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ABSTRACT: 

 Web services’ (WS) emphasis on open standards provides substantial benefits over previous 

application integration techniques. A major WS feature is SOAP, a simple, robust and 

extensible XML-based protocol for the exchange of messages. For this reason, SOAP WS on 

virtual hosts are now widely used to provide shared functionalities on clouds. Unfortunately, 

SOAP has two major performance-related drawbacks: i) verbosity, related to XML, that leads 

to increased network traffic, and ii) high computational burden of XML parsing and 

processing, that leads to high latency. In this paper, we address these two issues and present 

new results regarding our framework for Differential SOAP Multicasting (DSM). The main 

idea behind our framework is identifying the common pattern and differences between SOAP 

messages, modeled as trees, so as to multicast similar messages together. Our method is 

based on the well known concept of Tree Edit Distance, built upon a novel filter-differencing 

architecture to reduce message aggregation time, identifying only those messages which are 

relevant (i.e., similar enough) for similarity evaluation. In this paper we focus on recent 

improvements to the filter-differencing architecture, including a dedicated differencing output 

format designed to carry the minimum amount of diff information, in the multicast message, 

so as to minimize the multicast message size, and therefore reduce the network traffic. 

Simulation experiments highlight the relevance of our method in comparison with traditional 

and dedicated multicasting techniques. 
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1 .  INTRODUCTION 

Web Services – WS – have been proposed as a key technology for systematic and flexible 

application-to-application integration. Today, WS provide a comprehensive solution for 

representing, discovering and invoking services in a wide variety of virtualized architectures. 

Here we focus on XML Web services, i.e. the ones that utilize message formats based on 

XML (Bray T., Paoli J. et al. 2008). This technology builds on two XML schemata: WSDL – 

Web Service Description Language (Chinnici R., Moreau J.J. et al. 2007) supporting the 

machine-readable description of a service‟s interface, and SOAP – Simple Object Access 

Protocol (W3 Consortium 2007) dictating the messages‟ format, with bindings to existing 

protocols (e.g., HTTP, FTP, SMTP, etc.) for SOAP message negotiation and transmission. As 

a result, WS can rely on existing XML parsers for automatic validation of messages. Also, the 

easy extensibility of XML schemata allows integration mechanisms to evolve, as markets 

require new functionalities, without causing incompatibilities and fragmentation of protocols. 
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Today, many SaaS – Software-as-a-Service – applications are based on SOAP Web 

services. Client applications invoke WS executed in virtualized infrastructures; this way, 

underlying physical servers' capacity can be dynamically assigned to services, enabling 

innovative pay-as-you go revenue schemes. In a multi-tenant, virtualized setting, WS receive 

message flows coming from multiple applications at the same time; this makes non-functional 

requirements even more stringent. These requirements include WS performance, security and 

reliability, which are closely related to XML processing. In particular, WS have inherited a 

major XML drawback, verbosity, which strongly affects WS performance. SOAP message 

exchanges are quite elaborate; the client program has to build the skeleton of the XML 

message, put the right values in it (serialization), and then send it to the remote service. In 

turn, the remote service parses the message, digs out the data it needs (de-serialization), and 

then goes through the same procedure to generate an XML reply. No wonder, then, 

that SOAP message processing produces considerable network traffic and causes higher 

latency than competing technologies (Kohlhoff C. and Steele R. 2003; Suzumura T., Takase 

T. et al. 2005). High latency becomes more critical when handling large volumes of SOAP-

based communications such as with cloud-based e-science (Gannon D., Krishnan S. et al. 

2004) and e-business (Singh G., Bharathi S. et al. 2003) applications. 

In the context of multi-tenant virtualized applications, however, the same WS are invoked 

by a high number of clients executing different applications. Intuition suggests that this 

scenario will increase the likelihood of WS receiving large numbers of similar SOAP 

messages. 

Hence, similarity and differential encoding have been often proposed to enhance SOAP 

performance, aiming to: (i) reduce processing time – in parsing (Makino S., Tatsubori M. et 

al. 2005; Takeuchi Y., Okamoto T. et al. 2005; Teraguchi M., Makino S. et al. 2006), in 

serialization (Devaram K. and Andersen D. 2002; Abu-Ghazaleh N., Lewis M.J. et al. 2004), 

and in de-serialization (Abu-Ghazaleh N. and Lewis M.J. 2005; Suzumura T., Takase T. et al. 

2005), and to (ii) reduce network traffic – via compression (Werner C., Buschmann C. et al. 

2005) and multicasting (Phan K.A., Tari Z. et al. 2008; Azzini A., Marrara S. et al. 2009; 

Phan K.A., Bertok P. et al. 2009). This is based on the observation that SOAP exchanges 

often involve highly similar messages since those created by the same implementation usually 

have the same structure, and those sent from a server to multiple clients tend to show 

similarities in structure and content (e.g., stock quote services (Phan K.A., Tari Z. et al. 

2008), online booking and meteorological broadcast services (Azzini A., Marrara S. et al. 

2009), etc.). In this paper, we focus on SOAP multicasting, as a technique to save network 

bandwidth by delivering SOAP messages to a group of destinations simultaneously (Zhang 

B., Jamin S. et al. 2002).  

To our knowledge, the only approach to SOAP multicasting was described in (Phan K.A., 

Tari Z. et al. 2008), where the authors introduce SMP (Similarity-based Multicasting 

Protocol), identifying, indexing and routing similar SOAP messages together (cf. Section  2). 

SMP‟s main contribution consists in grouping and transmitting together similar SOAP 

messages, in comparison with identical-only message aggregation of traditional network-layer 

(e.g., IP) multicasting (Zhang B., Jamin S. et al. 2002). Nonetheless, careful analysis of (Phan 

K.A., Tari Z. et al. 2008) led us to pinpoint certain aspects which limit both the effectiveness 

and efficiency of SMP multicasting. On one hand, while SMP considers the common and 

distinctive parts of SOAP messages in multicast message encoding, it does not always 

generate minimum sized aggregate messages (and thus does not guarantee optimal network 

traffic) since SMP disregards similarities between the SOAP messages‟ distinctive parts 

(which are repeated multiple times in the aggregate message regardless of their 

resemblances), as we will see in our motivating examples (Section  3.1). On the other hand, 

SMP consists of a two-phase message aggregation process: (i) computing SOAP similarity, 

and (ii) identifying message common/distinct parts, inducing additional processing overhead 

(i.e., higher response time), which could be alleviated if both tasks could be integrated 

together. 

 



This paper builds on an improved SOAP multicasting method we designed in (Tekli J., 

Damiani E. et al. 2011a) to address the limitations of SMP (Phan K.A., Tari Z. et al. 2008). 

Our framework uses Differential SOAP Multicasting (DSM), to improve multicasting 

effectiveness (minimizing network traffic) and efficiency (minimizing processing overhead). 

DSM is founded on the well known concept of Tree Edit Distance (Buttler D. 2004; Bille P. 

2005) for comparing and differencing SOAP messages. It is built upon a filter-differencing 

similarity evaluation architecture, inspired by filter-refinement approaches used in query 

processing (Korn F., Sidiropoulos N. et al. 1998; Kailing K., Kriegel H.P. et al. 2004). This 

allows identifying SOAP messages that are relevant (i.e., similar enough) for exact tree edit 

computations, avoiding computing similarity when it is not necessary. In addition, we define 

an XML-based differencing output format, SDL (Simple Diff Language), designed to carry 

the minimum information (in the aggregate multicast message) necessary to regenerate 

original SOAP messages (at multicast end-point), hence minimizing network traffic and 

latency during multicast message transmission. In short, our method allows: 

 Encoding the differences between SOAP messages to be multicast, including only their 

distinctive parts, so as to minimize aggregate message size, and thus network traffic, 

 Integrating both SOAP similarity computation and message aggregation in one single 

tree edit distance measure, enhanced via a dedicated filter-differencing technique, so as 

to reduce multicast processing overhead. 
 

The groundwork results and overall architecture of DSM have been described in (Tekli J., 

Damiani E. et al. 2011a). This paper‟s contribution extends the latter publication with a 

number of new results. Specifically we describe an innovative filter-differencing module for 

DSM: the filter functions, the tree edit distance measure, as well as our differencing language 

(SDL), which was omitted from (Tekli J., Damiani E. et al. 2011a).  

The remainder of the paper is organized as follows: Section  2 gives some background on 

SOAP performance enhancement, while Section  3 provides an overview of our approach. 

Section  4 contains a detailed explanation of our solution for SOAP multicasting, and Section 

 5 provides an experimental evaluation of the approach. Section  6 includes formal proofs 

highlighting some of the central properties stated in Section 4. Finally, Section 7 draws the 

conclusion. 
 

 

2 . BACKGROUND 
 

Various studies have addressed SOAP performance enhancement (Tekli J., Damiani E. et al. 

2011b). Most build on the observation that SOAP message exchange usually involves similar 

messages, and exploit SOAP similarity in order to gain in performance (e.g., execution time, 

memory, and network traffic). They can be categorized according to the kind of SOAP 

processing they perform: 
 

Serialization: It consists in converting in-memory data types into SOAP (XML-based) 

format. In this context, the authors in (Abu-Ghazaleh N., Lewis M.J. et al. 2004) identify the 

main bottleneck as that of transforming in-memory data of numeric types into the 

corresponding ASCII-based XML representation. Consequently, they, introduce a method for 

differential SOAP serialization, storing SOAP messages in a dedicated buffer, to be used as 

templates for future outcalls. The message is fully serialized and saved during the first 

invocation of the SOAP call. Similar subsequent calls would thus avoid a significant amount 

of serialization processing by requiring that only the changes to the previously sent message 

be serialized. The authors exploit dedicated indexing tables to track changes between in-

memory data and their serialized representations. Another approach comparable to that in 

(Abu-Ghazaleh N., Lewis M.J. et al. 2004) is introduced in (Devaram K. and Andersen D. 

2002), where the authors address client-side SOAP message caching and allow entire request 

messages to be cached and sent as is. Yet, the approach in (Devaram K. and Andersen D. 



2002) does not address partial structural matches (i.e., caching messages with different 

structures), which is performed in (Abu-Ghazaleh N., Lewis M.J. et al. 2004) 

Parsing: SOAP parsing usually consists in analyzing the characters in the SOAP 

message, extracting tokens (e.g., tags and text) and validating the underlying XML structure. 

This can be achieved using existing XML parsers such as DOM (W3C Consortium 2005) and 

SAX (Megginson D. et al. 2004). Yet, a few studies have proposed dedicated parsers, 

considering the particularities of SOAP messages in order to amend performance. Early 

approaches such as XSOAP (Slominski A. 2004) limit the validation scope to those elements 

specific to SOAP so as to gain in validation time. More recent methods in (Makino S., 

Tatsubori M. et al. 2005; Takeuchi Y., Okamoto T. et al. 2005; Teraguchi M., Makino S. et 

al. 2006) focus on differential parsing, exploiting the similarities between SOAP messages. 

They make use of predefined templates modeled via dedicated automatons, memorizing the 

basic structures of the SOAP messages. Therefore, each incoming SOAP message is matched 

to the template, and only those parts of the message that correspond to variable parts in the 

template are parsed (the invariant parts being already parsed in advance). While the approach 

in (Takeuchi Y., Okamoto T. et al. 2005) makes use of a single predefined WSDL-based 

template, the authors in (Makino S., Tatsubori M. et al. 2005) propose a more dynamic 

method by managing multiple templates based on SOAP message structures. If the incoming 

message does not match any of the templates, then parsing is undertaken via an ordinary 

DOM processor (W3C Consortium 2005) and a new template corresponding to the 

unmatched message is created and appended to the automaton. An extension of the latter 

approach is provided in (Teraguchi M., Makino S. et al. 2006), introducing more expressive 

automatons able to consider repeatable structures in SOAP messages, so as to reduce 

templates memory size and processing time. 

 

De-serialization: It can be viewed as the symmetric function of serialization, i.e., 

converting parsed XML messages to in-memory application objects. Here, the main idea to 

improving de-serialization performance is to avoid fully de-serializing each incoming 

message, by exploiting already constructed objects which were de-serialized in the past. In 

this context, the authors in (Suzumura T., Takase T. et al. 2005) propose an automaton-based, 

two-step solution. First, they generate an automaton based on incoming SOAP messages, and 

conduct de-serialization in the normal way, creating a link between the defined automaton 

and the application object. Then, they attempt to match each incoming message with the 

existing automaton, and if matched, return the linked application object to the SOAP engine 

after partially de-serializing only the regions that differ from the past messages. Another 

approach is provided in (Abu-Ghazaleh N. and Lewis M.J. 2005), where the authors propose 

to periodically checkpoint the state of the de-serializer, and compute checksums for portions 

of incoming SOAP messages. Consequently, the de-serializer compares the sequence of 

checksums against those associated to the most recently received message, to identify those 

portions of the message which are different, and which require regular de-serialization. The 

authors discuss that checksums can be error-prone, yet argue that the possibility of changes 

going undetected by checksumming is low in comparison with the gain in performance. 

In (Kostoulas M. G., Matsa M. et al. 2006), the authors introduce XML Screamer, an 

optimized system providing tight integration across levels of software, combining: i) 

schema‐based XML parsing (character encoding, token extraction, and validation) and ii) 

de‐serialization, in one single processing layer (as opposed to handling parsing and de-

serialization separately such as with most existing methods discussed above) in order to avoid 

unnecessary data processing, namely copying (to/from memory), and data‐type 

transformations. Experimental results in (Kostoulas M. G., Matsa M. et al. 2006) show that 

XML Screamer delivers from 2.3 to 5.3 times the throughput of traditional SOAP toolkits. 
 

On top of processing efficiency, a major drawback of SOAP is its demand for bandwidth, 

critical in various domains such as mobile computing (Phan K.A., Tari Z. et al. 2008) and 

sensor networks (Werner C., Buschmann C. et al. 2005). This problem has been investigated 

on two levels: (i) SOAP compression (Werner C., Buschmann C. et al. 2005) to reduce 



message size prior to transmission, and (ii) SOAP multicasting (Phan K.A., Tari Z. et al. 

2008; Phan K.A., Bertok P. et al. 2009) to optimize SOAP network traffic. 

Compression: Various methods have been proposed for classic XML compression, e.g., 

(Liefke H. and Suciu D. 2000; Cheney J. 2001). Nonetheless, a comparative study conducted 

in (Werner C., Buschmann C. et al. 2005) showed that existing XML compression methods 

might not always be appropriate in the context of SOAP. That is due to the fact that SOAP 

messages are of relatively smaller sizes, and might yield compression coding tables which 

require more space than the original SOAP messages themselves (Werner C., Buschmann C. 

et al. 2005). Following this observation, the authors in (Werner C., Buschmann C. et al. 2005) 

propose a differential SOAP compression approach. They exploit the WSDL schema 

definition to generate a SOAP message skeleton describing the structures of corresponding 

SOAP messages. Consequently, only the differences between the SOAP message and the 

predefined skeleton are transmitted, along with corresponding SOAP message 

element/attribute values. The differences and element/attribute values are consequently 

patched to the same skeleton at the receiver side in order to reconstruct the original message. 

Note that the authors do not address the differencing part itself (e.g., differencing algorithm, 

output format), but rather present the overall architecture of their method, and propose to use 

any existing XML-based tree edit distance tool. 

 

Multicasting: Another way to reduce SOAP network bandwidth is to perform 

multicasting, transmitting the same information destined to multiple clients once, instead of 

sending multiple replicas (Zhang B., Jamin S. et al. 2002). As outlined above, the Similarity-

based SOAP Multicasting Protocol (SMP) proposed in (Phan K.A., Tari Z. et al. 2008) groups 

and transmits together similar SOAP messages, in comparison with identical-only message 

aggregation with traditional (IP) multicasting (Zhang B., Jamin S. et al. 2002). An aggregate 

SMP message consists of two parts: the common part section containing common values of 

the messages, and distinctive part section containing the different parts of each message. The 

SMP message is then encapsulated within the body of a classic SOAP message, which header 

encompasses the address of the next router along the path to all intended recipients. Note that 

SMP is built on top of SOAP unicast and does not rely on low level (IP) multicast, in order to 

avoid handling complex network configurations. Each midway router parses the SMP header 

(containing client addresses) and examines its routing table to identify the next hops for each 

client address. The router then splits the SMP message accordingly and forwards the 

appropriate information to the next hop. The authors exploit a heuristic similarity measure 

(Ma Y. and Chbeir R. 2005) to quantify the resemblance between SOAP messages, in order to 

identify the most similar candidates for aggregation and multicasting. Message aggregation 

(identifying common/distinctive parts) is undertaken in a subsequent dedicated process. In a 

recent study (Phan K.A., Bertok P. et al. 2009), the authors propose an enhanced similarity-

based routing protocol, transmitting messages following paths such as there are more shared 

links between similar messages. This allowed optimizing SMP network traffic distribution. 

SOAP multicasting has also been recently investigated in the context of SOAP security policy 

evaluation (Damiani E. and Marrara S. 2008; Turkmen F. and Crispo C. 2008; Azzini A., 

Marrara S. et al. 2009), applying security rules only on distinct parts of the multicast message 

so as to improve policy evaluation performance. 

 

To sum up, automaton-based techniques to SOAP message comparison (mainly used with 

parsing and de-serialization) (Makino S., Tatsubori M. et al. 2005; Takeuchi Y., Okamoto T. 

et al. 2005; Teraguchi M., Makino S. et al. 2006) focus on messages which strictly 

correspond to predefined templates. They do not produce a similarity value to quantify the 

resemblance between SOAP messages, but rather a Boolean result identifying whether the 

message is valid or not w.r.t. (with respect to) the predefined template. Other approaches 

usually sacrifice some quality (i.e., comparison accuracy) to gain in performance, such as the 

error-prone checksum-based measure in (Abu-Ghazaleh N. and Lewis M.J. 2005) exploited 

for SOAP de-serialization), and the heuristic SMP similarity measure in (Phan K.A., Tari Z. 

et al. 2008) used for SOAP multicasting. Moreover, neither method allows seamless SOAP 



message aggregation. For further details, a comprehensive survey on SOAP performance 

enhancement techniques is provided in (Tekli J., Damiani E. et al. 2011b). 

 

3 . OVERVIEW OF THE APPROACH 
 

Our framework addresses the tasks of similarity evaluation and differential encoding of 

SOAP messages, to perform SOAP multicasting. As stated previously, we develop on the 

SMP multicasting technique (Phan K.A., Tari Z. et al. 2008), which aggregates SOAP 

messages by identifying their common and distinctive parts. SMP disregards certain 

similarities, mainly between the messages‟ distinctive parts, repeated multiple times in the 

aggregate message regardless of their resemblances 
 

3.1  Motivating Example 
 

 

To motivate the need for a new approach, let us consider the dummy SOAP messages          

Mi, i=1…6 in  Fig. 1. In this example, we abstract messages to character strings for the sake of 

simplicity.  Fig. 1.a shows the expected aggregation result, using SMP. One can see that 

element ‘e’, which is contained in messages M3, M4, M5 and M6, is repeated four times in the 

SMP message distinctive section, so as to regenerate the original SOAP messages, such as:  

Mi = Common+ Di. 

 

 
 

a. SMP (Phan K.A.; Tari Z.; and Bertok P. 

2008). 
b. Our approach. 

Fig. 1. Motivating example to SOAP message aggregation. 
 

 

We argue that such repetitions of identical or similar elements can be eliminated in order to 

reduce the aggregate message size. To do so, we identify the most similar and frequent pattern 

among SOAP messages (instead of identifying the intersection as in SMP), and only encode 

the differences (diffs) between each message and the pattern. Hence, only the minimum 

amount of information needed to regenerate the original SOAP messages is encapsulated in 

the aggregate message, eliminating redundancies as shown in  Fig. 1.b. 
 

3.2 Underlying Technique 
 

In order to attain our effectiveness (minimizing aggregate message size, and thus network 

traffic) and efficiency (reducing processing overhead) goals, we exploit the well known 

concept of tree edit distance (TED) (Zhang K. and Shasha D. 1989; Bille P. 2005) (also 

known as tree differencing), SOAP messages being modeled as Ordered Labeled Trees (W3C 

Consortium 2005). A great advantage of using tree edit distance is that along the similarity 

value, a diff is generated (i.e., edit script, or delta) providing a record of the exact differences, 

in terms of transformation operations, between the compared trees. This is central to achieve 

full integration of SOAP similarity evaluation and message aggregation (as opposed to the 

complex two-step process of SMP (Phan K.A., Tari Z. et al. 2008)). In addition, TED 
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methods have been widely used to compare XML-based data (Chawathe S. 1999; Nierman A. 

and Jagadish H. V. 2002; Dalamagas T., Cheng T. et al. 2006), and have been proven optimal 

w.r.t. less accurate (error-prone or heuristic) methods (Buttler D. 2004). This is of paramount 

importance to accurately identify the most common pattern minimizing the diffs among the 

SOAP messages being aggregated, and thus reducing overall aggregate message size. 
 

3.3 Outline of our Proposal 
 

We introduce a framework for Differential SOAP Multicasting (DSM), consisting of two 

main modules ( Fig. 2): Message Multicasting (MMDSM), and Message Reconstruction 

(MRDSM). Briefly, our multicasting module starts by transforming SOAP messages into their 

DOM (W3C Consortium 2005) tree representations. SOAP trees are processed for similarity 

evaluation and aggregation simultaneously, via an integrated tree edit distance measure, to 

produce multicast DSM messages. Then, our message reconstruction module rebuilds the 

original SOAP messages. Note that each DSM multicast message consists of a message 

pattern and various diffs, describing the differences between the unicast SOAP messages and 

the multicast message pattern. The pattern comes down to the SOAP message sharing the 

maximum similarities to all others being processed in the same multicast, i.e., the message 

inducing the smallest diffs. Thus, message reconstruction consists in patching the pattern of 

the multicast message, with the diff corresponding to the SOAP message to be regenerated.  

 
 

 

Fig. 2. Outline of our approach1. 
 

 

DSM provides an innovative multicasting technique w.r.t. the original SMP approach 

(Phan K.A., Tari Z. et al. 2008); however, our method exploits the message formatting, 

indexing and routing facilities provided by SMP.  

 

4   SOAP Message Multicasting 
 

The main idea consists in comparing SOAP messages in a pair-wise manner, generating and 

composing diffs accordingly. A DSM multicast message is generated for each group of SOAP 

messages such that their similarities are above a given threshold. Here, a user-defined 

similarity threshold ThreshSim and time frame TPool are exploited. When the new outgoing 

SOAP message does not satisfy the threshold ThreshSim w.r.t. all messages in the buffer, it is 

allocated a new buffer pool, for a period of TPool time, and constitutes the seed of a new DSM 

multicast message. When the outgoing message satisfies the similarity threshold, it is 

appended to the pool corresponding to the in-buffer message with which it shares maximum 

similarity. When the TPool expires for each buffer pool, the latter‟s buffer space is released and 

the corresponding multicast DSM message is sent over the wire. The activity diagram of our 

SOAP multicasting module is depicted in ‎Fig. 3. It consists of three components: i) SOAP 

                                                 
1
 SOAP response message processing is similar to request processing, yet the response is generated at the server side, and 

transmitted toward the client.   
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Tree Representation, ii) SOAP Tree Similarity Evaluation and Differencing, and iii) SOAP 

Buffer Management. 
 

 

 
Fig. 3.  Simplified activity diagram describing our SOAP message multicasting module, MMDSM. 

 

4.1  SOAP Tree Representation 
 

Definition 1 – SOAP Message Tree: It is a rooted tree S which nodes ni  S represent 

SOAP message elements, ordered and labeled following the corresponding message. Element 

values mark the nodes of their containing elements ● 
 

In order to describe our tree representation, we use the same air travel booking service 

example we introduced in (Tekli J., Damiani E. et al. 2011a). This constitutes a typical 

scenario for SOAP multicasting since it involves a large number of similar transactions 

requesting booking information, confirmation and statistics. The SOAP response message in 

 Fig. 4.a shows an answer to a booking confirmation request. Here, we only show the contents 

enclosed in the SOAP message body, and disregard meta-data in the header. The 

corresponding SOAP tree representation is depicted in  Fig. 4.b. 
 

 

                                                                

 <soap:Envelope xmlns:xsd= “…”>                       

   <soap:Header> … </soap:Header> 

   <soap:body> 

     <BookingConfirmationResp> 

       <FlightBooking> 

         <FlightInfo>                                                 

              <FlightNum>AZ211</FlightNum>. 

              <SourceHub>Milano</SourceHub>  

              <DestHub>Paris</DestHub> 

         </FlightInfo> 

         <ClientInfo> 

              <Name>Paula Olivetti</Name> 

              <PhoneNum>+39 3206813826</PhoneNum> 

              <CCNum>4511 2326 1121 3432</CCNum> 

         </ClientInfo> 

      </FlightBooking> 

    </BookingConfirmationResp> 

  </soap:body> 

 </soap:Envelope> 
 

 

a. Sample SOAP message S1. b. SOAP tree representation. 
 

Fig. 4. Sample SOAP message, and tree representation. 

 

For tree node identifiers in the SOAP tree, we follow (Phan K.A., Tari Z. et al. 2008) in 

using a depth/order Dewey (like) numbering system, which allows to pinpoint the exact 

location of each node in the tree (central in subsequently encoding the diffs between SOAP 

trees, as we show in the following). 
 

4.2  SOAP Tree Filter-Differencing Approach 
 

 

We propose a two step filter-differencing similarity evaluation approach (cf. ‎Fig. 3), inspired 

by filter-refinement architectures in query processing (Korn F., Sidiropoulos N. et al. 1998; 

Kriegel H.P. and Schönauer S. 2003; Kailing K., Kriegel H.P. et al. 2004). The main idea is 
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to first run a filter step, exploiting a fast approximation (SimFilter) of our main edit distance 

measure (SimTED) to compare the outgoing SOAP tree (Sout) to all those kept in the SOAP 

buffer. The filtering step identifies the set of SOAP trees in the buffer which are most similar 

(following SimFilter) to the outgoing tree Sout. Formally: 
 

                         Filter = {  S  Buffer | SimFilter(Sout, S) ≥ ThreshSim 

                               

    S’  Buffer,  SimFilter(Sout, S) ≥ SimFilter(Sout, S’)   } 
(1) . 

  
 

The differencing phase consists in conducting similarity evaluation (SimTED) and diff 

generation to compare Sout with its most similar counterparts S  Filter, identified in the 

filtering step. 
 

4.2.1  Filter Similarity Measure  
 

 

Three main conditions have to be satisfied for the filter step to be efficient (Kriegel H.P. and 

Schönauer S. 2003; Kailing K., Kriegel H.P. et al. 2004): (i) the filter measure has to be 

considerably easier to compute than the main similarity measure, (ii) a substantial part of the 

SOAP buffer messages has to be filtered out, and (iii) the completeness of the filter phase, 

w.r.t. the main similarity evaluation phase, has to be verified. While the first two criteria are 

intuitive, completeness in this context is less straightforward.  It underlines that the filter step 

must not allow any false dropouts. In other words, all SOAP trees in the buffer (S 

 

Buffer), 

which are deemed similar to Sout w.r.t. the main similarity measure SimTED, should be included 

in the filter candidate set (S  Filter).  

 

Definition 2 – Upper Bound Function: Let   be a set of objects, a similarity function 

Sim’  is an upper bound of function Sim, if  p, q  , Sim‟(p, q) ≥ Sim (p, q) (Davey B. A. 

and Priestley H. A. 2002) ● 

 

Definition 3 – Filter Completeness: Given a similarity measure SimTED, and a filter 

characterized by similarity measure SimFilter, the filter is said to be complete w.r.t. SimTED if 

SimFilter is an upper bound of SimTED (Kailing K., Kriegel H.P. et al. 2004) ●  

 

With our upper bound similarity measure, it is possible to safely filter out all buffer 

SOAP trees that have a filter similarity SimFilter less than the minimum acceptable similarity 

degree, i.e., ThreshSim (cf. Formula  (1)). In other words, our filter eliminates all candidate 

SOAP trees which are outside the maximum relevant similarity range, for the message 

aggregation and multicasting operation at hand. 

Several TED-related filter similarity functions have been proposed in the context of 

structure query processing (Kriegel H.P. and Schönauer S. 2003; Kailing K., Kriegel H.P. et 

al. 2004). These range over very coarse functions comparing the number of edges in both 

structures being compared (Kriegel H.P. and Schönauer S. 2003), to more complex measures 

exploiting special histograms to describe the structural features of the data (distribution of the 

number of leaf nodes, distinct node labels, etc.) (Kailing K., Kriegel H.P. et al. 2004). Since 

existing filter methods seem either too coarse (Kriegel H.P. and Schönauer S. 2003) or 

somewhat complex (Kailing K., Kriegel H.P. et al. 2004), we propose three simple filter 

functions to specifically capture the main characteristics of SOAP message trees: node edges 

(parent-child relations) and node order to describe SOAP structure, and node values to 

describe SOAP message contents. Our filters are based on the vector space model widely used 

in information retrieval (McGill M. 1983), which performance has been accredited in a 

variety of applications (Salton G. 1989). 

 

Definition 4 – Node-Edge Vector Space: Given two SOAP trees Si and Sj, we define 

corresponding parent-child vectors Vi
     and Vj

     in a space which dimensions represent, each, a 

single edge er  (Si×Si)  (Sj×Sj), such as 1 < r < E where E is the number of distinct    



parent-child relations in Si and Sj. The value of a coordinate w    i
 e

 
  in Vi

     stands for the 

number of occurrences of edge er in tree Si ● 

 

We exploit the Manhattan distance (Krause E.F. 1987) to compute the node edge filter 

function Simn-edge, since it is consistent with Definitions 2 and 3, in providing a lower bound 

for our main TED similarity measure (the mathematical proof is provided in Section  6). 
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We use similar formulas, based on the Manhattan distance, to compute both the node 

order and node value filter functions: Simn-order and Simn-value, each w.r.t. its corresponding 

vector space defined hereunder. 
 

Definition 5 – Node-Order Vector Space: Given two SOAP trees Si and Sj, we define 

the node order vectors Vi
     and Vj

     in a space whose dimensions represent, each, the Dewey 

index (Phan K.A., Tari Z. et al. 2008) (cf. Section  4.1) associated to a single node                  

nr  Si  Sj, such as 1 < r < I where I is the number of distinct node index values in Si and Sj. 

Vector coordinates are binary, indicating whether a node of the designated Dewey index 

exists or not for a given dimension nr ● 
 

Definition 6 – Node-Value Vector Space: Given two SOAP trees Si and Sj, we define 

node value vectors Vi
     and Vj

     in a space whose dimensions represent, each, a distinct node 

value associated to a node nr Si  Sj, such as 1< r <Vl where Vl is the number of distinct 

node values in Si and Sj. Vector coordinates designate the occurrences of each node value ● 

 
 

  
 

Fig. 5.  Sample SOAP sub-trees. 

 

Consider for instance the SOAP trees in  Fig. 5. The corresponding filter vector 

representations are depicted in  Fig. 6.  

 
 

 e1 e2 e3 

V1 1 1 1 

V2 1 1 0 
 

 

 0 1.1 1.2 1.3 

V1 1 1 1 1 

V2 1 1 1 0 
 

 

 P. Olivetti +39 320… 4511… P. Besson +33 622… 

V1 1 1 1 0 0 

V2 0 0 0 1 1 
 

    

 a. Node edge vectors       b. Node order vectors                                        c. Node value vectors 

Fig. 6. SOAP tree filter vector representations. 

 
A classic solution to the problem of combining different filters is to apply them 

independently, and then intersect the resulting candidate sets (Kailing K., Kriegel H.P. et al. 

2004). With such an approach, separate index structures for different filters have to be 

maintained and for each filtering task, a time-consuming intersection step is necessary. In 

addition, all filters functions would be equally weighted regardless of their relative 

importance. We follow a different approach, combining the filter functions in one integrated 

SimFilter measure, weighting each function based on its discriminative power over the SOAP 

tree candidate set. We do so by computing the variance for each filter function over all SOAP 







trees within the candidate set, and normalizing each function accordingly. This brings filter 

similarities according to different features (parent-child relations, node order and node values) 

in a similar range, and assigns a larger weight to features that are a good discriminator for the 

specific set of candidate SOAP trees at hand. Formally: 
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where F={n-edge, n-order, n-value} is the set of component filters, Simf (Si, Sj) is the 

similarity function between SOAP trees Si and Sj for a given filter component f  F, and  f 
2  

is the variance over all SOAP trees according to the f-th filter function within the SOAP tree 

candidate set. The combined filter measure SimFilter is consistent with Definitions 2 and 3, 

since each of its component filter functions is an upper bound of our main TED measure (cf. 

Section  6.2 for a complete mathematical proof).  
 

 

4.2.2  Tree Edit Distance Similarity Measure 
 

In our SOAP multicasting approach, we exploit a variation of the classic tree edit distance 

developed in (Chawathe S. 1999). Hereunder the basic definition of tree edit distance (Zhang 

K. and Shasha D. 1989; Chawathe S. 1999): 

 

Definition 7 – Tree Edit Distance: The edit distance between two trees A and B is 

defined as the minimum cost of all edit scripts (diffs) that transform A to B,                      

TED(A, B)=Min{CostDiff(A, B)} ● 

 

Definition 8 – Edit Script - Diff: It is a sequence of edit operations Diff = op1, op2, …, 

opk , transforming one tree into another. The cost of an edit script is defined as the sum of 

the costs of its operations: CostDiff = | |

i

Diff

Opi=1
Cost ● 

 

 

The algorithm in (Chawathe S. 1999) exploits three basic edit operations: node insertion, 

node deletion and node update, disregarding more complex operations such as move node, 

insert sub-tree, etc., so as to increase efficiency. This algorithm has been considered as a 

reference point for various XML related comparison studies (Nierman A. and Jagadish H. V. 

2002; Dalamagas T., Cheng T. et al. 2006). It is among the fastest and least complex TED 

algorithms available (Dalamagas T., Cheng T. et al. 2006; Tekli J., Chbeir R. et al. 2009), 

also, it guarantees correct results (minimal diffs) in comparison with existing works, e.g., 

(Chawathe S., Rajaraman A. et al. 1996; Cobéna G., Abiteboul S. et al. 2002) which utilize 

various heuristics to gain in performance. Nonetheless, the original approach described in 

(Chawathe S. 1999) only considers tree structures (node labels, and parent/child 

relationships), but not the values (since the algorithm was designed for generic hierarchical 

data). Hence, we redefine the set of edit operations to consider SOAP node values in the 

differencing process. First, we formalize the notion of SOAP tree node, necessary to define 

edit operation syntaxes: 

 

Definition 9 – SOAP Tree Node: Given a SOAP ordered labeled tree, a SOAP tree 

node x can be represented as a triplet x = (id, l, v) where x.id underlines the node‟s identifier, 

x.l its label, and x.v its value. For an internal node, x.v = Ø ● 

 

Definition 10  – Update node: Given a node x in SOAP tree S, with label x.l and value 

x.v, and given a new label l’ and value v’, Upd(x, l’, v’) is an update operation applied to x 

resulting in tree S’ identical to S except that in S’, x bears l’ as label and v’ as value. When      

l’= x.l or v’= x.v, it simplifies to Upd(x, , v’) or Upd(x, l’,) ● 

 





Definition 11  – Insert node: Let S be a SOAP tree with a node p having first level sub-

trees S1, …, Sm (i.e., sub-trees rooted at the children of node p). Given a SOAP tree node x not 

belonging to S, Ins(p, i, x) is a node insertion applied to S, inserting x as the ith child of p, thus 

yielding S’ with first level sub-trees S1, … , Si-1, x, Si+1, … , Sm+1 ● 

 

Definition 12  – Delete node: Let S be a SOAP tree with node p, having a leaf node x as 

the ith child of p, Del(p, i, x)1 is a node deletion operation applied to S that yields S’ where 

node p will have level sub-trees S1, … , Si-1, Si+1, … , Sm ● 
 

A major question in edit distance approaches is how to choose operation cost values. In 

our current approach, we define operations‟ costs in an intuitive and natural way, by assigning 

identical unit costs to insertion and deletion operations (CostIns = CostDel = 1), as well as to 

update operation (CostUpd=1) only when the newly assigned label and/or value are different 

from the node‟s current label and value (otherwise, CostUpd = 0, underlining that no changes 

are to be made to the concerned node). Note that the investigation of alternative tree 

operations cost models (considering for instance the semantic relatedness between SOAP 

node labels/values given a reference semantic network such as WordNet (Miller G. 1990) or 

Wikipedia) is not considered in the scope of this paper and will be addressed in a dedicated 

upcoming study. 

Consequently, given two SOAP trees Si and Sj, we compute their similarity based on the 

tree edit distance function:  
 

i j

TED i j

i j
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  (4) . 

 

Consider the sample SOAP trees in ‎Fig. 5. TED(S1, S2) = 3, Diff(S1, S2) consisting of 

three operations: i) updating the value of node name, ii) updating the value of PhoneNum, and 

iii) deleting node CCNum. Formally: 

 
 

Diff(S1, S2) =  Upd ({1.1, Name, ‘Paula Olivetti’},  , ‘Pierre Besson’), 

    Upd ({1.2, PhoneNum, ‘+39 32…’},  , ‘+33 62…’),  

    Del ({0, ClientInfo, Ø,}, {1.3, CCNum, ‘4511…’}, 3}   
 

a. Forward direction diff, transforming S1 into S2. 
 

 
 

 

                         

 

Upd ({1.1, Name, ‘Pierre Besson’},  , ‘Paula Olivetti’), 

                       Upd ({1.2, PhoneNum, ‘+33 22…’},  , ‘+39 32…’),  

                       Ins ({0, ClientInfo, ,}, {1.3, CCNum, ‘4511…’}, 3}   
 

b. Backward direction diff, transforming S2 into S1. 
 

Fig. 7.  Sample Diff(S1, S2) example computed based on the SOAP trees in  Fig. 5. 

 

Note that the diffs generated following our differencing method logically encompass both 

the forward and the backward transformation scripts: Diff(Si, Sj) = {i j, j i}, such as i j  

denotes the sequence of edit operations transforming tree Si into Sj, whereas j i denotes the 

sequence of edit operations transforming Sj into Si. such as j i can be seamlessly identified 

based on i j and vice-versa (cf. example of forward and backward Diff representations in 

 Fig. 7). This is central since, at this stage, we do not know which transformation direction will 

be used in constructing the aggregate DSM message (to be identified in the subsequent buffer 

management phase, described in the following section). Hence, we specifically defined our 

edit operations‟ syntaxes (cf. Definitions 10-12) in a way to produce complete (bi-directional) 

                                                 
1 Some parameters in the delete operation, such as the parent node p, are redundantly preserved on 

purpose, in order to guaranty bi-directional diffs (discussed in more detail in the following).  



diffs at this stage so as to prevent redundant edit distance processing afterward. Yet, all 

redundant diff code information will be discarded when transforming the diffs into their 

machine-readable output format, prior to final diff encoding in the multicast message. The diff 

output format, which is crucial in i) minimizing multicast message size, and ii) enabling 

SOAP message reconstruction, is developed in Section  4.4. 

4.3 SOAP Buffer Management 

4.3.1  SOAP Diff Graph Representation 
 

 

In order to effectively multicast buffered SOAP trees, we represent the latter as a graph-like 

structure, named SOAP Diff Graph (SDG), connecting SOAP messages (graph nodes) via 

corresponding diffs (graph edges,  Fig. 8). The buffer consists of multiple SDG graphs corres-

ponding to the different buffer pools, each underlining a potential DSM multicast message. 
 

 
Fig. 8.  An Example of SOAP buffer management. 

 

As described previously, TED computations for similarity evaluation and diff generation 

are carried out for each new outgoing SOAP message Sout, w.r.t. its most similar counterparts 

in the buffer (i.e., the SOAP tree candidates identified via the Filter component). 

Consequently, the filter candidate Si maximizing the main similarity measure SimTED(Sout, Si) 

is selected. If SimTED(Sout, Si) ≥ ThreshSim, then Sout would be appended to the corresponding 

SDG graph, connected to Si via their common diff. Otherwise, if Sim(Sout, Si) drops below 

ThreshSim, it is allocated a new buffer pool, and constitutes the first node in a new SDG graph. 

When the buffer pool time frame TPool expires, the corresponding SDG is encapsulated in a 

DSM multicast message and is transmitted over the network. A simple example is depicted in 

 Fig. 8 to show how an outgoing SOAP message tree S5, is appended to a SOAP                

buffer pool SDG. 

 

4.3.2  DSM Multicast Message 
 

Encapsulating the SDG graph into a DSM multicast message requires identifying the multicast 

message pattern Spattern, which is the most similar and frequent pattern in all messages, 

minimizing the different parts, i.e., the diffs. In other words, it consists in minimizing the 

multicast message size. Formally: 
 

  i
pattern i i i j

S  SDG
j

S  = S   verifying | S | | (S ,S ) |SDG Min Diff
 

 
  

 
   (5) . 

where |Si| and |Diff(Si, Sj)| denote the cardinalities (the number of nodes) of the SOAP tree Si 

and the diff linking Si and Sj.  

 

This can be performed in linear time w.r.t. the number of SOAP trees in the SDG graph, 

and is achieved by pinpointing the SDG node (i.e., SOAP tree) with the maximum number of 

edges (i.e., diffs). The latter, which we identify as SDG centroid, underlines the SOAP tree 

Step1: SOAP similarity evaluation. 

S4 is selected as most similar 
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requiring the least amount of transformation operations, i.e., the smallest diffs, in order to 

generate all its remaining counterparts in the SDG. In other words, the SDG centroid 

minimizes the differential parts in the DSM message, and thus reduces overall multicast 

message size. It identifies the SOAP tree with the maximum amount of commonalities w.r.t. 

its counterparts. 

Consider the SDG graph in  Fig. 8. Here, SOAP tree S2 is selected as SDG centroid, since it 

is connected to its counterparts with the maximum number of minimal diffs (SDG edges). 

Thus, the corresponding DSM message consists of tree S2 as the multicast message pattern, 

and Diff(S1, S2), Diff(S2, S3), Diff(S2, S4), Diff(S4, S5) as the differential parts corresponding to 

each SOAP tree. Recall that our DSM messages follow the same format as SMP messages 

(Phan K.A., Tari Z. et al. 2008) w.r.t. message header, body, indexing and routing addresses.  
 
 

4.3.3  DSM Multicast Message 
 

 

Our routing process is comparable to that of SMP (Phan K.A., Tari Z. et al. 2008) except that 

instead of aggregating and splitting common/different parts of the multicast message, the 

router patches the DSM pattern, i.e., SDG centroid, with the corresponding diff so as to 

regenerate the original SOAP tree. Consider the example in  Fig. 8, such as each SOAP tree Si 

is intended for a different client Ci. The DSM replicas to be sent to each client consist of: 
 

 The pattern S2 and Diff(S1, S2), to regenerate SOAP tree S1, destined to client C1, 

 The pattern S2, destined to client C2, 

 S2 and Diff(S2, S3), to regenerate S3, destined to client C3, 

 S2 and Diff(S2, S4), to regenerate S4, destined to client C4, 

 S2 and Diff(S2, S4)   Diff(S4, S5), to regenerate S5, for C5.  

 

The   symbol designates the diff composition operator (Marian A., Abiteboul S. et al. 

2001), which underlines the transformation of SOAP tree S2, via two consecutive diffs, so as 

to obtain S5. In plain terms, it consists in transforming S2 into S4 (using Diff(S2, S4)), and then 

S4 into S5 (via Diff(S4, S5)). 
 

4.4  SOAP Message Reconstruction 
 

 

When the DSM multicast message reaches the destined end-point client/server (or end-point 

router), the original SOAP message is to be reconstructed, based on the DSM common 

pattern and corresponding SOAP message diff, in order to be processed by the destination 

service component ( Fig. 2). While tree differencing (i.e., tree edit distance) was used as an 

effective means to perform SOAP aggregation, we exploit its inverse process, tree patching, 

for message reconstruction.  
 

Definition 13 – Tree Patching: It is defined as the problem and action of applying a diff 

to a tree structure (pattern) T in order to create a new version of the tree T’, incorporating all 

the changes encoded in the diff (Mouat A. 2002; Komvoteas K. 2003)● 
 

In short, tree patching allows regenerating the original SOAP message tree at the receiver 

end, by applying the diff corresponding to the SOAP message tree, on the common DSM 

message pattern. However, a machine-readable diff output format is required in order to 

automatically perform the patching operation. Consequently, patching comes down to 

executing the edit operations encoded in the output diff, applied on the DSM pattern. 
 

4.4.1  Diff Output Representation Format 
 

Having computed the logical diff describing the changes between two SOAP message trees, 

the latter is to be outputted in a useful and machine-readable format to be encoded in the 



multicast DSM message, so as to allow automatic tree patching and message reconstruction at 

the receiver side. In short, we aim to obtain an output diff representation which is: 
 

i) Described in a simple XML encoding, to provide more flexibility and improve human 

readability in handling the diffs, and which would clearly be more suitable in the 

context of SOAP multicasting, since SOAP itself is XML-based,  
 

ii) Compact in its description, including only the information necessary to regenerate the 

SOAP messages, in order to minimize multicast message size, and thus to optimize 

network traffic. 

 

Different XML-based tree Diff representations exist (Laux A. and Martin L. 2000; 

Monsell EDM ltd. 2000; Cobena G., Abiteboul S. et al. 2001; Mouat A. 2002; Komvoteas K. 

2003), each developed in a specific scenario, and dedicated to a specific application. While 

most representations provide flexibility in handling the diffs, they also inherit XML‟s 

verbosity. Some formats such as DeltaXML (Monsell EDM ltd. 2000) and XyDiff (Cobena 

G., Abiteboul S. et al. 2001) purposefully include additional redundant information so that the 

diffs follow the same topological structure of their source documents. This is useful for 

specific applications such as temporal querying and monitoring changes (Marian A., 

Abiteboul S. et al. 2001). Other formats, such as DUL (Mouat A. 2002) and EDUL 

(Komvoteas K. 2003), include additional context information concerning the siblings and 

parents of the nodes affected by each edit operation (e.g., number of siblings and their labels, 

parent node siblings, etc.), in order to generate diff descriptions which would be independent 

of the document trees based on which they were generated, to be patched with any arbitrary 

document tree. In short, none of the existing formats seems adapted to our simple and specific 

needs, mainly human readability and compactness.  
 

4.4.2  Simple Diff Language (SDL) 
 

Thus, we introduce a dedicated diff representation format: SDL (Simple Diff Language), 

which allows encoding edit operations as follows (recall operation Definitions 10-12 in 

Section  4.2.2): 
 

The update operation, Upd(x, l’, v’):        

 General case: <Upd node_id=„x.id‟ label=„l’‟> v’ </Upd> 

 When l’ = x.l : <Upd node_id=„x.id‟> v’ </Upd> 

 When v’ = Ø or v’ = x.v : <Upd node_id=„x.id‟ label=„l’‟ /> 
 

The insertion operation, Ins(p, i, x):        

 <Ins parent_id = „p.id‟ pos= „i‟ label= „x.l‟> x.v </Ins> 

 When v = Ø: <Ins parent_id = „p.id‟ pos= „i‟ label= „x.l‟ /> 
 

The deletion operation, Del(p, i, x):      

  General case: <Del node_id = „x.id‟/> 
 

One can clearly see that the old node label (x.l) and value (x.v) are not preserved in the 

SDL representation of the update operation. Similarly, the parent node (p), node sibling order 

(i), node label (x.l) and value (x.v) do not appear in the SDL representation of the deletion 

operation, since the SDL diff representations are only required to carry the minimum 

necessary information needed to apply the corresponding edit operations. In fact, at this stage, 

we already know the diff transformation direction to be used in the aggregate DSM message 

(following the corresponding SOAP Diff Graph, cf. Section  4.3), and thus can seamlessly 

(with no additional edit distance processing) eliminate all redundant information in operation 

syntaxes. Hence, w.r.t. the update operation, the old node label (x.l) and value (x.v) become 

dispensable since only the new ones are actually required. Likewise for the deletion operation 



where the only information required to delete a node is its structural position, known via its 

identifier (x.id).  

For instance, the output SDL representation corresponding to Diff(S1, S2) developed in 

Section  4.2.2 (and reported hereunder), is shown in  Fig. 9.  
 

 

 

 

 

Logical diff 

 

Diff(S1, S2) =  Upd ({1.1, Name, ‘Paula Olivetti’},  , ‘Pierre Besson’), 

    Upd ({1.2, PhoneNum, ‘+39 32…’},  , ‘+33 62…’),  

    Del ({0, ClientInfo, Ø,}, {1.3, CCNum, ‘4511…’}, 3}   
 

SDL diff 

representation 

 

<Diff Source= ‘S1’ Dest= ‘S2’> 

       <Upd node_id= ‘1.1’> Pierre Besson </Upd> 

       <Upd node_id= ‘1.2’> +33 62…</Upd> 

       <Del nod_id= ‘1.3’>   

</Diff> 
 

Fig. 9. An Example of SDL encoding. 

 

Output diffs are encoded following SDL in order to include only the minimum amount of 

necessary information in the DSM multicast message, to be transmitted over the wire, and 

then patched with the DSM message pattern at the end-point client/server to regenerate 

corresponding original SOAP messages.  
 

4.5  Complexity Analysis 
 

The time complexity of our approach simplifies to O(N   |S|2) where N is the maximum 

number of in-buffer SOAP messages, and |S| the cardinality of the largest SOAP message 

tree. This includes both the complexities of SOAP Message Multicasting at the sender side 

(MMDSM, cf.  Fig. 2), and SOAP Message Reconstruction at the receiver side (MRDSM), and can 

be evaluated as follows. 
 

The complexity of SOAP Message Multicasting comes down to O(N  |S|2): 
 

 SOAP Tree Similarity Evaluation and Differencing is of O(|S|2): 

 The Filter component is of O(|S|) time, each of the filter similarity functions, 

being evaluated in average linear time w.r.t. SOAP message size, 

 The complexity of the tree edit distance algorithm (i.e., the main TED 

similarity measure) adapted from (Chawathe S. 1999), is of O(|S|2). 
 

 SOAP Buffer Management is of worst O(N |S|2), and comes down to the complexity 

of running the SOAP Tree Similarity Evaluation and Differencing module (cf.  Fig. 3) 

to compare the new outgoing message, to each in-buffer message tree (recall that N is 

the maximum number of SOAP message trees in the buffer), 
 

The complexity of the SOAP Message Reconstruction operation comes down to               

O(N (2 |S|)) time, since: 

 The complexity of the tree patching operation is of worst O(2 |S|) time, where 2 |S| 

underlines the maximum possible diff size (corresponding to the deletion and 

insertion of every node in SOAP tree S),  

 Tree patching is performed for each of the N diffs corresponding to the SOAP 

messages encapsulated in the DSM multicast message. Note that the number of diffs 

corresponding to the DSM message is at most N, i.e., when the buffer consists of one 

single pool corresponding to the DSM message at hand, grouping all N in-buffer 

SOAP messages. 
 



Likewise, space complexity also simplifies to O(N   |S|2) in the worst case, considering 

RAM space to store: i) the SOAP message trees being evaluated for multicasting (i.e., in-

buffer messages), which is of O(N |S|), ii) the filter vectors corresponding to each SOAP 

tree, which is of worst O(N |S|), and iii) the distance matrixes and diffs computed during 

similarity evaluation, requiring O(|S|2) space for each of the N in-buffer message trees, hence: 

O(N   |S|2). Space complexity analysis is straight forward, and in various ways similar to 

time analysis. Thus, details have been omitted for clearness of presentation. 

 

5  EVALUATION 
 

We conducted several new simulation experiments to test the performance of our approach, 

and compare it to SMP, traditional multicast (aggregating identical messages only), and 

unicast. We evaluated two main criteria: i) network traffic (multicasting effectiveness), and ii) 

processing time (multicast efficiency). 
 

5.1 Network Traffic 
 

We adopt a single sender/receiver scenario such as the messages are multicast at the sender 

end-point, and reconstructed at the receiver end-point, disregarding intermediate routers. 

Hence, network traffic amounts to the sum of the sizes of all SOAP messages over the 

client/server link. As for the test data, two sets of 500 SOAP messages (each) were generated 

(of average 4KB per message), based on Google‟s web service SOAP request and response 

WSDLs1, using an adaptation of IBM‟s XML document generator2. 

We varied three main parameters and evaluated network variation accordingly: the 

amount of Non-Identical Messages (NIM %) sent to the client/server, the amount of pair-wise 

modifications (Modifs %) between non-identical messages (which we tuned via the IBM 

generator), and the number of messages considered for multicasting (NbMsg). 
 

5.1.1  Network Traffic when varying NIM% and Modifs % 
 

First, we fixed the total number of SOAP messages to be multicast, NbMsg = 500, and 

evaluated network traffic w.r.t. NIM % and Modifs %. 
  

 

  
               NIM % (non-identical messages) 

 
 

  Modif %, for SMP traffic levels
3
 

 
 

 

 

Fig. 10. Variation of network traffic w.r.t. the amount of modifications between messages. 
 

Results in  Fig. 10 show that our approach (DSM) reduces traffic proportionally to the 

amount of differences (both NIM % and Modifs %) among messages. SMP reduces traffic 

w.r.t. the amount of pair-wise message modifications (Modif %), regardless of the amount of 

non-identical messages (NIM %), and thus produces the same „worst case‟ results that are 

obtained via DSM (DSM‟s upper traffic limit) when none of the messages to be multicast are 

                                                 
1 http://www.w3.org/2004/06/03-google-soap-wsdl.html 
2 http://www.alphaworks.ibm.com. 
3
 SMP traffic levels are invariant w.r.t. NIM %, and are thus represented separately. 
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identical (NIM %=100). That happens because SMP only considers the intersection between 

messages when generating the aggregate multicast, regardless of the largest or most frequent 

message pattern. Traditional multicast reduces traffic w.r.t. the amount of non-identical 

messages (NIM %), but does not consider partially similar messages (Modif %) since it only 

aggregates identical messages. It produces the „worst‟ results obtained using DSM, when 

messages are completely different (Modif%=100). The largest traffic is constantly produced 

via unicast, since the latter transmits messages regardless of their similarities (despite NIM% 

and Modifs%). 
 

5.1.2   Varying the Number of SOAP Messages to be Multicast 
 

 Fig. 11 depicts network traffic when varying the number of SOAP messages considered for 

multicasting (NbMsg), such as the number of non-identical messages (NIM %) varies linearly 

w.r.t. the amount of pair-wise message modifications (Modifs%).  
 

 

  
 

a. Modif % = 20. 

 

 

b. Modif % = 40 

 

  

 

c. Modif % = 60 
 

d. Modif % = 80 

 

 
 

Fig. 11. Comparing network traffic variation between DSM and SMP, when varying the number of 

messages to be multicast, NbMsg. 

 
Results confirm those of the previous experiment ( Fig. 10): i) unicast yields the highest 

network traffic levels, which remain unwavering w.r.t. the number of identical and/or similar 

messages (NIM % and/or Modif %), ii) traditional multicast only considers identical messages 

and thus varies w.r.t. NIM %, iii) traffic with SMP varies w.r.t. Modif%, regardless of the 

amount of non-identical messages NIM %, while ii) DSM optimizes traffic w.r.t. both NIM% 

and Modifs%. A compact representative depiction of network traffic variation in  Fig. 12, 

based on the graphs in  Fig. 11, for fixed average NIM % and Modifs % values, shows that the 

traffic gap between DSM, SMP, traditional multicast, and most evidently unicast, grows 

noticeably with the increasing number of messages. Results show that DSM underlines an 

average 20% traffic reduction in comparison with SMP.  
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5.2  Processing Time 

Timing experiments were carried out on a PC with an Intel Xeon 2.66 GHz processor with 

4GB RAM. Here, we evaluate the time complexity of DSM‟s core message aggregation and 

reconstruction operations, and compare it to SMP‟s message aggregation process (Phan K.A., 

Tari Z. et al. 2008), traditional multicast (automaton-based component, e.g., (Takeuchi Y., 

Okamoto T. et al. 2005), for identifying identical/different messages), and unicast (simple 

tree automaton for verifying SOAP message integrity prior to transmission). 

On one hand, timing results in  Fig. 13.a show that our approach is linear in the size of 

each SOAP message tree, which equally underlines a polynomial (quadratic) dependency on 

the combined size of both trees being compared ( Fig. 13.b), confirming our complexity 

analysis. On the other hand, results in  Fig. 13.b also show that our method induces an average 

30% reduction in processing overhead in comparison with SMP. Results similar to those in 

 Fig. 13.b are obtained when fixing message size and varying the total number of SOAP 

messages being processed.  
 

 

 

 

 
 

Fig. 12. Network traffic, with 

NIM%=20 and Modif%=10. 
 

  

 

a. DSM time results. 
 

b. Comparative time results 
 

Fig. 13. Timing analysis. 
 

In addition, we conducted several tests to evaluate processing time when exchanging 

different kinds of SOAP messages handling different data-types. Synthetic SOAP messages 

made of Character, Integer and Double arrays of varying sizes (ranging from 400 to 1000 

SOAP elements per array) were utilized in this simulation experiment. We evaluated end-to-

end response time (SOAP latency), i.e., the time perceived by a client to obtain a reply for a 

SOAP request for a web service. This includes (in addition to multicast processing): 

serialization time at the sender side, as well as parsing and de-serialization time at the receiver 

side (cf. overall architecture in  Fig. 21). We disregard network delays and service execution 

time in this evaluation (considering the scenario where the sender/receiver are run on the 

same host), in order to solely depict the results corresponding to SOAP latency. 

  

  

a. Unicast b. Traditional Multicast 

 

                                                 
1
 We do not consider security policy evaluation in our current tests.  
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c. SMP d. DSM 
 

                                                                               

Fig. 14. Response time, when manipulating different data-types 

 

 Fig. 14 shows the average time results normalized based on two traditional SOAP 

toolkits, including the SOAP Microsoft (Visual Basic) toolkit (Davis D. and Parashar M. 

2002) and gSOAP (Van Engelen R.A. and K. Gallivan K. 2002), coupled with each of the 

DSM, SMP, traditional multicast, and unicast methods. 

On one hand, results in  Fig. 14 show that the time performance gap increases consistently 

when exchanging numeric data of type Double, in comparison with Integer and Character-

based SOAP messages. The time gap is most significant with unicast ( Fig. 14.a, where 

Double arrays induce an average 118% processing overhead w.r.t. Char) and traditional 

multicast ( Fig. 14.b, with an average 43% overhead over Char). This is probably due to the 

expensive process of converting in-memory numeric data of type Double to-and-from ASCII-

based (XML) SOAP format (as discussed in previous studies on SOAP performance, cf. 

Background in Section  2, e.g., (Chiu K., Govindaraju M. et al. 2002) where the translation 

between in-memory numeric data of type Double and the ASCII-based XML representation 

format has been shown to consume over 90% of the end-to-end SOAP message processing 

time). Note that the time performance gap decreases with SMP ( Fig. 14.c, with an average 

12.5% overhead between Double and Char) and DSM ( Fig. 14.b, with an average 17.2% 

overhead) due to the extra processing involved in both protocols in performing similarity-

based multicasting (i.e., similarity evaluation, multicast message aggregation, and SOAP 

reconstruction), which tends to reduce the impact of data-type conversion. 

On the other hand, results in  Fig. 14 concur with the timing results in  Fig. 13.b where 

unicast and traditional multicast supersede SMP and DSM in time performance, whereas 

DSM (our approach,  Fig. 14.d) induces an average reduction of 34% processing overhead 

(with all three data-types) in comparison with SMP ( Fig. 14.c) 

 

We are currently conducting experiments to fine-tune (optimize) DSM‟s performance, 

varying: i) the SOAP message aggregation similarity threshold ThreshSim, ii) the number and 

sizes of multicast buffer pools, and iii) the buffer pool time frame TPool. We aim to identify the 

set of input parameter values most adapted for different kinds of SOAP messages (encoding 

numeric data-types, type arrays of varying sizes, etc.), using different SOAP-based 

benchmarks, e.g., (Head M.R., Govindaraju M. et al. 2005; Head M.R., Govindaraju M. et al. 

2006), and exploring various multicast scenarios (w.r.t. the n# of clients, routing algorithm, 

and network topology, such as in (Phan K., Bertok P. et al. 2009)). 
 
 

6  PROOFS & PROPERTIES OF THE PROPOSED 

SIMILARITY AND FILTER FUNCTIONS 
 

6.1  Component Filter Functions  
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6.1.1  Node-Edge Filter Function  

 

Lemma 1. Given two SOAP trees Si and Sj, and corresponding node-edge (parent-child) 

relations vectors 
iV  and 

jV  (cf.  Definition 4), the node-edge filter function Simn-edge(Si, Sj) is 

an upper bound of our tree edit distance similarity measure (cf. Section  4.2.2),                          

Simn-edge (Si, Sj) ≥ SimTED(Si, Sj), having: 
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cf. formula  (2) 
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cf. formula  (4) 
 

 
 

In other words, the Manhattan distance ( ,  )i jManh V V

 

divided by 2, underlines a lower bound 

of the edit distance:  
 

 
( , )

2

i jManh V V
 ≤  TED(Si, Sj) 

(6)  
 

 

Proof. Consider an edit script Diff= op1, op2, …, opk  transforming Si to Sj following 

our tree edit distance measure (cf. Section  4.2.2). We proceed by induction over the length k 

=|Diff|. If k=0, i.e., Diff=, then ( ,  )i jManh V V = TED(Si, Sj) = 0 (Simn-edge = SimTED=1). When 

extending Diff by a new edit operation opn, the edit distance TED is increased by 

Cost(opn)=1, i.e., the cost of the edit operation. Yet, the Manhattan distance varies as follows. 

The edit operation in our approach may be a leaf node insertion, leaf node deletion or a node 

update: 
 

- The insertion operation increases the occurrence frequency of the parent-child edge 

being inserted (i.e., the corresponding edge vector weight), by a value of 1. As a result, 

( ,  )i jManh V V

 

increases by a value of 1. 

- The deletion operation decreases the occurrence frequency of the parent-child edge 

being depleted by a value of 1. This increases ( ,  )i jManh V V

 

by 1. 

- The update operation affects the occurrence frequency of two parent-child edges: 

decreasing by 1 the weight of the edge corresponding to the old node, and increasing 

by 1 the weight of the edge corresponding to the new node. In other words,        

( ,  )i jManh V V

 

increases by a value of 2. 
 

Based on the three points above, it follows that the Manhattan distance ( ,  )i jManh V V

changes by at most 2 for each edit operation affecting a SOAP message trees, whereas TED 

changes exactly by a value of 1. Therefore, the inequality of formula  (6) holds, and thus 

Lemma 1 is proved  
 

6.1.2   Node-Order Filter Function  
 

 

Lemma 2. Given two SOAP trees Si and Sj, and corresponding node-order vectors 
iV  and 

jV  (cf.  Definition 5), the node order filter function Simn-order(Si, Sj) is an upper bound of our 

tree edit distance similarity measure, Simn-order (Si, Sj) ≥ SimTED(Si, Sj), having: 
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 cf. formula  (4) 
 

 
 

In other words, the Manhattan distance ( ,  )i jManh V V

 

is a lower bound of the edit distance:  
 

        ( ,  )i jManh V V   ≤  TED(Si, Sj) 
(8)  

 
 

Proof. Consider an edit script Diff= op1, op2, …, opk  transforming Si to Sj following 

our tree edit distance measure. We proceed by induction over the length k =|Diff|. If k=0, i.e., 

Diff=, then ( ,  )i jManh V V = TED(Si, Sj) = 0 (Simn-order = SimTED=0). When extending Diff by a 

new edit operation opn, the edit distance TED is increased by Cost(opn)=1, i.e., the cost of the 

edit operation. Yet, the Manhattan distance varies as follows. The edit operation following 

our approach may be a leaf node insertion, leaf node deletion or a node update: 

- The insertion operation increases the occurrence frequency of the node order score 

being inserted (i.e., the corresponding node order vector weight), by a value of 1. As a 

result, ( ,  )i jManh V V

 

increases by a value of 1. 

- The deletion operation decreases the occurrence frequency of the node order score 

being depleted by a value of 1. This increases ( ,  )i jManh V V by 1. 

- The update operation does not affect node order occurrence frequency, the latter 

remaining the same before and after the operation takes place. In other words, 

( ,  )i jManh V V

 

does not change. 
 

Based on the three points above, it follows that the Mahattan distance ( ,  )i jManh V V

 changes by at most 1 for each edit operation affecting a SOAP message trees, whereas TED 

changes exactly by a value of 1. Therefore, the inequality of formula  (8) holds, and thus  

Lemma 2 is proved  

 

6.1.3   Node-Value Filter Function  
 

Lemma 3. Given two SOAP trees Si and Sj, and corresponding node-value vectors 
iV  and 

jV  (cf.  Definition 6), the node value filter function Simn-value(Si, Sj) is an upper bound of our 

tree edit distance similarity measure, Simn-value (Si, Sj) ≥ SimTED(Si, Sj), having: 
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cf. formula  (2)  
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cf. formula  (4) 
 

 

 

In other words, the Manhattan distance Manh(Vi
    , Vj

    ) is a lower bound of the edit distance:  
 

        
( , )

2

i jManh V V
  ≤  TED(S1, S2) 

cf. formula  (6)  
 

 
Proof. Consider an edit script Diff= op1, op2, …, opk  transforming Si to Sj following 

our tree edit distance measure. We proceed by induction over the length k =|Diff|. If k=0, i.e., 



Diff=, then ( ,  )i jManh V V = TED(Si, Sj) = 0 (Simn-value = SimTED=0). When extending Diff by a 

new edit operation opn, the edit distance TED is increased by Cost(opn)=1, i.e., the cost of the 

edit operation. Yet, the Manhattan distance varies as follows. The edit operation following 

our approach may be a leaf node insertion, leaf node deletion or a node update: 
 

- The insertion operation increases the occurrence frequency of the node value being 

inserted (i.e., the corresponding node value vector weight), by a score of 1. As a result, 

( ,  )i jManh V V increases by 1. 

- The deletion operation causes a decrease in the occurrence frequency of the node value 

vector weight corresponding to the node value being deleted, by a score of 1. This 

increases ( ,  )i jManh V V by 1. 

- The update operation affects the occurrence frequency of two node value weights: 

decreasing by 1 the weight of the node value corresponding to the old node, and 

increasing by 1 the weight of the node value corresponding to the new node. In other 

words, ( ,  )i jManh V V

 

increases by a score of 2. 

 

Based on the three points above, it follows that the Manhattan distance ( ,  )i jManh V V

changes by at most 2 for each edit operation affecting a SOAP message trees, whereas TED 

changes exactly by a value of 1. Therefore, the inequality of formula  (6) holds, and thus 

Lemma 3 is proved  

 

6.2 Combined Filter Function 
 

 

Recall the combined filter similarity function in formula  (3): 
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Lemma 4. Given two SOAP trees Si and Sj, the combined filter function SimFilter in 

formula (3) is an upper bound of our tree edit distance similarity measure, SimFilter(Si, Sj  ≥ 

SimTED(Si, Sj).  

 
Proof. The combined filter similarity comes down to the weighted sum of its component 

filter measures:  
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where F={n-edge, n-order, n-value} is the set of component filters, and: 
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where   f 
2 is the variance over all SOAP trees according to the f-th filter function within the 

SOAP tree candidate set. 

 

Consequently, for all SOAP trees Si and Sj in the candidate set: 
 

For each f   F, Simf (Si, Sj) ≥ SimTED(Si, Sj)    
 

      
i j i j (S , S )   (S , S )f f TED

f F

w Sim Sim




 

  



    SimFilter(Si, Sj) ≥ SimTED(Si, Sj) 
 

Hence, Lemma 4 is proved  

 

7  CONCLUSION 
 

In this paper, we describe a new framework for Differential SOAP Multicasting (DSM). It 

consists in identifying the common pattern and differences between SOAP messages, and 

multicasting those messages that are most similar. The groundwork and overall architecture of 

DSM have been described in (Tekli J., Damiani E. et al. 2011a). This paper‟s contribution 

extends the latter publication, developing DSM‟s filter-differencing module: the filter 

functions and the tree edit distance measure. Also, we describe our machine-readable 

differencing language SDL (Simple Diff Language), which was omitted from (Tekli J., 

Damiani E. et al. 2011a), and present additional simulation experiments. Results show that 

our approach outperforms its alternative, SMP (Phan K.A.; Tari Z.; and Bertok P. 2008), and 

minimizes network traffic in comparison with traditional multicast and unicast. Our technique 

readily lends itself to seamless integration with well-known optimizations of underlying 

protocols, e.g. by sending SOAP multicasts over persistent HTTP connections on high-

latency networks (Kangasharju J.; Tarkoma S. and Raatikainen K. 2003).  

In our future work, we also plan to make use of tight software integration architectures, 

such as in (Kostoulas M. G., Matsa M. et al. 2006; Zhang W. and Van Engelen R. A. 2006), 

so as to avoid repeated/unnecessary data processing (in serialization and multicasting, and in 

parsing and de-serialization, minimizing interference between the different techniques 

involved in SOAP message exchange), copying to/from memory buffers, and expensive data-

type transformations (ASCII/UTF to in-memory types, and vice-versa). This would prove 

essential in improving overall multicast time response, namely when handling bulky scientific 

data such as arrays of integers and doubles. We also plan to investigate multicasting of secure 

SOAP messages, to improve performance in the evaluation of WS security policies  

(Turkmen F. and Crispo C. 2008), which remains a virtually unexplored topic to this date.  
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