
Using XML-based Multicasting to Improve Web Service

Scalability

Joe Tekli 1*

1

Fac. of Computer Eng.,

Antonine University

Baabda – 40016, Lebanon

joe.tekli@upa.edu.lb

Ernesto Damiani 2

2

Dept. of Info. Technology,

Università degli Studi di Milano,

Crema, 65 – 26013, Italy

ernesto.damiani@unimi.it

Richard Chbeir 3

3 LE2I Laboratory CNRS

University of Bourgogne

Dijon 21078 Cedex, France

richard.chbeir@u-bourgogne.fr

ABSTRACT:

 Web services’ (WS) emphasis on open standards provides substantial benefits over previous

application integration techniques. A major WS feature is SOAP, a simple, robust and

extensible XML-based protocol for the exchange of messages. For this reason, SOAP WS on

virtual hosts are now widely used to provide shared functionalities on clouds. Unfortunately,

SOAP has two major performance-related drawbacks: i) verbosity, related to XML, that leads

to increased network traffic, and ii) high computational burden of XML parsing and

processing, that leads to high latency. In this paper, we address these two issues and present

new results regarding our framework for Differential SOAP Multicasting (DSM). The main

idea behind our framework is identifying the common pattern and differences between SOAP

messages, modeled as trees, so as to multicast similar messages together. Our method is

based on the well known concept of Tree Edit Distance, built upon a novel filter-differencing

architecture to reduce message aggregation time, identifying only those messages which are

relevant (i.e., similar enough) for similarity evaluation. In this paper we focus on recent

improvements to the filter-differencing architecture, including a dedicated differencing output

format designed to carry the minimum amount of diff information, in the multicast message,

so as to minimize the multicast message size, and therefore reduce the network traffic.

Simulation experiments highlight the relevance of our method in comparison with traditional

and dedicated multicasting techniques.

KEYWORDS:

SOAP, XML, Message Multicasting, Differential Processing, SOAP Performance, Web

Service Communications.

1 . INTRODUCTION

Web Services – WS – have been proposed as a key technology for systematic and flexible

application-to-application integration. Today, WS provide a comprehensive solution for

representing, discovering and invoking services in a wide variety of virtualized architectures.

Here we focus on XML Web services, i.e. the ones that utilize message formats based on

XML (Bray T., Paoli J. et al. 2008). This technology builds on two XML schemata: WSDL –

Web Service Description Language (Chinnici R., Moreau J.J. et al. 2007) supporting the

machine-readable description of a service‟s interface, and SOAP – Simple Object Access

Protocol (W3 Consortium 2007) dictating the messages‟ format, with bindings to existing

protocols (e.g., HTTP, FTP, SMTP, etc.) for SOAP message negotiation and transmission. As

a result, WS can rely on existing XML parsers for automatic validation of messages. Also, the

easy extensibility of XML schemata allows integration mechanisms to evolve, as markets

require new functionalities, without causing incompatibilities and fragmentation of protocols.

* Work launched during the first author‟s post-doctoral mission at the University of Milan, partly funded by Fondazione Cariplo.

Today, many SaaS – Software-as-a-Service – applications are based on SOAP Web

services. Client applications invoke WS executed in virtualized infrastructures; this way,

underlying physical servers' capacity can be dynamically assigned to services, enabling

innovative pay-as-you go revenue schemes. In a multi-tenant, virtualized setting, WS receive

message flows coming from multiple applications at the same time; this makes non-functional

requirements even more stringent. These requirements include WS performance, security and

reliability, which are closely related to XML processing. In particular, WS have inherited a

major XML drawback, verbosity, which strongly affects WS performance. SOAP message

exchanges are quite elaborate; the client program has to build the skeleton of the XML

message, put the right values in it (serialization), and then send it to the remote service. In

turn, the remote service parses the message, digs out the data it needs (de-serialization), and

then goes through the same procedure to generate an XML reply. No wonder, then,

that SOAP message processing produces considerable network traffic and causes higher

latency than competing technologies (Kohlhoff C. and Steele R. 2003; Suzumura T., Takase

T. et al. 2005). High latency becomes more critical when handling large volumes of SOAP-

based communications such as with cloud-based e-science (Gannon D., Krishnan S. et al.

2004) and e-business (Singh G., Bharathi S. et al. 2003) applications.

In the context of multi-tenant virtualized applications, however, the same WS are invoked

by a high number of clients executing different applications. Intuition suggests that this

scenario will increase the likelihood of WS receiving large numbers of similar SOAP

messages.

Hence, similarity and differential encoding have been often proposed to enhance SOAP

performance, aiming to: (i) reduce processing time – in parsing (Makino S., Tatsubori M. et

al. 2005; Takeuchi Y., Okamoto T. et al. 2005; Teraguchi M., Makino S. et al. 2006), in

serialization (Devaram K. and Andersen D. 2002; Abu-Ghazaleh N., Lewis M.J. et al. 2004),

and in de-serialization (Abu-Ghazaleh N. and Lewis M.J. 2005; Suzumura T., Takase T. et al.

2005), and to (ii) reduce network traffic – via compression (Werner C., Buschmann C. et al.

2005) and multicasting (Phan K.A., Tari Z. et al. 2008; Azzini A., Marrara S. et al. 2009;

Phan K.A., Bertok P. et al. 2009). This is based on the observation that SOAP exchanges

often involve highly similar messages since those created by the same implementation usually

have the same structure, and those sent from a server to multiple clients tend to show

similarities in structure and content (e.g., stock quote services (Phan K.A., Tari Z. et al.

2008), online booking and meteorological broadcast services (Azzini A., Marrara S. et al.

2009), etc.). In this paper, we focus on SOAP multicasting, as a technique to save network

bandwidth by delivering SOAP messages to a group of destinations simultaneously (Zhang

B., Jamin S. et al. 2002).

To our knowledge, the only approach to SOAP multicasting was described in (Phan K.A.,

Tari Z. et al. 2008), where the authors introduce SMP (Similarity-based Multicasting

Protocol), identifying, indexing and routing similar SOAP messages together (cf. Section 2).

SMP‟s main contribution consists in grouping and transmitting together similar SOAP

messages, in comparison with identical-only message aggregation of traditional network-layer

(e.g., IP) multicasting (Zhang B., Jamin S. et al. 2002). Nonetheless, careful analysis of (Phan

K.A., Tari Z. et al. 2008) led us to pinpoint certain aspects which limit both the effectiveness

and efficiency of SMP multicasting. On one hand, while SMP considers the common and

distinctive parts of SOAP messages in multicast message encoding, it does not always

generate minimum sized aggregate messages (and thus does not guarantee optimal network

traffic) since SMP disregards similarities between the SOAP messages‟ distinctive parts

(which are repeated multiple times in the aggregate message regardless of their

resemblances), as we will see in our motivating examples (Section 3.1). On the other hand,

SMP consists of a two-phase message aggregation process: (i) computing SOAP similarity,

and (ii) identifying message common/distinct parts, inducing additional processing overhead

(i.e., higher response time), which could be alleviated if both tasks could be integrated

together.

This paper builds on an improved SOAP multicasting method we designed in (Tekli J.,

Damiani E. et al. 2011a) to address the limitations of SMP (Phan K.A., Tari Z. et al. 2008).

Our framework uses Differential SOAP Multicasting (DSM), to improve multicasting

effectiveness (minimizing network traffic) and efficiency (minimizing processing overhead).

DSM is founded on the well known concept of Tree Edit Distance (Buttler D. 2004; Bille P.

2005) for comparing and differencing SOAP messages. It is built upon a filter-differencing

similarity evaluation architecture, inspired by filter-refinement approaches used in query

processing (Korn F., Sidiropoulos N. et al. 1998; Kailing K., Kriegel H.P. et al. 2004). This

allows identifying SOAP messages that are relevant (i.e., similar enough) for exact tree edit

computations, avoiding computing similarity when it is not necessary. In addition, we define

an XML-based differencing output format, SDL (Simple Diff Language), designed to carry

the minimum information (in the aggregate multicast message) necessary to regenerate

original SOAP messages (at multicast end-point), hence minimizing network traffic and

latency during multicast message transmission. In short, our method allows:

 Encoding the differences between SOAP messages to be multicast, including only their

distinctive parts, so as to minimize aggregate message size, and thus network traffic,

 Integrating both SOAP similarity computation and message aggregation in one single

tree edit distance measure, enhanced via a dedicated filter-differencing technique, so as

to reduce multicast processing overhead.

The groundwork results and overall architecture of DSM have been described in (Tekli J.,

Damiani E. et al. 2011a). This paper‟s contribution extends the latter publication with a

number of new results. Specifically we describe an innovative filter-differencing module for

DSM: the filter functions, the tree edit distance measure, as well as our differencing language

(SDL), which was omitted from (Tekli J., Damiani E. et al. 2011a).

The remainder of the paper is organized as follows: Section 2 gives some background on

SOAP performance enhancement, while Section 3 provides an overview of our approach.

Section 4 contains a detailed explanation of our solution for SOAP multicasting, and Section

 5 provides an experimental evaluation of the approach. Section 6 includes formal proofs

highlighting some of the central properties stated in Section 4. Finally, Section 7 draws the

conclusion.

2 . BACKGROUND

Various studies have addressed SOAP performance enhancement (Tekli J., Damiani E. et al.

2011b). Most build on the observation that SOAP message exchange usually involves similar

messages, and exploit SOAP similarity in order to gain in performance (e.g., execution time,

memory, and network traffic). They can be categorized according to the kind of SOAP

processing they perform:

Serialization: It consists in converting in-memory data types into SOAP (XML-based)

format. In this context, the authors in (Abu-Ghazaleh N., Lewis M.J. et al. 2004) identify the

main bottleneck as that of transforming in-memory data of numeric types into the

corresponding ASCII-based XML representation. Consequently, they, introduce a method for

differential SOAP serialization, storing SOAP messages in a dedicated buffer, to be used as

templates for future outcalls. The message is fully serialized and saved during the first

invocation of the SOAP call. Similar subsequent calls would thus avoid a significant amount

of serialization processing by requiring that only the changes to the previously sent message

be serialized. The authors exploit dedicated indexing tables to track changes between in-

memory data and their serialized representations. Another approach comparable to that in

(Abu-Ghazaleh N., Lewis M.J. et al. 2004) is introduced in (Devaram K. and Andersen D.

2002), where the authors address client-side SOAP message caching and allow entire request

messages to be cached and sent as is. Yet, the approach in (Devaram K. and Andersen D.

2002) does not address partial structural matches (i.e., caching messages with different

structures), which is performed in (Abu-Ghazaleh N., Lewis M.J. et al. 2004)

Parsing: SOAP parsing usually consists in analyzing the characters in the SOAP

message, extracting tokens (e.g., tags and text) and validating the underlying XML structure.

This can be achieved using existing XML parsers such as DOM (W3C Consortium 2005) and

SAX (Megginson D. et al. 2004). Yet, a few studies have proposed dedicated parsers,

considering the particularities of SOAP messages in order to amend performance. Early

approaches such as XSOAP (Slominski A. 2004) limit the validation scope to those elements

specific to SOAP so as to gain in validation time. More recent methods in (Makino S.,

Tatsubori M. et al. 2005; Takeuchi Y., Okamoto T. et al. 2005; Teraguchi M., Makino S. et

al. 2006) focus on differential parsing, exploiting the similarities between SOAP messages.

They make use of predefined templates modeled via dedicated automatons, memorizing the

basic structures of the SOAP messages. Therefore, each incoming SOAP message is matched

to the template, and only those parts of the message that correspond to variable parts in the

template are parsed (the invariant parts being already parsed in advance). While the approach

in (Takeuchi Y., Okamoto T. et al. 2005) makes use of a single predefined WSDL-based

template, the authors in (Makino S., Tatsubori M. et al. 2005) propose a more dynamic

method by managing multiple templates based on SOAP message structures. If the incoming

message does not match any of the templates, then parsing is undertaken via an ordinary

DOM processor (W3C Consortium 2005) and a new template corresponding to the

unmatched message is created and appended to the automaton. An extension of the latter

approach is provided in (Teraguchi M., Makino S. et al. 2006), introducing more expressive

automatons able to consider repeatable structures in SOAP messages, so as to reduce

templates memory size and processing time.

De-serialization: It can be viewed as the symmetric function of serialization, i.e.,

converting parsed XML messages to in-memory application objects. Here, the main idea to

improving de-serialization performance is to avoid fully de-serializing each incoming

message, by exploiting already constructed objects which were de-serialized in the past. In

this context, the authors in (Suzumura T., Takase T. et al. 2005) propose an automaton-based,

two-step solution. First, they generate an automaton based on incoming SOAP messages, and

conduct de-serialization in the normal way, creating a link between the defined automaton

and the application object. Then, they attempt to match each incoming message with the

existing automaton, and if matched, return the linked application object to the SOAP engine

after partially de-serializing only the regions that differ from the past messages. Another

approach is provided in (Abu-Ghazaleh N. and Lewis M.J. 2005), where the authors propose

to periodically checkpoint the state of the de-serializer, and compute checksums for portions

of incoming SOAP messages. Consequently, the de-serializer compares the sequence of

checksums against those associated to the most recently received message, to identify those

portions of the message which are different, and which require regular de-serialization. The

authors discuss that checksums can be error-prone, yet argue that the possibility of changes

going undetected by checksumming is low in comparison with the gain in performance.

In (Kostoulas M. G., Matsa M. et al. 2006), the authors introduce XML Screamer, an

optimized system providing tight integration across levels of software, combining: i)

schema‐based XML parsing (character encoding, token extraction, and validation) and ii)

de‐serialization, in one single processing layer (as opposed to handling parsing and de-

serialization separately such as with most existing methods discussed above) in order to avoid

unnecessary data processing, namely copying (to/from memory), and data‐type

transformations. Experimental results in (Kostoulas M. G., Matsa M. et al. 2006) show that

XML Screamer delivers from 2.3 to 5.3 times the throughput of traditional SOAP toolkits.

On top of processing efficiency, a major drawback of SOAP is its demand for bandwidth,

critical in various domains such as mobile computing (Phan K.A., Tari Z. et al. 2008) and

sensor networks (Werner C., Buschmann C. et al. 2005). This problem has been investigated

on two levels: (i) SOAP compression (Werner C., Buschmann C. et al. 2005) to reduce

message size prior to transmission, and (ii) SOAP multicasting (Phan K.A., Tari Z. et al.

2008; Phan K.A., Bertok P. et al. 2009) to optimize SOAP network traffic.

Compression: Various methods have been proposed for classic XML compression, e.g.,

(Liefke H. and Suciu D. 2000; Cheney J. 2001). Nonetheless, a comparative study conducted

in (Werner C., Buschmann C. et al. 2005) showed that existing XML compression methods

might not always be appropriate in the context of SOAP. That is due to the fact that SOAP

messages are of relatively smaller sizes, and might yield compression coding tables which

require more space than the original SOAP messages themselves (Werner C., Buschmann C.

et al. 2005). Following this observation, the authors in (Werner C., Buschmann C. et al. 2005)

propose a differential SOAP compression approach. They exploit the WSDL schema

definition to generate a SOAP message skeleton describing the structures of corresponding

SOAP messages. Consequently, only the differences between the SOAP message and the

predefined skeleton are transmitted, along with corresponding SOAP message

element/attribute values. The differences and element/attribute values are consequently

patched to the same skeleton at the receiver side in order to reconstruct the original message.

Note that the authors do not address the differencing part itself (e.g., differencing algorithm,

output format), but rather present the overall architecture of their method, and propose to use

any existing XML-based tree edit distance tool.

Multicasting: Another way to reduce SOAP network bandwidth is to perform

multicasting, transmitting the same information destined to multiple clients once, instead of

sending multiple replicas (Zhang B., Jamin S. et al. 2002). As outlined above, the Similarity-

based SOAP Multicasting Protocol (SMP) proposed in (Phan K.A., Tari Z. et al. 2008) groups

and transmits together similar SOAP messages, in comparison with identical-only message

aggregation with traditional (IP) multicasting (Zhang B., Jamin S. et al. 2002). An aggregate

SMP message consists of two parts: the common part section containing common values of

the messages, and distinctive part section containing the different parts of each message. The

SMP message is then encapsulated within the body of a classic SOAP message, which header

encompasses the address of the next router along the path to all intended recipients. Note that

SMP is built on top of SOAP unicast and does not rely on low level (IP) multicast, in order to

avoid handling complex network configurations. Each midway router parses the SMP header

(containing client addresses) and examines its routing table to identify the next hops for each

client address. The router then splits the SMP message accordingly and forwards the

appropriate information to the next hop. The authors exploit a heuristic similarity measure

(Ma Y. and Chbeir R. 2005) to quantify the resemblance between SOAP messages, in order to

identify the most similar candidates for aggregation and multicasting. Message aggregation

(identifying common/distinctive parts) is undertaken in a subsequent dedicated process. In a

recent study (Phan K.A., Bertok P. et al. 2009), the authors propose an enhanced similarity-

based routing protocol, transmitting messages following paths such as there are more shared

links between similar messages. This allowed optimizing SMP network traffic distribution.

SOAP multicasting has also been recently investigated in the context of SOAP security policy

evaluation (Damiani E. and Marrara S. 2008; Turkmen F. and Crispo C. 2008; Azzini A.,

Marrara S. et al. 2009), applying security rules only on distinct parts of the multicast message

so as to improve policy evaluation performance.

To sum up, automaton-based techniques to SOAP message comparison (mainly used with

parsing and de-serialization) (Makino S., Tatsubori M. et al. 2005; Takeuchi Y., Okamoto T.

et al. 2005; Teraguchi M., Makino S. et al. 2006) focus on messages which strictly

correspond to predefined templates. They do not produce a similarity value to quantify the

resemblance between SOAP messages, but rather a Boolean result identifying whether the

message is valid or not w.r.t. (with respect to) the predefined template. Other approaches

usually sacrifice some quality (i.e., comparison accuracy) to gain in performance, such as the

error-prone checksum-based measure in (Abu-Ghazaleh N. and Lewis M.J. 2005) exploited

for SOAP de-serialization), and the heuristic SMP similarity measure in (Phan K.A., Tari Z.

et al. 2008) used for SOAP multicasting. Moreover, neither method allows seamless SOAP

message aggregation. For further details, a comprehensive survey on SOAP performance

enhancement techniques is provided in (Tekli J., Damiani E. et al. 2011b).

3 . OVERVIEW OF THE APPROACH

Our framework addresses the tasks of similarity evaluation and differential encoding of

SOAP messages, to perform SOAP multicasting. As stated previously, we develop on the

SMP multicasting technique (Phan K.A., Tari Z. et al. 2008), which aggregates SOAP

messages by identifying their common and distinctive parts. SMP disregards certain

similarities, mainly between the messages‟ distinctive parts, repeated multiple times in the

aggregate message regardless of their resemblances

3.1 Motivating Example

To motivate the need for a new approach, let us consider the dummy SOAP messages

Mi, i=1…6 in Fig. 1. In this example, we abstract messages to character strings for the sake of

simplicity. Fig. 1.a shows the expected aggregation result, using SMP. One can see that

element ‘e’, which is contained in messages M3, M4, M5 and M6, is repeated four times in the

SMP message distinctive section, so as to regenerate the original SOAP messages, such as:

Mi = Common+ Di.

a. SMP (Phan K.A.; Tari Z.; and Bertok P.

2008).
b. Our approach.

Fig. 1. Motivating example to SOAP message aggregation.

We argue that such repetitions of identical or similar elements can be eliminated in order to

reduce the aggregate message size. To do so, we identify the most similar and frequent pattern

among SOAP messages (instead of identifying the intersection as in SMP), and only encode

the differences (diffs) between each message and the pattern. Hence, only the minimum

amount of information needed to regenerate the original SOAP messages is encapsulated in

the aggregate message, eliminating redundancies as shown in Fig. 1.b.

3.2 Underlying Technique

In order to attain our effectiveness (minimizing aggregate message size, and thus network

traffic) and efficiency (reducing processing overhead) goals, we exploit the well known

concept of tree edit distance (TED) (Zhang K. and Shasha D. 1989; Bille P. 2005) (also

known as tree differencing), SOAP messages being modeled as Ordered Labeled Trees (W3C

Consortium 2005). A great advantage of using tree edit distance is that along the similarity

value, a diff is generated (i.e., edit script, or delta) providing a record of the exact differences,

in terms of transformation operations, between the compared trees. This is central to achieve

full integration of SOAP similarity evaluation and message aggregation (as opposed to the

complex two-step process of SMP (Phan K.A., Tari Z. et al. 2008)). In addition, TED

M1= a b c

M2= a b d

M3= a b e

M4= a b e

M5= a b e

M6= a b e

a b

c

Aggregate

message

Diffs

D1

D2

e

e

d e

Most similar &

frequent pattern

Note that e is only a pointer to the

actual element e in the pattern.

Common Pattern

M1= a b c

M2= a b d

M3= a b e

M4= a b e

M5= a b e

M6= a b e

a b

c d e e e e

SMP message

Distinctive section

Common

section

D1 D2 D3 D4 D5 D6

Intersection

methods have been widely used to compare XML-based data (Chawathe S. 1999; Nierman A.

and Jagadish H. V. 2002; Dalamagas T., Cheng T. et al. 2006), and have been proven optimal

w.r.t. less accurate (error-prone or heuristic) methods (Buttler D. 2004). This is of paramount

importance to accurately identify the most common pattern minimizing the diffs among the

SOAP messages being aggregated, and thus reducing overall aggregate message size.

3.3 Outline of our Proposal

We introduce a framework for Differential SOAP Multicasting (DSM), consisting of two

main modules (Fig. 2): Message Multicasting (MMDSM), and Message Reconstruction

(MRDSM). Briefly, our multicasting module starts by transforming SOAP messages into their

DOM (W3C Consortium 2005) tree representations. SOAP trees are processed for similarity

evaluation and aggregation simultaneously, via an integrated tree edit distance measure, to

produce multicast DSM messages. Then, our message reconstruction module rebuilds the

original SOAP messages. Note that each DSM multicast message consists of a message

pattern and various diffs, describing the differences between the unicast SOAP messages and

the multicast message pattern. The pattern comes down to the SOAP message sharing the

maximum similarities to all others being processed in the same multicast, i.e., the message

inducing the smallest diffs. Thus, message reconstruction consists in patching the pattern of

the multicast message, with the diff corresponding to the SOAP message to be regenerated.

Fig. 2. Outline of our approach1.

DSM provides an innovative multicasting technique w.r.t. the original SMP approach

(Phan K.A., Tari Z. et al. 2008); however, our method exploits the message formatting,

indexing and routing facilities provided by SMP.

4 SOAP Message Multicasting

The main idea consists in comparing SOAP messages in a pair-wise manner, generating and

composing diffs accordingly. A DSM multicast message is generated for each group of SOAP

messages such that their similarities are above a given threshold. Here, a user-defined

similarity threshold ThreshSim and time frame TPool are exploited. When the new outgoing

SOAP message does not satisfy the threshold ThreshSim w.r.t. all messages in the buffer, it is

allocated a new buffer pool, for a period of TPool time, and constitutes the seed of a new DSM

multicast message. When the outgoing message satisfies the similarity threshold, it is

appended to the pool corresponding to the in-buffer message with which it shares maximum

similarity. When the TPool expires for each buffer pool, the latter‟s buffer space is released and

the corresponding multicast DSM message is sent over the wire. The activity diagram of our

SOAP multicasting module is depicted in ‎Fig. 3. It consists of three components: i) SOAP

1
 SOAP response message processing is similar to request processing, yet the response is generated at the server side, and

transmitted toward the client.

 DSM

 message

MMDSM (SOAP Message Multicasting)

TED

similarity

aggregation

SMP

Multicast

routing

MRDSM

(SOAP Message

Reconstruction)

Diff patching

SOAP tree

representation

A
p
p
li

ca
ti

o
n

 s
er

v
er

C
li

en
t

 c
o

m
p

o
n

en
t

Serialization

Generating SOAP

(request) message

De-serialization Parsing

Analyzing SOAP

(request) message
Security

Policy

Evaluation

Buffer management

Client side

Server side

Tree Representation, ii) SOAP Tree Similarity Evaluation and Differencing, and iii) SOAP

Buffer Management.

Fig. 3. Simplified activity diagram describing our SOAP message multicasting module, MMDSM.

4.1 SOAP Tree Representation

Definition 1 – SOAP Message Tree: It is a rooted tree S which nodes ni  S represent

SOAP message elements, ordered and labeled following the corresponding message. Element

values mark the nodes of their containing elements ●

In order to describe our tree representation, we use the same air travel booking service

example we introduced in (Tekli J., Damiani E. et al. 2011a). This constitutes a typical

scenario for SOAP multicasting since it involves a large number of similar transactions

requesting booking information, confirmation and statistics. The SOAP response message in

 Fig. 4.a shows an answer to a booking confirmation request. Here, we only show the contents

enclosed in the SOAP message body, and disregard meta-data in the header. The

corresponding SOAP tree representation is depicted in Fig. 4.b.

 <soap:Envelope xmlns:xsd= “…”>

 <soap:Header> … </soap:Header>

 <soap:body>

 <BookingConfirmationResp>

 <FlightBooking>

 <FlightInfo>

 <FlightNum>AZ211</FlightNum>.

 <SourceHub>Milano</SourceHub>

 <DestHub>Paris</DestHub>

 </FlightInfo>

 <ClientInfo>

 <Name>Paula Olivetti</Name>

 <PhoneNum>+39 3206813826</PhoneNum>

 <CCNum>4511 2326 1121 3432</CCNum>

 </ClientInfo>

 </FlightBooking>

 </BookingConfirmationResp>

 </soap:body>

 </soap:Envelope>

a. Sample SOAP message S1. b. SOAP tree representation.

Fig. 4. Sample SOAP message, and tree representation.

For tree node identifiers in the SOAP tree, we follow (Phan K.A., Tari Z. et al. 2008) in

using a depth/order Dewey (like) numbering system, which allows to pinpoint the exact

location of each node in the tree (central in subsequently encoding the diffs between SOAP

trees, as we show in the following).

4.2 SOAP Tree Filter-Differencing Approach

We propose a two step filter-differencing similarity evaluation approach (cf. ‎Fig. 3), inspired

by filter-refinement architectures in query processing (Korn F., Sidiropoulos N. et al. 1998;

Kriegel H.P. and Schönauer S. 2003; Kailing K., Kriegel H.P. et al. 2004). The main idea is

BookingConfirnationResp

FlightBooking

FlightInfo

FlightNum SourceHub DestHub

AZ211 Milano Paris

0

1

2.1

3.1 3.2 3.3

+39 3206813826

ClientInfo

Name CCNum PhoneNum

Paula

Olivetti

4511 2326

1121 3432

2.2

3.4 3.5 3.6

Filter
Outgoing

SOAP msg

Sout {S}Filter
TED Measure

S
im

T
E

D
 &

 D
iff

If SimFilter ≥ ThreshSim

Else Else

{S}Buffer

If SimTED ≥ ThreshSim

Create new DSM

buffer pool

New Sout buffer pool

Add Sout to buffer

SOAP Tree Similarity and Differencing

SOAP Buffer Management

TPool

SOAP

Tree Representation

ThreshSim

Sout

SOAP buffer
Diff Graphs

to first run a filter step, exploiting a fast approximation (SimFilter) of our main edit distance

measure (SimTED) to compare the outgoing SOAP tree (Sout) to all those kept in the SOAP

buffer. The filtering step identifies the set of SOAP trees in the buffer which are most similar

(following SimFilter) to the outgoing tree Sout. Formally:

 Filter = { S  Buffer | SimFilter(Sout, S) ≥ ThreshSim

 S’  Buffer, SimFilter(Sout, S) ≥ SimFilter(Sout, S’) }
(1) .

The differencing phase consists in conducting similarity evaluation (SimTED) and diff

generation to compare Sout with its most similar counterparts S  Filter, identified in the

filtering step.

4.2.1 Filter Similarity Measure

Three main conditions have to be satisfied for the filter step to be efficient (Kriegel H.P. and

Schönauer S. 2003; Kailing K., Kriegel H.P. et al. 2004): (i) the filter measure has to be

considerably easier to compute than the main similarity measure, (ii) a substantial part of the

SOAP buffer messages has to be filtered out, and (iii) the completeness of the filter phase,

w.r.t. the main similarity evaluation phase, has to be verified. While the first two criteria are

intuitive, completeness in this context is less straightforward. It underlines that the filter step

must not allow any false dropouts. In other words, all SOAP trees in the buffer (S 

Buffer),

which are deemed similar to Sout w.r.t. the main similarity measure SimTED, should be included

in the filter candidate set (S  Filter).

Definition 2 – Upper Bound Function: Let  be a set of objects, a similarity function

Sim’ is an upper bound of function Sim, if  p, q  , Sim‟(p, q) ≥ Sim (p, q) (Davey B. A.

and Priestley H. A. 2002) ●

Definition 3 – Filter Completeness: Given a similarity measure SimTED, and a filter

characterized by similarity measure SimFilter, the filter is said to be complete w.r.t. SimTED if

SimFilter is an upper bound of SimTED (Kailing K., Kriegel H.P. et al. 2004) ●

With our upper bound similarity measure, it is possible to safely filter out all buffer

SOAP trees that have a filter similarity SimFilter less than the minimum acceptable similarity

degree, i.e., ThreshSim (cf. Formula (1)). In other words, our filter eliminates all candidate

SOAP trees which are outside the maximum relevant similarity range, for the message

aggregation and multicasting operation at hand.

Several TED-related filter similarity functions have been proposed in the context of

structure query processing (Kriegel H.P. and Schönauer S. 2003; Kailing K., Kriegel H.P. et

al. 2004). These range over very coarse functions comparing the number of edges in both

structures being compared (Kriegel H.P. and Schönauer S. 2003), to more complex measures

exploiting special histograms to describe the structural features of the data (distribution of the

number of leaf nodes, distinct node labels, etc.) (Kailing K., Kriegel H.P. et al. 2004). Since

existing filter methods seem either too coarse (Kriegel H.P. and Schönauer S. 2003) or

somewhat complex (Kailing K., Kriegel H.P. et al. 2004), we propose three simple filter

functions to specifically capture the main characteristics of SOAP message trees: node edges

(parent-child relations) and node order to describe SOAP structure, and node values to

describe SOAP message contents. Our filters are based on the vector space model widely used

in information retrieval (McGill M. 1983), which performance has been accredited in a

variety of applications (Salton G. 1989).

Definition 4 – Node-Edge Vector Space: Given two SOAP trees Si and Sj, we define

corresponding parent-child vectors Vi
 and Vj

 in a space which dimensions represent, each, a

single edge er  (Si×Si) (Sj×Sj), such as 1 < r < E where E is the number of distinct

parent-child relations in Si and Sj. The value of a coordinate w i
 e

 in Vi

 stands for the

number of occurrences of edge er in tree Si ●

We exploit the Manhattan distance (Krause E.F. 1987) to compute the node edge filter

function Simn-edge, since it is consistent with Definitions 2 and 3, in providing a lower bound

for our main TED similarity measure (the mathematical proof is provided in Section 6).

 
i j

r rV V
1

n-edge i j

i j

(e) (e)
1

2

| | + | |

w w

1

| - |

Sim S , S - []
S S

E

r 0, 1 


(2)

We use similar formulas, based on the Manhattan distance, to compute both the node

order and node value filter functions: Simn-order and Simn-value, each w.r.t. its corresponding

vector space defined hereunder.

Definition 5 – Node-Order Vector Space: Given two SOAP trees Si and Sj, we define

the node order vectors Vi
 and Vj

 in a space whose dimensions represent, each, the Dewey

index (Phan K.A., Tari Z. et al. 2008) (cf. Section 4.1) associated to a single node

nr Si Sj, such as 1 < r < I where I is the number of distinct node index values in Si and Sj.

Vector coordinates are binary, indicating whether a node of the designated Dewey index

exists or not for a given dimension nr ●

Definition 6 – Node-Value Vector Space: Given two SOAP trees Si and Sj, we define

node value vectors Vi
 and Vj

 in a space whose dimensions represent, each, a distinct node

value associated to a node nr Si Sj, such as 1< r <Vl where Vl is the number of distinct

node values in Si and Sj. Vector coordinates designate the occurrences of each node value ●

Fig. 5. Sample SOAP sub-trees.

Consider for instance the SOAP trees in Fig. 5. The corresponding filter vector

representations are depicted in Fig. 6.

 e1 e2 e3

V1 1 1 1

V2 1 1 0

 0 1.1 1.2 1.3

V1 1 1 1 1

V2 1 1 1 0

 P. Olivetti +39 320… 4511… P. Besson +33 622…

V1 1 1 1 0 0

V2 0 0 0 1 1

 a. Node edge vectors b. Node order vectors c. Node value vectors

Fig. 6. SOAP tree filter vector representations.

A classic solution to the problem of combining different filters is to apply them

independently, and then intersect the resulting candidate sets (Kailing K., Kriegel H.P. et al.

2004). With such an approach, separate index structures for different filters have to be

maintained and for each filtering task, a time-consuming intersection step is necessary. In

addition, all filters functions would be equally weighted regardless of their relative

importance. We follow a different approach, combining the filter functions in one integrated

SimFilter measure, weighting each function based on its discriminative power over the SOAP

tree candidate set. We do so by computing the variance for each filter function over all SOAP





trees within the candidate set, and normalizing each function accordingly. This brings filter

similarities according to different features (parent-child relations, node order and node values)

in a similar range, and assigns a larger weight to features that are a good discriminator for the

specific set of candidate SOAP trees at hand. Formally:

 
 

   2

Filter i j i j2
1

1
1Sim S , S S , S [] f f

h f F
h F

Sim 0, 1




 
 

  (3)

where F={n-edge, n-order, n-value} is the set of component filters, Simf (Si, Sj) is the

similarity function between SOAP trees Si and Sj for a given filter component f F, and f
2

is the variance over all SOAP trees according to the f-th filter function within the SOAP tree

candidate set. The combined filter measure SimFilter is consistent with Definitions 2 and 3,

since each of its component filter functions is an upper bound of our main TED measure (cf.

Section 6.2 for a complete mathematical proof).

4.2.2 Tree Edit Distance Similarity Measure

In our SOAP multicasting approach, we exploit a variation of the classic tree edit distance

developed in (Chawathe S. 1999). Hereunder the basic definition of tree edit distance (Zhang

K. and Shasha D. 1989; Chawathe S. 1999):

Definition 7 – Tree Edit Distance: The edit distance between two trees A and B is

defined as the minimum cost of all edit scripts (diffs) that transform A to B,

TED(A, B)=Min{CostDiff(A, B)} ●

Definition 8 – Edit Script - Diff: It is a sequence of edit operations Diff = op1, op2, …,

opk , transforming one tree into another. The cost of an edit script is defined as the sum of

the costs of its operations: CostDiff = | |

i

Diff

Opi=1
Cost ●

The algorithm in (Chawathe S. 1999) exploits three basic edit operations: node insertion,

node deletion and node update, disregarding more complex operations such as move node,

insert sub-tree, etc., so as to increase efficiency. This algorithm has been considered as a

reference point for various XML related comparison studies (Nierman A. and Jagadish H. V.

2002; Dalamagas T., Cheng T. et al. 2006). It is among the fastest and least complex TED

algorithms available (Dalamagas T., Cheng T. et al. 2006; Tekli J., Chbeir R. et al. 2009),

also, it guarantees correct results (minimal diffs) in comparison with existing works, e.g.,

(Chawathe S., Rajaraman A. et al. 1996; Cobéna G., Abiteboul S. et al. 2002) which utilize

various heuristics to gain in performance. Nonetheless, the original approach described in

(Chawathe S. 1999) only considers tree structures (node labels, and parent/child

relationships), but not the values (since the algorithm was designed for generic hierarchical

data). Hence, we redefine the set of edit operations to consider SOAP node values in the

differencing process. First, we formalize the notion of SOAP tree node, necessary to define

edit operation syntaxes:

Definition 9 – SOAP Tree Node: Given a SOAP ordered labeled tree, a SOAP tree

node x can be represented as a triplet x = (id, l, v) where x.id underlines the node‟s identifier,

x.l its label, and x.v its value. For an internal node, x.v = Ø ●

Definition 10 – Update node: Given a node x in SOAP tree S, with label x.l and value

x.v, and given a new label l’ and value v’, Upd(x, l’, v’) is an update operation applied to x

resulting in tree S’ identical to S except that in S’, x bears l’ as label and v’ as value. When

l’= x.l or v’= x.v, it simplifies to Upd(x, , v’) or Upd(x, l’,) ●



Definition 11 – Insert node: Let S be a SOAP tree with a node p having first level sub-

trees S1, …, Sm (i.e., sub-trees rooted at the children of node p). Given a SOAP tree node x not

belonging to S, Ins(p, i, x) is a node insertion applied to S, inserting x as the ith child of p, thus

yielding S’ with first level sub-trees S1, … , Si-1, x, Si+1, … , Sm+1 ●

Definition 12 – Delete node: Let S be a SOAP tree with node p, having a leaf node x as

the ith child of p, Del(p, i, x)1 is a node deletion operation applied to S that yields S’ where

node p will have level sub-trees S1, … , Si-1, Si+1, … , Sm ●

A major question in edit distance approaches is how to choose operation cost values. In

our current approach, we define operations‟ costs in an intuitive and natural way, by assigning

identical unit costs to insertion and deletion operations (CostIns = CostDel = 1), as well as to

update operation (CostUpd=1) only when the newly assigned label and/or value are different

from the node‟s current label and value (otherwise, CostUpd = 0, underlining that no changes

are to be made to the concerned node). Note that the investigation of alternative tree

operations cost models (considering for instance the semantic relatedness between SOAP

node labels/values given a reference semantic network such as WordNet (Miller G. 1990) or

Wikipedia) is not considered in the scope of this paper and will be addressed in a dedicated

upcoming study.

Consequently, given two SOAP trees Si and Sj, we compute their similarity based on the

tree edit distance function:

i j

TED i j

i j

Sim 1
TED(S , S)

(S , S) [0,1]
| S | | S |

 


 (4) .

Consider the sample SOAP trees in ‎Fig. 5. TED(S1, S2) = 3, Diff(S1, S2) consisting of

three operations: i) updating the value of node name, ii) updating the value of PhoneNum, and

iii) deleting node CCNum. Formally:

Diff(S1, S2) = Upd ({1.1, Name, ‘Paula Olivetti’},  , ‘Pierre Besson’),

 Upd ({1.2, PhoneNum, ‘+39 32…’},  , ‘+33 62…’),

 Del ({0, ClientInfo, Ø,}, {1.3, CCNum, ‘4511…’}, 3}

a. Forward direction diff, transforming S1 into S2.



Upd ({1.1, Name, ‘Pierre Besson’},  , ‘Paula Olivetti’),

 Upd ({1.2, PhoneNum, ‘+33 22…’},  , ‘+39 32…’),

 Ins ({0, ClientInfo, ,}, {1.3, CCNum, ‘4511…’}, 3}

b. Backward direction diff, transforming S2 into S1.

Fig. 7. Sample Diff(S1, S2) example computed based on the SOAP trees in Fig. 5.

Note that the diffs generated following our differencing method logically encompass both

the forward and the backward transformation scripts: Diff(Si, Sj) = {i j, j i}, such as i j

denotes the sequence of edit operations transforming tree Si into Sj, whereas j i denotes the

sequence of edit operations transforming Sj into Si. such as j i can be seamlessly identified

based on i j and vice-versa (cf. example of forward and backward Diff representations in

 Fig. 7). This is central since, at this stage, we do not know which transformation direction will

be used in constructing the aggregate DSM message (to be identified in the subsequent buffer

management phase, described in the following section). Hence, we specifically defined our

edit operations‟ syntaxes (cf. Definitions 10-12) in a way to produce complete (bi-directional)

1 Some parameters in the delete operation, such as the parent node p, are redundantly preserved on

purpose, in order to guaranty bi-directional diffs (discussed in more detail in the following).

diffs at this stage so as to prevent redundant edit distance processing afterward. Yet, all

redundant diff code information will be discarded when transforming the diffs into their

machine-readable output format, prior to final diff encoding in the multicast message. The diff

output format, which is crucial in i) minimizing multicast message size, and ii) enabling

SOAP message reconstruction, is developed in Section 4.4.

4.3 SOAP Buffer Management

4.3.1 SOAP Diff Graph Representation

In order to effectively multicast buffered SOAP trees, we represent the latter as a graph-like

structure, named SOAP Diff Graph (SDG), connecting SOAP messages (graph nodes) via

corresponding diffs (graph edges, Fig. 8). The buffer consists of multiple SDG graphs corres-

ponding to the different buffer pools, each underlining a potential DSM multicast message.

Fig. 8. An Example of SOAP buffer management.

As described previously, TED computations for similarity evaluation and diff generation

are carried out for each new outgoing SOAP message Sout, w.r.t. its most similar counterparts

in the buffer (i.e., the SOAP tree candidates identified via the Filter component).

Consequently, the filter candidate Si maximizing the main similarity measure SimTED(Sout, Si)

is selected. If SimTED(Sout, Si) ≥ ThreshSim, then Sout would be appended to the corresponding

SDG graph, connected to Si via their common diff. Otherwise, if Sim(Sout, Si) drops below

ThreshSim, it is allocated a new buffer pool, and constitutes the first node in a new SDG graph.

When the buffer pool time frame TPool expires, the corresponding SDG is encapsulated in a

DSM multicast message and is transmitted over the network. A simple example is depicted in

 Fig. 8 to show how an outgoing SOAP message tree S5, is appended to a SOAP

buffer pool SDG.

4.3.2 DSM Multicast Message

Encapsulating the SDG graph into a DSM multicast message requires identifying the multicast

message pattern Spattern, which is the most similar and frequent pattern in all messages,

minimizing the different parts, i.e., the diffs. In other words, it consists in minimizing the

multicast message size. Formally:

 i
pattern i i i j

S SDG
j

S = S verifying | S | | (S ,S) |SDG Min Diff
 

 
  

 
 (5) .

where |Si| and |Diff(Si, Sj)| denote the cardinalities (the number of nodes) of the SOAP tree Si

and the diff linking Si and Sj.

This can be performed in linear time w.r.t. the number of SOAP trees in the SDG graph,

and is achieved by pinpointing the SDG node (i.e., SOAP tree) with the maximum number of

edges (i.e., diffs). The latter, which we identify as SDG centroid, underlines the SOAP tree

Step1: SOAP similarity evaluation.

S4 is selected as most similar

candidate to S5.

S5

S1

S2

S3

S4

Diff (S1, S2)

Diff (S2, S4)

Diff (S2, S3) S5

S1

S2

S3

S4

S5

Diff (S1, S2)

Diff (S2, S4)

Diff (S2, S3)

Diff (S4, S5)

Step2: SOAP buffer management.

Appending S5 to the SDG.

SOAP buffer pool SDG

New

outgoing

SOAP msg

tree

SOAP buffer pool SDG

requiring the least amount of transformation operations, i.e., the smallest diffs, in order to

generate all its remaining counterparts in the SDG. In other words, the SDG centroid

minimizes the differential parts in the DSM message, and thus reduces overall multicast

message size. It identifies the SOAP tree with the maximum amount of commonalities w.r.t.

its counterparts.

Consider the SDG graph in Fig. 8. Here, SOAP tree S2 is selected as SDG centroid, since it

is connected to its counterparts with the maximum number of minimal diffs (SDG edges).

Thus, the corresponding DSM message consists of tree S2 as the multicast message pattern,

and Diff(S1, S2), Diff(S2, S3), Diff(S2, S4), Diff(S4, S5) as the differential parts corresponding to

each SOAP tree. Recall that our DSM messages follow the same format as SMP messages

(Phan K.A., Tari Z. et al. 2008) w.r.t. message header, body, indexing and routing addresses.

4.3.3 DSM Multicast Message

Our routing process is comparable to that of SMP (Phan K.A., Tari Z. et al. 2008) except that

instead of aggregating and splitting common/different parts of the multicast message, the

router patches the DSM pattern, i.e., SDG centroid, with the corresponding diff so as to

regenerate the original SOAP tree. Consider the example in Fig. 8, such as each SOAP tree Si

is intended for a different client Ci. The DSM replicas to be sent to each client consist of:

 The pattern S2 and Diff(S1, S2), to regenerate SOAP tree S1, destined to client C1,

 The pattern S2, destined to client C2,

 S2 and Diff(S2, S3), to regenerate S3, destined to client C3,

 S2 and Diff(S2, S4), to regenerate S4, destined to client C4,

 S2 and Diff(S2, S4)  Diff(S4, S5), to regenerate S5, for C5.

The  symbol designates the diff composition operator (Marian A., Abiteboul S. et al.

2001), which underlines the transformation of SOAP tree S2, via two consecutive diffs, so as

to obtain S5. In plain terms, it consists in transforming S2 into S4 (using Diff(S2, S4)), and then

S4 into S5 (via Diff(S4, S5)).

4.4 SOAP Message Reconstruction

When the DSM multicast message reaches the destined end-point client/server (or end-point

router), the original SOAP message is to be reconstructed, based on the DSM common

pattern and corresponding SOAP message diff, in order to be processed by the destination

service component (Fig. 2). While tree differencing (i.e., tree edit distance) was used as an

effective means to perform SOAP aggregation, we exploit its inverse process, tree patching,

for message reconstruction.

Definition 13 – Tree Patching: It is defined as the problem and action of applying a diff

to a tree structure (pattern) T in order to create a new version of the tree T’, incorporating all

the changes encoded in the diff (Mouat A. 2002; Komvoteas K. 2003)●

In short, tree patching allows regenerating the original SOAP message tree at the receiver

end, by applying the diff corresponding to the SOAP message tree, on the common DSM

message pattern. However, a machine-readable diff output format is required in order to

automatically perform the patching operation. Consequently, patching comes down to

executing the edit operations encoded in the output diff, applied on the DSM pattern.

4.4.1 Diff Output Representation Format

Having computed the logical diff describing the changes between two SOAP message trees,

the latter is to be outputted in a useful and machine-readable format to be encoded in the

multicast DSM message, so as to allow automatic tree patching and message reconstruction at

the receiver side. In short, we aim to obtain an output diff representation which is:

i) Described in a simple XML encoding, to provide more flexibility and improve human

readability in handling the diffs, and which would clearly be more suitable in the

context of SOAP multicasting, since SOAP itself is XML-based,

ii) Compact in its description, including only the information necessary to regenerate the

SOAP messages, in order to minimize multicast message size, and thus to optimize

network traffic.

Different XML-based tree Diff representations exist (Laux A. and Martin L. 2000;

Monsell EDM ltd. 2000; Cobena G., Abiteboul S. et al. 2001; Mouat A. 2002; Komvoteas K.

2003), each developed in a specific scenario, and dedicated to a specific application. While

most representations provide flexibility in handling the diffs, they also inherit XML‟s

verbosity. Some formats such as DeltaXML (Monsell EDM ltd. 2000) and XyDiff (Cobena

G., Abiteboul S. et al. 2001) purposefully include additional redundant information so that the

diffs follow the same topological structure of their source documents. This is useful for

specific applications such as temporal querying and monitoring changes (Marian A.,

Abiteboul S. et al. 2001). Other formats, such as DUL (Mouat A. 2002) and EDUL

(Komvoteas K. 2003), include additional context information concerning the siblings and

parents of the nodes affected by each edit operation (e.g., number of siblings and their labels,

parent node siblings, etc.), in order to generate diff descriptions which would be independent

of the document trees based on which they were generated, to be patched with any arbitrary

document tree. In short, none of the existing formats seems adapted to our simple and specific

needs, mainly human readability and compactness.

4.4.2 Simple Diff Language (SDL)

Thus, we introduce a dedicated diff representation format: SDL (Simple Diff Language),

which allows encoding edit operations as follows (recall operation Definitions 10-12 in

Section 4.2.2):

The update operation, Upd(x, l’, v’):

 General case: <Upd node_id=„x.id‟ label=„l’‟> v’ </Upd>

 When l’ = x.l : <Upd node_id=„x.id‟> v’ </Upd>

 When v’ = Ø or v’ = x.v : <Upd node_id=„x.id‟ label=„l’‟ />

The insertion operation, Ins(p, i, x):

 <Ins parent_id = „p.id‟ pos= „i‟ label= „x.l‟> x.v </Ins>

 When v = Ø: <Ins parent_id = „p.id‟ pos= „i‟ label= „x.l‟ />

The deletion operation, Del(p, i, x):

 General case: <Del node_id = „x.id‟/>

One can clearly see that the old node label (x.l) and value (x.v) are not preserved in the

SDL representation of the update operation. Similarly, the parent node (p), node sibling order

(i), node label (x.l) and value (x.v) do not appear in the SDL representation of the deletion

operation, since the SDL diff representations are only required to carry the minimum

necessary information needed to apply the corresponding edit operations. In fact, at this stage,

we already know the diff transformation direction to be used in the aggregate DSM message

(following the corresponding SOAP Diff Graph, cf. Section 4.3), and thus can seamlessly

(with no additional edit distance processing) eliminate all redundant information in operation

syntaxes. Hence, w.r.t. the update operation, the old node label (x.l) and value (x.v) become

dispensable since only the new ones are actually required. Likewise for the deletion operation

where the only information required to delete a node is its structural position, known via its

identifier (x.id).

For instance, the output SDL representation corresponding to Diff(S1, S2) developed in

Section 4.2.2 (and reported hereunder), is shown in Fig. 9.

Logical diff

Diff(S1, S2) = Upd ({1.1, Name, ‘Paula Olivetti’},  , ‘Pierre Besson’),

 Upd ({1.2, PhoneNum, ‘+39 32…’},  , ‘+33 62…’),

 Del ({0, ClientInfo, Ø,}, {1.3, CCNum, ‘4511…’}, 3}

SDL diff

representation

<Diff Source= ‘S1’ Dest= ‘S2’>

 <Upd node_id= ‘1.1’> Pierre Besson </Upd>

 <Upd node_id= ‘1.2’> +33 62…</Upd>

 <Del nod_id= ‘1.3’>

</Diff>

Fig. 9. An Example of SDL encoding.

Output diffs are encoded following SDL in order to include only the minimum amount of

necessary information in the DSM multicast message, to be transmitted over the wire, and

then patched with the DSM message pattern at the end-point client/server to regenerate

corresponding original SOAP messages.

4.5 Complexity Analysis

The time complexity of our approach simplifies to O(N  |S|2) where N is the maximum

number of in-buffer SOAP messages, and |S| the cardinality of the largest SOAP message

tree. This includes both the complexities of SOAP Message Multicasting at the sender side

(MMDSM, cf. Fig. 2), and SOAP Message Reconstruction at the receiver side (MRDSM), and can

be evaluated as follows.

The complexity of SOAP Message Multicasting comes down to O(N  |S|2):

 SOAP Tree Similarity Evaluation and Differencing is of O(|S|2):

 The Filter component is of O(|S|) time, each of the filter similarity functions,

being evaluated in average linear time w.r.t. SOAP message size,

 The complexity of the tree edit distance algorithm (i.e., the main TED

similarity measure) adapted from (Chawathe S. 1999), is of O(|S|2).

 SOAP Buffer Management is of worst O(N |S|2), and comes down to the complexity

of running the SOAP Tree Similarity Evaluation and Differencing module (cf. Fig. 3)

to compare the new outgoing message, to each in-buffer message tree (recall that N is

the maximum number of SOAP message trees in the buffer),

The complexity of the SOAP Message Reconstruction operation comes down to

O(N (2 |S|)) time, since:

 The complexity of the tree patching operation is of worst O(2 |S|) time, where 2 |S|

underlines the maximum possible diff size (corresponding to the deletion and

insertion of every node in SOAP tree S),

 Tree patching is performed for each of the N diffs corresponding to the SOAP

messages encapsulated in the DSM multicast message. Note that the number of diffs

corresponding to the DSM message is at most N, i.e., when the buffer consists of one

single pool corresponding to the DSM message at hand, grouping all N in-buffer

SOAP messages.

Likewise, space complexity also simplifies to O(N  |S|2) in the worst case, considering

RAM space to store: i) the SOAP message trees being evaluated for multicasting (i.e., in-

buffer messages), which is of O(N |S|), ii) the filter vectors corresponding to each SOAP

tree, which is of worst O(N |S|), and iii) the distance matrixes and diffs computed during

similarity evaluation, requiring O(|S|2) space for each of the N in-buffer message trees, hence:

O(N  |S|2). Space complexity analysis is straight forward, and in various ways similar to

time analysis. Thus, details have been omitted for clearness of presentation.

5 EVALUATION

We conducted several new simulation experiments to test the performance of our approach,

and compare it to SMP, traditional multicast (aggregating identical messages only), and

unicast. We evaluated two main criteria: i) network traffic (multicasting effectiveness), and ii)

processing time (multicast efficiency).

5.1 Network Traffic

We adopt a single sender/receiver scenario such as the messages are multicast at the sender

end-point, and reconstructed at the receiver end-point, disregarding intermediate routers.

Hence, network traffic amounts to the sum of the sizes of all SOAP messages over the

client/server link. As for the test data, two sets of 500 SOAP messages (each) were generated

(of average 4KB per message), based on Google‟s web service SOAP request and response

WSDLs1, using an adaptation of IBM‟s XML document generator2.

We varied three main parameters and evaluated network variation accordingly: the

amount of Non-Identical Messages (NIM %) sent to the client/server, the amount of pair-wise

modifications (Modifs %) between non-identical messages (which we tuned via the IBM

generator), and the number of messages considered for multicasting (NbMsg).

5.1.1 Network Traffic when varying NIM% and Modifs %

First, we fixed the total number of SOAP messages to be multicast, NbMsg = 500, and

evaluated network traffic w.r.t. NIM % and Modifs %.

 NIM % (non-identical messages)

 Modif %, for SMP traffic levels
3

Fig. 10. Variation of network traffic w.r.t. the amount of modifications between messages.

Results in Fig. 10 show that our approach (DSM) reduces traffic proportionally to the

amount of differences (both NIM % and Modifs %) among messages. SMP reduces traffic

w.r.t. the amount of pair-wise message modifications (Modif %), regardless of the amount of

non-identical messages (NIM %), and thus produces the same „worst case‟ results that are

obtained via DSM (DSM‟s upper traffic limit) when none of the messages to be multicast are

1 http://www.w3.org/2004/06/03-google-soap-wsdl.html
2 http://www.alphaworks.ibm.com.
3
 SMP traffic levels are invariant w.r.t. NIM %, and are thus represented separately.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 10 20 30 40 50 60 70 80 90 100

To
ta

l t
ra

ff
ic

 (
 in

 M
B

)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

100 90 80 70 60
50 40 30 20 10

Unicast Traditional Multicast SMP
DSM (Modifs %=10) DSM (Modifs %= 20) DSM (Modifs %= 30)
DSM (Modifs %= 40) DSM (Modifs %= 50) DSM (Modifs %= 60)
DSM (Modifs %= 70) DSM (Modifs %= 80) DSM (Modifs %= 90)

identical (NIM %=100). That happens because SMP only considers the intersection between

messages when generating the aggregate multicast, regardless of the largest or most frequent

message pattern. Traditional multicast reduces traffic w.r.t. the amount of non-identical

messages (NIM %), but does not consider partially similar messages (Modif %) since it only

aggregates identical messages. It produces the „worst‟ results obtained using DSM, when

messages are completely different (Modif%=100). The largest traffic is constantly produced

via unicast, since the latter transmits messages regardless of their similarities (despite NIM%

and Modifs%).

5.1.2 Varying the Number of SOAP Messages to be Multicast

 Fig. 11 depicts network traffic when varying the number of SOAP messages considered for

multicasting (NbMsg), such as the number of non-identical messages (NIM %) varies linearly

w.r.t. the amount of pair-wise message modifications (Modifs%).

a. Modif % = 20.

b. Modif % = 40

c. Modif % = 60

d. Modif % = 80

Fig. 11. Comparing network traffic variation between DSM and SMP, when varying the number of

messages to be multicast, NbMsg.

Results confirm those of the previous experiment (Fig. 10): i) unicast yields the highest

network traffic levels, which remain unwavering w.r.t. the number of identical and/or similar

messages (NIM % and/or Modif %), ii) traditional multicast only considers identical messages

and thus varies w.r.t. NIM %, iii) traffic with SMP varies w.r.t. Modif%, regardless of the

amount of non-identical messages NIM %, while ii) DSM optimizes traffic w.r.t. both NIM%

and Modifs%. A compact representative depiction of network traffic variation in Fig. 12,

based on the graphs in Fig. 11, for fixed average NIM % and Modifs % values, shows that the

traffic gap between DSM, SMP, traditional multicast, and most evidently unicast, grows

noticeably with the increasing number of messages. Results show that DSM underlines an

average 20% traffic reduction in comparison with SMP.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 100 200 300 400 500

To
ta

l t
ra

ff
ic

 (
in

 M
B

)

Number of SOAP messages (NbMsg)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 100 200 300 400 500

To
ta

l t
ra

ff
ic

 (
in

 M
B

)

Number of SOAP messages (NbMsg)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 100 200 300 400 500

To
ta

l t
ra

ff
ic

 (
in

 M
B

)

Number of SOAP messages (NbMsg)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 100 200 300 400 500

To
ta

l t
ra

ff
ic

 (
in

 M
B

)

Number of SOAP messages (NbMsg)

0

0 100 200 300 400 500

SMP Unicast DSM (NIM% = 20)

DSM (NIM% = 40) DSM (NIM% = 60) DSM (NIM% = 80)

DSM (NIM% = 100)

5.2 Processing Time

Timing experiments were carried out on a PC with an Intel Xeon 2.66 GHz processor with

4GB RAM. Here, we evaluate the time complexity of DSM‟s core message aggregation and

reconstruction operations, and compare it to SMP‟s message aggregation process (Phan K.A.,

Tari Z. et al. 2008), traditional multicast (automaton-based component, e.g., (Takeuchi Y.,

Okamoto T. et al. 2005), for identifying identical/different messages), and unicast (simple

tree automaton for verifying SOAP message integrity prior to transmission).

On one hand, timing results in Fig. 13.a show that our approach is linear in the size of

each SOAP message tree, which equally underlines a polynomial (quadratic) dependency on

the combined size of both trees being compared (Fig. 13.b), confirming our complexity

analysis. On the other hand, results in Fig. 13.b also show that our method induces an average

30% reduction in processing overhead in comparison with SMP. Results similar to those in

 Fig. 13.b are obtained when fixing message size and varying the total number of SOAP

messages being processed.

Fig. 12. Network traffic, with

NIM%=20 and Modif%=10.

a. DSM time results.

b. Comparative time results

Fig. 13. Timing analysis.

In addition, we conducted several tests to evaluate processing time when exchanging

different kinds of SOAP messages handling different data-types. Synthetic SOAP messages

made of Character, Integer and Double arrays of varying sizes (ranging from 400 to 1000

SOAP elements per array) were utilized in this simulation experiment. We evaluated end-to-

end response time (SOAP latency), i.e., the time perceived by a client to obtain a reply for a

SOAP request for a web service. This includes (in addition to multicast processing):

serialization time at the sender side, as well as parsing and de-serialization time at the receiver

side (cf. overall architecture in Fig. 21). We disregard network delays and service execution

time in this evaluation (considering the scenario where the sender/receiver are run on the

same host), in order to solely depict the results corresponding to SOAP latency.

a. Unicast b. Traditional Multicast

1
 We do not consider security policy evaluation in our current tests.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Tr
af

fi
c

si
ze

 (
in

 M
B

)

Number of SOAP messages

Unicast

Trad. Mul.

SMP

DSM

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000

Ti
m

e
(i

n
 s

e
co

n
d

s)

Number of nodes in SOAP tree S1

100
200
300
400
500
600
700
800
900
1000

Nb of nodes
in tree S2

0

2

4

6

8

10

12

0 200 400 600 800 1000

Ti
m

e
(i

n
 s

e
co

n
d

s)

Nb of nodes in each SOAP tree S1 & S2

SMP

DSM

Trad. Mul.

Unicast

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

400 600 800 1000

R
Es

p
o

n
s

Ti
m

e
(i

n
 s

e
co

n
d

s)

Array Size (n# of elements)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

400 600 800 1000

R
Es

p
o

n
s

Ti
m

e
(i

n
 s

e
co

n
d

s)

Array Size (n# of elements)

c. SMP d. DSM

Fig. 14. Response time, when manipulating different data-types

 Fig. 14 shows the average time results normalized based on two traditional SOAP

toolkits, including the SOAP Microsoft (Visual Basic) toolkit (Davis D. and Parashar M.

2002) and gSOAP (Van Engelen R.A. and K. Gallivan K. 2002), coupled with each of the

DSM, SMP, traditional multicast, and unicast methods.

On one hand, results in Fig. 14 show that the time performance gap increases consistently

when exchanging numeric data of type Double, in comparison with Integer and Character-

based SOAP messages. The time gap is most significant with unicast (Fig. 14.a, where

Double arrays induce an average 118% processing overhead w.r.t. Char) and traditional

multicast (Fig. 14.b, with an average 43% overhead over Char). This is probably due to the

expensive process of converting in-memory numeric data of type Double to-and-from ASCII-

based (XML) SOAP format (as discussed in previous studies on SOAP performance, cf.

Background in Section 2, e.g., (Chiu K., Govindaraju M. et al. 2002) where the translation

between in-memory numeric data of type Double and the ASCII-based XML representation

format has been shown to consume over 90% of the end-to-end SOAP message processing

time). Note that the time performance gap decreases with SMP (Fig. 14.c, with an average

12.5% overhead between Double and Char) and DSM (Fig. 14.b, with an average 17.2%

overhead) due to the extra processing involved in both protocols in performing similarity-

based multicasting (i.e., similarity evaluation, multicast message aggregation, and SOAP

reconstruction), which tends to reduce the impact of data-type conversion.

On the other hand, results in Fig. 14 concur with the timing results in Fig. 13.b where

unicast and traditional multicast supersede SMP and DSM in time performance, whereas

DSM (our approach, Fig. 14.d) induces an average reduction of 34% processing overhead

(with all three data-types) in comparison with SMP (Fig. 14.c)

We are currently conducting experiments to fine-tune (optimize) DSM‟s performance,

varying: i) the SOAP message aggregation similarity threshold ThreshSim, ii) the number and

sizes of multicast buffer pools, and iii) the buffer pool time frame TPool. We aim to identify the

set of input parameter values most adapted for different kinds of SOAP messages (encoding

numeric data-types, type arrays of varying sizes, etc.), using different SOAP-based

benchmarks, e.g., (Head M.R., Govindaraju M. et al. 2005; Head M.R., Govindaraju M. et al.

2006), and exploring various multicast scenarios (w.r.t. the n# of clients, routing algorithm,

and network topology, such as in (Phan K., Bertok P. et al. 2009)).

6 PROOFS & PROPERTIES OF THE PROPOSED

SIMILARITY AND FILTER FUNCTIONS

6.1 Component Filter Functions

2

4

6

8

10

12

400 600 800 1000

R
Es

p
o

n
s

Ti
m

e
(i

n
 s

e
co

n
d

s)

Array Size (n# of elements)

1

2

3

4

5

6

7

8

9

400 600 800 1000R
es

p
o

n
se

 T
im

e
(i

n
 s

e
co

n
d

s)

Array Size (n# of elements)

020 Char Int Double

6.1.1 Node-Edge Filter Function

Lemma 1. Given two SOAP trees Si and Sj, and corresponding node-edge (parent-child)

relations vectors
iV and

jV (cf. Definition 4), the node-edge filter function Simn-edge(Si, Sj) is

an upper bound of our tree edit distance similarity measure (cf. Section 4.2.2),

Simn-edge (Si, Sj) ≥ SimTED(Si, Sj), having:

 
i j

r rV V
1

n-edge i j

i j

(e) (e)
1

2

| | + | |

w w

1

| - |

Sim S , S -
S S

E

r


cf. formula (2)

i j
i j r rV V

1

(e) (e)with w w (,) | - |
E

r

Manh V V




i j

TED i j

i j

(S S)
and 1

S S

,
 Sim (S , S)

| | | |

TED




cf. formula (4)

In other words, the Manhattan distance (,)i jManh V V

divided by 2, underlines a lower bound

of the edit distance:

(,)

2

i jManh V V
 ≤ TED(Si, Sj)

(6)

Proof. Consider an edit script Diff= op1, op2, …, opk transforming Si to Sj following

our tree edit distance measure (cf. Section 4.2.2). We proceed by induction over the length k

=|Diff|. If k=0, i.e., Diff=, then (,)i jManh V V = TED(Si, Sj) = 0 (Simn-edge = SimTED=1). When

extending Diff by a new edit operation opn, the edit distance TED is increased by

Cost(opn)=1, i.e., the cost of the edit operation. Yet, the Manhattan distance varies as follows.

The edit operation in our approach may be a leaf node insertion, leaf node deletion or a node

update:

- The insertion operation increases the occurrence frequency of the parent-child edge

being inserted (i.e., the corresponding edge vector weight), by a value of 1. As a result,

(,)i jManh V V

increases by a value of 1.

- The deletion operation decreases the occurrence frequency of the parent-child edge

being depleted by a value of 1. This increases (,)i jManh V V

by 1.

- The update operation affects the occurrence frequency of two parent-child edges:

decreasing by 1 the weight of the edge corresponding to the old node, and increasing

by 1 the weight of the edge corresponding to the new node. In other words,

(,)i jManh V V

increases by a value of 2.

Based on the three points above, it follows that the Manhattan distance (,)i jManh V V

changes by at most 2 for each edit operation affecting a SOAP message trees, whereas TED

changes exactly by a value of 1. Therefore, the inequality of formula (6) holds, and thus

Lemma 1 is proved 

6.1.2 Node-Order Filter Function

Lemma 2. Given two SOAP trees Si and Sj, and corresponding node-order vectors
iV and

jV (cf. Definition 5), the node order filter function Simn-order(Si, Sj) is an upper bound of our

tree edit distance similarity measure, Simn-order (Si, Sj) ≥ SimTED(Si, Sj), having:

 
i j

r rV V
1

n-order i j

i j

(e) (e)

| | + | |

w w

1

| - |

Sim S , S -
S S

E

r


(7)

i j
i j r rV V

1

(e) (e)w wwith (,) | - |
E

r

Manh V V




i j

TED i j

i j

(S S)
and 1

S S

,
 Sim (S , S)

| | | |

TED




 cf. formula (4)

In other words, the Manhattan distance (,)i jManh V V

is a lower bound of the edit distance:

 (,)i jManh V V ≤ TED(Si, Sj)
(8)

Proof. Consider an edit script Diff= op1, op2, …, opk transforming Si to Sj following

our tree edit distance measure. We proceed by induction over the length k =|Diff|. If k=0, i.e.,

Diff=, then (,)i jManh V V = TED(Si, Sj) = 0 (Simn-order = SimTED=0). When extending Diff by a

new edit operation opn, the edit distance TED is increased by Cost(opn)=1, i.e., the cost of the

edit operation. Yet, the Manhattan distance varies as follows. The edit operation following

our approach may be a leaf node insertion, leaf node deletion or a node update:

- The insertion operation increases the occurrence frequency of the node order score

being inserted (i.e., the corresponding node order vector weight), by a value of 1. As a

result, (,)i jManh V V

increases by a value of 1.

- The deletion operation decreases the occurrence frequency of the node order score

being depleted by a value of 1. This increases (,)i jManh V V by 1.

- The update operation does not affect node order occurrence frequency, the latter

remaining the same before and after the operation takes place. In other words,

(,)i jManh V V

does not change.

Based on the three points above, it follows that the Mahattan distance (,)i jManh V V

 changes by at most 1 for each edit operation affecting a SOAP message trees, whereas TED

changes exactly by a value of 1. Therefore, the inequality of formula (8) holds, and thus

Lemma 2 is proved 

6.1.3 Node-Value Filter Function

Lemma 3. Given two SOAP trees Si and Sj, and corresponding node-value vectors
iV and

jV (cf. Definition 6), the node value filter function Simn-value(Si, Sj) is an upper bound of our

tree edit distance similarity measure, Simn-value (Si, Sj) ≥ SimTED(Si, Sj), having:

 
i j

r rV V
1

n-value i j

i j

(e) (e)
1

2

| | + | |

w w

1

| - |

Sim S , S -
S S

E

r


cf. formula (2)

i j
r rV V

1

(e) (e)w wwith (,) | - |
E

i j

r

Manh V V




i j

TED i j

i j

(S S)
and 1

S S

,
 Sim (S , S)

| | | |

TED




cf. formula (4)

In other words, the Manhattan distance Manh(Vi
 , Vj

) is a lower bound of the edit distance:

(,)

2

i jManh V V
 ≤ TED(S1, S2)

cf. formula (6)

Proof. Consider an edit script Diff= op1, op2, …, opk transforming Si to Sj following

our tree edit distance measure. We proceed by induction over the length k =|Diff|. If k=0, i.e.,

Diff=, then (,)i jManh V V = TED(Si, Sj) = 0 (Simn-value = SimTED=0). When extending Diff by a

new edit operation opn, the edit distance TED is increased by Cost(opn)=1, i.e., the cost of the

edit operation. Yet, the Manhattan distance varies as follows. The edit operation following

our approach may be a leaf node insertion, leaf node deletion or a node update:

- The insertion operation increases the occurrence frequency of the node value being

inserted (i.e., the corresponding node value vector weight), by a score of 1. As a result,

(,)i jManh V V increases by 1.

- The deletion operation causes a decrease in the occurrence frequency of the node value

vector weight corresponding to the node value being deleted, by a score of 1. This

increases (,)i jManh V V by 1.

- The update operation affects the occurrence frequency of two node value weights:

decreasing by 1 the weight of the node value corresponding to the old node, and

increasing by 1 the weight of the node value corresponding to the new node. In other

words, (,)i jManh V V

increases by a score of 2.

Based on the three points above, it follows that the Manhattan distance (,)i jManh V V

changes by at most 2 for each edit operation affecting a SOAP message trees, whereas TED

changes exactly by a value of 1. Therefore, the inequality of formula (6) holds, and thus

Lemma 3 is proved 

6.2 Combined Filter Function

Recall the combined filter similarity function in formula (3):

 
 

   2

Filter 1 2 1 22
1

1
1Sim S , S S , S [] f f

h f F
h F

Sim 0, 1




 
 

 

Lemma 4. Given two SOAP trees Si and Sj, the combined filter function SimFilter in

formula (3) is an upper bound of our tree edit distance similarity measure, SimFilter(Si, Sj ≥

SimTED(Si, Sj).

Proof. The combined filter similarity comes down to the weighted sum of its component

filter measures:

   i j i jS , S S , S [] Filter f f

f F

Sim w Sim 0, 1



 

(9)

where F={n-edge, n-order, n-value} is the set of component filters, and:

 
 

2

2
1

1
1 0 such as and

f

f f f

h f F

h F

w w w




 


  



(10)

where f
2 is the variance over all SOAP trees according to the f-th filter function within the

SOAP tree candidate set.

Consequently, for all SOAP trees Si and Sj in the candidate set:

For each f F, Simf (Si, Sj) ≥ SimTED(Si, Sj) 

i j i j (S , S) (S , S)f f TED

f F

w Sim Sim







 SimFilter(Si, Sj) ≥ SimTED(Si, Sj)

Hence, Lemma 4 is proved 

7 CONCLUSION

In this paper, we describe a new framework for Differential SOAP Multicasting (DSM). It

consists in identifying the common pattern and differences between SOAP messages, and

multicasting those messages that are most similar. The groundwork and overall architecture of

DSM have been described in (Tekli J., Damiani E. et al. 2011a). This paper‟s contribution

extends the latter publication, developing DSM‟s filter-differencing module: the filter

functions and the tree edit distance measure. Also, we describe our machine-readable

differencing language SDL (Simple Diff Language), which was omitted from (Tekli J.,

Damiani E. et al. 2011a), and present additional simulation experiments. Results show that

our approach outperforms its alternative, SMP (Phan K.A.; Tari Z.; and Bertok P. 2008), and

minimizes network traffic in comparison with traditional multicast and unicast. Our technique

readily lends itself to seamless integration with well-known optimizations of underlying

protocols, e.g. by sending SOAP multicasts over persistent HTTP connections on high-

latency networks (Kangasharju J.; Tarkoma S. and Raatikainen K. 2003).

In our future work, we also plan to make use of tight software integration architectures,

such as in (Kostoulas M. G., Matsa M. et al. 2006; Zhang W. and Van Engelen R. A. 2006),

so as to avoid repeated/unnecessary data processing (in serialization and multicasting, and in

parsing and de-serialization, minimizing interference between the different techniques

involved in SOAP message exchange), copying to/from memory buffers, and expensive data-

type transformations (ASCII/UTF to in-memory types, and vice-versa). This would prove

essential in improving overall multicast time response, namely when handling bulky scientific

data such as arrays of integers and doubles. We also plan to investigate multicasting of secure

SOAP messages, to improve performance in the evaluation of WS security policies

(Turkmen F. and Crispo C. 2008), which remains a virtually unexplored topic to this date.

REFERENCES

Abu-Ghazaleh N. and Lewis M.J. (2005). Differential Deserialization for Optimized SOAP Performance.

Proceedings of the ACM/IEEE Conference on Supercomputing pp. 21-31, Seattle.

Abu-Ghazaleh N., Lewis M.J., et al. (2004). Differential Serialization for Optimized SOAP Performance.

Proceedings of the 13th International Symposium on High Performance Distributed Computing (HPDC'04)

pp. 55-64.

Azzini A., Marrara S., et al. (2009). Extending the Similarity-Based XML Multicast Approach with Digital

Signatures. Proc. of the 2009 ACM Workshop on Secure Web Services (SWS'09) pp. 45-52, Chicago.

Bille P. (2005). A Survey on Tree Edit Distance and Related Problems. Theoretical Computer Science 337(1-

3):217-239.

Bray T., Paoli J., et al. (2008). Extensible Markup Language (XML) 1.0 - 5th Edition. W3C recommendation, 26

Novembre 2008. Retrieved November 2010, from http://www.w3.org/TR/REC-xml/.

Buttler D. (2004). A Short Survey of Document Structure Similarity Algorithms. Proceedings of the International

Conference on Internet Computing (ICOMP) pp. 3-9.

Chawathe S. (1999). Comparing Hierarchical Data in External Memory. Proceedings of the International

Conference on Very Large Data Bases (VLDB) pp. 90-101.

Chawathe S., Rajaraman A., et al. (1996). Change Detection in Hierarchically Structured Information. Proc. of the

ACM International Conference on Management of Data (SIGMOD) pp. 26-37. Montreal.

Cheney J. (2001). Compressing XML with Multiplexed Hierarchical PPM Models. In Proceedings of the Data

Compression Conference pp. 163-173.

http://www.w3.org/TR/REC-xml/

Chinnici R., Moreau J.J., et al. (2007). Web Services Description Language (WSDL) Version 2.0 Part 1: Core

Language, W3C Recommendation 26 June 2007. Retrieved 25 August 2010, from

http://www.w3.org/TR/wsdl20/.

Chiu K., Govindaraju M., et al. (2002). Investigating the Limits of SOAP Performance for Scientific Computing.

Proceedings of ACM International Symposium on High Performance Distributed Computing (HPDC) pp.

246-254, Edinburgh, Scotland.

Cobena G., Abiteboul S., et al. (2001). Xydiff, tools for detecting changes in XML documents.

http://wwwrocq.inria.fr/˜cobena/XyDiffWeb/.

Cobéna G., Abiteboul S., et al. (2002). Detecting Changes in XML Documents. Proceedings of the IEEE

International Conference on Data Engineering (ICDE) pp. 41-52.

Dalamagas T., Cheng T., et al. (2006). A Methodology for Clustering XML Documents by Structure. Information

Systems 31(3):187-228.

Damiani E. and Marrara S. (2008). Efficient SOAP Message Exchange and Evaluation Through XML Similarity.

Proceedings of the 2008 ACM workshop on Secure Web Services (SWS'08) pp.29-36.

Davey B. A. and Priestley H. A. (2002). Introduction to Lattices and Order (2nd Edition). Cambridge University

Press, pp. 310.

Davis D. and Parashar M. (2002). Latency Performance of SOAP Implementations. Proceedings of the 2nd

IEEE/ACM International Symposium on Cluster Computing and the Grid pp. 407-412.

Devaram K. and Andersen D. (2002). SOAP Optimization via Parameterized Client-Side Caching Proc. of the

IEEE/ACM 2nd International Symposium on Cluster Computing and the Grid (CCGRID'02) pp.439-312.

Gannon D., Krishnan S., et al. (2004). On Building Parallel and Grid Applications: Component Technology and

Distributed Services. In Proc. of the Second International Workshop on Challenges of Large Applications

in Distributed Environments (CLADE ‟04) IEEE Computer Society, p. 44, Washington DC, USA.

Head M.R., Govindaraju M., et al. (2005). A Benchmark Suite for SOAP-based Communication in Grid Web

Services. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC'05) pp. 19.

Head M.R., Govindaraju M., et al. (2006). Benchmarking XML Processors for Applications in Grid Web Services.

In Proceedings of the ACM/IEEE Conference on Supercomputing (SC'06) pp. 30, Seatle, WA.

Kailing K., Kriegel H.P., et al. (2004). Efficient Similarity Search for Hierarchical Data in Large Databases.

Proceedings of the International Conference on Extending Database Technology pp. 676-693.

Kangasharju J.; Tarkoma S. and Raatikainen K. (2003). Comparing SOAP Performance for Various Encodings,

Protocols, and Connections. Proceedings of the IFIP 8th International Conference, PWC'03, LNCS

2775/03 pp. 397-406.

Kohlhoff C. and Steele R. (2003). Evaluating SOAP for High Performance Business Applications: Real-Time

Trading Systems. Proceedings of the World Wide Web (WWW) Conference Budapest, Hungary.

Komvoteas K. (2003). XML Diff and Patch Tool. MS in Distributed Multimedia and Information Systems

Dissertation, Edinburgh, Scotland: Heriot-Watt University.

Korn F., Sidiropoulos N., et al. (1998). Fast and Effective Retrieval of Medical Tumor Shapes. I. IEEE TKDE 10,

pp. 889–904.

Kostoulas M. G., Matsa M., et al. (2006). XML Screamer: An Integrated Approach to High Performance XML

Parsing, Validation and Deserialization. In Proceedings of the 15th International Conference on World

Wide Web (WWW ‟06) pp. 93–102.

Krause E.F. (1987). Taxicab Geometry - An Adventure in Non-Euclidean Geometry. Dover Publications - NY,

pp. 88.

Kriegel H.P. and Schönauer S. (2003). Similarity Search in Structured Data. Proceedings of the 5th International

Conference on Data Warehousing and Knowledge Discovery (DaWaK) pp. 309-319.

Laux A. and Martin L. (2000). XUpdate Working Draft. XML:DB Initialtive.

Liefke H. and Suciu D. (2000). XMill: An Efficient Compressor for XML Data. University of Pennsylvania

Technical Report MSCIS-99-26.

Ma Y. and Chbeir R. (2005). Content and Structure Based Approach for XML Similarity. Proceedings of the IEEE

International Conference on Computer and Information Technology (CIT) pp. 136-140.

http://www.w3.org/TR/wsdl20/
http://wwwrocq.inria.fr/˜cobena/XyDiffWeb/

Makino S., Tatsubori M., et al. (2005). Improving WS-Security Performance with a Template-Based Approach.

Proceedings of the IEEE INternational Conference on Web Services (ICWS'05) pp. 581-588.

Marian A., Abiteboul S., et al. (2001). Change-Centric Management of Versions in an XML Warehouse.

Proceedings of the International Conference on Very Large Data Bases (VLDB) pp. 581-590.

McGill M. (1983). Introduction to Modern Information Retrieval. McGraw-Hill, New York.

Megginson D. et al. (2004). The Simple API for XML - SAX 2.0.2. Retrieved February 2011, from

http://www.megginson.com/SAX/.

Miller G. (1990). WordNet: An On-Line Lexical Database. International Journal of Lexicography 3(4).

Monsell EDM ltd. (2000). DeltaXML. http://deltaxml.com Retrieved December 2009.

Mouat A. (2002). XML Diff and Patch Utilities. CS4 Dissertation. Edinburgh Scotland: Heriot-Watt University.

Nierman A. and Jagadish H. V. (2002). Evaluating structural similarity in XML documents. Proceedings of the

ACM SIGMOD International Workshop on the Web and Databases (WebDB) pp. 61-66.

Phan K.A., Bertok P., et al. (2009). Minimal Traffic-Constrained Similarity-Based SOAP Multicast Routing

Protocol. OTM Confederated International Conferences LNCS 4803, pp. 558-576.

Phan K.A., Tari Z., et al. (2008). Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in

Web Services. IEEE Transactions on Services Computing Vol 1, No 2, pp. 88-103.

Phan K.A.; Tari Z.; and Bertok P. (2008). Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and

Latency in Web Services. IEEE Transactions on Services Computing Vol 1, No 2, pp. 88-103.

Salton G. (1989). Automatic text processing: the transformation, analysis, and retrieval of information by

computer. Addison-Wesley Longman, Boston, MA, USA pp. 530.

Singh G., Bharathi S., et al. (2003). A Metadata Catalog Service for Data Intensive Applications. In Proc. of the

ACM/IEEE Conference on Supercomputing. IEEE Computer Society, 2003, p. 33, Washington DC, USA.

Slominski A. (2004). XSOAP. Retrieved February 2010, from http://www.extreme.indiana.edu/xgws/xsoap/.

Suzumura T., Takase T., et al. (2005). Optimizing Web Services Performance by Differential Deserialization

Proceedings of the IEEE International Conference on Web Services (ICWS'05) Vol. 1, pp.185- 192.

Takeuchi Y., Okamoto T., et al. (2005). A Differential-Analysis Approach for Improving SOAP Processing

Performance. Proceedings of the IEEE International Conference on e-Technology, e-Commerce and e-

Service (EEE'05) pp. 472-479.

Tekli J., Chbeir R., et al. (2009). An Overview of XML Similarity: Background, Current Trends and Future

Directions. Elsevier Computer Science Review 3(3):151-173.

Tekli J., Damiani E., et al. (2011a). Differential SOAP Multicasting. Proceedings of the 9th IEEE International

Conference on Web Services (ICWS'11) Washington DC, USA.

Tekli J., Damiani E., et al. (2011b). SOAP Processing Performance and Enhancement. To appear in IEEE

Transactions on Service Computing (IEEE TSC).

Teraguchi M., Makino S., et al. (2006). Optimized Web Services Security Performance with Differential Parsing.

Proceedings of the 4th International Conference on Service-Oriented Computing (ICSOC'06) pp. 277-288.

Turkmen F. and Crispo C. (2008). Performance evaluation of XACML PDP implementations. Proceedings of the

ACM workshop on Secure Web Services (SWS), Alexandria, Virginia, USA. pp. 37-44.

Van Engelen R.A. and K. Gallivan K. (2002). The gSOAP Toolkit for Web Services and Peer-To-Peer Computing

Networks. In Proceedings of the 2nd IEEE International Symposium on Cluster Computing and the Grid

(CCGrid2002) pp. 128-135, Berlin, Germany.

W3 Consortium. (2007). SOAP Version 1.2. W3C Recommendation (Second Edition) Retrieved February 2010,

from http://www.w3.org/TR/soap/.

W3C Consortium. (2005). The Document Object Model. Retrieved 28 May 2009, from http://www.w3.org/DOM.

Werner C., Buschmann C., et al. (2005). WSDL-Driven SOAP Compression. International Journal of Web Services

Research Vol. 2, Issue 1, pp. 18-35.

Zhang B., Jamin S., et al. (2002). Host Multicast: A Framework for Delivering Multicast to End Users.

Proceedings of the IEEE Conference on Computer Communications (INFOCOM'02) pp. 1366-1375.

http://www.megginson.com/SAX/
http://deltaxml.com/
http://www.extreme.indiana.edu/xgws/xsoap/
http://www.w3.org/TR/soap/
http://www.w3.org/DOM

Zhang K. and Shasha D. (1989). Simple Fast Algorithms for the Editing Distance between Trees and Related

Problems. SIAM Journal of Computing 18(6):1245-1262.

Zhang W. and Van Engelen R. A. (2006). A Table-Driven Streaming XML Parsing Methodology for High-

Performance Web Services. In Proceedings of the IEEE International Conference on Web Services

(ICWS‟06) pp. 197–204.

 ABOUT THE AUTHORS

Joe Tekli is an assistant professor at the Faculty of Engineering - Antonine University

(UPA), Lebanon (since Sept. 2011). He has completed three post-doctoral missions: in the

Institute of Computer Science and Statistics - University of Sao Paulo (USP), Brazil

(Sept. 2010 – Aug. 2011), in the Department of Computer Science - University of

Shizuoka, Japan (spring 2010), and in the Department of Science and Technology -

University of Milan (UniMi), Italy (Fall 2009). He holds a holds a PhD in CS from the

University of Bourgogne, LE2I UMR-CNRS, France, awarded (in Oct. 2009) with Highest Honors. He also

holds a Research Masters in CS from the University of Bourgogne (July 2006), and a Masters of

Engineering in Telecommunications from the Antonine University, Lebanon (July 2005), both acquired

with Honors (ranked top of his class in both programs). He has been awarded various prestigious

postdoctoral fellowships, of the FAPESP (Brazil), JSPS (Japan), and Fondazione Cariplo (Italy). He was

also awarded a PhD Fellowship of the Ministry of Education (France), and a Masters Scholarship of the

AUF (France-Lebanon). His research activities cover XML processing, web services, data semantics and

taxonomies, data clustering and classification, RSS integration, and multimedia fragmentation. He is a

member of IEEE and ACM SIGAPP French Chapter. He is an organizing member of various international

conferences such as ICDIM, SITIS, MEDES and ACM SAC‟06. His research results have been published

in various international journals and conferences (e.g., IEEE TSC, Computer Science Review, WWW

Journal, IEEE ICWS, ER, SBBD, WISE, ADBIS, COMAD, etc.)

Ernesto Damiani is a professor at Università degli Studi di Milano and the director of the

same University PhD program in computer science. He has held visiting positions at a

number of international institutions. He has done extensive research on advanced network

infrastructure and protocols, taking part in the design and deployment of secure high-

performance networking environments. His areas of interest include business process

representation, Web services security, processing of semi and unstructured information, and

semantics-aware content engineering for multimedia. He is interested in models and

platforms supporting open source development. He has served and is serving in all capacities on many

congress, conference, and workshop committees. He is a senior member of the IEEE. In 2008 he was

nominated ACM distinguished scientist and he received the Chester Hall Award from the IEEE Societty on

Consumer Electronics. Web page www.dti.unimi.it/~damiani.

Dr. Richard Chbeir received his PhD in Computer Science from the University of INSA-

FRANCE in 2001. The author became a member of IEEE since 1999. He is currently an

Associate Professor in the Computer Science Department of the Bourgogne University,

Dijon-France. His research interests are in the areas of distributed multimedia database

management, XML similarity and rewriting, spatio-temporal applications, indexing

methods, multimedia access control models, security and watermarking. Dr. CHBEIR has

published (more than 80 peer-reviewed publications) in international journals and books (IEEE

Transactions on SMC, Information Systems, Journal on Data Semantics, Journal of Systems Architecture,

etc.), conferences (ER, WISE, SOFSEM, EDBT, ACM SAC, Visual, IEEE CIT, FLAIRS, PDCS, etc.), and

has served on the program committees of several international conferences (ICDIM, IEEE SITIS, ACM

SAC, IEEE ISSPIT, EuroPar, SBBD, etc.). He has been organizing many international conferences and

workshops (ICDIM, CSTST, SITIS, etc.). He is currently the Chair of the French Chapter ACM SIGAPP

and the vice-chair of ACM SIGAPP.

