ) = =

(| | | |)

2 2

2 2

i j

StructCom C G
Struct_CBS C G  

Max SbT  , SbT
 

(having |StructCom(C2, G2)|=1).  

 

Note that applying Struct_CBS to leaf node sub-trees 

comes down to comparing corresponding sub-tree root node 

labels (leaf node sub-trees consisting of sub-trees made of 

single nodes: the sub-tree root nodes themselves, bearing 

identical (=0) depth and ordering scores). For instance, 

Struct_CBS(A11, D11) = 1, since sub-trees A11 and D11 consist of 

leaf nodes of label c. Similarly, when computing the 

commonality between a leaf node sub-tree (e.g., A11) and a 

non-leaf node sub-tree (e.g., D1), Struct_CBS compares the 

label of the root of the former (R(A11), the leaf node itself) to 

that of the latter (R(D1)):  

 Struct_CBS(A11, D1) = 0, roots of A11 (leaf node) 

and D1 having different labels, 

 Struct_CBS(E22, H2) = 1/4 = 0.25 having 

|StructCom(E22, H2)| = 1 (since R(E22) = R(H2) = g) 

and Max(|E22|, |H2|) = 4. 

 

4.3. Semantic Resemblance between Sub-trees (Sem-RBS) 

In addition to sub-tree structural commonalities (i.e., 

considering parent/child relationships and ordering among 

XML elements, identified by their labels), we aim to consider 

sub-tree semantics in XML similarity evaluation (i.e., semantic 

meaning of sub-tree node labels). For the sake of clearness, we 

use expression „semantic resemblance‟, in the remainder of the 

paper, to avoid confusion between semantic and structural 

similarity, the latter designated as „structural commonality‟. 

Various methods for detecting the semantic similarity 

between pairs of words/expressions, based on a given 

reference semantic network, have been proposed (cf. Section 

‎2.3). Nonetheless, capturing the semantic relatedness between 

two sets of words/expressions (e.g., node labels of two sub-

trees) has not been effectively covered in the literature.  To our 

knowledge, two complementary approaches have tackled the 

issue, i.e., [15, 24], developed in the context of concept 

similarity of ontology management systems [24], and concept 

similarity in geographic information systems [15]. While 

theoretically sound, the solution provided in [15, 24] does not 

seem practical, since it requires a minimum of O(N!) time (a 

detailed mathematical analysis is provided in [75]). 

Hence, to capture the semantic resemblance between two sub-

trees, we provide a new approach entitled Sem_RBS, that 

combines the traditional vector space model in information 

retrieval [47], with semantic similarity evaluation (cf. Section 

‎2.3). In detail, we proceed as follows. When comparing two 

sub-trees SbTi and SbTj, each would be represented as a vector 

Sub-tree H2 

g 

h i j 

Sub-tree E22 

g b 

c d 

Sub-tree G2 

f 

Sub-tree C2 

e 

f g 

Sub-tree D1 

b 

c d h 

D11 

Sub-tree A1 

b 

c d 

A11 



 

 

V (
iV and 

jV respectively) with weights underlining the 

semantic similarities between their corresponding node labels. 

Recall, that XML tag names undergo several linguistic pre-

processing operations (including tokenization, expansion, 

stemming, and word sense disambiguation, cf. Section  4.1) so 

as to obtain semantically meaningful labels prior to the 

comparison process. 
  

Definition 14 – Sub-tree Vectors: Given two sub-trees 

SbTi and SbTj, we define corresponding sub-tree vectors 
iV  

and 
jV in a space which dimensions represent, each, a single 

node label r  SbTi U SbTj, such as 1 < r < n where n is the 

number of distinct node labels in both SbTi and SbTj. The 

coordinate of a sub-tree vector 
iV on dimension r is noted 

 ( )
i

r
V

w , underlining the semantic weight of label r in SbTi ● 

 

Definition 15 – Semantic Sub-tree Node Weight: The 

semantic weight of a node vr in vector 
iV , representing sub-

tree SbTi, is composed of two factors: a node/vector similarity 

factor Sim(vr ,

 

iV ) and a depth D-factor(vr) factor: 
 

             
 ( )

i
r

V
w v = Sim(vr ,

 

iV ) × D-factor(vr)    [0, 1] (5)  

 Sim(vr ,

 

iV ) quantifies the semantic similarity between 

the label vr. of node vr and sub-tree vector 
iV . It is 

computed as the maximum semantic similarity between 

label vr. and all node labels of SbTi w.r.t. a reference 

(weighted) semantic network SN  (cf. ‎Definition 12).  

Formally: 
 

v  Vi
Sim( ,  )= Max  (Sim ( . , , SN))   ir Label r 0 1v V v v. [ , ]


  (6)  

 

When vr  SbTi, Sim(vr ,

 

iV ) = 1 underlines the node‟s 

occurrence in SbTi. 
 

 D-factor underlines the semantic influence of node depth 

on XML semantic similarity. It follows the intuition that 

information placed near the root node of an XML 

document is more important than information further 

down in the hierarchy [6, 90]. Thus, node labels higher 

in the XML tree hierarchy should have a greater 

semantic influence than their lower counterparts. This 

could be mathematically concretized using Formula ‎(7), 

adapted from [90]: 
 

r

r

1
 - (v ) =    

1 + v .d
D factor [0, 1]   

 (7) . 

 

where vr.d underlines the depth of node vr in the 

document ● 
 

As for the label semantic similarity measure, SimLabel, our 

investigation of the literature (Section  2.3) led us to consider 

Lin‟s method [41] in our XML comparison process (i.e., 

SimLabel ≡ SimLin). Lin‟s measure was proven efficient in 

evaluating semantic similarity, in comparison with its 

predecessors, i.e., [60, 87]. Its performance and theoretical 

basis are recognized and generalized by [44] to deal with 

hierarchical and non-hierarchical structures. However, it is 

important to note that our XML similarity approach is not 

sensitive, in its definition, to the semantic similarity measure 

used. Yet, choosing a performing measure would yield better 

similarity judgment. 

Having transformed XML sub-trees into semantically 

weighted vectors, the semantic relatedness between two sub-

trees can be evaluated using a measure of similarity between 

vectors such as the inner product, the cosine measure, the 

Jaccard measure, etc. Here, we adopt the cosine measure 

widely exploited in information retrieval [8, 63]: 
 

,- ( ) = Cos(  )  ji
i j

Sem RBS SbT , SbT V V [0,1]  (8)      . 

where 
iV and 

jV are the semantically weighted vectors 

corresponding to SbTi and SbTj respectively. 

 
Algorithm Sem_RBS consists in building the vector space 

corresponding to the sub-trees being compared, as well as 

computing the semantic and cosine measures as explained 

above. It takes as input the sub-trees SbTi and SbTj to be 

compared, and the reference semantic network SN , and 

generates the sub-tree semantic similarity score ( [0, 1]). 

Sem_RBS‟s pseudo-code is a straightforward consequence of 

 Definition 14 and  Definition 15, and is thus omitted for 

clearness of presentation (it can be found in [75]). 

Sample computation examples when comparing sub-trees 

A’1/B’2 and A’1/C’2 of  Fig. 11 (reported from  Fig. 6) are shown 

hereunder. 
 

   
Fig. 11. Sample sub-trees bearing semantic resemblances. 

 

When comparing A‟1 and B‟2, the corresponding vector 

space consists of 6 dimensions corresponding to each distinct 

node label in both sub-trees: Academy, Professor, PhD 

Student, College, Lecture and Scholar. Thus, 6-dimensional 

vectors VA‟1 and VB‟2 are produced:  

 
 Academy Professor PhD Student College Lecturer Scholar 

VA‟1 1 1 1 0.7970 0.7674 0.8402 

VB‟2 0.7970 0.7674 0.8402 1 1 1 
 

a. Node label semantic similarity values. 
 

 Academy Professor PhD Student College Lecturer Scholar 

VA‟1 1 0.5 0.5 0.7970 0.3837 0.4201 

VB‟2 0.7970 0.3837 0.4201 1 0.5 0.5 
 

b. Final weights, i.e., Sim × D-factor. 
 

Fig. 12. Sub-tree vectors when comparing sub-trees A‟1 and B‟2. 
 

Semantic similarity values are computed following Lin‟s 

semantic similarity measure [41] (cf. Formula ‎(3)). Here, in 

computing label semantic similarities, we exploit the weighted 

semantic network in  Fig. 3. Similarity values, following [41], 

between pairs Academy/College, Professor/Lecturer, and PhD 

Student/ Scholar are computed as follows: 
 

2 log p( )
Sim ( , ) =

log p( ) + log p( )
Lin

Establishment
Academy College

Academy College

 

Worker Supervisor 

Factory 

Sub-Tree C’2 

Scholar Lecturer 

College 

Sub-Tree B’2 

PhD Student Professor 

Academy 

Sub-Tree A’1 
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2 log ( )

260= = 0.7970
8 9

log ( ) + log ( )
260 260

 

Likewise, Sim ( , ) = 0.7674
Lin

Professor Lecturer  and 

Sim ( , ) = 0.8402.
Lin

PhD Student Scholar  
 

 

Recall that the semantic weight of a given node vr, of 

label r, in vector 
iV , is computed as the maximum semantic 

similarity between r and all node labels of 
iV (cf. ‎Definition 

15). In our example, SimLin(Academy, College) underlines the 

maximum similarity value between label Academy and all 

labels of vector 
 B'2V , and vice-versa for College and 

 A'1V . 

The same is true for node labels Professor and Lecturer, as 

well as PhD Student and Scholar, w.r.t. 
 B'2V and 

 A'1V  

respectively ( Fig. 12.b). Thus, final vector weights are 

obtained by multiplying both semantic similarity and depth 

factors SimLabel×D-factor as shown in  Fig. 12.c (‎Definition 

15).  Hence, the semantic resemblance between sub-trees A‟1 

and B‟2, w.r.t. the reference semantic network SN  in ‎Fig. 3: 
 

, = 0.9754.- ( ) = Cos( ) 
1 2 A' 1 B' 2

Sem RBS A' , B' V V   
 

Similarity, when comparing sub-trees A‟1 and C‟2, the 

corresponding vector space consists of 6 dimensions 

corresponding to each distinct node label in both sub-trees:  
 Academy Professor PhD Student Factory Supervisor Worker 

VA‟1 1 1 1 0.2662 0.3608 0.3608 

VC‟2 0.2662 0.3608 0.3608 1 1 1 
 

a. Node label semantic similarity values. 

               
 Academy Professor PhD Student Factory Supervisor Worker 

VA‟1 1 0.5 0.5 0.2662 0.1804 0.1804 

VC‟2 0.2662 0.1804 0.1804 1 0.5 0.5 
 

b. Semantic weights, i.e., SN-factor × D-factor. 
 

Fig. 13. Sub-tree vectors when comparing sub-trees A‟1 and C‟2. 

 

Semantic similarities between pairs of labels are computed 

following Lin [41] (‎Fig. 13.a): 
 

2 log p( )
Sim ( , ) = = 0.2662

log p( ) + log p( )
Lin

Structure
Academy Factory

Academy Factory
 

Likewise, 0.3608Sim ( , )
Lin

Professor Supervisor   and 

Sim ( , ) = 0.3608.
Lin

PhD Student Worker
 

Consequently, semantic 

resemblance: , 0.5303.- ( ) = Cos( )
1 2 A' 1 C' 2

Sem RBS A' , C' V V 
 

 

 

Results show that sub-tree A‟1 (made of node labels 

Academy, Professor and PhD Student) is semantically more 

similar to sub-tree B‟2 (College, Lecturer, Scholar) than C‟2 

(Factory, Supervisor, Worker). 
 

4.4. Tree Edit Operations Costs (TOC) 

As stated previously, TOC (‎Fig. 14) is an algorithm dedicated 

to computing tree edit distance operations costs, particularly 

the costs of tree insertion and tree deletion operations (cf. 

‎Definition 11, including single node insertions/deletions 

costs), which are central to detecting sub-tree similarities when 

comparing two XML document trees (note that the use and 

cost of the update operation, cf. ‎Definition 10, are discussed 

in the following section). TOC combines the structural 

commonalities (Struct_CBS) and semantic resemblances 

(Sem_RBS) between each pair of sub-trees (SbTi and SbTj) in 

the source and destination XML trees (A and B) respectively, 

assigning tree insert/delete operations costs accordingly. 

Consequently, these costs are exploited via an adaptation of 

Nierman and Jagadish‟s main edit distance algorithm [55] 

( Fig. 15) providing an improved and more accurate XML 

document similarity measure.  

Following TOC, the similarity between two XML sub-

trees, SS(SbTi, SbTj), is evaluated as the weighted average of 

their structural commonality (Struct_CBS) and semantic 

resemblance (Sem_RBS) scores: 
 

 

SS(SbTi , SbTj ,α ) = 

j i j-_ (SbT , SbT ) + ( ) _ (SbT , SbT )iStruct CBS Sem RBS  1
              

where α  [0, 1] is provided as input. 

(9)  . 

 

The user can thus assign more importance to either structural 

or semantic similarities by varying parameter α  [0, 1]: 

 For α=1, TOC will only consider structural 

commonalities in computing operations costs      

(via Struct_CBS). 

 For α = 0, only sub-tree semantic resemblances will 

be considered in computing operations costs       

(via Sem_RBS). 

The fine-tuning of parameter α so as to effectively 

combine sub-tree structure similarity (Struct-CBS) and 

semantic similarity (Sem-RBS) comes down to an optimization 

problem such as α should be chosen to maximize the overall 

sub-tree similarity function (cf. Formula ‎(9)). This can be 

solved using a number of known techniques that apply 

machine learning in order to identify the best weights for a 

given problem class [20, 22, 32, 45, 49]. The main idea with 

this family of techniques is to assign a higher (lower) weight 

with higher (lower) similarity values, acting like contrast 

filters in image processing by increasing the contrast on input 

matrixes. Providing such a capability, in addition to manual 

tuning, would enable the user to parameterize and adapt the 

XML comparison process following the scenario at hand, 

giving more emphasis to the structural or (inclusive) semantic 

aspects of the XML documents being compared. We do not 

further address the fine-tuning of parameter α here since it is 

out of the scope of this paper (and will be addressed in an 

upcoming technical study). 

Thus, following TOC, tree operations costs vary as follows: 
 

  

2

InsTree/ DelTree
Del

All  nodes  of SbTi i j
all SbT   Tj 

, 
i

+  { (SbT , SbT )}
Cost SbT  Cost( ) = ( )  

x SSMax
x




 1

1   
 

  Maximum insert/delete sub-tree cost: 

- CostInsTree/DelTree(SbTi) = Ins/Del
All  nodes  of SbTi

 Cost ( )     1
x

x 
 

 Minimum insert/delete sub-tree cost: 
(10)  



 

 

- CostInsTree/DelTree(SbTi) = Ins/Del
All  nodes of SbTi

1

2
 Cost ( )   

x 

x    

 

Lemma 1. Following TOC, the maximal insert/delete tree 

operation cost for a given sub-tree SbTi (attained when no sub-

tree structural commonalities nor semantic resemblances with 

SbTi are identified in the source/destination tree) is the sum of 

the costs (unit costs, =1)
1
 of inserting/deleting every individual 

node of SbTi (the proof is evident) ●  
 

Lemma 2. Following TOC, the minimal insert/delete tree 

operation cost for SbTi (attained when a sub-tree identical to 

SbTi is identified in the source/destination tree respectively) is 

equal to half its insert/delete tree maximum cost ●  
 

The minimal tree operation cost is defined in such a way 

in order to guarantee that the cost of inserting/deleting a non-

leaf node sub-tree will never be less than the cost of 

inserting/deleting a single node (single node operations having 

unit costs). In fact, TOC is based on the intuition that tree 

operations are more costly than node operations. 
1
 

 

Proof: The smallest non-leaf node sub-tree that can be 

treated via a tree operation is a sub-tree consisting of two 

nodes. For such a tree, the minimum insert/delete tree 

operation cost would be equal to 1 (its maximum cost being 

equal to 2), equivalent to the cost of inserting/deleting a single 

node. That is the lowest tree operation cost attainable, for a 

non-leaf node sub-tree, following TOC   

Hence, for leaf node sub-trees, the maximum insert/delete 

tree operation cost is equal to 1, the cost of inserting/deleting 

the single node at hand: 

 CostInsTree/DelTree(SbTi) = CostIns/Del(x)  1=1, when SbTi 

is made of single node x. 
 

The minimum cost for inserting/deleting a single node 

sub-tree is equal to 0.5, half its maximum insert/delete cost: 

 CostInsTree/DelTree(SbTi) = CostIns/Del(x)  1/2 = 0.5 , SbTi 

consisting of single node x. 

 

This is essential in order to detect the similarities and 

repetitions among leaf node sub-trees (such as with the K, L, M 

and K, N, P comparison cases in ‎Fig. 4, discussed in the 

motivation section). 

 
 

                                                 
1  An intuitive and natural way has been usually used to assign single node 

operation costs and consists of considering identical unit costs for insertion 

and deletion operations [13, 55]. 

 

 Algorithm TOC 
 

 Input:  A , B       // XML document trees 

             α             // Parameter for weighting Struct_CBS and Sem_RBS 

             SN         // Weighted semantic network 

 

 Output: {CostDelTree} U {CostInsTree}     // Delete tree and insert tree operations costs 
 

 Begin                                                                                                                                             
               

For each sub-tree SbTi in A (including A)           // Traversing the sub-trees of A           1 
{                                                                                                                                     2 

CostDelTree(SbTi) = 

i

 

x

x
Del

All  nodes  of SbT

Cost ( )                                                                     3 

 

For each sub-tree SbTj in B  (including B)     // Traversing the sub-trees of B           4 
{                                                                                                                                5 

CostInsTree(SbTj) =   

j

 

x

x
Ins

All  nodes  of SbT

Cost ( )                                                                6

                                                

 

CostDelTree(SbTi) = Min{ CostDelTree(SbTi), 

                                    

i i j

 

SSx

x



Del

All  nodes  of SbT , 

1
Cost ( )   

1 + (SbT , SbT )   
}                       7 

 

CostInsTree(SbTj) = Min{ CostInsTree(SbTj), 

                                     

i jj

 
SS

x



Ins

All  nodes of SbT , 

1
Cost ( )   

1 + (SbT , SbT )   x 

}                   8 

}                                                                                                                                   9 
}                                                                                                                                        10 

                                                                                                                    

Return {CostInsTree} U {CostDelTree}                                                                                    11 
 

 End                                                                                                                                                                                                                                                                                                                                                                                                                                           
 

 

Fig. 14. Tree edit distance Operations Costs (TOC) algorithm. 

 

On one hand, note that in our approach, single node 

insertions/deletions are undertaken via tree insert/delete 

operations (cf. ‎Definition 11) applied on leaf node sub-trees. 

Insert/delete node operations (cf. ‎Definition 10), which are 

assigned unit costs as with traditional edit distance approaches, 

are only utilized to compute tree insertion/deletion operations 

costs (cf. Struct_CBS in  Fig. 9, and TOC in ‎Fig. 14 - lines 3 

and 6). They do not however contribute to the dynamic 

programming procedure adopted in our edit distance approach 

(similarly to [16, 55], cf. TED algorithm in  Fig. 15).  

On the other hand, algorithm TOC exploits tree 

insertion/deletion operations to identify not only the 

structural/semantic similarities between sub-trees (SbTi, SbTj) 

but also the similarities between the sub-trees and the whole 

XML trees (A and B) being compared (cf. ‎Fig. 14, lines 1 and 

4). This is necessary when one of the trees involved in the 

comparison process shares structural/semantic similarities with 

one (or more) of the sub-trees encompassed in the other XML 

document tree (e.g., the F, I, J case in ‎Fig. 4 where tree I is 

structurally similar to sub-tree F1, and the A‟, I‟, J‟ case in ‎Fig. 

6 where tree I‟ is semantically similar to sub-tree A‟1). 

Nonetheless, note that inserting/deleting the whole destination/ 

source trees is not allowed in our approach (cf. algorithm TED 

in  Fig. 15). In fact, by allowing such operations, one could 

delete the entire source tree in one step and insert the entire 

destination tree in a second step, which completely undermines 

the purpose of the insert/delete tree operations. 

To sum up, TOC computes the costs of tree insertion and 

deletion operations based on their corresponding sub-trees‟ 

structural commonality and semantic resemblance values 

(maximum values inducing minimum tree operations costs), to 

be exploited in the main tree edit distance algorithm (TED).  



 

 

 
4.5. Tree Edit Distance (TED) 

 

The pseudo-code of the tree edit distance algorithm TED, 

utilized in our study, is developed in ‎Fig. 15. It is an 

adaptation of Nierman and Jagadish‟s main edit distance 

process [55]. In addition to tree insertion/deletion operations 

costs which vary w.r.t. the structural/semantic similarities 

between XML sub-trees, TED exploits update operations costs 

( Fig. 15, line 4) in computing the distance between two XML 

document trees. In short, the algorithm recursively goes 

through the sub-trees of both XML document trees being 

compared, combining node update, tree insertion and tree 

deletion operations so as to identify those of minimal cost. The 

node update operation ( Definition 10) is applied to the roots of 

the XML trees being compared, as well as the roots of each 

pair of sub-trees considered in the recursive process ( Fig. 15, 

line 4), whereas tree insertion and tree deletion operations are 

applied to corresponding first-level sub-trees ( Fig. 15, lines 5-

6, 13-14). Recall that the insertion/deletion of single nodes are 

undertaken via tree insertion/deletion operations applied on 

leaf node sub-trees (as described in the previous section). 

While tree insertion/deletion operations‟ costs allow 

detecting the structural and semantic similarities between 

XML sub-trees (cf. TOC), the update operation cost is central 

in evaluating the similarity between the roots of the XML 

document trees being compared, as well as the roots of XML 

sub-trees considered in the recursive process (TED). 

With classical edit distance approaches, the cost of the 

update operation underlines the equality/difference between 

node labels: 

 Minimum cost when the compared element labels are 

identical, CostUpd(a, b) = 0 when a. = b.  

 Maximum unit cost otherwise, i.e. CostUpd(a, b) = 1 

when a.≠ b. 
 

Nonetheless, to consider the semantic similarities between 

element labels (not only label equality/difference) in our study, 

we extend the update operation cost scheme as follows: 

 
                                  CostUdp(a, b, α) = 

  - (a.d)
[1  -  (1- )  ( (a. , b. , SN))]          a.   b.

1 +  - (a.d)

                                          0    otherwise

Label

D fact
Sim if

D fact






 
   

 
  

 

                                 where α  [0, 1] 
 

(11)  

 

Parameter α (which is the same utilized in TOC) allows 

assigning more importance to either structural or semantic 

similarities: 

 For α = 1, we only consider label equality/difference 

in computing the cost of the update operation, as with 

traditional structural edit distance approaches, 

 For α = 0, node semantic similarities will be 

considered in computing the update operation cost. 

Here, the operation cost varies in the [0, 1] interval 

w.r.t. the semantic similarity between the concerned 

node labels and corresponding depths (note that 

nodes treated via the update operation are of the same 

depth, i.e., a.d = b.d). 
 
 

 
 

Algorithm TED 
 

Input:  A and B                                    // XML document trees to be compared 

           {CostDelTree} U {CostInsTree}         // Sub-tree deletion/insertion operations costs 
           α                                           // Parameter for structural/semantic weighting,  

           SN                                        // Weighted semantic network 
 

Output: TED(A, B)                            // Edit distance between A and B 
 

Begin                                                                                                                            
 

M = Degree(A)                                  // The number of first level sub-trees in A.             1         
N = Degree(B)                                  // The number of first level sub-trees in B.               2 
 

Dist [][] = new [0...M][0…N]                                                                                                  3                                                                                                                                     
Dist[0][0] = CostUpd(R(A), R(B), α)            // Update operation                                                           4                                                                                       
 

For (i = 1 ; i ≤ M ; i++) { Dist[i][0] = Dist[i-1][0] + CostDelTree(Ai) }                                        5                        
For (j = 1 ; j ≤ N ; j++) { Dist[0][j] = Dist[0][j-1] + CostInsTree(Bj) }                                        6 
                               

For (i = 1 ; i ≤ M ; i++)                                                                                                          7 
{                                                                                                                              8                                                                                         

For (j = 1 ; j ≤ N ; j++)                                                                                                        9 
 {                                                                                                                         10  

Dist[i][j] = min{                                                                                                     11 

Dist[i-1][j-1] + TEDXDoc(Ai, Bj, {CostDelTree} U {CostInsTree}, α,

 

SN )            12 

Dist[i-1][j] + CostDelTree(Ai),                                                                        13  
Dist[i][j-1] + CostInsTree(Bj)                                                                         14                

            }                                                                                                15 
             }                                                                                                                    16     
     }                                                                                                                             17 

                                                                                                                                                                                                                                                   

Return  Dist[M][N]     // ≡ TED(A, B)                                                                                        18 
 

End                                                                                                                                                                                                                                             
 
 
 

Fig. 15. Tree edit distance algorithm (TED). 
 

Consider for instance document trees X, Y and Z in ‎Fig. 5. 

With α= 0, the corresponding root update operations costs 

would be as follows: 
 

 CostUpd(R(X), R(Y))  = 1 – (SimLin(Academy, College) × 1)   

                              = 0.2030 

 CostUpd(R(X), R(Z))  = 1 – (SimLin(Academy, Factory) × 1)  

                              = 0.7337 
 

It is clear that the cost of updating Academy and College 

is lesser than that of transforming Academy into Factory, 

identifying the fact that the former couple is more semantically 

similar than the latter (Detailed computation examples are 

developed in the Appendix).  

Here, as with Sem-RBS, we exploit Lin‟s measure [41] to 

assess the semantic similarity between node labels (i.e., 

SimLabel ≡ SimLin). However, recall that its use is not mandatory. 

We use it since it is among the most efficient measures 

available, as discussed previously.  

 
4.6. XML Document Similarity Measure (SimXDoc) 

In our study, we adopt the formal definition of similarity as the 

inverse of a distance function [21], i.e., tree edit distance. 

Given XML document trees A, B and C: 

XDoc

TED(A, B)
Sim (A, B) = 1

|A| + |B|
  

(12) . 

 

Note that TED(A, B) ≡ TED(A, B, {CostInsTree} U 

{CostDelTree}, α, SN ), and likewise SimXDoc(A, B) ≡ SimXDoc(A, 

B, α, SN ), following our algorithms. Yet, we omit the α, SN

 and {CostInsTree} U {CostDelTree} input parameters in         

Formula  (12) for ease of presentation. 
 



 

 

Our similarity measure is consistent with the formal 

definition of similarity [21, 44], and comes down to a 

generalized metric – i.e., a similarity (distance) function 

satisfying all metric properties except for triangular inequality:  
 

i. SimXDoc(A, B)  [0, 1]. 

ii. SimXDoc (A, B) = 1  A and B are identical. 

iii. SimXDoc (A, B) = 0  A and B have no common 

characteristics
1
, 

iv. Similarity increases with the commonality between 

A and B, and decreases with their difference. 

v. SimXDoc (A, A) = 1     similarity is reflexive. 

vi. SimXDoc (A, B) = SimXDoc (B, A)     similarity is 

symmetric. 
 

In fact, triangular inequality is controversially discussed 

and is usually domain and application-oriented [21]: 
 

vii. SimXDoc (A, C) ≥ SimXDoc (A, B) × SimXDoc (B, C)   

  Triangular inequality.  

 

Regarding semantic similarity in particular, most methods 

in the literature (e.g., [60, 87], cf. Section  2.3) including Lin 

[41], do not satisfy triangular inequality. An example by 

Tversky [80], reported by Maguitman et al. in [44], illustrates 

the impropriety of triangular inequality with an example about 

the similarity between countries: “Jamaica is similar to Cuba 

(geographical proximity); Cuba is similar to Russia (political 

affinity); but Jamaica and Russia are not similar at all”.    

And since we evaluate semantic similarity via Lin‟s measure 

[41] in our approach, our integrated semantic/structural 

approach does not transitively satisfy triangular inequality. 

Note that when parameter α=1, i.e., when our approach is 

utilized as a purely structural XML comparison method (i.e., 

only Struct_CBS is taken into account), our method behaves 

similarly to existing XML structural comparison methods, e.g., 

[12, 16, 55], provided that the distance values generated by the 

latter are evaluated via the similarity variant in Formula ‎(12). 

 

4.7. Overall Complexity 

4.7.1. Time Complexity 

The overall complexity of our integrated structural and 

semantic similarity approach simplifies to 

O(|A|×|B|×|SN|×Depth(SN)), where |A| and |B| denote the 

cardinalities of the compared trees, |SN| the cardinality of the 

semantic network exploited for semantic similarity assessment, 

and Depth(SN) its maximum depth. It is computed as follows: 
 

 Struct_CBS algorithm for the identification of the 

structural commonality between two sub-trees is of 

complexity: O(|SbTi|×|SbTj|) where |SbTi| and |SbTj| 

denote the cardinalities of the compared sub-trees. 
 

 Sem_RBS for identifying the semantic resemblance 

between two sub-trees is of complexity: 

O(|SbTi|×|SbTj|×|SN|×Depth(SN)). Note that O(|SN|× 

                                                 
1 SimXDoc(A, B) = 0, means that computing the distance between A and B, 

consists of deleting all the nodes of the source tree, and then inserting all 

the nodes of the  destination tree, i.e., TED(A, B) = |A| + |B|. 

Depth(SN)) underlines the time complexity of the 

semantic similarity measure itself [41].   
 

 TOC algorithm for computing the costs of tree 

insert/delete operations, which makes use of 

Struct_CBS and Sem_RBS in identifying the structural 

commonalities and semantic resemblances between 

sub-trees in the source and destination trees, is of time 

complexity
1 2| | | |

1 1

 (| | | | | | ( ))
T T

i j

i j

 O SbT SbT SN Depth SN
 

     

and simplifies to O(|A|×|B|×|SN|×Depth(SN)). The 

mathematical proof is provided in [75]. 
 

 The edit distance algorithm TED (an adaptation of the 

algorithm in [55]) which utilizes the results obtained by 

TOC (tree operations costs), is of complexity 

O(|A|×|B|×|SN|×Depth(SN)). 
 

When disregarding semantic similarity assessment, i.e., 

when input parameter α=1 (thus disregarding algorithm 

Sem_RBS), our approach simplifies to O(|A|×|B|), similarly to 

existing XML-based tree edit distance comparison approaches, 

e.g., [12, 16, 55]. 

 
4.7.2. Space Complexity 

As for memory usage, our approach requires RAM space to 

store the XML document trees being compared, as well as the 

distance matrixes and semantic vectors being computed. It 

simplifies to O(|A|×|B|) space (similarly to existing 

approaches, e.g., [12, 16, 55]) since: 
 

 Struct_CBS requires |SbTi|×|SbTj| space for storing the 

distance matrix when identifying the structural 

commonalities between any two sub-trees SbTi and 

SbTj. Hence, space complexity is of O(|SbTi|×|SbTj|). 
 

 Sem_RBS requires 2×(|SbTi|+|SbTj|) space for handling 

corresponding sub-tree vectors, each vector being of 

maximal dimension |SbTi| + |SbTj|. Hence, Sem_RBS is 

of O(|SbTi|+|SbTj|). Note that the semantic network is 

not stored in local memory, but is stored on disk (and is 

managed via a database system, cf. Section  6.6.1), and 

thus does not contribute to space complexity. 
 

 TOC is of
1 2| | | |

1 1

 (| | | |)
T T

i j

i j

 O SbT SbT
 

  space, for storing the 

various distance matrixes (Struct_CBS) and sub-tree 

vectors (Sem_RBS) between each pair of sub-trees in 

the source and destination XML trees. This simplifies 

to O(|A|×|B|) as shown in the previous section. 
 

 The edit distance algorithm TED is of O(|A|×|B|) space 

complexity. 
 

5. Comparison with Existing Approaches 

In the following, we provide both theoretical and 

computational comparative analyses, evaluating our XML 

document similarity method against existing approaches.  
 



 

 

5.1. Formal Comparison 

A formal mathematical comparison shows that some existing 

methods are lower bounds of our approach. This property 

conveys the fact that our method reduces edit operations costs 

following sub-tree similarities, and affects overall similarity 

values accordingly, whereas existing approaches usually 

exploit maximum edit operations costs regardless of the 

presence of sub-tree similarities, hence producing minimum 

similarity scores. 
 

Theorem. Let A and B be XML trees, and  
TED( , )

Sim( , ) = 1
| | + | |

A B
A B

A B
 , then: 

 

 SimChawathe(A, B)  ≤  SimXDoc(A, B) 

 SimDalamagas et al.(A, B)  ≤ SimXDoc(A, B) 
 

Proof:  

 Proving that Chawathe‟s algorithm [12] is a lower 

bound of our XML comparison method is straight 

forward. When computing the distance between two 

trees using Chawathe‟s approach [12], all sub-trees 

are inserted/deleted via single node insertion/deletion 

operations regardless of the sub-tree similarities at 

hand. The costs of these insertions/deletions are 

equivalent to the maximum tree insertion/deletion 

operations costs following our TOC algorithm (Section 

 4.4), which yield a maximum edit distance, thus a 

minimum similarity value between the compared trees. 

In other words, Chawathe‟s algorithm [12] always 

yields similarity values lesser or equal to those 

computed via our approach. 

 Proving that Dalamagas et al.‟s algorithm [16] is a 

lower bound of our XML comparison method is also 

trivial. Indeed, the costs of tree insertion/deletion 

operations in [16] are computed as the sum of the costs 

of inserting/deleting all individual nodes in the 

considered sub-trees. These costs come down to the 

maximum tree operations costs computed following our 

method. Consequently, Dalamagas et al.‟s algorithm 

[16] always yields similarity values that are lesser or 

equal to those computed via our method. Note that we 

do not consider the method‟s repetition/nesting 

reduction process in our analysis since it yields 

inaccurate comparison results in the general case (cf. 

Section  2.2.2)  
 

As for Nierman and Jagadish‟s approach in [55], tree 

insertion/deletion operations costs are affected by the tree 

contained-in relation (cf. Section  2.2.2). Maximum costs (i.e., 

the costs of inserting/deleting all single nodes in the 

considered sub-trees) are attained when the contained-in 

relation is not verified. Otherwise, when the contained-in 

relation is verified, tree operations costs are minimal, and 

amount to the cost of inserting/deleting leaf nodes (normally 

unit costs, =1)
1
. Hence, we cannot mathematically conclude 

that the measure in [55] is a lower bound (or upper bound) of 

                                                 
1
 Please note that the minimum tree operation cost is not formally defined 

in [55]. We acquired this information from the authors. 

our XML comparison method since sub-tree costs are 

computed differently. In other words, the approach in [55] can 

yield similarity scores which are higher/lower than those 

produced by our method regardless of the similarities detected 

(since different mathematical cost schemes are utilized). 

However, it is clear that Nierman and Jagadish‟s approach 

only considers the contained-in relation between sub-trees 

while varying tree operations costs. On the other hand, our 

algorithm detects fined-grained structural and semantic 

similarities between sub-trees, among which the structural 

containment relation. Thus, our approach is able to detect a 

wider set or similarities w.r.t. the method in [55]. Thus, if we 

assume that sub-tree insertion/deletion costs in [55] are 

defined in accordance with our method (applying TOC while 

confining to the tree containment relation for instance, i.e., we 

only compute sub-tree insertion/deletion costs when the 

contained-in relation is verified), or vice-versa (assigning unit 

costs to tree operations used in our approach – instead of 

applying TOC – whenever sub-tree similarities are detected), 

then Nierman and Jagadish‟s algorithm would clearly yield 

similarity values that are lesser or equal to those obtained via 

our method. 

Regarding the approach by Tekli et al. in [73], it focuses 

on the special case of semantic similarities between pairs of 

single node labels, particularly those having identical 

structural positions. Such similarities are covered in our 

current study, in the context of wider sub-tree semantic 

resemblances (an inner node would be treated as the root of its 

underlying sub-tree, whereas a leaf node would be simply 

viewed as a leaf node sub-tree). Yet, we cannot provide a 

formal mathematical comparison between both methods. In 

fact, node insertion/deletion operations costs are computed in a 

particular manner in [73], taking into account the semantic 

similarity between the node‟s label and that of its parent in the 

source/destination document tree. Thus, the approach in [73] 

yields similarity values that are not quantitatively comparable 

to those produced via our current method. Consider or instance 

XML document trees X, Y and Z in the example of  Fig. 5: 
 

 SimTekli et al.(X, Y) = 0.9432  >  Sim Tekli et al.(X, Z) = 0.8741 

 SimXDoc(X, Y) = 0.9093 > Sim XDoc(X, Z) = 0.8352 

 

Both methods detect that trees X and Y are semantically 

more similar than X and Z, w.r.t. the semantic network in  Fig. 

3. Yet, the similarity values are different, underlining that the 

methods are not quantitatively comparable. 
 

5.2. Similarity Results for Motivating Examples 

Hereunder, we present XML distance/similarity values 

obtained when applying our approach to treat the various XML 

comparison examples presented throughout the paper. Results 

in both ‎Table 2 and ‎Table 3 show that our XML similarity 

method is able to efficiently detect the various kinds of 

structural and semantic resemblances mentioned throughout 

the paper, which are left unaddressed by existing approaches 

(i.e., identical similarity values are obtained with existing 

approaches, despite the presence of structural and/or semantic 

similarities – values are omitted for ease of presentation), to 

the exception of a few cases detected by existing methods 

(discussed in Section ‎3). 



 

 

Computational details are provided in the Appendix. 
 

Table 2. Distance/similarity values obtained when comparing 

structurally similar documents, with parameter α set to 1 

(Struct_CBS is exploited in computing tree operations costs). 
 

 

 Our Approach N. & J.  

[55] 

Dalamagas et 

al. [16] 

Chawathe 

[12]  Distance Similarity 

A/B 1.5 0.8636 
Detected 

N
o
t d

etected
 

N
o
t d

etected
 

A/C 3 0.7272 

A/D 3.2856 0.7473 

N
o
t d

etected
 

A/E 5 0.6154 

F/G 5 0.5455 

F/H 7 0.3636 

F/I 4.2857 0.4643 

F/J 6 0.25 

K/L 0.5 0.9 

K/M 1 0.8 

K/N 1 0.8333 

K/P 2 0.6667 

 
Table 3. Distance/similarity values obtained when comparing 

semantically related documents with parameter  set to 0 

(Sem_RBS is exploited in computing tree operations costs). 
 

 

 
Our Approach N. & 

J. [55] 

Dalamagas et 

al. [16] 

Chawathe 

[12] 

Tekli et 

al. [73] Distance Similarity 

X/Y 0.8161 0.9093 

N
o
t d

etected
 

N
o
t d

etected
 

N
o
t d

etected
 

Detected 
X/Z 1.4836 0.8352 

A‟/B‟ 1.5189 0.8619 Not 

detected A‟/C‟ 1.9604 0.8218 

A‟/G‟ 2.3495 0.7389 
Detected 

A‟/H‟ 2.6641 0.7039 

A‟/I‟ 3.0162 0.5691 N
o
t d

etected
 

A‟/J‟ 3.3308 0.5242 

K‟/L‟ 0.5087 0.8983 

K‟/M‟ 0.6103 0.8779 

K‟/N‟ 1.0749 0.8208 

K‟/P‟ 1.2205 0.7966 

 
6. Experimental Evaluation 
 

6.1. Prototype 

We have developed a prototype system, entitled XS3 (XML 

Structural and Semantic Similarity)
1
, to test, evaluate and 

validate our XML document comparison method, including 

implementations of its most recent alternatives in the literature. 

The XS3 prototype, implemented using C#.Net, is made of 

four independent and interactive components, as well as 

various comparison and application modules: 

- The parser component starts by verify the integrity of 

XML documents, undertaking lexical pre-processing and 

transforming documents into ordered labeled trees. 

- The similarity evaluation component consists of several 

autonomous algorithms, including our approach and 

some of its most prominent alternatives which we refer 

to as Chawathe [12], N & J [55], DCWS [16], and TCY 

[73]. It is extensible to other approaches. 

- The Synthetic XML generator produces sets of XML 

documents based on specific user requirements. It is an 

adaptation of the IBM XML documents generator
2
 

accepting as input: a DTD document, a MaxRepeats
3
 

value designating the maximum number of times a node 

will appear as child of its parent (when * or + options are 

encountered in the DTD), as well as a NbDocs value 

underscoring the number of documents to be produced.  

                                                 
1
 Available at http://www.u-bourgogne.fr/Dbconf/XS3 

2
 http://www.alphaworks.ibm.com 

3
 A greater MaxRepeats increases the probability of attaining variability with 

optional and repeatable elements when generating XML documents. 

- Furthermore, a taxonomic analyzer component was 

introduced to compute semantic similarity values 

between words (expressions) in a given semantic 

reference (e.g., WordNet [108]), to be subsequently 

exploited in evaluating XML element/attribute label 

similarity. It currently includes semantic measures 

developed in [97, 165] and is extensible to others. 

 

In addition, XS3 includes four XML document 

comparison modules, One to One, One to Many, Many to 

Many (consequently enabling XML document clustering), and 

Set comparison (for computing average inter-set and intra-set 

similarities, and evaluating clustering quality). The latter are 

thoroughly described in the following sections.  

 

6.2.  Evaluation Metrics 

6.2.1.  Background 

How to experimentally evaluate the quality of an XML 

similarity method remains a debatable issue, especially in 

information retrieval. To our knowledge, the definition of 

standardized XML similarity evaluation metrics remains a hot 

topic in the INEX evaluation campaigns
4
. A few XML 

evaluation techniques have been proposed in the literature [16, 

23, 55]. All of them use XML grammars (DTDs or XSDs) as 

reference for detecting structurally similar XML documents.  

In [23], the authors compute inter-set and intra-set 

average similarities between documents corresponding to 

different DTDs and assess the attained scores to the a priori 

known DTDs. Results are depicted in a matrix where element 

(i, j) underscores the average similarity value, Sim(Si, Sj), 

corresponding to every pair of distinct documents such that the 

first belongs to set Si (DTDi) and the second to set Sj (DTDj).  

The authors in [16, 55] make use of clustering methods in 

order to group together structurally similar documents and 

subsequently evaluate how closely the obtained clusters 

correspond to the actual XML grammars. In addition, the 

authors in [16] adapt two metrics popular in information 

retrieval: precision and recall [62], in performing XML 

structural clustering evaluation. In the following, we report the 

definitions of those metrics and propose a method for 

extending their usage to obtain consistent experimental results. 
 

6.2.2. Metrics Used 

Owing to the proficient usage of their traditional predecessors 

in classic information retrieval evaluation, we make use of the 

precision (PR) and recall (R) metrics defined in [16], to 

evaluate the effectiveness of our approach and compare it to 

existing methods. 

Following Dalamagas et al. [16], for an extracted cluster 

Ci that corresponds to a given XML grammar Gi (the 

cluster/grammar mapping issue is addressed subsequently): 

 ai is the number of XML documents in Ci that indeed 

correspond to Gi (correctly clustered documents). 

 bi is the number of documents in Ci that do not 

correspond to Gi (miss-clustered).  

                                                 
4 http://inex.is.informatik.uni-duisburg.de/ 



 

 

 ci is the number of XML documents not in Ci, 

although they correspond to Gi (documents that should 

have been clustered in Ci). 
 

Consequently, given n: the total number of generated clusters: 
 

1

1 1
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n
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i i
i i
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a b


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 
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 (13) . 

  
High precision denotes that the clustering task achieved 

high accuracy, grouping together documents that actually 

correspond to the XML grammars mapped to the clusters. 

High recall means that very few documents are not in the 

appropriate cluster where they should have been. In addition to 

comparing one approach‟s precision improvement to another‟s 

recall, it is a common practice to consider the F-value, which 

represents the harmonic mean of precision and recall: 
 

        2
-  =    

 + 

PR R
F value [0,1]

PR R

 
   (14) . 

 

Therefore, as with traditional information retrieval 

evaluation, high precision and recall, and thus high F-value 

(indicating in our case excellent clustering quality) 

characterize a good similarity method. 
 

6.3. Mapping Grammars to Clusters 

Mapping XML grammars to XML document clusters comes 

down to mapping the groups of documents corresponding to 

each grammar (which we identify as original grammar 

clusters) to those created by the clustering process (which we 

identify as extracted clusters, or simply clusters). To get such 

a mapping, we compute the average intra-set similarity values 

between each original grammar cluster and extracted cluster 

and then identify the pairs of matching grammars/extracted 

clusters following the highest values. Note that in the 

following sections, the term cluster will always refer to 

extracted cluster. 
 

6.4. Clustering XML Documents 
 

In our experiments, we chose the well known single link 

hierarchical clustering method [27, 30] although any form of 

clustering could be utilized. Given n XML documents, we 

construct a fully connected graph G with n vertices (XML 

documents) and (n×(n-1))/2 weighted edges. The weight of an 

edge corresponds to the similarity between the connected 

vertices. Consequently, the single link clusters for a similarity 

threshold si are identified by deleting all the edges with 

weights < si. Therefore, the single link clusters will group 

together XML documents that have pair-wise similarity values 

greater or equal than si. 

However, unlike Dalamagas et al. in [16], we do not utilize 

a stopping rule to determine the most appropriate clustering 

level for the single link hierarchies, and thereafter obtain only 

one PR/R doublet for analysis with each clustering experiment. 

Instead, we compute a whole series of PR/R doublets. Those 

series correspond to the different clustering sets obtained by 

varying the clustering threshold in the [0, 1] interval. In other 

words, we construct a dendrogram (cf.  Fig. 16) such as: 

 For the initial clustering level, where the similarity 

threshold s1=0 (or s1 = minimum similarity attainable 

between any pair of documents), XML documents 

appear in one global cluster: the starting one. 
 

 For the final clustering level, where the similarity 

threshold sn=1 (with n the total number of levels, i.e., 

number of clustering sets in the dendrogram), each 

distinct document will appear in a different cluster.  
 

 Intermediate clustering sets will be identified for 

thresholds si / s1<si<sn. 

 

Then, we compute precision (PR) and recall (R) for each 

clustering set identified in the dendrogram, thus constructing 

PR and R graphs that describe the system‟s evolution 

throughout the clustering process. We also compute average 

precision and recall values: Ave(PR) and Ave(R), considering 

the whole dendrogram, on the basis of the obtained series, 

providing yet another indicator of clustering quality. 

A sample dendrogram underlining the clustering 

evolution of 15 XML documents of the SIGMOD Record
1
 (5 

sampled from each of the OrdinaryIssuePage.dtd, 

ProceedingsPage.dtd and SigmodRecord.dtd grammars), is 

shown in  Fig. 16. 
 

 

Fig. 16. Dendrogram and detailed PR/R computations when clustering 

15 XML documents sampled from the SIGMOD record (here, 

clustering is based on structure, i.e., α = 1). 
 

6.5. Experimental Results 
 

We conducted experiments on real and synthetic XML 

documents to test our XML comparison method. Results 

indicate that our approach yields improved clustering quality 

(i.e., comparison quality) than current approaches, w.r.t. both 

XML structural and semantic features. We detail each set of 

experiments in the following sub-sections. 

                                                 
1 Available at http://www.sigmod.org/record/xml/ 
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6.5.1. Structural Similarity Evaluation 
 

To test our method‟s effectiveness in evaluating XML 

structural similarity, we conducted experiments on two sets of 

750 documents, generated from 25 real-case
1
 and synthetic 

XML grammars, using our adaptation of the IBM XML 

documents generator. We varied the MaxRepeats parameter to 

determine the number of times a node will appear as a child of 

its parent node. For a real dataset, we considered the online 

version of the ACM SIGMOD Record. We experimented on a 

set of 104 documents corresponding to OrdinaryIssuePage.dtd 

(30 documents), ProceedingsPage.dtd (47 documents) and 

SigmodRecord.dtd (27 documents)
2
. The characteristics of the 

document sets used are summarized in  Table 4 and  Table 5. 

 

Table 4. Characteristics of the SIGMOD Record document set. 
 

Grammars 

(DTDs) 

Number of 

Documents 

Average Node 

Depth (per doc) 

Average nb of 

Elements (per doc) 

Average nb of 

Attributes (per doc) 

OrdinaryIssuePage 30 5.4997 179.9776 82.8333 

ProceedingsPage 47 3.6739 264.5957 118.1277 

SigmodRecord 27 5.7793 332.6667 210.2593 

 
 

Table 5.  Characteristics of synthetic XML document sets. 
 

Document set 
Number of 

Documents 

Average Node 

Depth (per doc) 

Average Number of 

Nodes (per doc) 

MaxRepeats = 5 750 3.68 17.7067 

MaxRepeats = 10 750 3.68 36.9133 

 
Precision, recall and F-value graphs are presented in 

Figures 17, 18 and 19. Corresponding Ave(PR), Ave(R) and 

Ave(F-value) values are reported in  Table 6. 
 

 
 
 
 

 
 

 
 

 

Fig. 17. PR, R and F-Value graphs for clustering real SIGMOD 

Record XML documents. 
 

 

     
 

 

Fig. 18. PR, R and F-Value graphs for clustering documents of 

synthetic set 1 (MaxRepeats = 5). 

                                                 
1 From http://www.xmlfiles.com and http://www.w3schools.com. 
2

 We found only one XML file conforming to the SigmodRecord.dtd grammar: 

SigmodRecord.xml. However, due to its relatively large size (479KB) in 

comparison with the XML documents corresponding to the other two DTDs 

(10KB of average size per document), we carefully decomposed 

SigmodRecord.xml to several documents, creating a set of XML documents 

conforming to SigmodRecord.dtd. 

 

 

 
 

Fig. 19. PR, R and F-value graphs for clustering documents of 

synthetic set 2 (MaxRepeats = 10). 

 

Table 6.  Average PR, R and F-values obtained by varying the 

clustering threshold between [0, 1]. 
 

 SIGMOD Set 1 (MaxRepeats=5) Set 2 (MaxRepeats =10) 

 PR R F-value PR R F-value PR R F-value 

Chawathe 0.8782 0.3910 0.5411 0.2502 0.4737 0.3619 0.2783 0.3769 0.3276 

DCWS 0.8782 0.3931 0.5432 0.2581 0.4838 0.3709 0.2779 0.3821 0.3300 

N & J 0.8637 0.4268 0.5713 0.2334 0.6162 0.4248 0.2234 0.4177 0.3205 

Our App. 

(α=1) 
0.8782 0.4326 0.5797 0.2341 0.6262 0.4302 0.2203 0.4656 0.3430 

 

Results, with respect to all three data sets, indicate that 

our approach yields improved global clustering quality (i.e., 

structural comparison quality) in comparison with current 

alternative approaches. For the SIGMOD Record document 

set, our method yields an average overall precision higher than 

that of N & J and identical to those achieved by DCWS and 

Chawathe‟s algorithms. As for recall, our approach shows 

better results than N & J, DCWS as well as Chawathe. In fact, 

average F-value results underline our method‟s higher 

clustering efficiency (i.e., comparison quality). For the 

synthetic datasets, our method yields average precision levels 

lower than those achieved by its predecessors, to the exception 

of the first synthetic dataset (MaxRepeats=5) where our 

approach outranks N&J‟s average precision level. However, 

our method consistently maintains recall levels higher than 

those of its alternatives. In cases where higher/lower 

precision/recall levels are obtained simultaneously, the F-

value measure is fundamental in assessing the overall loss and 

gain in average precision/recall, and evaluating result quality. 

For both synthetic datasets, our method yields higher average 

F-values in comparison with N&J, DCWS, and Chawathe.  

Note that the low precision levels obtained with the 

synthetic datasets are probably due to utilizing relatively 

similar grammars (we explicitly used grammars baring sub-

tree similarities) in generating the document sets. Similar 

grammars would induce similar documents. Such documents 

could thus be easily miss-clustered if their structural 

similarities are detected, which is the case when using our 

approach (the clusters include the right documents as well as 

additional similar ones). Existing approaches disregard various 

kinds of similarities, e.g., sub-tree similarities, which is why 

they tend to distinguish documents that are in fact similar. 

Such undetected similarities might yield better precision levels 

(smaller clusters including only portions of correctly clustered 

documents). Nonetheless, they consistently yield lower recall 

values (lots of documents are not in the appropriate clusters 

where they should have been). 
 

6.5.2. Evaluation of Structural and Semantic Similarity 
 

Various experiments were conducted in order to validate our 

approach‟s ability of integrating semantic similarity evaluation 



 

 

in XML document comparison. In addition to hierarchical 

clustering [30], we utilized the inter-set/intra-set average 

similarity technique introduced in [23] which seemed effective 

in evaluating the semantic relatedness between groups of XML 

documents. We exploited (extracts of) WordNet as the 

reference semantic network, weighted based on the Brown 

Corpus of American English [25]
1
. Synthetic XML documents 

generated based on real and synthetic XML grammars
2
 were 

considered (All test documents and grammars are published 

online
3
 to facilitate future comparative evaluations). We 

selected general purpose XML grammars describing real world 

data, to allow relevant semantic evaluation using WordNet 

(which is a general purpose semantic reference describing 

every day English language [48]). Otherwise, it would be 

useless to evaluate the semantics of XML labels given a 

reference that does not encompass corresponding semantic 

concepts (for instance, it would be futile to compare XML 

documents describing protein sequences, using the general 

purpose WordNet, since most semantic concepts related to 

protein descriptions do not exist in WordNet, and require a 

dedicated semantic reference).  

Note that the number of documents utilized in our 

combined semantic/structural similarity evaluation is reduced 

w.r.t. the structural similarity experiments, because of the 

complexity of the semantic similarity process due to traversing 

the reference semantic network (as shown in Section ‎6.6.1). 
 

6.5.2.1. XML Document Clustering Experiments 
 

Clustering experiments were conducted on six sets of 15 XML 

documents, generated based on 9 DTD grammars (some of 

which are shown in  Fig. 26), using our XML documents 

generator. We varied the MaxRepeats parameter between 5 

and 10. The characteristics of the produced document sets are 

summarized in  Table 7. PR, R and F-value graphs are 

presented in Figures 20 - 25. Corresponding Ave(PR), Ave(R) 

and Ave(F-value) values are reported in Tables 8 and 9. 

 
Table 7.  Characteristics of synthetic XML document sets. 

Doc 

sets 

Max 

Repeats 
Grammars 

N° of 

Docs 

Avg Depth 

(per doc) 

Avg Number of  

Nodes (per doc) 

S1 5 Academy.dtd, College.dtd, Factory.dtd 15 2.1672 10.6667 

S2 5 InstA.dtd, InstB.dtd, InstC.dtd 15 1.465 9.2 

S3 5 InstK.dtd, InstL.dtd, InstM.dtd 15 0.7433 4.1333 

S4 10 Academy.dtd, College.dtd, Factory.dtd 15 2.252 9.9333 

S5 10 InstA.dtd, InstB.dtd, InstC.dtd 15 1.5459 19 

S6 10 InstK.dtd, InstL.dtd, InstM.dtd 15 0.8361 6.5333 

 
 

 
 

 
 

Fig. 20. PR, R, and F-value graphs for clustering documents of S1. 

                                                 
1
 http://www.cogsi.princeton.edu/cgi-bin/webwn. 

2
 From http://www.xmlfiles.com and http://www.w3schools.com. 

3
 www.u-bourgogne.fr/DbConf/XS3 

 

 

 
 

 

  
 

 

 
 

 

Fig. 21. PR, R, and F-value graphs for clustering documents of S2. 

 

 
 

 
 

Fig. 22. PR, R, and F-value graphs for clustering documents of S3. 
 

 

  
 

 
 

Fig. 23. PR, R, and F-value graphs for clustering documents of S4. 

 

   
 

 
 

Fig. 24. PR, R, and F-value graphs for clustering documents of S5. 

 

 
 

 
 



 

 

Fig. 25. PR, R, and F-value graphs for clustering documents of S6. 
 

Table 8.  Average PR, R and F-values obtained by varying the 

clustering threshold between [0, 1]. 
 

 S1 S2 S3 

 PR R F-value PR R F-value PR R F-value 

Chawathe 0.9231 0.3714 0.5297 0.9048 0.5238 0.6635 0.8254 0.6508 0.7278 

DCWS 0.9231 0.3714 0.5297 0.9048 0.5238 0.6635 0.8254 0.6508 0.7278 

N & J 0.9241 0.3873 0.5458 0.9048 0.5397 0.6761 0.8254 0.6508 0.7278 

Our App. (α=1) 0.9365 0.3968 0.5574 0.9048 0.5714 0.7005 0.8254 0.7079 0.7622 

Our‎App.‎(α=0) 0.9060 0.4730 0.6215 0.9048 0.6127 0.7306 0.7937 0.7556 0.7741 

Our‎App.‎(α=0.5) 0.9206 0.4571 0.6109 0.9048 0.6032 0.7238 0.8254 0.7397 0.7802 

 

Table 9. Average PR, R and F-values obtained by varying the 

clustering threshold between [0, 1]. 
 

 S4 S5 S6 

 PR R F-value PR R F-value PR R F-value 

Chawathe 0.9524 0.2571 0.4049 0.9524 0.3048 0.4616 0.9048 0.5175 0.6584 

DCWS 0.9312 0.2921 0.4447 0.9524 0.3048 0.4618 0.9048 0.5175 0.6584 

N & J 0.9394 0.2794 0.4307 0.9524 0.3143 0.4726 0.9048 0.5175 0.6584 

Our App. (α=1) 0.8933 0.3587 0.5119 0.9524 0.3714 0.5344 0.9048 0.5937 0.7169 

Our‎App.‎(α=0) 0.8942 0.4413 0.5909 0.9365 0.4095 0.5699 0.8730 0.6571 0.7499 

Our‎App.‎(α=0.5) 0.9049 0.4079 0.5623 0.9524 0.3873 0.5507 0.9048 0.6254 0.7396 

 

Results, w.r.t. all six data sets, underline our approach‟s 

improved global clustering quality (i.e., XML comparison 

quality) in comparison with alternative approaches, when it is 

exploited as a purely structural comparison method (parameter 

α=1), and specifically when it is utilized as an integrated 

structural and semantic similarity method (α=0 and α=0.5). 
 

 When α=1, the system only considers sub-tree 

structural similarities (via Struct_CBS, cf. ‎Fig. 9) in 

the comparison process. 

 When α=0, the system only considers sub-tree 

semantic resemblances (via Sem_RBS, cf. Section ‎4.3), 

disregarding sub-tree structural similarities in the 

comparison process. 

 When α=0.5, the system equally consider sub-tree 

structural and semantic features in the comparison 

process. In other words, all kinds of sub-tree 

similarities, structural and semantic (detailed in 

Sections  4.2 and  4.3), are detected, both 

Struct_CBS and Sem_RBS algorithms being 

executed. 

 
In fact, our integrated structural and semantic similarity 

approach consistently maintains higher recall levels, in 

comparison with its structural version (α=1), N & J, DCWS as 

well as Chawathe. As for precision, our method tends to yield 

average levels that are identical to those attained using existing 

comparison methods, which is underlined in the results 

corresponding to sets S2, S3, S5, and S6. In a few cases, it 

achieved lower precision, i.e., with sets S1 and S4. 

Nonetheless, in all six tests, average F-value results, 

characterizing both precision and recall levels simultaneously, 

underline our method‟s effectiveness w.r.t. its alternatives 

(with both α=0 and α=0.5). Note that similarly to the 

structural evaluation results shown in the previous section, our 

integrated method‟s low precision levels are due to utilizing 

relatively similar grammars in generating the document sets: 

we explicitly used grammars baring semantic sub-tree 

similarities. On one hand, higher recall scores are sometimes 

obtained with α=0 (Sem_RBS being considered with a 

maximum unit weight), in comparison with the case where 

α=0.5 (where both Struct_CBS and Sem_RBS are considered 

with equal 0.5 weights, hence downscaling the impact of sub-

tree semantic relatedness, and thus missing certain sub-tree 

semantic similarities when clustering documents). On the other 

hand, since existing approaches disregard semantic 

similarities, they tend to distinguish documents that are in fact 

similar, and place them in separated clusters. Such undetected 

similarities might yield better precision levels, i.e., smaller 

clusters including portions of correctly clustered documents. 

Nonetheless, they consistently yield lower recall values (and 

consequently low F-values) since lots of documents are not in 

the appropriate clusters where they should have been.  

In the experiments above, we did not compare our 

method‟s effectiveness to TCY [73] due to the latter‟s 

asymmetric nature which is not suitable for applying our 

clustering algorithms. However, we considered TCY in our 

inter-set/intra-set evaluation experiments. 
 

6.5.2.2. Inter-set & Intra-set Average Similarities Experiments 
 

In the following, we present inter-set and intra-set average 

similarity results when comparing 5 sets of XML documents. 

Each set is made of 10 documents synthetically generated 

w.r.t. the DTD grammars shown in  Fig. 26, varying the 

MaxRepeats factor between 5 and 10.  
 
 

 

 <!DOCTYPE Academy [ 

 <!ELEMENT Academy (Unit+)> 

   <!ELEMENT Unit (Branch?)> 

       <!ELEMENT Branch (Professor?,  

                                          PhDStudent+)> 

       <!ELEMENT Professor (#PCDATA)> 

       <!ELEMENT PhDStudent (#PCDATA)> ] 

 

 <!DOCTYPE College[ 

 <!ELEMENT College (Unit+)> 

    <!ELEMENT Unit (Branch?)> 

        <!ELEMENT Branch (Lecturer?,  

                                           Scholar*)> 

            <!ELEMENT Lecturer (#PCDATA)> 

            <!ELEMENT Scholar (#PCDATA)> ] 
  

 

 <!DOCTYPE Factory [ 

 <!ELEMENT Factory (Unit+)> 

     <!ELEMENT Unit(Branch?)> 

         <!ELEMENT Branch (Supervisor?,  

                                            Worker+)> 

            <!ELEMENT Supervisor (#PCDATA)> 

            <!ELEMENT Worker (#PCDATA)>   ] 

 

 <!DOCTYPE EduInst [ 

 <!ELEMENT Institution (Academy+, College+)> 

     <!ELEMENT Academy (Professor,  

                                            PhDStudent)> 

     <!ELEMENT College (Lecturer, Scholar)> 

     <!ELEMENT Professor (#PCDATA)> 

     <!ELEMENT PhDStudent (#PCDATA)> 

     <!ELEMENT Lecturer (#PCDATA)> 

     <!ELEMENT Scholar (#PCDATA)>   ] 
 

 

<!DOCTYPE Inst [ 

<!ELEMENT Institution (Academy+, Factory+)> 

     <!ELEMENT Academy (Professor, PhDStudent)> 

     <!ELEMENT Factory (Supervisor, Worker)> 

               <!ELEMENT Professor (#PCDATA)> 

               <!ELEMENT PhDStudent (#PCDATA)> 

               <!ELEMENT Supervisor (#PCDATA)> 

               <!ELEMENT Worker (#PCDATA)>     ] 
 

Fig. 26. Sample DTD grammars inducing sets of XML document. 

 

Recall that a priori known DTD grammars (inducing 

predefined document sets) serve as a reference for assessing 

the similarity results [23]. Intra-set average similarities are 

computed between documents of the same set Si, reported as  

(i, i) values in the similarity matrix. Remaining (i, j) values 

correspond to intra-set average similarities, computed between 

documents belonging to sets Si and Sj. Results are shown in 

Tables 10 and 11. 

Note that we report our method‟s results when parameter 

α = 0 (detecting sub-tree semantic resemblances) and α = 1 

(detecting sub-tree structural similarities), and omit those 

corresponding to α=0.5 (considering both sub-tree structural 

and semantic features) since our aim here is to contrast our 

system‟s capability in detecting XML semantic resemblance 

w.r.t. structural similarity.  

First of all, results show that our method, in both sub-tree 

structural and semantic facets, produces intra-set average 



 

 

similarity values underlining a straight distinction between 

documents belonging to a given set (i.e., conforming to a given 

grammar) and others outside that set, similarly to existing 

XML comparison approaches. 
Table 10. Average inter-set/intra-set similarities (tests conducted on 

25 documents, 5 of each set, generated with MaxRepeats=5). 
 

          a. Our approach – semantic                    b. Our approach - structural  

                 resemblance (α = 0).                                 similarity (α = 1). 
 

 S1 S2 S3 S4 S5  S1 S2 S3 S4 S5 

S1 (Academy.dtd) 0.3288 0.2783 0.1495 0.0947 0.0926  0. 3222 0.1142 0.1059 0.0756 0.0756 

S2 (College.dtd) 0.2783 0.3621 0.1458 0.0904 0.0866  0.1142 0.3523 0.1012 0.0746 0.0558 

S3 (Factory.dtd) 0.1495 0.1458 0.3162 0.0826 0.0851  0.1059 0.1012 0.2988 0.0543 0.0730 

S4 (EduInst.dtd) 0.09468 0.0904 0.0826 0.3932 0.1802  0.0756 0.0746 0.0543 0.3932 0.1216 

S5 (Inst.dtd) 0.0926 0.0866 0.0851 0.1802 0.3932  0.0756 0.0558 0.0730 0.1216 0.3932 
 

                       c. TCY [73].                                             d. N & J [55]. 

 S1 S2 S3 S4 S5  S1 S2 S3 S4 S5 

S1 (Academy.dtd) 0.4568 0.4315 0.2673 0.1676 0.1602  0.2321 0.1067 0.0975 0.0587 0.0587 

S2 (College.dtd) 0.4319 0.4828 0.2709 0.1615 0.1518  0.1067 0.2901 0.0938 0.0558 0.0558 

S3 (Factory.dtd) 0.2626 0.2659 0.4011 0.1444 0.1523  0.0975 0.0938 0.2160 0.0543 0.0549 

S4 (EduInst.dtd) 0.1705 0.1723 0.1540 0.4429 0.3042  0.0587 0.0558 0.0543 0.3213 0.1177 

S5 (Inst.dtd) 0.1654 0.1617 0.1647 0.3042 0.4429  0.0587 0.0558 0.0549 0.1177 0.3213 
 

                     e. DCWS [16].                                        f. Chawathe [12]. 

 S1 S2 S3 S4 S5  S1 S2 S3 S4 S5 

S1 (Academy.dtd) 0.2169 0.1067 0.0975 0.0587 0.0587  0.2169 0.1067 0.0949 0.0587 0.0587 

S2 (College.dtd) 0.1067 0.2644 0.0938 0.0558 0.0558  0.1067 0.2644 0.0910 0.0558 0.0558 

S3 (Factory.dtd) 0.0975 0.0938 0.2069 0.0543 0.0543  0.0949 0.0910 0.1633 0.0539 0.0539 

S4 (EduInst.dtd) 0.0587 0.0558 0.0543 0.2779 0.1143  0.0587 0.0558 0.0539 0.2779 0.1143 

S5 (Inst.dtd) 0.0587 0.0558 0.0543 0.1143 0.2779  0.0587 0.0558 0.0539 0.1143 0.2779 

 
Yet, when considering the semantics of XML sub-trees 

(e.g., with parameter α=0), our approach captures the semantic 

affinities between documents of different sets: 

 Tables 10.a and 11.a show that document sets S1 and 

S2 share more semantic resemblances than sets S1 and 

S3, sets S1/S2 being structurally almost as similar as 

S1/S3 (cf. Tables 10, 11 - b, d, e, f). 

 Tables 10.a and 11.a also show that document set S1 

shares more semantic meaning with set S4 than with 

set S5, sets S1/S4 and S1/S5 being structurally identical 

when factor MaxRepeats=5 (Tables 10, 11 - b, d, e, f). 

 
Table 11. Average inter-set/intra-set similarities (tests conducted 

on 25 documents, 5 of each set, with MaxRepeats = 10). 
 

          a. Our approach – semantic                     b. Our approach - structural  

               resemblance (α = 0).                                 similarity (α = 1). 
 

 S1 S2 S3 S4 S5  S1 S2 S3 S4 S5 

S1 (Academy.dtd) 0.3991 0.2878 0.1755 0.0588 0.0628  0.3937 0.1233 0.1233 0.0416 0.0452 

S2 (College.dtd) 0.2878 0.3091 0.1695 0.0574 0.0609  0.1233 0.3027 0.1169 0.0413 0.0358 

S3 (Factory.dtd) 0.1755 0.1695 0.3089 0.0510 0.0599  0.1233 0.1169 0.3027 0.0326 0.0469 

S4 (EduInst.dtd) 0.0588 0.0574 0.0510 0.3864 0.0856  0.0416 0.0413 0.0326 0.3036 0.0587 

S5 (Inst.dtd) 0.0628 0.0609 0.0599 0.0856 0.3049  0.0452 0.0358 0.0469 0.0587 0.3049 
 

              c. TCY [73].                                              d. N & J [55]. 

 S1 S2 S3 S4 S5  S1 S2 S3 S4 S5 

S1 (Academy.dtd) 0.4373 0.3906 0.2855 0.1096 0.1073  0.2935 0.1195 0.1195 0.0333 0.0367 

S2 (College.dtd) 0.3918 0.3740 0.2848 0.1074 0.1025  0.1195 0.2045 0.1125 0.0326 0.0358 

S3 (Factory.dtd) 0.2781 0.2770 0.3529 0.0898 0.1119  0.1195 0.1125 0.2045 0.0326 0.0358 

S4 (EduInst.dtd) 0.0939 0.0934 0.0883 0.458 0.1660  0.0333 0.0326 0.0326 0.2627 0.0564 

S5 (Inst.dtd) 0.1034 0.1013 0.1006 0.1661 0.3445  0.0367 0.0358 0.0358 0.0564 0.2506 
                               

                e. DCWS [16].                                         f. Chawathe [12]. 

 S1 S2 S3 S4 S5  S1 S2 S3 S4 S5 

S1 (Academy.dtd) 0.2869 0.1195 0.1195 0.0333 0.0367  0.1799 0.1051 0.1050 0.0333 0.0367 

S2 (College.dtd) 0.1195 0.1942 0.1125 0.0326 0.0358  0.1051 0.1363 0.1005 0.0326 0.0357 

S3 (Factory.dtd) 0.1195 0.1125 0.1942 0.0326 0.0358  0.1050 0.1005 0.1362 0.0326 0.0357 

S4 (EduInst.dtd) 0.0333 0.0326 0.0326 0.2391 0.0545  0.0333 0.0326 0.0326 0.2391 0.0545 

S5 (Inst.dtd) 0.0367 0.0358 0.0358 0.0545 0.2192  0.0367 0.0357 0.0357 0.0545 0.2192 

 

Thus, as shown in the inter/intra-set similarity values, 

semantic resemblances are left undetected using existing XML 

comparison methods, i.e., N & J, DCWS and Chawathe. 

Note that TCY [73] is able to capture certain semantic 

similarities as shown in the results above. Yet, as discussed 

previously, it disregards various sub-tree semantic resemblances 

in comparing XML documents (cf. Section  3.2). In addition, it 

is asymmetric (e.g., Sim(S1, S2) ≠ Sim(S2, S1) as shown in the 

average inter-set similarity results), which is not in accordance 

with the formal definition of similarity (Section  4.6). 
 
 

6.6. Performance Evaluation 
 

6.6.1. Verifying Complexity Levels 
 

As shown in Section  4.7, our XML comparison method is of 

O(|T1|×|T2|×|SN|×Depth(SN)) time complexity. It simplifies 

to O(|T1|×|T2|) when semantic similarity evaluation is 

disregarded (Sem_RBS is disregarded). We start by verifying 

our approach‟s polynomial (quadratic) dependency on tree 

size, i.e., O(|T1|×|T2|). Timing experiments were carried out on 

a PC with an Intel Xeon 2.66 GHz processor with 2GB RAM. 

As predicted, results in  Fig. 27.a reflect an almost perfect 

linear dependency on the size of each tree being compared. 
 

 

 
 

a. Structural similarity evaluation    

(Sem_RBS deactivated). 

 b. Integrating semantic similarity 

evaluation. 
 

 

Fig. 27. Timing results. 
 

On the other hand, when evaluating both structural and 

semantic similarity (i.e, when both Struct_CBS and Sem_RBS 

algorithms are considered), the size of the reference semantic 

network, exploited while evaluating the semantic similarity 

measure (e.g., Lin‟s measure [41]) to compute pair-wise XML 

node label similarity, comes to play. 

To our knowledge, timing analysis for Lin‟s measure [41] 

was not carried out previously. Theoretically, it can be 

estimated as O(|SN|×Depth(SN)) [41] due to traversing the 

semantic network when searching for the lowest common 

ancestor between two taxonomic nodes (cf. Section  2.3.2). 

Thus, in order to reduce our method‟s overall complexity, we 

pre-compute semantic similarities for each pair of nodes in the 

taxonomy considered (which took about 20 seconds for the 

WordNet fragment depicted in  Fig. 3, and more than 5 CPU 

hours for a 600 node semantic network) and store the results in 

a dedicated indexed table (Oracle 9i DB)
1
. As a result, 

Sem_RBS would access the indexed table to acquire semantic 

values instead of traversing the taxonomy to compute semantic 

similarity each time it is needed (pair-wise similarity values 

are computed once, prior to XML document comparison). Due 

to this process, we eliminated the impact of taxonomic depth 

                                                 
1   Oracle uses the B-Tree indexing technique. 



 

 

on overall timing complexity. Timing results in  Fig. 27.b 

show that our approach becomes linearly dependent on the size 

on the taxonomy considered, complexity simplifying from 

O(|T1|×|T2|×|SN|×Depth(SN)) to O(|T1|×|T2|×|SN|). 

As for space complexity, memory usage results confirm 

that our approach is quadratic in the combined size of the trees 

being compares, O(|T1|×|T2|), which underlines a linear 

dependency on the size of each tree (memory usage graphs are 

similar in overall shape to those depicted in ‎Fig. 27, and thus 

are omitted for clearness of presentation, cf. [75] for details).  
 

6.6.2.  Comparison with Existing Approaches 
 

In addition to verifying the complexity levels of our approach, 

we assess its overall efficiency w.r.t. its most prominent 

alternatives, e.g., N & J [55], DCWS [16] and Chawathe [12]. 

Results in  Fig. 28 depict our method‟s time performance as a 

structural similarity method, disregarding semantic evaluation 

for fairness of comparison. Results demonstrate that our 

method‟s time performance is closely comparable to those of 

its alternatives, e.g., N & J [55], DCWS [16], and Chawathe 

[12] (which are also of O(|T1|×|T2|) time). Note that 

Chawathe‟s superior performance was expected since the 

algorithm was originally conceived to provide higher 

efficiency levels [12] (in order to allow efficient external-

memory computations, cf. Section ‎2.2.2), in comparison with 

our study (as well as N & J [55] and DCWS [16]), which 

targets result quality (e.g., clustering effectiveness [16, 55]) 

and higher comparison accuracy. Nonetheless, we are 

currently investigating several techniques related to XML 

similarity and performance enhancement, such as Prufer 

sequence encoding [4], B-Tree indexing [19] and Entropy 

[31], aiming to improve our method‟s performance level, 

without however affecting its effectiveness and result quality. 

 
 

 
 

Fig. 28. Time comparison with existing approaches. 

7.  Conclusion 

In this paper, we propose a fine-grained similarity approach 

for comparing rigorously structured XML documents. We 

particularly target document structure (i.e., structure-only 

XML, consisting of element/attribute tag names) and disregard 

content (i.e., element/attribute values), central in structural 

clustering/classification and structural querying applications. 

Our method combines tree edit distance computations and 

information retrieval semantic similarity assessment, so as to 

capture the structural and semantic resemblances between 

XML documents. We particularly focus on previously 

unaddressed sub-tree structural and semantic similarities, 

allowing the user to tune the comparison process according to 

her requirements and needs. Our theoretical study and 

experimental evaluation showed that our approach yields 

improved similarity results w.r.t. existing alternatives. Timing 

analysis underlined the impact of semantic similarity 

assessment, due to traversing the semantic network at hand. 

 

We showed our approach‟s applicability in a generic 

Information Retrieval context (using fragments of WordNet). 

Apparently, adding semantic assessment to the edit distance 

computation process is a good thing, provided the semantic 

network (i.e., knowledge base) considered is relevant w.r.t. the 

documents at hand (WordNet is relevant for comparing 

generic XML documents representing real world data, such as 

those utilized in our experiments, but might not be useful when 

comparing XML documents describing gene and protein 

sequences [1], or multimedia MPEG-7 documents [50]…). 

Achieving improved XML similarity results would require an 

accurate, domain specific and complete semantic network, 

which up till now, rarely exist.  Besides, the complexity of the 

semantic similarity process due to traversing the reference 

semantic network remains a major drag to performance, to be 

investigated in a dedicated future study. 

In addition to improving the performance levels of our 

method, we are also currently investigating various optimization 

techniques, mostly based on machine learning such as 

Hopfield Neural Networks [32], Sigmoid [20], and Harmony 

[49], in order to enable a (semi-automatic) fine-tuning of our 

XML comparison process, giving more/less emphasis to XML 

structural and/or semantic properties (by calibrating parameter 

α) following the nature of the XML documents being 

compared. Other future directions include exploiting semantic 

similarity to compare, not only the structure of XML 

documents (element/attribute labels), but also their contents 

(values). Here, XML Schemas, underlining element/attribute 

data-types, come to play. In addition, we plan to extend our 

method toward XML document/grammar comparison. Few 

studies have addressed the latter issue, especially from a 

semantic perspective, which remains virtually uncharted 

territory.  
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Appendix - Computation Examples 
 

In the following, we present two computation examples. The 

first shows how our approach considers structural 

commonalities in comparing XML trees. The second focuses 

on semantic resemblances between sub-trees. Similarity results 

for all XML motivation examples mentioned in Section ‎3 are 

reported and discussed subsequently. 
 

I. Structural Similarity Evaluation 

In this example, we consider the case of dummy XML 

document trees A, D and E in  Fig. A. 1 (reported from ‎Fig. 4 

of the main paper). Recall that trees D and E are considered 

identical with respect to A following current approaches, i.e., 

[12, 16, 55], despite the fact that trees A/D share more 

structural similarities than A/E (as discussed in Section ‎3.1).  
 

   
 

Fig. A. 1.  XML trees A, D and E reported from ‎Fig. 4. 

 

In order to compare trees A/D, we start by executing 

algorithm TOC which computes operations costs. Note that in 

this example, parameter α is set to 1 since we only focus on 

XML structural commonalities. In fact, node labels in trees A, 

D and E are made of simple characters and have no semantic 

meanings. Thus, it would be useless to consider Sem_RBS in 

this case, which would obviously return null results. 
 

CostUpd(R(A), R(D)) = 0, where R(A). = R(D). = „a‟ 

CostDelTree(A1) =  

Del

1All  nodes  of A 1 1

1

1
Cost ( )

 + _ (A , D )
 

x

x
Struct CBS

   

                     

 

1
3 1.7143

1+0.75
=  =    

 

Likewise, CostInsTree(D1) = CostInsTree(D2)= 4 × 1

1 + 0.75

= 2.2856 

Related Struct-CBS computations are provided in Section ‎4.2 

of the main paper. 

Thus, when applied to XML trees A and D, with α=1, our 

approach yields TED(A, D) = 3.2856 (cf. ‎Table A.1). 

 

Table A.1. Computing TED between XML trees A and D. 
 

 R(D) D1 D2 

R(A) 0 2.2856 4.5712 

A1 1.7143 1 3.2856 
 

 Dist[0][0] = CostUpd(R(A), R(D)) = 0, R(A). = R(D). = „a‟. 

 Dist[1][1] = 1, cost of transforming sub-tree A1 to D1 

(inserting node h). 

 TED(A, D) = Dist[1][2] = 2.2856 + Dist[1][1] = 3.2856, 

inserting sub-tree D2 into tree A. 

 
When applied to XML trees A and E, with α=1, our 

approach yields TED(A, E) = 5, which amounts to the costs of: 

 Inserting node h, which is of maximum  unit cost 

(=1) since h does share similarities with A, 

 Inserting sub-tree E2, which is of maximum cost (=4) 

since E2 does not share any structural similarities 

with A (cf. ‎Table A.2). 

 

Table A.2. Computing TED between XML trees A and E. 
 

 R(E) E1 E2 

R(A) 0 2.2856 6.2856 

A1 1.7143 1 5 
 

 Dist[1][1] = 1, transforming A1 into E1 (inserting node h). 

 Dist[1][2] = 4 + Dist[1][1] = 5, cost of inserting sub-tree E2 

into tree A. 

 
Therefore, our approach is able to effectively compare 

XML document trees A, D and E, underlining that document 

trees A/D are more similar than A/E (pointing out structural 

similarities that are not detected via existing approaches): 
 

 SimXDoc(A, D) = 1 – TED(A, D)

|A| + |D|

= 1 – 3.2836

13

= 0.7474 

 

 SimXDoc(A, E) = 1 – TED(A, E)

|A| + |E|

= 1 – 5

13

= 0.6154 

 

Similarly to the case of XML trees A, D and E, our 

approach detects the various kinds of XML tree structural 

similarities identified in our motivation examples in Section 

‎3.1 (results are reported in ‎Table 2 of the main paper). 
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II. Integrating Semantic Similarity Evaluation 

In this computation example, we consider the case of XML 

trees A‟, B‟ and C‟ in ‎Fig. A. 2 (reported from ‎Fig. 6 of the 

main paper). As discussed in motivation Section ‎3.2, trees B‟ 

and C‟ are structurally indistinguishable with respect to A‟ 

since they have different node labels. Yet, one can realize that 

A‟/B‟ share more semantic similarities than A‟/C‟ (similarities 

between sub-tree node labels Academy/College, Professor/ 

Lecturer, and PhD Student/Scholar, as discussed previously). 

Note that in this example, parameter α is set to 0 since we 

focus on sub-tree semantic resemblances. In fact, for the A‟, 

B‟, C‟ case, it is useless to consider Struct_CBS since the 

considered trees/sub-trees do not share structural similarities. 

In other words, Struct_CBS would yield zero values (recall 

that XML structure underlines the structural disposition and 

ordering of element/attribute tag labels. Hence, label 

disparities induce minimum structural similarity), which led us 

to maximize the weight of Sem_RBS. 
 

 
 

Fig. A. 2. XML trees A‟, B‟ and C‟ reported from ‎Fig. 6. 

 

CostUpd(R(A‟), R(B‟)) = 0, since R(A‟). = R(B‟). =„Institution‟ 

CostDelTree(A‟1)=   

  

Del

1All  nodes  of A' 1 1

 
31

× 1.5
1 _ 1+1

Cost ( ) = = 
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x Sem RBS
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Likewise, CostInsTree(B‟1) = 1.5 (since A‟1 and B‟1 are identical). 

CostInsTree(B‟2)=  

  

Del

2All  nodes  of B'
1 2

31
1.5188

1 _ A B 1+0.9753
Cost ( ) =  = 

+ ( ' , ' )
 

x Sem RBS
x   

  
Related Sem_RBS computations are provided in Section ‎4.3 of 

the main paper. 
 

Table A.3. Computing TED 

   between trees A‟ and B‟. 

Table A.4. Computing TED  

     between trees A‟ and C‟. 
 

 R(B‟) B‟1 B‟2   R(C‟) C‟1 C‟2 

R(A‟) 0 1.5 3.0188  R(A‟) 0 1.5 3.4403 

A‟1 1.5 0 1.5188  A‟1 1.5 0 1.9604 

 
Yet, when applied to trees A‟ and C‟ (α = 0), our 

approach yields Dist(A‟, C‟)=1.9167: 
 

CostUpd(R(A‟), R(C‟)) = 0, since R(A‟). = R(C‟). = „Institution‟ 
 

CostDelTree(A‟1) = CostInsTree(C‟1) = 1.5 (since sub-trees A‟1 and 

C‟1 are identical). 

CostInsTree(C‟2)=  

  

Del

2All  nodes  of C' 1 2

31
1.9604

1 _ A C 1+0.5303
Cost ( ) = =

+ ( ' , ' )
 

x Sem RBS
x      

Related Sem_RBS computations are provided in Section ‎4.3 of 

the main paper. 

Therefore, our approach is able to efficiently compare 

XML documents A‟, B‟ and C‟ underlining that documents 

A‟/B‟ are more similar than A‟/C‟ (pointing out semantic 

similarities that are disregarded via existing approaches): 
 

 SimXDoc(A‟, B‟) = 1 – TED(A', B')

|A'| + |B'|

= 1–1.5189

11

= 0.8619 

 

 SimXDoc(A‟, C‟) = 1 – TED(A', C')

|A'| + |C'|

= 1 – 1.9604

11

= 0.8218 

 

Results for all motivation examples discussed throughout 

the paper are reported in ‎Table 3 of the main manuscript. 

PhD Student Professor 

Institution 

Academy 

Scholar Lecturer 

College 

Tree‎B’ 

B‟1 B‟2 

PhD Student Professor 

Institution 

Academy 

Worker Supervisor 

Factory 

Tree C’ 

C‟1 C‟2 

PhD Student Professor 

Institution 

Academy 

A‟1 

Tree‎A’ 


