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Abstract. While Information Retrieval (IR) systems have gained success in Web-style search engines in the past 

two decades, nonetheless, the DataBase (DB) paradigm remains prevalent in handling data in enterprise 

environments and digital libraries, and is gaining even more importance in the Semantic Web with the increasing 

need to handle partly structured (NoSQL) data. This paper describes SemIndex+, a semantic-aware indexing and 

querying framework that allows semantic search, result selection, and result ranking of structured (relational DB-

style), unstructured (IR-style), and partly structured (NoSQL) data. Various weighting functions and a parallelized 

search algorithm have been developed for that purpose and are presented here. We provide a general keyword 

query model allowing the user to choose the results’ semantic coverage and expressiveness based on her needs. 

Different from alternative solutions involving query relaxation, query refinement, or query disambiguation, our 

approach incorporates semantics at the most basic data indexing level: providing more opportunities toward 

speedups and semantic coverage. An extensive experimental evaluation, comparing SemIndex+ with alternative 

methods, highlights our approach’s flexibility and effectiveness, which in turn impact efficiency (requiring less or 

more time following the user specified index and query semantic coverages). 

Keywords: Semantic Queries, Inverted index, NoSQL indexing, Semantic Network, Semantic-aware data 

processing, Textual databases, Query Relaxation, Semantic Disambiguation. 

 

1. Introduction 

Full-text search techniques originally developed in Information Retrieval (IR) systems, and more recently imbedded 

in DataBase (DB) systems, aim at providing the most relevant textual data objects (e.g., documents in IR, or tuples in 

a DB) to a user query consisting of a set of keywords [9, 10, 30]. The brute force approach is to sequentially scan the 

data objects in the collection, in order to search for terms matching those of the user query, which could be extremely 

inefficient for big data collections. Most IR/DB systems use some sort of indexing to speed up the search process. 

Currently, the foremost indexing structure used with full-text search is the inverted index model [56, 61, 79]. Inverted 

indexes associate each term in the text with a list of pointers to the data objects that contain the term, in the form of a 

list of (term, objectIDs[]).Then, when an enquiry is performed, the index is queried with every term within the user 

query, identifying as candidate results all data objects that contain the query terms in just one scan of the index [9]. 

The inverted index is widely adopted for full-text indexing of large textual collections [9], and is supported by many 

DBMSs1 for storing and handling structured data (cf. Table 1) [4, 9], unstructured data (cf. Table 2)  [30, 60], as well 

as partly structured2 data (cf. Table 3) [40, 86]. Yet, as full-text search systems became available to non-expert users, 

keyword queries become noisier, where non-experts have poor or no knowledge about the data being searched. As a 

result, they tend to formulate query keywords which are often syntactically different from those used in indexing 

relevant documents in the DB [39], thus returning non-relevant results or completely missing relevant ones.  

 

1.1. Motivation Examples 

To illustrate this, consider a textual data collection  from a movie database, where each movie in  is identified with 

an ID and is described with some text, including the movie title, year, plot, genre, and info. The data collection can be 

presented in different forms: i) structured, following the traditional relational (SQL) DB model, noted Struct as shown 

                                                 

*   Corresponding author. This study was partly conducted during the author’s Fulbright Visiting Scholar research mission conducted in the Computer 

and Information Science Department, University of Michigan, Dearborn, USA 
1    Database Management Systems. 
2   We use the expression partly structured, to distinguish basic NoSQL data consisting of attribute-value items, from hierarchically structured data 

such as XML and RDF-based serializations, which are commonly referred to as semi-structured data [81]. The latter are out of the scope of this 

paper, and will be addressed in a dedicated study. 



 

in Table 1, ii) unstructured, made of free text, noted Free as shown in Table 2, or iii) partly structured, following the 

basic attribute-value (NoSQL) DB model, noted Part as shown in Table 3. 
 

Table 1. Sample movies data collection extracted from IMBD1, provided in the form of structured text, noted Struct. 
 

ID title year plot genre info 

O1 
When a 
Stranger 

calls 

2006 
A young high school student babysits for a very rich 
family. She begins to receive strange phone calls 

threatening the children... 

Horror, 

Thriller 

When the Mandrakises 

were about to leave… 

O2 
Days of 
Thunder 

1990 

Cole Trickle is a young racer from California with years 

of experience in open-wheel racing winning 

championships in Sprint car racing… 

Action, 
Drama 

In the clip from the 
race at Rockingham… 

O3 
The Sound 
of Music 

1965 

Maria had longed to be a nun since she was a young 

girl, yet when she became old enough discovered that it 

wasn’t at all what she thought... 

Drama, 
Family 

The 1996 video fits the 
movie onto one VHS… 

 

Table 2. Sample data collection from IMBD (cf. Table 1), provided in the form of unstructured free text, noted Free. 
 

ID description 

O1 
When a Stranger Calls (2006), Horror, Thriller: A young high school student babysits for a very rich 

family. Driving by the house, a strange car... 

O2 
Days of Thunder (1990), Action, Drama: Cole Trickle is a young racer from California with years of 

experience in open-wheel racing winning championships in Sprint car racing…  

O3 
Sound of Music, The (1965), Drama, Family: Maria had longed to be a nun since she was a young girl, yet 

when she became old enough discovered that it wasn’t at all what she thought... 

 

Table 3. Sample data collection from IMBD (cf. Table 1), provided in the form of partly structured text, noted Part. 
 

ID: O1 
title: When a 

Stranger Calls 
year: 

2006 

plot: A young high school student 
babysits for a very rich family. Driving 

by the house, a strange car… 

genre: 
Horror, 

Thriller 

info: When the 
Mandrakises were about 

to leave… 
      

ID: O2 
description: Days of Thunder (1990), Action, Drama: Cole Trickle is a young racer from California 

with years of experience in open-wheel racing winning championships in Sprint car racing… 

      

ID: O3 
title: The Sound 

of Music 

plot: Maria had longed to be a nun since she was a young 
girl, yet when she became old enough discovered that it 

wasn’t at all what she thought... 

genre: Drama, 

Family 

 
Consider keyword-based queries q1, q2, and q3 applied respectively on each the above data collections, formulated 

as standard DB selection () containment () queries (formally described in Section 5): q1 = σtitle  (“sound”, “of”, 

“music”)
ΔStruct, q2 = σdescription  (“open-wheel”, “racer”)

ΔFree, and q3 = σgenre  (“thriller”)ΔPart. The search result for query q1 is 

movie O3 (from ΔStruct) which title attribute contains occurrences of each of the query’s terms. Similarly, search results 

for q2 and q3 are: O2 (from ΔFree) and O1 (from ΔPart) respectively. Yet, if the user wants to search for a particular 

movie but cannot recall its exact title, plot, or genre descriptions, she will likely use her own terminology in choosing 

query terms which (we naturally assume) are lexically and/or semantically similar to the movie’s description terms, 

e.g., “voice of melody”,  “auto rallying”, or “suspense”. Such terms might not exactly match those used to describe 

(and index) the movie objects (which is the case in our examples), and thus will miss movies O1, O2, and O3 as relevant 

results. As a matter of fact, there are typically many ways to specify a given concept: as textual descriptions may 

involve terms with multiple meanings (homonymy, e.g., term “sound” could mean a particular auditory effect or a 

narrow channel in the sea paper sheet according to a general purpose knowledge base such as WordNet [66]), terms 

implied by other terms (metonymy, e.g., term “thunder” implies “lightning”, and “nun” implies “religion”), several 

terms having the same meaning (synonymy, e.g., terms “thunder”, “roar”, and “boom” all refer to the same meaning: a 

deep prolonged loud noise), or terms related by some semantic relationships (e.g., hypernymy (isA), holonymy 

(partOf), such as thunder-isA-noise, or engine-partOf-car). Therefore, the terms used as keywords in a user's query 

might literally match terms in irrelevant movie objects (decreasing search precision2), or might completely miss 

relevant movies where no exact query term matches are identified (decreasing search recall
1
). In addition, the movie 
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objects might not be extensively described or well-tagged in the DB, or might not be described using the same 

attributes: namely in a partly structured DB (cf. Table 3).  

This shows that the standard inverted index cannot deal with these cases. Solving this issue has been the main 

motivation for developing so-called semantic-aware or knowledge-aware (keyword) query systems, which have 

emerged since the past decade as a natural extension of traditional containment queries, encouraged by (non-expert) 

user demands. Most existing works in this area (cf. Background in Section 2) have incorporated semantic knowledge 

at the query processing level, to: i) pre-process queries using query relaxation and rewriting [17, 27, 64], ii) 

disambiguate queries using semantic disambiguation and entity recognition techniques [17, 58, 71], and/or iii) post-

process query results using query refinement and results re-ranking [71, 80, 88]. Yet, various challenges remain 

unsolved, namely: i) time latencies when involving query pre-processing and post-processing [27, 64], ii) reduced 

quality of query relaxation/rewriting and query disambiguation results: requiring context information (e.g., expanded 

queries, user profiles, or query logs) which are not always available [19, 32], and iii) limited user involvement, where 

the user is usually constrained to providing feedback and/or performing query refinement only after the first round of 

results has been provided by the system [21, 67].  
 

1.2. Proposal Overview 

In this work, we adopt another alternative: building a semantic-aware inverted index called SemIndex+, integrating 

textual information with domain knowledge (not only at the querying level, but rather) at the most basic data indexing 

level, in order to support semantic-aware querying and answer most challenges identified above. Fig. 1 depicts the 

overall framework of our approach and its main components. Briefly, SemIndex+ maps two data resources, namely a 

textual data collection (represented as an inverted index), and a semantic knowledge base (represented as a semantic 

network) into a single and tightly coupled semantic-aware data structure. This is performed offline – prior to online 

query execution, providing more opportunities toward both speed-ups and semantic-based filtering, thus minimizing 

the need for query pre- and post-processing.  
 

 

 

 

 

Fig. 1.  Overall architecture of the SemIndex+ framework (added components are highlighted in red).            
 

An initial solution design titled SemIndex was given in [23] aimed at indexing unstructured (free-text) data only. 

This paper introduces SemIndex+, a new framework allowing to index and search unstructured, structured (relational), 

and partly structured (NoSQL) textual data. SemIndex+’s main additions to the previous framework are highlighted in 

Fig. 1. At the indexer level, we add: i) an extension of SemIndex’s logical design to handle varying multi-attribute 

datasets (using attribute sensitive indexers), ii) a dedicated algorithm to handle terms with missing semantic 

connections (which we designate as missing terms), and iii) a mathematical model for weighting SemIndex+ entries 

(i.e., the graph’s nodes and edges). At the query processing level, we develop: iii) a parallelized (multithreaded) query 

processing algorithm, coupled with iv) a dedicated relevance scoring measure, required in the query evaluation 

process to retrieve and rank relevant query answers. In addition, we add: iv) a detailed complexity analysis covering 

the new index construction and querying algorithms, and v) an extensive experimental study comparing SemIndex+’s 

effectiveness and efficiency with various generic approaches (including inverted index search, query relaxation, query 

disambiguation, and query refinement). Results highlight SemIndex+’s flexibility (involving the user in the whole 

process: during initial index building, query writing, and then query refinement) and effectiveness (producing 

significantly more semantically relevant results compared with existing solutions) which in turn affect its efficiency 

(requiring less or more processing time following user-specified index and query semantic coverages). 

The rest of this paper is organized as follows. Section 2 briefly reviews related works. Section 3 describes 

SemIndex+’s input resources. Section 4 develops SemIndex+’s design, including the index construction process and 

weighting functions. Section 5 develops SemIndex+’s query model and query processing algorithm. The 

computational complexity of SemIndex+ construction and querying algorithms is provided in Section 6. Experimental 

results are presented in Section 7. Section 8 concludes the paper with ongoing and future directions. 
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2. Related Works 

2.1. Keyword Search in Textual Databases 

Early approaches on keyword search queries for RDBs use traditional IR scores (e.g., TF-IDF) to find ways to join 

tuples from different tables in order to answer a given keyword query [4, 35, 47]. The proposed search algorithms 

focus on enumeration of join networks called candidate networks, to connect relevant tuples by joining different 

relational tables. The result for a given query comes down to a sequence of candidate networks, each made of a set of 

tuples containing the query keywords in their text attributes, and connected through their primary-foreign key 

references, ranked based on candidate network size and coverage. Recent methods on RDB full-text search in [14, 60] 

focus on more meaningful scoring functions and generation of top-k candidate networks of tuples, allowing to group 

and/or expand candidate networks based on certain weighting functions in order to produce more relevant results. The 

authors in [63] tackle the issue of keyword search on streams of relational data, whereas the approach in [89] 

introduces keyword search for RDBs with star-schemas found in OLAP applications. Other approaches introduced 

natural language interfaces providing alternate access to a RDB using text-to-SQL transformations [57, 73], or 

extracting structured information (e.g., identifying entities) from text (e.g., Web documents) and storing it in a DBMS 

to simplify querying [25, 26]. Few recent approaches have addressed keyword-search in NoSQL DBs such as HBase 

[40, 49, 86], using dedicated (row or column) table schemas coupled with (horizontal or vertical) index partitioning, to 

support parallel index storage and search [40], as well as multi-term indexing and incremental query result fetching 

[86]. Keyword-based search for other data models, such as XML [2, 24] and RDF [13, 15] have also been studied. 
 

Discussion: Our work is complementary to most existing DB search algorithms in that our approach extends 

syntactic keyword-term matching: where only tuples containing exact occurrences of the query keywords are 

identified as results, toward semantic based keyword matching: where tuples containing terms which are lexically and 

semantically related to query terms are also identified as potential results, a functionality which - to our knowledge - 

remains unaddressed in most existing DB search algorithms. 
 

2.2. Extending Syntactic Search toward Semantic Search 

While DB approaches focused on integrating traditional (syntactic) keyword-based search functionality, many efforts 

have been deployed by the IR community to extend syntactic processing toward semantic full-text search using 

dedicated semantic indexing techniques, leading to the so-called concept-based (or knowledge-based) IR [8, 11, 55]. 

The latter is an alternative IR approach that aims to tackle the semantic relatedness problem by transforming both 

documents and queries into semantic representations, using semantic concepts in a reference knowledge base  (instead 

of syntactic keywords/terms) such that the retrieval process is undertaken in the concept space [12, 42, 55]. Existing 

concept-based methods, e.g., [8, 11, 12, 42, 54, 55], can be characterized by three parameters: i) Semantic indexing: 

consists of the representation model the concepts are based on, as well as the underlying indexing technique used to 

access the concepts. It attempts to solve the problems of lexical matching by using conceptual indices instead of 

individual word indices for retrieval [54]; ii) Mapping method: the mechanism that maps the lexical terms with these 

semantic concepts. The mapping can be performed using manual mapping w.r.t. a handcrafted ontology such as 

WordNet [66] or Yago [45], or using machine learning [41] or graph matching techniques [12], though this would 

usually imply less accurate mappings, iii) Usage in the retrieval process: the stages in which the concepts are used in 

information retrieval. Concepts would be best used throughout the entire process, in both the indexing and retrieval 

stages [12]. Yet, most existing solutions apply concept analysis in one stage only, performing so-called query 

relaxation/refinement or query disambiguation over the bag of words retrieval model [44], to reduce processing time. 
 

2.2.1. Query Relaxation and Refinement 

Traditional query relaxation and refinement methods (cf. surveys in [19, 77]), rely on corpus-based evidence: 

expanding user queries by adding words that often co-occur with the query terms in a given corpora (e.g., France and 

Paris; car and driver). Query expansion terms can also be identified from user feedback (frequent terms occurring in 

previous results) [20, 68, 76], as well as query logs (terms related to past queries and accessed documents) [29, 43, 

51]. We distinguish between query relaxation and query refinement on the grounds that query relaxation occurs before 

query execution and is considered as a query pre-processing phase [6, 17, 68], whereas query refinement occurs after 

the first round of query results have been acquired by the user and is thus considered as a query post-processing phase 

[20, 21, 67]. Such approaches usually require manual tuning to improve performance: too few expansion terms may 

have no impact, and too many can cause a query drift [68]. In addition, corpus-based approaches require extensive 

training and huge corpora, which make such methods less practical especially in the context of Web applications. This 

has led to a growing interest knowledge-based solutions, e.g., [17, 58, 72], investigating the use of ontological 

information (rather than corpus statistics) to assist the user in formulating and/or expanding keyword queries by: i) 

allowing some user interaction to accurately identify the intended senses of query-terms, and then ii) 

expanding/rewriting query keywords via their most related semantic concepts in the reference semantic source [7] 

(such as WordNet [66] or Yago [45]). Note that query relaxation and query refinement techniques introduce additional 



 

query pre-processing and post-processing overhead respectively compared with the traditional bag-of-words approach, 

adding statistical and/or knowledge-based information to expand/rewrite each query before/after processing, such that 

users are generally involved in the query refinement process after the system provides the first round of results.  
 

2.2.2. Query Disambiguation 

An alternative approach to handle semantic meaning is to apply automatic word sense disambiguation (WSD) to 

queries, during query execution time. Disambiguation methods usually use knowledge resources such as WordNet 

[59], and/or co-occurrence statistical data in a corpus [78] to find the possible senses of a word and map word 

occurrences to the correct sense (cf. WSD surveys in [69, 81]). Semantic query analysis in IR usually involves two 

steps: i) WSD to identify the user’s intended meaning for query terms, and ii) semantic query 

representation/enhancement in order to alter the query so that it achieves better (precision and recall) results [7, 58]. 

The disambiguated query terms are then used in query processing, so that only documents that match the correct sense 

are retrieved [59]. Yet, the performance of WSD-based approaches depends on the performance of the automated 

WSD process [37] which generally: i) is computationally complex requiring substantial execution time [69], ii) 

depends on the context of the query/data processed (e.g., surrounding terms) [22, 90] which is not always sufficiently 

available (e.g., keyword queries on the Web are typically 2-to-3 words long [53, 86]), and thus iii) do not guarantee 

correct results [37, 52] as incorrect disambiguation is likely to harm performance [37]. 

 

Discussion: Most existing methods focus on query pre-processing using query relaxation [17, 64, 68], query 

disambiguation [7, 58, 59], or query post-processing using query refinement (exploiting user feedback after the system 

provides the first round of results) [20, 21, 67]. In contrast, our study encloses the semantic knowledge directly into an 

inverted index so that semantic-aware processing can be done at the most basic indexing level, where more 

opportunities can be explored toward semantic-aware filtering. This allows users to be involved in the whole process: 

during data indexing, initial query writing, processing, and then performing query refinement and rewriting.  

 

2.3. Inverted Indexes handling Data Semantics 

Various efforts have been recently deployed to extend the inverted index toward handling data semantics. These can 

be organized in three main categories: i) including semantic knowledge into an inverted index, ii) including full-text 

information into the semantic knowledge base, and iii) building an integrated hybrid structure.  

The first approach consists in adding additional entries in the index structure to designate semantic information. 

Here, the authors in [54] suggest extending the traditional (term, docIDs[]) inverted index toward a (term, context, 

docIDs[]) structure where contexts designates senses (synsets) extracted from WordNet, associated to each term in the 

index taking into account the statistical occurrences of concepts in Web document [11]. The authors however do not 

provide the details on how concepts are selected from WordNet and how they are associated to each term in the index. 

Another approach is introduced in [92], extending the inverted index structure by adding extra pointers linking each 

entry of the index to semantically related terms, (term, docIDs[], relatedTerms[]). Term links are identified by 

analyzing term occurrences in Web documents, based on Web document Page-Rank linkage analysis. Yet, the authors 

do not describe how they consider semantic relatedness between terms (what kinds of semantic relations and 

processing are used), nor how the index is actually built based on linked Web documents. A second approach to 

semantic indexing is to add words as entities in the ontology [11, 85]. For instance, adding triples of the form word 

occurs-in-context concept, such that each word can be related to a certain ontological concept, when used in a certain 

context. Following such an approach: i) the number of triples would naturally explode, given that ii) query processing 

would require reaching over the entire left and right hand sides of this occurs-in-context index, which would be more 

time consuming [11] than reading an indexed entry such as with the inverted index. A possible optimization would be 

to split the relation into word occurs-in context and concept occurs-in context, yet the relations would remain huge 

and concept occurs-in-context always has to be processed entirely [11]. A related approach has been used to 

disambiguate WordNet glosses [70, 85], and has been proven useful in enhancing WSD-based query expansion. A 

third approach to semantic indexing consists in building an integrated hybrid structure: combining the powerful 

functionalities of inverted indexing with semantic processing capabilities. To our knowledge, one existing method in 

[11] has investigated this approach, introducing a joint index over ontologies and text. The authors consider two input 

lists: containing text postings (for words or occurrences), and lists containing data from ontological relations (for 

concept relations). They produce a 4-tuples index structure (prefix, terms[])  (term, context, concepts[]) where a 

prefix contains one index item per occurrence of a term starting with that prefix, adding an entry item for each 

occurrence of an ontological concept in the same context as one of these words. The authors tailor their method 

toward incremental query construction, performing context-sensitive prefix suggestions of terms in building queries.  
 

Discussion: The method in [11] seems arguably the most related to our study, with major differences in 

objectives and theoretical/technical contributions: the authors in [11] target semantic full-text search with special 

emphasis on incremental query construction and suggestion based on query term prefixes and result excerpts, whereas 

we target semantic search in textual DBs extending DB-style (SQL and NoSQL based) querying capability toward 

semantic full-text search. Hence, while the authors in [11] focus on the IR aspects of indexing, keyword query 



 

construction, and query evaluation, we rather present a full-fledged textual DB solution, with structures and 

algorithms designed for seamless storage and manipulation within a typical DB system, allowing to process 

unstructured (IR-style), structured (SQL-style), and partly structured (NoSQL) data. 

 

3. Input Resources 

As indicated previously, our work consists in combining two resources, a textual data collection and a semantic 

knowledge base, in order to build SemIndex+. We first describe the textual resource in Section 3.1, and then describe 

the semantic resource in Section 3.2.  
 

3.1. Textual Data Collection 

In our study, a textual data collection can be a set of: i) documents or unstructured text fields in a textual DB, ii) 

structured tuples in a relational DB, or iii) partly structured data items in a NoSQL DB, as shown in Tables 1 to 3 

respectively. Here, we provide a unified formal definition: 
 

Definition 1 - Textual Data Collection: A textual data collection Δ (i.e., textual collection for short) is defined 

as a collection of data objects where every object Oi  Δ has a unique identifier id(Oi) and is made of a set of 

attribute-value pairs Oi{Am:am,…, Aj:aj,…, An:an}. Each attribute Aj has domain dom(Aj) designating the set of values 

(strings, numbers, etc.) allowed in Aj, where aj  dom(Aj).  Each data value aj from Oi associated to attribute Aj is 

denoted as Oi.aj. We designate by Δ.A = {A1, Am,…, An,…, Ap} the set of all attributes associated to all objects in Δ  
 

Definition 1 - can be used to describe: structured, unstructured, and partly structured (NoSQL) data. It can 

describe a structured (relational) data collection, such as Struct in Table 1, which consists of 3 data objects with textual 

contents organized following a set of 6 attributes: Struct.A = {ID, title, year, plot, genre, info}. Similarly, an 

unstructured (free text) data collection, such as Free in Table 2, would be represented as a set of data objects having 

each an object ID coupled with its textual description, e.g., Free.A ={ID, description}. Definition 1 - also allows to 

represent partly structured data collections, such as Part in Table 3, where every data object in the data collection is 

made of the object ID combined with a different subset of attributes defined in the data collection, e.g., a subset of 

Part.A={ID, title, year, plot, genre, info, description}. Here, we adhere to the most basic form of partly structured data 

collections known as NoSQL attribute-value or key-value stores [33], where every data object (identified by its key) is 

made of a set of attribute-value items (e.g., title-“When a Stranger Calls” is the first item in data object O1 of NoSQL). 

More sophisticated NoSQL models such as document DBs [13] or graph stores [74], where attribute-value items can 

be linked/nested with hierarchical or cross relations, are disregarded here and will be covered in a dedicated study. 

Given a textual data collection Δ, an inverted index (also referred to as a posting file, or inverted list) built upon 

Δ, is (in its most basic form) a sorted list of index terms associated each with a set of object identifiers from Δ [61], 

disregarding attribute information as shown in Fig. 2.a. In this study, we extend the basic inverted index to handle 

multi-attribute data objects, introducing an object-attribute (OA) index:  
 

Definition 2 - Object-Attribute (OA) Inverted Index: Given a textual data collection Δ, an OA inverted index 

built on Δ, denoted as InvIndexOA(Δ), is a structure of the form (dom(A), OAs, f) where: 
 

 dom(A) designates the set of values within the domains of all attributes  Aj  Δ.A. Considering text-only 

domains, values come down to textual tokens, i.e., terms (words/expressions), 

 OAs designates the set of object (identifier)-attribute doublets, i.e., OAs = {(id(Oi), Aj)}   Oi  Δ  and   Aj 

 Δ.A /  Oi .aj  , where Aj is an attribute for which object Oi has a non-null value, 

 f is a function mapping each term  dom(A) with a list of object-attribute doublets OAs[] designating the 

term’s occurrence locations in Δ, i.e., OAs[] =  (id(Oi), Aj) 1  / term  Oi .aj   
 

A term used as textual token in the inverted index is referred to as index term, whereas the list of object-attribute 

doublets, i.e., OAs[], mapping to each index term is referred to as the term’s posting list (cf. example in Fig. 2.b)  
 

Fig. 2 shows extracts of a basic inverted index (without attribute information, which was adopted in the initial 

SemIndex study [23]) as well as the corresponding OA multi-attribute inverted index, built on the sample movie data 

collection ΔPart in Table 3, where data objects O1, O2, and O3 have been indexed using index terms extracted from the 

data collection, and sorted in alphabetic order. Another form of a multi-attribute inverted index can also be defined as 

a term-attribute (TA) index, where term-attribute doublets are mapped with object identifies (as shown in Fig. 2.c). 

Both (logically equivalent yet technically different) variants can be straightforwardly integrated in SemIndex+. Note 

                                                 

1  We use symbols  and  to designate an ordered list of elements, and symbols { and } to designate an unordered set. 



 

that we will use ΔPart as the running example data collection in the remainder of the paper since it integrates and 

generalizes all interesting properties from its ΔStruct and ΔFree counterparts. 

SemIndex+ allows both attribute-sensitive and attribute-free indexing and querying (as opposed to only attribute-

free processing in [23]). We can choose to disregard attributes: i) at the index level (using the traditional InvIndex, 

adopted in [23]), or ii) at the querying level, following the user query at hand (since InvIndexOA and InvIndexTA can be 

straightforwardly processed as traditional attribute-free indexes by simply disregarding attribute information and 

merging corresponding posting list entries). For instance, running query q4 = σ  (“light”, “horror”)ΔPart on either 

InvIndexOA (ΔPart) or InvIndexTA (ΔPart), where  designates the combined textual content from all attributes, would 

return as answer O1, since O1’s textual content in ΔPart contains both terms “light” and “horror” (despite the fact that 

the two terms occur in two separate attributes: plot and genre respectively). 
 

 

 

Term  Object IDs[] 

“Car”  O1, O2 

“Horror” O1 

“Light”  O1 

“Sound”  O3 

“Zen”  O1 

…  …  
 

 

a. Simple (attribute free) inverted 

index InvIndex(ΔPart), adopted in 

our original study in [23] 
 

 

 

Term (Object id, Att.)[] 

“Car” (O1, plot), (O2, description 

“Horror” (O1, genre), 

“Light” (O1, plot) 

“Sound” (O1, plot), (O3, title), (O3, plot) 

“Zen” (O1, plot) 

… … 
 

b. Object-Attribute inverted index 

InvIndexOA(ΔPart) 

 

(Term, Attribute)  Object IDs[] 

(“Car, plot)  O1 

(“Car, description) O2 

(“Horror, genre) O1 

(“Light”, plot)  O1 

(“Sound”, title)  O3 

(“Sound”, plot)  O1, O3 

(“Zen”, plot)  O1 

…  …  
 

c. Term-Attribute inverted index 

InvIndexTA(ΔPart) 
 

 

Fig. 2. Sample inverted indexes based on text collection ΔPart in Table 3. 

 

3.2. Semantic Knowledge Base   

In the Natural Language Processing (NLP) and Information Retrieval (IR) fields, semantic knowledge bases (i.e., 

thesauri,  taxonomies, and/or Ontologies such as WordNet [66], Roget’s thesaurus [90], and Yago [45]) provide a 

framework for organizing words/expressions into a semantic space [16]. A knowledge base1 is usually modeled as a 

semantic network made of a set of entities representing semantic concepts (or groups of words/expressions), and a set 

of links between the entities, representing semantic relationships (synonymy, hyponymy, etc.). In this study, we adopt a 

graph-based structure to model semantic knowledge bases. In such a structure, entities are represented as vertices, and 

the semantic relationships between entities are represented as directed edges. Formally:  
 

Definition 3 - Semantic knowledge base: A semantic knowledge base KB (i.e., knowledge base for short) is 

represented as a semantic network graph, also known as knowledge graph, GKB(V, E, L, fV, fE) where: 

 V is a set of vertices (nodes), designating entities in the knowledge base. To illustrate this with WordNet for 

example, V includes both: i) sense nodes, representing semantic senses (synsets) with glosses, and ii) term 

nodes, representing literal words/expressions. 

 E is a set of directed edges, an edge consisting of an ordered pair of vertices in V.  

 L is a set of edge labels denoting semantic/lexical relationships. For WordNet, L includes: 

o Semantic relationships between concepts, e.g., hyponymy, hypernymy, meronymy, etc. 

o Semantic relationships between concepts and terms, namely has-sense and has-term (e.g., in Fig. 3, word 

“Zen” has-sense S1, and S1 has-term “Zen”)  

o Lexical relationships between terms, namely derivation (e.g., term “Zen” derives term “Buddhist Zen”, and 

“Buddhist Zen” is-derived-from “Zen”) 
 

 fV is a function defined on V, designating the string value of each node in V. For WordNet, string values 

include: i) glosses/definitions, when dealing with sense nodes, and ii) and literal words/expressions,  

 fE is a function defined on E, assigning a label from L to each edge in E. Multiple edges may exist between the 

same pair of vertices when dealing with term nodes, which makes GKB a multi-graph  
 

An extract from the WordNet lexical ontology is shown in Fig. 3, where S1, S2 and S3 represent senses (i.e., 

synsets), and their string values (i.e., the synsets’ glosses/definitions), and T1, T2, …, T11 represent terms, and their 

string values (i.e., literal words/expressions) shown along aside the nodes. Given that most semantic/lexical 

relationships are symmetrical (hyponymy/hypernymy, meronymy/holonymy, has-sense/has-term, etc.), and given that a 

relationship cannot exist without its symmetrical counterpart, we simplify our graph model by representing each 

couple of symmetrical relationships between senses and/or terms with one edge having opposite directions (instead of 

two edges), labeled with the names of the symmetrical relationships.  

                                                 

1
  In the remainder of the paper, we will use WordNet [66] as the illustrative semantic knowledge base (cf. Fig. 3). 



 

A simple inverted index InvIndex(GKB) can be subsequently built for the textual tokens of each GKB entity (i.e., 

string values of term nodes and sense nodes, cf. Fig. 3.b) to speed up term/sense lookup when creating and then 

querying the integrated SemIndex+ structure. 
 

 

 

 

a. Sample GKB graph representing a KB extract from WordNet. 
 

 

Term Sense IDs[] 

“acid” S1, S3 

“clean” S2 

“light” S2 

“lsd” S3 

“lysergic” S1, S3 

“window pane” S1 

… … 
 

b. Extract of inverted index InvIndex(GKB) 

connecting terms in GKB with corresponding 

senses (to speed up term/synset lookup)  

 

Fig. 3.  Extract from the knowledge graph of WordNet, with the corresponding inverted index. 

 

4. SemIndex+ Design 

In this section, we present the logical design techniques of SemIndex+, highlighting extensions to our initial model 

from [23] necessary to handle structured and partly structured data. In the following, we first present SemIndex+’s 

graph model, and then describe its construction process. 
 

4.1. SemIndex+ Graph Model 
 

We define SemIndex+ as an extension of the SemIndex knowledge graph developed in [23], where additions to the 

initial model necessary to handle multi-attribute indexes are highlighted in bold: 

 
Definition 4 -  SemIndex+ graph: Given an input textual collection Δ and an input knowledge base KB, we 

define SemIndex+(Δ, KB) as an extended knowledge graph SIG  (Vi, Vd, Va, L, Ei, Ed, fV, fE, fW) where: 
 

 Vi is a set of index nodes, denoting i) entities (senses and terms) from KB, and ii) index terms from Δ: 

o iV  Vi the subset of term nodes designating searchable terms1 in SIG , i.e., nodes referring to terms 

from KB and index terms from Δ (represented visually as circle nodes ) 

o #
iV  Vi the subset of sense nodes in SIG  referring to senses from KB (represented as double circles ◎) 

Naturally, Vi = iV  #
iV  

 Vd is a set of data nodes, denoting data objects from Δ (represented visually as square shaped nodes 2) 

 Va is a set of attribute nodes, denoting attributes from Δ (represented as polygon shaped nodes )   

 Ei is the set of edges between index nodes, called index edges, defined as ordered pairs of index nodes in Vi 

(represented visually as straight arrows ) 

 Ed is the set of 3-uniform hyper-edges linking index nodes with data nodes through attribute nodes, 

called data edges (represented visually as dashed arrows  ) 

 L is a set of edge labels including: 

o Index edge (Ei) labels which represent semantic/lexical relationships between index nodes (e.g., 

hyponymy, meronymy, has-sense, etc.) 

o A single data edge (Ed) label: contained, designating the containment relationship between term nodes in 

iV  and data nodes in Vd 

 fV is a function defined on Vi 



  
Vd 

 
Va, representing the string value of each node in Vi 




  
Vd 

 
Va 

 fE is a function defined on Ei  Ed, assigning a label from L to each edge in Ei  Ed 

 fW is a weighting scheme defined on the nodes in Vi 



  
Vd  

 
Va and the edges in  Ei  Ed. The weights 

will be used in selecting and ranking semantic-aware query results (cf. Section 4.5)  

                                                 

1   Searchable terms will be mapped against query terms when performing query processing (cf. Section 5). 
2    Data nodes will designate (potential) query search results (Section 5.2). 



 

Building the SemIndex+ graph comes down to: i) generating two separate graph representations for each of the 

input resources: the textual collection (noted G ) and the knowledge base (noted KBG ), following our SemIndex+ 

graph model, and then ii) tightly coupling the resulting graphs into a single SemIndex+ graph structure (noted SIG ), 

which we describe in the following subsections. A sample SemIndex+ graph is shown in Fig. 7 (Section 4.4), built 

based on textual collection ΔPart from Table 3 (where corresponding G  in provided in Fig. 5.a) and the KB extract in 

Fig (where corresponding KBG  is reported in Fig. 5.b). It comprises 3 data nodes (O1 – O3), 4 attribute nodes (A1 – A4), 

3 index sense nodes (S1 – S3), and 12 index term nodes (T1 – T12) along with corresponding data and index edges.  

 

4.2. Indexing the Textual Collection 
 

Given an input textual collection Δ, we use a conversion function following Definition 4 -to produce a SemIndex+ 

graph representation of Δ denoted as G  = SemIndex+(Δ, )1. It comes down to first generating Δ’s inverted index: 

either using InvIndexOA(Δ) (cf. Fig. 2.b) or InvIndexTA(Δ) (cf. Fig. 2.c), which will be represented as the same 

SemIndex+ graph  G  (cf. Fig. 5.a). G  consists of: i) a set of index nodes Vi representing index terms in Δ (searchable 

term nodes), i.e., Vi  = iV  (since Δ does not contain senses, i.e., #
iV = ), ii) a set of data nodes Vd representing data 

objects in Δ, iii) a set of attribute nodes Va representing attributes from Δ.A, and iv) a set of edge labels L including 

one single label: contained, underlining containment relationships represented as 3-uniform hyper-edges linking index 

nodes in Vi with data nodes in Vd through attribute nodes Va.  
 

Definition 5 - 3-Uniform Data Edge in SemIndex+: Given a SemIndex+ graph SIG , we define d
a
i

e  
 .SI dG E  

as 

an ordered 3-uniform hyper-edge connecting data node nd  .SI dG V  with searchable term node ni  .SI iG V 

 
through 

attribute node na  .SI aG V (cf. Fig. 4)  

 

A 3-uniform hyper-edge is a generalized definition of an edge connecting 3 nodes, forming a so-called hyper-

graph2 [36]. We adopt the 3-uniform hyper-edge relationship model to handle attribute nodes in our index, compared 

with the (attribute-free) 2-uniform data edge relationship model used in the original SemIndex [23] (cf. Fig. 4).  
 

 

 
 

a. 2-uniform edge 

following [23] 

 

 

 

 

 

 
b. 3-uniform      

hyper-edge 

c. Multiple 3-uniform hyper-edges d. Simplified representation of hyper-edges,            

adopted in remaining examples 
 

 
 

Fig. 4.  Sample 3-uniform data edges following SemIndex+ extended model. 
 

A sample G  3-uniform hyper-graph representing our running example inverted indexes (cf. Fig. 2.b and c), based 

on textual collection ΔPart in Table 3, is shown in Fig. 5.a. 

 

4.3. Indexing the Knowledge Base 
 

Similarly, given a semantic knowledge base KB, represented as a knowledge graph GKB, we use a conversion function 

following Definition 4 - to produce a SemIndex+ graph representation of KB denoted as KBG = SemIndex+(, KB)1. 

                                                 

1   Creating the textual collection index graph does not involve an input knowledge base, thus KB =  (following Definition 5).  
2   A hyper-graph is a generalization of a graph G(V, E) where V is a set of nodes and E is set of edges underlining non-empty subsets of nodes from 

V. A hyper-graph is said to be r-uniform if all edges have cardinality r, i.e., if each edge connects r nodes together (e.g., a traditional graph comes 
down to a 2-uniform hyper-graph). An r-uniform hyper-graph is ordered if the occurrence of nodes in every edge is ordered from 1 to r [36]. 

Data node Index node Contained relationship Attribute node 



 

GKB’s inverted index InvIndex(GKB) is generated and then represented as a SemIndex+ graph KBG  which inherits the 

properties of GKB, such that: i) the set of index nodes Vi represents all nodes in GKB, including term nodes ( iV  ) and 

sense nodes ( #
iV ), ii) the sets of data nodes Vd and attribute nodes Na are empty (since KB does not contain data 

objects), and iii) the set of edge labels L includes all index edge labels designating semantic/lexical relationships in 

GKB (e.g., hyponymy, meronymy, has-sense, derivation, etc.). A sample KBG  graph representing our running example 

knowledge base is shown in Fig. 5.b. 

 
 

  

 

 
  

a. Textual collection 

SemIndex+ graph: G  

 

 

 

 

 

 

 
 

 

b. Knowledge base 

SemIndex+ graph: KBG  

  
 

 

Fig. 5.  SemIndex+ graph representations of input resources.2 

 

4.4. Coupling Resources to Build SemIndex+ 

Producing the combined SemIndex+ graph structure SIG  comes down to coupling both G  and KBG , noted as: SIG = G   

KBG , where: i) the set of index nodes SIG .Vi  =  G .Vi  KBG .Vi, including corresponding index edges from KBG  such 

that SIG .Ei  KBG .Ei 
3, ii) the set of data nodes SIG .Vd = G .Vd and the set of attribute nodes SIG .Va = G .Va, including 

corresponding data edges from G  such that SIG .Ed = G .Ed, and iii) the set of edge labels SIG .L = G .L  KBG .L, 

including all index node semantic/lexical relationships as well as the contained data edge label. The pseudo-code of 

algorithm SI_Construct to build SIG  consists of 6 main steps as shown in Fig. 6. Each step is described as follows: 
 

 Step 1: Given an input textual collection Δ, build the corresponding inverted index, i.e., using either 

InvIndexOA(Δ) or InvIndexTA(Δ), and generate the corresponding G  graph as previously defined. 
 

 Step 2: Receiving a semantic knowledge graph GKB representing the semantic knowledge base KB provided as 

input, build an inverted index InvIndex(GKB) for the string values of each KB entity (i.e., sense nodes and term 

nodes, to access them more efficiently during resource coupling, and later during query execution), and then 

construct KBG  graph as illustrated previously. 
 

                                                                                                                                                        

1 Creating the knowledge base index graph does not involve an input textual collection, thus Δ =  (following Definition 5). 
2  The missing term problem is discussed in Section 4.4.  
3 The set of index edges in 

SIG  is not exactly equivalent to that in 
KBG  since it might contain additional index edges connected with index 

terms in G
 which do not map to any term node in 

KBG . This is discussed as the missing terms problem in Step 4 of algorithm SI_ 

Construction (cf. Fig. 6). 

Data node Term node Attribute node Contained relationship Sense node Lexical/semantic relationship 

Missing  

Term2 



 

 Step 3: Combine the two SemIndex+ graphs into a single graph structure SIG . To do so, we map and then merge 

all searchable term nodes in G , i.e., G . iV  , with searchable term nodes in KBG , i.e., KBG . iV  , as follows: 

1. For each pair of searchable term nodes in G . iV 
 and KBG . iV  , if their string values are equal, then 

remove one of them and merge all the connected edges.  

2. Sense nodes in KBG  are kept the same in SIG , i.e., SIG . #
iV  = KBG . #

iV , but are connected with the 

corresponding searchable term nodes SIG . iV   

3. Data nodes and attribute nodes in G  are kept the same in SIG , i.e., SIG .Vd  = G .Vd, and SIG .Va  = G .Va,  

but are connected with the corresponding searchable term nodes SIG . iV 
 using the contained data edge 

relationship.  
 

Fig. 7.a shows the result of combining the two sample SemIndex+ graphs used in our running example: G  of 

the extract of textual collection ΔPart and KBG  of the extract knowledge base KB. 

 
 

Algorithm SI_Construct    // SemIndex+ construction 
 
Input:  Δ         // Textual data collection  

 KB       // Semantic knowledge base  
 W          // Weighting function parameters                 

Ouput: SIG   // SemIndex+ graph  

 
Begin 

Step 1: Build InvIndex(Δ) to construct G                                                                                  

Step 2: Build InvIndex(GKB) to construct KBG                                                                              

Step 3: Coupling G  and KBG  into SIG  by:                                                                                 

3    1. Mapping & Merging searchable term nodes in . iG V 
 and .KB iG V 

                                  

4    2. Including sense nodes from #.KB iG V                                                                                        

5    3. Including data nodes from G .Vd                                                                                     
Step 4: Run MissingTerms_Linkage algorithm    

                    // Connect Missing terms in SIG  

Step 5: Assign weights to edges & data nodes in SIG   
             - According to parameters W and weighting function  fW                                   
  

Step 7: Remove from SIG :                                                                                                                       

    1. Labels from all edges: SIG .E                                                                                             

    2. String values from all nodes except searchable terms: .SI iG V 
                           

 

Return SIG                                                                                                                                                                  
3 

End 
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Fig. 6. Pseudo-code of SemIndex+ construction algorithm. 

 

 Step 4: Searchable terms from G . iV 
 which do not map to any searchable term in KBG . iV 

 can exist, which 

we identify as missing terms (e.g., term “Horror” in Fig. 5). These come down to terms from the data 

collection with no semantic cues in the knowledge base (e.g., “horror” appears in object O1 of ΔPart but does 

not appear in the extract knowledge base KB in Fig. 3). To solve this, we introduce algorithm 

MissingTerms_Linkage (cf. Appendix II) inspired from distributional thesaurus construction methods, e.g. [18, 

87], which creates links from each missing term to one or more closely related terms, i.e., terms that co-occur 

together in the text collection (e.g., term “horror” links with “car”, considered as its most related – highest co-

occurrence frequency term – in ΔPart, cf. Fig. 7). The new co-occurrence links (index edges) are labeled occurs-

with. Our MissingTerms_Linkage algorithm is provided in Appendix II since it’s outside of the main scope of 

this paper and will be evaluated in a dedicated future study. 
 

 Step 5: Assign weights to edges and textual objects, according to fW. The weights will be used to select and 

rank query results. Different weighting functions can be used, which we describe in Section 4.5. 
 



 

 Step 6: It removes edge labels and string values of all nodes in SIG  except for iV  (searchable term nodes) and 

Va (attribute nodes), since all other nodes are not required for processing semantic queries. Removing node 

string values helps improve SemIndex+’s scalability in terms of size, construction time, and query processing 

time (cf. experiments in Section 7). 

 
 

 

 

 

 

 

a. SemIndex+ graph before removing edge labels and string values. 
 

b. Final SemIndex+ graph representation. 
 

 

Fig. 7.  SemIndex+ graph SIG obtained after coupling the data collection and the knowledge base graphs in Fig. 5.  
 

Fig. 7.b illustrates our running example SIG  excluding edge and node labels except for searchable term nodes and 

attribute nodes which are required in the querying process. Edge and node weights are omitted from the figure for 

clearness of presentation. 
 

4.5. SemIndex+ Weighting Functions 

After indexing and coupling the textual resource and the semantic resource into a unified SemIndex+ graph (i.e., Step 

3 of algorithm SI_Construct), and handling the missing terms problem (Step 4), we introduce a set of weighting 

functions (Step 5) to assign weight scores to SemIndex+’s entries, including: data nodes, index nodes, attribute nodes, 

as well as data edges and index edges. The weighting functions will be used to effectively select and rank 

semantically relevant results w.r.t. the user’s query (cf. SemIndex+ query processing in Section 5). Other weight 

functions could be later added to cater to the index designer’s needs.  

 

4.5.1. Index Node Weight 

Considering an index node ni  .SI iG V , the weight of ni denoted as WIndexNote(ni), is computed according to the below 

formula where we consider “Fan-in” to be the number of nodes connected with the target index node: 
 

WIndexNode(ni) = 

 .

( )
    [0,1]

( ( ))
SIj i

i

j
v G V

Fan in n

Max Fan in n
 






  

(1) 

 

The rational here is that an index node is more important if it receives more links from other indexing nodes. 

 

4.5.2. Index Edge Weight 

Given an index edge 
j

i
e   .SI iG E outgoing from index node ni and incoming toward index node nj in the SemIndex+ 

graph, we define the weight of 
j

i
e as:  

 

WIndexEdge (
j

i
e )= 1       ]0,1]

( )Label iFan out n



 (2) 

 

The weight of an index edge increases with the number of outgoing links from a certain index node to another, taking 

into account the semantic relation type of the index link at hand. 



 

4.5.3. Data Node Weight 

The weight of a data node nd  .SI dG V in the SemIndex+ graph is defined as: 

 

WDataNode (nd) = 

 .

( )
   [0,1]

Max ( ( ))
SIq d

d

q
n G V

Fan - In n

Fan - In n
 


  

(3) 

 

where Fan-In(nd) designates the number of foreign key/primary key data links (joins) outgoing from data nodes 

(tuple) where the foreign keys reside, toward data node (tuple) nd where the primary key resides. Similarly to index 

node weight, the rational is that a data node is more important when it receives more links from other data nodes. 

 

4.5.4. Attribute Node Weight 
 

The weight of an attribute node na .SI aG V  in SemIndex+ is manually (or semi-automatically1) acquired from the data 

creator/user, since it is a data design issue, such that: 
 

WAttNode(na )  [0, 1]   where for each nd  .SI dG V ,

  

1( )
d

a a
i

AttNode

n e

anW


  
   (4) 

In other words, the sum of the weights of all attribute nodes (excluding the identifier attribute) connected with a 

given data node nd through any index term node  ni  .SI iG V   needs to be normalized in order to sum up the full 

(100%) descriptive power of nd. For instance, considering our running example SemIndex+ graph from Fig. 7, we (as 

users) consider WAttNode(title) = 0.4, WAttNode(genre) = 0.3, WAttNode(description) = 0.3, WAttNode(year) = WAttNode(plot) = 

WAttNode(info) = 0.1. Hence: 

 For data object O1, attribute weights are already normalized such that: WAttNote(title) + … + WAttNode(info) = 1 

 For O2, WAttNode(description) needs to be normalized to become = 1, since description is the only attribute 

describing O2 (and thus should sum the full descriptive power of the data node).  

 Similarly for O3, attribute weights need to be normalized to obtain WAttNote(title) + WAttNote(plot) + 

WAttNote(genre) = 1. By applying linear normalization to the above user chosen weights for instance, we obtain 

WAttNode(title) = 0.5, WAttNote(genre) = 0.375, and WAttNote(plot) = 0.125 . 

 

4.5.5. Data Edge Weight 

Given a data edge d
a
i

e

 

 .SI dG E  
connecting an index node ni with a data node nd through an attribute node na (e.g., 

data edge connecting index node T1 with data node O2 through attribute A4 since the term “car” occurs in the textual 

description of O2 through its desc attribute, likewise for T1-A4-O2, T4-A2-O1,…, T12-A3-O1, in Fig. 7), we compute the 

weight of d
a
i

e

 

as an adapted TF-IDF (Term Frequency Inverse Document Frequency) score where TF underlines the 

frequency (number of occurrences) of the index node string literal within a given data node, connected via the data 

edge in question, and IDF underlines the number of data edges connecting the same index node with other data nodes 

(i.e., the fan-out of the index node in question). Hence, given a data edge d
a
i

e

 

incoming from index node ni toward 

data node nd through attribute node na, where ni.l denotes the string value of ni, we define: [46] 
 

WDataEdge ( d
a
i

e ) = TF(ni.l, nd, na)  IDF(ni.l, .SI dG V ) 
   (5) 

 

where TF and IDF are calculated as follows: 
 

 
 

 .   

( ) ( )
TF . ,  ,       [0, 1]

( ( ))
d

SI da
j

i AttNode a
i d a

j

e G E

NbOcc n .l W n
n l n n

Max NbOcc n .l



 

   (6) 

 

where the number of occurrences of a term ni.l, denoted as NbOcc(nj.l), is weighted by the corresponding attribute 

(such that terms occurring through higher weight/more relevant attributes will have a higher impact on the data edge 

                                                 

1   Learning algorithms can be devised to evaluate the relevance of attributes based on existing data collections [46]. Yet, such approaches 
also require manual expert input to train the learning algorithms. 

 



 

weight), and where TF is normalized w.r.t. the maximum number of occurrences of any index node string literal nj.l 

within the target data node nd. 
 

IDF(ni.l, .SI dG V ) = ( . , . )
1    [0, 1[

SIi dDF n l G V

N
   (7) 

 

where N is the total number of data nodes in the SemIndex+ graph, and DF(ni.l, .SI dG V ) is the number of data nodes 

in the graph containing at least one occurrence of ni.l.  

 

5. SemIndex+ Query Processing 

Given the above weighting functions (others could be added later), we define our query model and present our 

algorithm to perform semantic-aware search with SemIndex+. 
 

5.1. Query Model 
 

The semantic-aware queries considered in our approach are conjunctive projection selection queries of the form q = 

πX σP (Δ), defined over a data collection Δ (structured, unstructured, or partly structured, cf. Definition 1), where X is 

a subset of attributes X  A   (where  designates the combined textual content from all attributes, allowing both 

attribute-sensitive and attribute-free querying),     represents a link distance threshold designating different levels 

of semantic awareness in query execution, and P is a conjunctive selection predicate defined as follows: 
 

Definition 6 - Conjunctive Selection Predicate: It is defined as an expression P on a string-based attribute1 or 

on the combined textual content of all attributes Ai  A  2, of the form: (Ai θ s), where s is a user-given string value 

(e.g., a selection term/keyword), and θ  {=, like} whose evaluation against values in dom(Ai) is previously defined  
 

Following the value of link distance , we consider four semantic-aware query types: 

i. Standard Query: When  = 1, the query is a standard containment query, involving only data edges 

(connecting data nodes with searchable term nodes through attribute nodes, using the contained relationship), 

such that no semantic information is involved.  

ii. Lexical Query: When  = 2, the link distance is increased by 1 to include (in addition to data edges), first level 

index edges. They designate lexical relationships between searchable term nodes (namely the derivation 

relationship, where one term derives another term), such that basic lexical information is involved. 

iii. Synonym-based Query: When  = 3, the senses (synsets) are also involved. Here, link distance includes the 

second level index edges: connecting searchable term nodes with corresponding sense nodes (via the has-sense 

and has-term semantic relationships), such that synonymous terms corresponding to the sense nodes are 

involved. Note that there is no direct edge between data nodes and sense nodes. 

iv. Extended Semantic Query: When  4, the data graph of SemIndex+ can be explored in all possible ways, 

covering index edges designating all kinds of semantic relationships (hyponymy, meronymy, etc.) between index 

nodes, to reach even more semantically relevant results. 

 

While we currently focus on relaxing “strict” conjunctive querying by increasing link distances between query 

and data nodes, yet our query model and approach can also incorporate different kinds of “weak AND” operators such 

as fuzzy predicates [50, 91] (which we will investigate in an upcoming study). 

 

5.2. Query Answer 

The answer to a query q= πX σP (Δ) in SemIndex+(Δ, KB), noted q(Δ), is defined as follows: 
 

Definition 7 - Query answer: Given SemIndex+(Δ, KB) and its graph representation SIG , a query answer q(Δ) is 

the set of distinct root nodes of all answer trees in SIG , where every root node represents a data object in Δ. We define 

an answer tree as a connected sub-graph T  SIG  satisfying the following conditions: 
 

 Root node: T’s root is a data node, i.e., R(T)  SIG .Nd, and it is the only data node in T, designating the 

corresponding textual object in Δ to be returned to the user, 

                                                 

1 Although our approach is generic and can be defined on other types of attributes. 
2  designates the combined textual content from all attributes 



 

 Leaf nodes: All leaf nodes in the answer tree T are searchable term nodes mapping to query terms (keywords),  

 Tree structure: For each node n  T, there exists exactly one directed path from n to T’s root node R(T), 

 Depth boundary: The depth of T, i.e., the maximal number of edges between the root and a leaf node, is not 

greater than the link distance threshold , 

 Minimal tree: No node can be removed from T without violating some of the above conditions. 
 

The answer tree comes down to a conjunction of paths starting at leaf nodes designating each a query term, and 

ending at a common root designating the textual data object to be returned as result  

 
 
 

 

 

 

 

a. Answer tree for a standard query ( = 1). b. Answer tree for a lexical query ( = 2). 
 

   

 

 

c. Answer tree for a synonym-based query ( = 3). d. Answer tree for an extended semantic query (=4). 
 

 
 

Fig. 8.  Sample answer query trees1 with different link distance threshold values , extracted from our running 

example SemIndex+ graph (Fig. 7). 
 

According to the value of the link distance  which serves as an interval radius in the SemIndex+ graph, various 

answer trees can be generated for a number of query types: 
 

i. Standard Query: When  = 1, the root of the answer tree is linked directly to all leaves, representing the fact 

that the result data object contains all query terms directly. A sample answer tree is shown in Fig. 8.a for query q 

= σplot  (“car”, “light”) 
=1(ΔPart) considering our running example data collection ΔPart (Table 3) and the 

corresponding SemIndex+(ΔPart, KB) (Fig. 7), 

                                                 

1   While all edge and node labels are removed from the SemIndex graph except for searchable term nodes, we show synset node glosses 
here for the sake of presentation. 

Data node Term node Attribute node Contained relationship Sense node Lexical/semantic relationship 



 

ii. Lexical Query: When  = 2, the answer tree includes lexical connections between query term nodes and other 

index term nodes. Fig. 8.b is an example answer tree for query q = σplot  (“race car”,“light”)=2 (ΔPart), 

iii. Synonym-based Query: When  = 3, the answer tree includes sense nodes, in addition to the two previous 

cases. Note that due to the minimal tree restriction (Definition 7 -), a sense node cannot be a leaf node of an 

answer tree. Thus, if an answer tree contains a sense node, the height of the tree is not less than 3. A sample 

answer tree is shown in Fig. 8.c for query q = σplot  (“pane”,“clean”)=3 (ΔPart). The synonyms of the two query 

terms, “zen” and “light” are also contained in the answer tree rooted at the data node of object O1, 

iv. Extended Semantic Query: When  = 4, the answer tree contains additional index nodes connected via index 

edges designating different semantic relationships, according to the provided input selection terms. An example 

answer tree is shown in Fig. 8.d for query q=  σplot  (“lsd”,“clean”)=4(ΔPart). 
 

Note that it is possible to have more than one path from a query term node to a data node in the SemIndex+ graph 

(through different semantic links), which will naturally result in more than one possible answer tree.  

 

5.3. Relevance Ranking 

While a huge number of query answers could be identified for a given query, the objective of any typical IR system 

would be to identify the most relevant of these candidate results and rank them based on their respective relevance 

w.r.t. the query [9]. In SemIndex+, we evaluate the relevance of data nodes returned as candidate query answers (i.e., 

answer tree root nodes) using typical Dijskstra-style shortest distance computations (described in the following 

section). Yet, instead of identifying the shortest distance between searchable term nodes and data nodes in the 

SemIndex+ graph, we compute their maximum similarity (as the inverse of distance). Formally: 
 

Definition 8 -  Relevance Score measure: Given a SemIndex+ graph SIG , a data node nd  .SI dG V  and a 

searchable term node ni  .SI iG V   (cf. visual representation in Fig. 9), we define the relevance (similarity) score of nd 

w.r.t. ni, noted score(nd, ni), as the sum of the inverse of the lexical/semantic distances (in number of edges) between 

nd and every index node on the path leading from nd to ni, noted path(nd, ni) = nd, np, nq, …,nj, ni, where every node 

and edge on path(nd, ni) is weighted following SemIndex+’s weighting functions: 
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where d(nd, ni) designates the distance in number of edges between data node nd and index node ni  

 

 
 

Fig. 9. Sample node linkage representation in the SemIndex+ graph. 
 

Our relevance score measure in Definition 8 - produces normalized relevance scores [0, 1] where:  
 

 A minimum relevance score =0 is reached when searchable term node ni is not connected with nd, i.e., 

there is no path path(nd, ni) leading from ni to nd in SIG . 

 A maximum relevance score =1 is reached when searchable node ni is directly connected with data node 

nd through data edge d

a
i

e (the searchable term occurs in the string value of the data node). For instance, this 

is the case of index node np in Fig. 9, which can produce 
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given that all three: data node, attribute node, and data edge weights are maximum (=1).  
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 The relevance score increases with the semantic/lexical closeness between nd and ni in SIG , and decreases 

with their distance. In other words, the farther away a searchable term node ni is from data node nd in SIG  

(i.e., the higher the distance d(nd, ni)), the lesser its semantic/lexical relatedness with nd, and thus the lower 

its relevance score w.r.t. nd. 

 The relevance score also increases/decreases with SemIndex+ node/edge weighting functions, allowing 

users to easily consider or disregard relevance weights following their needs (e.g., one user could prefer to 

consider data node weights only, while disregarding others).  
 

Consider the example in Fig. 8.c. Here, we assume that users disregard all weighting functions for simplicity:  

 The relevance of data node O1 w.r.t. term node T1, where T1 is situated at link distance =1 from O1 (direct 

linkage, where T1 occurs in the string value of O1):  4
1( , ) 1 1 1 /1 1
11score O T       (i.e., maximum score). 

 The relevance of O1 w.r.t. S1, at link distance  =2:     1
1 1( , ) 1 1 1 1 1 / 2 0.75
1 21score O S          

 The relevance of O1 w.r.t. T7, at link distance  =3       7
1 1 1( , ) 1 1 1 1 1 1 1 / 3 0.6112
1 2 31score O T            

 

One can clearly realize that index nodes T1, S1, and T7 which are (semantically/lexically) decreasingly related to 

(they are increasingly more distant in the SemIndex+ graph from) data node O1, produce decreasing relevance scores 

(1, 0.75, and then 0.6112) respectively. 
 

5.4. Querying Algorithm 
 

The pseudo-code for our query processing algorithm, titled SI_PSS, is shown in Fig. 10. It takes as input a SemIndex+ 

graph SIG , a conjunctive projection selection query q including link distance threshold , as well as range and kNN 

(k-nearest neighbor) query selection thresholds r and k, and produces as output the list of data nodes Nd_Out  (i.e., the 

answer trees’ root nodes) designating the data objects returned as query answers, selected and ordered following their 

relevance w.r.t. the query. It is parallelized (multithreaded), processing query terms and starting index nodes using 

multiple threads running in parallel. The overall process can be described as follows: 
 

 Step 1: Every query term is assigned to a dedicated thread, and is thus processed independently from other query 

terms (line 2). 

 Step 2: The algorithm then identifies in SIG the index (searchable term) nodes mapping to each query term 

(using function getNodeIDs( ), line 4) 1. These will serve as starting nodes to navigate the SemIndex+ graph. 

 Step 3: Every starting (index) node is then assigned to its own dedicated thread, and processed independently 

from other starting nodes (line 5), 

 Step4: For every starting (index) node, the minimum distance paths at  from the starting node to data nodes are 

identified, i.e., using Dijkstra’s shortest path algorithm (performed by function findShortestPaths( ), line 7).  

 Step 5: Of these shortest paths, the algorithm then identifies the paths which contain data nodes (using function 

getDataNodeIDs( ), line 8), reachable through the designated query attribute for every term, and then adds the 

resulting data nodes to the list of output data nodes Nd_Out. 

 Step 4: Consequently, the resulting data nodes are gradually merged with the list of existing answer data nodes as 

they are produced by each thread2. A score is then assigned to every answer node by computing its relevance 

score w.r.t. every query term’s index node (using mergeAndRank( ), line 9). The algorithm finally returns the list 

of answer data nodes, ranked in descending order following answer (data) node relevance scores (i.e., from the 

most to the least relevant answer node).  

 Step 5: Data node result selection (line 12) is undertaken using a combined range-kNN query selection operator, 

following range query and kNN thresholds provided by the user. The user can choose to apply one, both, or none 

of the two selection operators, by specifying (disregarding) the value of the corresponding threshold(s). 
 

 

                                                 

1  Initial index/query term mapping is performed regardless of query attributes. Term mapping identifies the leaf nodes of potential answer 
trees in the SemIndex+ graph, which will be later pruned following the terms’ container attributes (if any) in Step 3 (graph navigation 
phase) of the algorithm. 

2 The physical implementation the querying algorithm is configured to run as many threads as necessary to process the different query terms 
and starting nodes, where thread scheduling and parallel execution are left to the operating system.  

 



 

Note that the scores of data nodes returned as query answers (i.e., answer tree root nodes) are computed/updated 

dynamically while executing function findShortestPaths() based on typical Dijkstra shortest distance computations 

[28]. Basically, findShortestPaths() explores the SemIndex+ graph with Dijkstra’s algorithm from multiple starting 

index nodes ni_In (multiple query terms Ti). For each visited node nj, it stores its maximum relevance scores (minimum 

distances) from all starting nodes (query terms). The relevance score of an index node nj (likewise for a data node nd) 

w.r.t. a starting node (query term) ni_In is evaluated using our relevance score measure (Definition 8 -) applied along 

the path between ni_In and nj (nd). In other words, the shortest distance of ni (nd) from ni_In is identified by computing 

the maximum relevance score of ni (nd) w.r.t. ni_In. 

 
 

Algorithm SI_ParallelSemanticSearch        // SemIndex+ Parallel Semantic Search 
 

Input:  
SIG         // SemIndex+ graph  

             q             // A conjunctive projection selection query, including link distance threshold                 

           {r, k}        // range and k-nearest neighbor selection operators 
 

Ouput: Nd_Out    // A list of ranked data nodes from 
SIG  designating query answers  

 

Begin 
 

Nd_Out =                                                                                                                         

Create Thread for each (Ti , Aj)  q                   // Processing each selection term simultaneously    

{                                                                                                                                       

Step 1: Ni_In = getNodeIDs(Ti, SIG )         // Identify index nodes for every selection term                
 

Create Thread for each ni Ni_In                             // Processing every (starting) index node simultaneously                 
{ 

Step 2: SP = findShortestPaths(ni, , SIG )            // Identify shortest paths within distance from ni    

Step 3: Nd_ni = getDataNodeIDs(SP, 
SIG , Aj)       // Identify the set of data (root) nodes in each shortest path 

                                                                                     //reachable from the term node ni through attribute Aj  

 

Step 4: Nd_Out = mergeAndRank(Nd_ni , Nd_Out)     // Merging and ranking data nodes based on relevance   

} 
    

Step 5: Nd_Out = select(Nd_Out, {range, kNN})                         // Result Selection using range and/or kNN threshold(s)                                                                                                      
 

Return Nd_Out                                                                                                                                      
End 
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Fig. 10.  Pseudo-code of SemIndex+ parallel semantic search algorithm. 
 

For example in Fig. 8.c, given query q = σplot  (“pane”,“clean”)=3 (ΔPart) made of terms “pane” and “clean”, the 

algorithm starts to expand from index nodes T7 and T3. In this example, we disregard (i.e., assign unit scores to) all 

SemIndex+ node/edge weighting functions (to simplify computations) in evaluating our relevance score measure. 

Hence, the relevance score of T7 is initialized as a vector of two scores <1, 0>, the first representing the relevance 

score w.r.t. T7 (“pane”), i.e., score(T7, T7)=1, and the second representing relevance score w.r.t. T3 (“clean”, i.e., 

score(T7, T3) = 0 since T3 is not initially reachable from T7). Similarly, the weight score vector of T3 is initialized to 

<0, 1>. The weights of all other index nodes are initialized to <0, 0>. The relevance scores are then updated when 

each edge is explored in the graph. For example, starting from T7, the weight of index node S1, which was initialized 

to <0, 0> becomes <1, 0> when the node is reached, where score(S1, T7) = 1 (relevance score at link distance =1 

from T7) and score(S1, T3) = 0 (since S1 is not yet reachable from T3). Likewise, the weights of nodes T1 and O1 

become <0.75, 0> and <0.6112, 0> respectively when the nodes are reached from T7, and so forth. On the other hand, 

starting from T3, the weights of nodes S2, T5, and O1 become <0, 1>, <0, 0.75>, <0, 0.6112> respectively.  

Consequently, given that a data node nd can be reached from multiple starting nodes Ni_In (i.e., multiple leafs in 

the answer tree), function mergeAndRank( ) computes the combined relevance score of a data node (i.e., answer tree 

root node) as the aggregate relevance scores from each starting node (each answer tree leaf node). As for the 

aggregation function, various mathematical formulations for combining relevance scores can be used [5, 83], among 

which the maximum, minimum, average and weighted sum functions. Here, we utilize the average aggregation 

function to account for the average semantic relatedness between the query answer root node and all tree leaf nodes: 
 

   _

_  having   

score   ( ,  )d i In d

ii Inn s S

n avg score n n
 

   

(9) 

 

For instance, considering our current example based on Fig. 8.c, the vector path score of data node O1 would be 

<0.6112, 0.6112>, and thus its combined path score becomes 0.6112. Considering the example in Fig. 8.b, starting 

from query terms “race car” and “light”, the vector path score of data node O1 would be <0.75, 1> (assuming unit 

SemIndex+ node/edge weights as in the previous example), and thus its combined path score becomes 0.875. A data 

node which is not reachable from all query term nodes will have at least one relevance score =0 (i.e., zero semantic 

relatedness), along one (or more) of its relevance vector dimensions. 

 



 

6. Complexity Analysis 
 

Our solution is of quadratic complexity, requiring O(N
2
) time for building the SemIndex+ graph where N represents 

the maximum size (in number of nodes) between the textual collection and the knowledge base, and O(Ni_acc
 2

) time 

for executing semantic-aware queries where Ni_acc is the number of index nodes accessed during query execution. 
 

6.1.  Building SemIndex+ 
 

6.1.1.  Time Complexity 
 

Building SemIndex+ using algorithm SI_Construct (cf. Fig. 6) is done in quadratic time and simplifies to O(N
2
) since: 

 

 Step 1: Building the inverted index, and consequently the SemIndex+ graph for the textual collection , i.e., G , 

is of typical O(||  |A|  N) complexity, where |A| and N designate the number of attributes and the number of 

searching terms in G  respectively, which simplifies to O(||  N) since |A| is usually limited, 

 Step 2: Also, building the SemIndex+ graph for the knowledge base KB, KBG , is of O(|KB|  NKB), where NKB is 

the number of searchable term nodes from KBG ,  

 Step 3: Coupling both  and KB’s SemIndex+ graphs by mapping and merging searchable term nodes in both 

G  and KBG  can be performed in O(N + NKB) time, given that both underlying structures are sorted, 

 Step 4: Connecting missing terms with the merged index, using the algorithm MissingTerms_Linkage (cf. 

Appendix II) can be performed in worst case O(Nmiss  Nterm), where Nmiss and Nterm respectively designate the 

number of missing terms and the number of term index nodes in the SemIndex+ graph. Note that building the 

distributional thesaurus (to identify term relatedness vectors, based on their co-occurrences in the reference 

corpus) is conducted offline prior to SemIndex+ building and thus does not affect its complexity. 

 Step 5: The complexity of the weighting process varies according the weight functions used. It amounts to O(1) 

when assigning equal weights, and varies following our weighting scheme as follows: 
 

 Data nodes: assigning an object rank score to compute data node weights simplifies to O(||+|Joins|), 

where |Joins| designates the number of data links (i.e., foreign key/primary key data joins) in , 

 Attribute nodes: normalizing user defined attribute weights for every attribute of every data node 

required O(|||A|) time, which simplifies to O(||) since |A| is small w.r.t. ||,  

 Data edges: performing attribute-sensitive term frequency - inverse document frequency computations 

to assign data edge weights comes down to O((Nterm)|||A|) time, which simplifies to O((Nterm)  ||) 

since|A| is small w.r.t. Nterm and ||, 

 Index nodes: assigning an object rank score to compute index node weights simplifies to O(Ni + NEi), 

where Ni designates the number of index nodes and NEi the number of index edges in the SemIndex+ 

graph, 

 Index edges: computing index edge weights comes down to O(NEi
 
  |L|), where |L| designates the 

number of distinct lexical/semantic relationships, which simplifies to O(NEi) since |L| is usually small. 
 

 Step 6: Edge aggregation between each pair of index nodes in the SemIndex+ graph can be performed in 

O((Nterm + Nsense)
2 

/2) time where Nsense designates the number of sense index nodes, which is the time needed to 

go through all pairs of index nodes in SemIndex+, 

 Step 7: Removing edge labels and string values from non-searchable (i.e., sense) nodes in SemIndex+ can be 

executed in O (NE + Nsense), where NE designates the number of index and data edges. 
 

Hence, the overall complexity of our SemIndex+ building process is bounded by O(N
2
) >                  

1...7

 ( )
i

iComplexity Step


  since  N  param,  param  complexity parameters.   

 

6.1.2.  Space Complexity 

Our approach requires space to store the final SemIndex+ graph SIG , which is also bounded by O(N
2
) space, since 

storing data nodes requires O(||) space, storing attribute nodes requires O(|A|) space, storing data edges (connecting 

data nodes with searchable term nodes through attribute nodes) requires in the worst case O(|| + (N  |A|)) space, 

storing index nodes requires O(Nterm + Nsense) space, and storing index edges (connecting pairs of index nodes) requires 

O((Nterm + Nsense)
2 

/2) space (recall that only one edge exists between two nodes in SemIndex+). Note that these 

relations, whose total size is bounded by O(N
2
), can be stored on disk or in memory according to the size of the input 

textual collection and knowledge base used. 

 

 



 

6.2. Query Processing 
 

The complexity of our SI_PSS algorithm (cf. Fig. 10) which performs querying on SemIndex+, simplifies to O(M
2
) in 

the worst case, and comes down to the sum of the complexities of its underlying functions, where for each query term:  
 

 getNodeID( ) identifies the IDs of term nodes in the Lexicon corresponding to the query term, and thus requires 

in the worst case O(Nterm + Nsense ) time, 

 findShortestPaths( ) runs Dijkstra’s algorithm to identify the minimum paths at distance  from each of the 

starting term nodes Nterm_hom (i.e., homonymous query terms), which comes down to O(Ni_acc
2
   Nterm_hom) 

where Ni_acc designates the number of accessed index nodes in SemIndex+ when executing a query, 

 getDataNodeIDs( ) identifies the IDs of data nodes in PostingList for each shortest path, requiring O(|| + N), 

 mergeAndRank( ) merges and ranks data nodes with existing query answer nodes, by comparing the latter with 

node IDs in the PostingList, thus requiring at most O(||  Nd_acc) where Nd_acc designates the number of 

accessed data nodes when executing a query, 

 select( ) selects data nodes as results, using range and/or kNN selection operators, requiring at most O(Nd_acc). 
 

Hence, SI_PSS’s complexity comes down to that of function findShortestPaths( ) applied on k query terms while 

multithreading, which requires O((k  (Ni_acc
2
   Nterm_hom)) / |Threads|), where the algorithm allows as many 

simultaneous shortest path calls as there are threads1. It simplifies to O((k  Ni_acc
2
) / |Threads|), which can further 

simplify to O(Ni_acc
2
 / |Threads|) given that k is usually limited (e.g., keyword queries on the Web are usually 2-3 

words long [53]), and is bounded by O(Ni_acc
2
) in the worst case (when applied on single thread/non-parallel systems).  

 

7. Experimental Evaluation 

We first start by describing our prototype and experimental scenario, and then we present experimental results. 
 

7.1. Prototype System 
 

We have implemented the SemIndex+ framework using open source technologies, namely: Java as the programming 

platform, MongoDB2 to handle the textual collection, WordNet 3.0 as the reference knowledge base, and MySQL 5.6 

to persist the graph structures of SemIndex+. The physical design of SemIndex+ is shown in Fig. 11. We chose to 

handle it using a well known RDBMS (i.e., MySQL) to take advantage of its different useful features, including 

concurrency control and powerful index and memory management: allowing bulk index data loading and fast query 

execution3. Note that SemIndex+’s physical design is independent of the DB structure and system used, and can be 

built directly on top of the file system, or using any other DB system. The prototype system is available online4. 

 
 

 

 

a. Conceptual ER model describing SemIndex+’s          

physical design. 
 

 

                                                                

                                             

                                                    

                           

 

b. Data representation of each relation in the resulting DB schema. 
 

 

Fig. 11. SemIndex+ physical design. 

                                                 

1  In the physical implementation of the algorithm, thread scheduling and parallel execution are left to the operating system. 
2  NoSQL DB using BSON binary format for storing documents in the JSON format, https://www.mongodb.com/ 
3  Preliminary experiments showed that handling SemIndex+ using MySQL was more efficient in build time and query execution time, 

compared with MongoDB, which we will highlight in a dedicated study. 
4  Available at: http://sigappfr.acm.org/Projects/SemIndex/ 
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7.2. Experimental Scenario and Test Data 
 

We evaluated the practical usability of our indexing approach by assessing four main criteria: i) index building time, 

ii) index size and characteristics, iii) query processing time, and iv) the quality of returned results. To do so, we varied 

the size of the input textual collection  by generating different extracts w.r.t. its total size (considering 10%, 20%, …, 

or 100% of ). We also varied the size of the input knowledge base by generating different extracts w.r.t. its total size 

(considering 10%, 20%, …, or 100% of KB). Then, for each doublet < chunk ; KB chunk>, we evaluated each of the 

above four criteria by varying related parameters. 

We used the IMBD movies dataset1 as an average-scale2 input textual collection, including attributes movie_id 

and (title, year, plot, genre, info) with a total size of around 75 MBytes including more than 7 million data (movie) 

objects. Three versions of the movies data collection were considered: the original (structured) version (cf. Table 1), a 

flat version where all attribute contents were concatenated in one column (cf. Table 2), and a partly structured version 

where certain attribute contents were randomly combined or omitted (cf. Table 3). In the remainder of this paper, we 

utilize the NoSQL version of IMDB movies to perform our experiments. WordNet 3.0 has a total size of around 26 

Mbytes, including more than 117k synsets (senses). IMBD and WordNet chunk characteristics are summarized in 

Appendix I. Tests were carried out on a PC with an Intel I7 system with 2.9 GHz CPU, and 8GB RAM. [34] 
 

7.3. Index Building Time 
 

Fig. 12.a shows the total time required to build SemIndex+ while varying both IMBD and WordNet chunks. One can 

realize that the building time is linear in the size of the IMDB chunks on one hand (x axis), and linear on the size of 

the WordNet chunks on the other hand (y axis), which underlines quadratic time dependency w.r.t. both of them 

(which complies with our complexity analysis). We also measured the total time required to build the traditional 

inverted index (which we note InvIndex) while varying IMDB chunk size3 (cf. Fig. 12.b) and compared results with 

SemIndex+’s (cf. Fig. 12.c). While both indices require linear building time, yet SemIndex+ requires almost twice 

(2) as much build time as InvIndex. Also, by disregarding the lemmatization phase in building InvIndex (which can 

be ignored following the data manager’s preference: storing words in their actual rather than their original form), then 

SemIndex+ build time becomes almost four times (4) greater than that of InvIndex. This is encouraging since even 

the fastest inverted index creation time is only (at best) four times lesser than the creation time of SemIndex+. The 

reasons for this are: i) the lightweight physical design of SemIndex+ which can be easily created using fast legacy 

database technology, and ii) the sheer difference in size between the textual data collection (IMBD movies) and the 

reference knowledge graph (WordNet), which renders the build time of SemIndex+ mostly dependent on IMDB size. 

Regardless of the above, note that the index building process is done offline, prior (in preparation) to the system 

usage (query evaluation process), and thus does not affect (online) query execution time.   

 
 

 

 

 

 

 

 

 

 

a. SemIndex+ build time variation w.r.t. 

input IMDB and WordNet chunk sizes 

b. Breakdown of SemIndex+ build time 

with WordNet chunk = 100% 

c. Comparing InvIndex and SemIndex+ 

build time using WordNet chunk = 100% 
   

Fig. 12. Breakdown of SemIndex+ build time, compared with InvIndex build time. 

 
 

                                                 

1  Internet Movie DataBase raw files are available from online http://www.imdb.com/. We used a dedicated data extraction tool (at 

http://imdbpy.sourceforge.net/) to transform IMDB files into a RDB.  
2  Tests using large-scale TREC data collections and the Yago ontology as a reference KB are underway within a dedicated study. 
3  Recall that InvIndex does not incorporate semantic knowledge and thus is not affected by WordNet chunk size variations. 
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7.4. Index Size and Characteristics 
 

Regarding SemIndex+ size, Fig. 13.a shows that the SemIndex+ graph size varies linearly with the size of the IMDB 

chunks (x axis) and WordNet chunks (y axis), which underlines quadratic size dependency w.r.t. both of them 

(conforming with our complexity analysis). The characteristics of SemIndex+ chunks are shown in Fig. 13.b (and 

Appendix I), where each chunk is generated by merging the corresponding < chunk ; KB chunk> doublet (for 

instance, the 10% SemIndex+ chunk is generated by merging the 10%  chunk with the 10% KB chunk, and so forth). 
 

 

 

 

 

 

 

 

 

 
 

a. SemIndex+ size variation w.r.t. input 

IMDB and WordNet chunk sizes 

 

b. Breakdown of the number of nodes in 

the SemIndex+ graph
 

 

c. Comparison with InvIndex size
 

 

Fig. 13.  SemIndex+ size characteristics and comparison with InvIndex size. 
 

First, results show that the number of nodes in the SemIndex+ graph increases almost linearly w.r.t. SemIndex+ 

(and thus IMDB and WordNet) chunks size. Second, one can realize that the number of index nodes resulting from 

missing terms is almost twice that of matching index terms. That is due to the fact that the IMDB movies table 

includes many textual tokens which are not part of the general purpose English language and thus do not appear in 

WordNet (e.g., terms like “advogado”, “advon”, “adyeri”, “aeer”, “moustafa”, etc.). We are currently investigating 

ways to further alleviate the missing terms problem, using dedicated language processors and multilingual 

dictionaries, which will be covered in an upcoming study. 

In addition, we have also measured the characteristics and size of InvIndex in comparison with SemIndex+ (cf. 

Fig. 13.c). Results show that SemIndex+’s size is larger only by (almost) 1/3
rd

 of the size of InvIndex. This increase in 

size is less pronounced than the increase in build time of SemIndex+ (which was 4 times larger) compared with 

InvIndex. This is due to the difference in sizes between the textual data collection (IMBD movies) and the knowledge 

graph (WordNet) used: WordNet ( 26 MBytes) is almost 1/3
rd

 the size of IMDB ( 75 MBytes), which reflect in the 

sizes of SemIndex+ (coupling IMDB with WordNet) and InvIndex (referencing IMDB only). 
 

 

7.5.  Query Processing Time 
 

To test the performance of SemIndex+, we formulated different kinds of queries categorized following four main 

criteria shown in Table 4: i) unrelated queries with varying number of attributes, ii) unrelated queries without 

attributes, iii) expanded queries with varying number of attributes, and iv) expanded queries without attributes.  

The first query group Q1 consists of queries with varying numbers of selection terms (keywords) from 1-to-5, 

where all terms are different and all queries are unrelated, such that the number of attributes per query varies from 1-

to-3. The second query group Q2 consists of queries made of unrelated terms without attributes (i.e., queries targeting 

the whole textual contents of the searched objects). Query groups Q3 and Q4 are comparable to Q1 and Q2 

respectively, except that queries are related such that each query expands its predecessor by adding an additional 

selection term to the latter. In other words, groups Q1 and Q3 consist of NoSQL keyword queries whereas Q2 and Q4 

consist of “traditional” unstructured keyword queries. 

Each query was tested on every one of the 100 combinations of SemIndex+ generated by combining the different 

chunks of the IMDB movies data collection (10%, 20%, …, 100%) with every chunk of WordNet (10%, 20%, …, 

100%), at link distance threshold values varying from  = 1 to 5 (i.e., increasing semantic coverage).  

     

7.5.1.  SemIndex+ Query Processing Time 
 

On the one hand, the graph in Fig. 14.a plots SemIndex+’s query execution time averaged over all queries, considering 

different IMBD and WordNet chunk sizes, with a fixed number of query terms k and a fixed link distance threshold . 
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Results show that query execution is linear in both IMBD and WordNet chunk sizes, and thus is quadratic w.r.t. both 

of them (verifying our complexity analysis). On the other hand, the graphs in Fig. 14.b highlight the effects of varying 

the number of query terms k and varying link distance w.r.t. fixed IMDB and WordNet chunk sizes. One can see that 

processing time is linear w.r.t. the number of query terms, and quadratic w.r.t. link distance, which corresponds to the 

time complexity of SemIndex+’s querying algorithm in navigating the edges (pairs of nodes) of the SemIndex+ graph.  

 

Table 4. Sample test queries used in our experiments. 
 

 

 

Group Q1  
 

Unrelated queries with varying number of attributes 

 

Group Q2 
 

Unrelated queries without attributes1 

Q1_1 σtitle (“time”)ΔIMDB
2 Q2_1 σ  (“music”)ΔIMDB 

Q1_2 σtitle (“love”, “date”)ΔIMDB Q2_2 σ  (“romance”, “dinner”)ΔIMDB 

Q1_3 σtitle (“fly”, “power”)  plot (“man”) ΔIMDB Q2_3 σ  (“teen”, “party”, “home”) ΔIMDB 

Q1_4 σtitle (“robot”, “human”)  plot (“war”, “world”) ΔIMDB Q2_4 σ  (“west”, “cowboy”, “peacekeeper”, “sheriff”) ΔIMDB 

Q1_5 σtitle  (“mafia”, “kill”)  plot (“mob”, “hit”)    (“family”) ΔIMDB Q2_5 σ  (“trip”, “road”, “city”, “group”, “fun”) ΔIMDB 
 

 

Group Q3 
 

Expanded queries with varying number of attributes 

 

Group Q4  
 

Expanded queries without attributes1 

Q3_1 σtitle (“auto”)ΔIMDB Q4_1 σ  (“car”)ΔIMDB 

Q3_2 σtitle (“auto”, “muscle”)ΔIMDB Q4_2 σ  (“car”, “explosion”)ΔIMDB 

Q3_3 σtitle (“auto”, “muscle”)  plot (“classic”) ΔIMDB Q4_3 σ  (“car”, “explosion”, “race”) ΔIMDB 

Q3_4 σtitle (“auto”, “muscle”)  plot (“classic”, “speed”) ΔIMDB Q4_4 σ  (“car”, “explosion”, “race”, “guns”) ΔIMDB 

Q3_5 σtitle (“auto”, “muscle”)  plot (“classic”, “speed”)    (“thrills”) ΔIMDB Q4_5 σ  (“car”, “explosion”, “race”, “guns”, “shootout”) ΔIMDB 

 

Note that varying the number of attributes did not show any detectable impact on query execution time since, 

they almost do not affect the size of SemIndex+ neither do they affect the complexity of query search algorithm 

(compared with the relatively huge numbers of data and index nodes involved). 

 
 

 

 

 

a. Varying IMDB and WordNet chunk sizes, with fixed number of query terms           

k=5 and fixed link distance threshold = 5 

b. Varying k and , with fixed IMDB and 

WordNet chunk sizes  (=100% each) 

Fig. 14. Query execution time, using SemIndex+’s SI_PSS algorithm, averaged over all queries. 
 

7.5.2. Comparing Query Processing Time with Alternative Solutions 
 

We ran the same querying tasks using four alternative querying approaches adapted from the literature: InvIndex [62], 

QueryRelax [64], QueryDisam [7], and QueryRefine [67] (cf. Appendix III), and compared the obtained query time 

                                                 

1 Recall that  designates a data object’s combined textual content from all attributes. 
2 Recall that we utilize the NoSQL version of IMDB movies to perform our experiments (cf. Section 7.2). 
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results with SemIndex+’s querying algorithm. Fig. 15 and Fig. 16 show average query execution time, plotted by 

varying the number of query terms k (in Fig. 15) and SemIndex+ link distance threshold  (in Fig. 16). First, results 

show that SemIndex+ and its alternatives have very close query time levels when link distance  is small (=1 and 

=2), such that SemIndex+ time increases as link distance increases (whereas the other algorithms’ query time is 

naturally invariant w.r.t. variations in , cf. Fig. 16). Second, Fig. 15 shows that query time for SemIndex+ and all 

three alternative solutions (namely QueryDisam and QueryRefine) almost linearly increases with the number of query 

terms k1, such that the pace of SemIndex+’s time increase is relatively low with small link distances (=1 and =2) and 

the pace augments when reaching higher link distance thresholds (=3-to-5). Third, one can realize that the most time 

consuming alternative approaches are QueryDisam and QueryRefine: i) QueryDisam and QueryRefine are more time 

consuming than SemIndex+ when the latter is run with link distances (  3), but they are both surpassed by 

SemIndex+ when the latter is run with higher link distances(=4 and =5). Here, QueryDisam’s computational 

overhead is due to the complexity of the query keywords’ semantic disambiguation process, whereas QueryRefine’s 

overhead2 is due to post-processing the first round of query results in order to refine/rewrite query keywords 

accordingly. Algorithms InvIndex and QueryRelax share very close time levels and are the most efficient among the 

five solutions (including SemIndex+), running most queries almost instantaneously (under 0.14 seconds). This is 

expected since both approaches perform traditional syntactic query processing (and do not involve computationally 

expensive semantic processing) with one difference: InvIndex runs on the original query terms, whereas QueryRelax 

runs on an expansion of the original terms (adding the terms’ synonymous words to the original keyword query).  
 

 

 

 

 

 

 

 

 

 

 

a. Link distance  = 1 b. Link distance  = 2 c. Link distance  = 3 
 

e. Link distance  = 4 
 

f. Link distance  = 5 
 

Fig. 15. Comparing SemIndex+ query time with four alternative solutions while varying the number of query 

terms k and fixing link distance  (the latter affecting SemIndex+ only). 
 

 

 

 

 

 

 

 

 

 

 

 
a. N# of query terms k = 1 b. N# of query terms k = 2 c. N# of query terms k = 3 d. N# of query terms k = 4 e. N# of query terms k = 5 

* 

Fig. 16.  Comparing SemIndex+ query time with four alternative solutions while varying link distance threshold  

(affecting SemIndex+) and fixing the number of query terms k. 
 

7.5.3. Discussion 

By comparing SemIndex+’s query execution time with existing alternative solutions (InvIndex, QueryRelax, 

QueryDisam, and QueryRefine), we can highlight various observations: i) SemIndex+ is more computationally 

                                                 

1   Both InvIndex and QueryRelax time levels increase with k, even though these are not clearly visible in the graphs of Fig. 15 and Fig. 15 
due to their scale. The reader can refer to the actual data behind the graphs at: http://sigappfr.acm.org/Projects/SemIndex/ 

2   QueryRefine’s time shown in Fig. 16 and Fig. 17 does not encompass the time it took the testers to manually choose the new query terms 
(which we did not consider to be part of the algorithm itself), but only considers actual algorithm (CPU and SQL) execution time. 
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expensive than syntactic solutions such as InvIndex and QueryRelax, ii) Involving query disambiguation 

(QueryDisam) is clearly computationally expensive (due to the complexity of the word sense disambiguation process 

applied on the query keywords) and hinders query performance, iii) Involving query refinement (through 

QueryRefine, producing the first round of results, allowing the user to refine query keywords, and then producing the 

second round of results) adds computational overhead, iv) The time to navigate the semantic graph, following the 

allowed link distance , remains the foremost determining factor in SemIndex+ query execution time. SemIndex+ 

executes faster than QueryDisam and QueryRefine with low  ( 3) but then requires more time than the latter when  

increases (to =4 and 5), v) SemIndex+ search can benefit from parallelization, and can execute even faster when run 

on more powerful parallel processing systems (such as advanced multi-core, cluster, or grid computing platforms). 

We omit the latter experimental results here for ease of presentation and report the detailed evaluation of 

parallelization and its impact on SemIndex+ to a later dedicated study. 

 

7.6. Query Result Evaluation 
 

7.6.1. Result Quality Evaluation Metrics 
In addition to evaluating SemIndex+’ efficiency (processing time), we also evaluated its effectiveness (result quality), 

i.e., evaluating the interestingness of semantic-aware answers from the user’s perspective. To do so, we collected the 

results of our test queries and mapped them against user feedback (user judgments, utilized as golden truth) evaluating 

the quality of the answers produced by the system by computing precision, recall, f-value, and mean average 

precision metrics commonly utilized in IR evaluation [65]. Formally:  
 

 [0,1]
a

PR
a b

 


             [0,1]
a

R
a c

 


       

   
2

-  [0,1]
PR R

F Value
PR R

 
 


 (10) 

where a is the number of retrieved data objects that indeed correspond to the query’s result list (correctly retrieved), b 

is the number of retrieved data objects that do not correspond to the query’s result list (wrongly retrieved), and c is the 

number of data objects that are not retrieved, although they correspond to the query’s result list (data objects that 

should have been retrieved). F-value represents the harmonic mean of precision and recall, such that high precision 

and recall, and thus high f-value characterize good retrieval quality [65]. Also, we employed mean average precision 

(MAP) to  evaluate the ranking of relevant results w.r.t. non-relevant ones in the query result list: 
 

1..

( [ ] [ ])

 [0,1]
j n

PR j rel j

MAP
N





 


     (11) 

 

where n be the number of hits (i.e., returned data objects) in the query result list, PR[j] is precision at hit j, rel[j] is 

equal to 1 if the jth data object in the result list is relevant and 0 otherwise, and N = a+c is the total number of data 

objects in the data collection which are relevant for the query. MAP is maximum, i.e., = 1, when the system retrieves 

all relevant data objects (i.e., recall = 1) and ranks them perfectly: all of them appearing before non-relevant data 

objects in the query list (i.e., precision at Nth hit =1); and decreases as more non-relevant data objects are introduced 

before relevant ones in the result list.  

Ten test subjects (six master students, and four doctoral students, who were not part of the system development 

team) were involved in the experiment as human judges. Testers were asked to evaluate the quality of the top 100 

results (movie objects returned) per query (produced by SemIndex+ and its 3 alternatives). Here, only queries 

consisting of two keywords or more were considered, given that 1 single term queries (e.g., Qi_1) were deemed two 

fuzzy and coarse-grained for the testers to judge their results1. Query results were randomized before being shown to 

testers. Manual relevance ratings (in the form of integers  {-1, 0, 1}, i.e., {not relevant, neutral, relevant}) were 

acquired for each query answer. Then, we quantified inter-tester agreement, by computing pair-wise correlation 

scores2 among testers for each of the rated query answers, and subsequently selected the top 100 hundred answers per 

query having the highest average inter-tester correlation scores3, which we utilized as the experiment’s golden truth.   

 

 

                                                 

1  A great many movies can be retrieved as answers for query Q1_1: σtitle (“time”)
ΔIMDB given single term “time” alone is too broad for 

human testers to make sense of the query. The same goes for the other three single term queries: Q2_1, Q3_1, and Q4_1 (Table 4). 
2   Using Pearson Correlation Coefficient (PCC), producing scores  [-1, 1] such that: -1 designates that one tester’s ratings is a decreasing 

function of the other tester’s ratings (i.e., answers deemed relevant by one tester are deemed irrelevant by the other, and vice versa), 1 

designates that one tester’s ratings is an increasing function of the other tester’s ratings (i.e., answers are deemed relevant/irrelevant by 

testers alike), and 0 means that tester ratings are not correlated. 
3   Having average inter-tester PCC score  0.5. 



 

7.6.2. Comparing SemIndex+ Result Quality with Alternative Solutions 
 

Fig. 17 shows the precision, recall, f-value, and MAP results obtained with SemIndex+’s querying algorithm and 

alternative solutions: InvIndex [62], QueryRelax [64], QueryDisam [7], and QueryRefine [67]. Results averaged per 

link distance  and number of query terms k are provided in Table 5. These highlight several observations.  
 

1) Precision and recall with link distance: One can realize that precision levels with SemIndex+ while 

fluctuating, generally increase with link distance () until reaching = 3 or = 4 where precision starts to decrease 

toward  = 5. However, one can realize that recall levels steadily increase with  (with reduced fluctuation compared 

with precision). On the one hand, this shows that the number of correct (i.e., user expected) results increases as more 

semantically related terms are covered in the querying process (with  > 1). On the other hand, this also shows that 

over-navigating the SemIndex+ graph to link terms with semantically related ones located as far as   3 hops away 

might include results which: i) are somehow semantically related to the original query terms, but which ii) are not 

necessarily interesting for the users. For instance, term “congo” (meaning: black tea grown in China) is linked to term 

“time” through  = 5 hops in SemIndex+ (“time” >> “snap” >> “reception” >> “tea” >> “congo”). Yet, results (movie 

objects) containing term “congo” (e.g., movies about the country Congo, or its continent Africa) were not judged to 

be relevant by human testers when applying query “time” (testers were probably expecting movies about the passage 

of time or time travel instead, etc.)1. Many such examples occurred when running multiple term queries such as Q1_4 

(consisting of terms “robot”, “human”, “war”, “world”)2, where movies like The Taking of Pelham One Two Three3 

and Showtime4 (among others) where returned as results by SemIndex+’s querying algorithm when reaching =5. 

Such results were deemed not relevant by the testers since they do not correspond to the semantics of the query.  
 

2) Precision and recall with the number of query terms: Here, one can realize that precision levels tend to 

stagnate or even decrease when increasing the number of terms k – with queries having low link distance thresholds 

( 2-or-3) ; whereas precision tends to increase with the increase of k – with queries having higher link distances ( 

 3-or-4). A similar behavior can be seen with recall levels: using more query terms (increasing k) produces lesser 

results when link distance is low. For instance, running query Q1_4 with link distance =1 requires the returned movie 

objects to contain exact occurrences of all 4 query terms: “robot”, “human”, “war” and “world”, hence in our case 

producing zero (no) results whatsoever with all four SemIndex+ algorithms. Yet, as link distance increases, more and 

more (semantically related) results are retrieved (i.e., 0, 5, 253, and 1363 results were produced by SemIndex+ as 

answers for query Q1_4 with =2, 3, 4, and 5 respectively). In other words, as increases, so do the chances of 

producing more results with (lower and especially) higher k values, which in turn improves both precision (retrieving 

more relevant results) and recall (missing out less relevant results). 
 

3) Regarding f-value and MAP, levels clearly increase with the increase of link distance , whereas they show the 

same fluctuating behavior with the increase of the number of keywords k as mentioned and discussed in the previous 

paragraph. First, f-value levels confirm the precision and recall levels obtained above, where the determining factor 

affecting retrieval quality remains link distance , whereas an increase in the number of keywords k tends to reduce 

system recall with lower values of  and increase recall with higher values of . Second, MAP levels seem to concur 

with those of f-value, such that the ranking of relevant results compared with non-relevant ones in the queries’ result 

lists seems to increase with the increase of and fluctuate (based on the values of ) with the increase of k. In other 

words, increasing  not only allowed retrieving more relevant results, but also allowed dropping non-relevant ones 

(from the selected top 100 results of the query result list), and consequently  improved the ranking of relevant results 

w.r.t. non-relevant ones in the query result list. 
 

4) Comparison with alternative solutions: First, considering all four metrics, one can realize that SemIndex+ 

performs similarity to alternative solutions at lower link distances (  2), and then increasingly surpasses the latter as 

 increases (  3). This emphasizes the central impact of link distance in improving SemIndex+ performance 

(highlighted above). Second, considering results compiled over all link distances combined, one can clearly realize 

that SemIndex+ surpasses its alternatives considering both f-value and MAP, i.e., in both result quality and ranking. 

InvIndex naturally produced the worst f-value and MAP results since it is not semantic aware and only returns exact 

(syntactic) matches to query terms.  

                                                 

1   Even though testers had difficulty agreeing on the results of single keyword queries as mentioned previously, yet such cases occurring at 

link distance =4 or 5 were clearly deemed irrelevant by all testers. 

2   Query Q1_4: σtitle (“robot”, “human”)  plot (“war”, “world”) ΔIMDB 
3   2009 movie starring Denzel Washington and John Travolta, about a train hijacking in New York city. 
4   2002 comedy movie starring Eddy Murphy and Robert De Niro, about police officers starring in a reality TV show.  
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Fig. 17. Comparing precision (PR), recall (R), f-value, and mean average precision (MAP) results obtained using 

SemIndex+’s querying versus alternative solutions. 
 

7.7. Discussion 
 

To sum up, we evaluate in Table 6 the ratio (expressed in percentage) of increase in query execution time, as well as 

the ratio (percentage) of increase in query result quality (considering average MAP scores) when using SemIndex+’s 

querying algorithm versus alternative solutions (detailed results are provided in Appendix I): 
 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

P
re

ci
si

o
n

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex
InvIndex
Query Relax.
Query Disam.
Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

R
ec

al
l

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Disam.

Query Relax.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Disam.

Query Relax.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex.

Query Disam.

Query Relax.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

F-
va

lu
e

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Disam.

Query Relax.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

M
A

P

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

N# of query terms k

SemIndex

InvIndex

Query Relax.

Query Disam.

Query Refine

+ + + + + 

+ + + + + 

+ + + + + 

+ + + + + 

SemIndex+ SemIndex+ SemIndex+ SemIndex+ SemIndex+ 

SemIndex+ SemIndex+ SemIndex+ SemIndex+ SemIndex+ 

SemIndex+ SemIndex+ SemIndex+ SemIndex+ SemIndex+ 

SemIndex+ SemIndex+ SemIndex+ SemIndex+ SemIndex+ 



 

( , )
SemIndex Alt

Efficiency

Alt

QueryTime QueryTime
SemIndex Alt

QueryTime








      

,( )
SemIndex Alt

Effectiveness

Alt

MAP MAP
SemIndex Alt

MAP






      (12) 

 

Results in Table 6 highlight various observations: i) SemIndex+ querying requires an average 1701.74%, 

1622.48%, 26.99%, and 21.83% more processing time than InvIndex, QueryRelax, QueryDisam, and QueryRefine 

respectively; ii) SemIndex+ improves query result quality levels by 543.67%, 472.64%, 238.31%, and 156.31% 

compared with InvIndex, QueryRefine, QueryRelax, and QueryDisam respectively; iii) SemIndex+ is costlier in 

computation time compared with its alternatives, nonetheless, it is also clearly and significantly more effective in 

producing higher quality results; iv) SemIndex+ can be most clearly appreciated when compared with QueryDisam 

where its improvement in query result quality (156.31%) clearly surpasses by 5.82 times its increased query execution 

time (26.88%), such that the time “effort” put in query execution time more than quintupled the system’s increase in 

query result quality. Even more pronounced, SemIndex+’s (21.83%) increase in query time w.r.t. QueryRefine 

produced a significant 21.65 times increase in result quality (472.64%).  
 

Table 5. Average PR, R, f-value, and MAP (Appendix I)       Table 6. Average Efficiency  and  Effectiveness (Appendix I)  

 PR R F-value MAP   Efficiency100 Effectiveness 100 

SemIndex+ 0.3636 0.2085 0.2815 0.1393  InvIndex 1701.74% 543.67% 

InvIndex 0.2758 0.0327 0.1543 0.0273  QueryRelax 1622.48% 238.31% 

QueryRelax 0.2179 0.1412 0.1796 0.0527  QueryDisam 26.88% 156.31% 

QueryDisam 0.2639 0.1281 0.1960 0.0570  QueryRefine 21.83% 472.64% 

QueryRefine 0.3762 0.0508 0.2135 0.0394     

 

8. Conclusion 

This paper introduces SemIndex+, a framework for semantic-aware DB indexing and querying of unstructured (free-

text), structured (relational), and partly-structured (NoSQL) textual data. At the indexer level, SemIndex+ creates a 

hybrid graph structure using a tight coupling between two resources: a general purpose semantic network, and a 

standard inverted index defined on a collection of textual data. The index is extended to handle varying multi-attribute 

data collections (using attribute-sensitive indexers), handling terms with missing semantic connections (i.e., missing 

terms), and introducing a model for weighting SemIndex+ entries (i.e., the graph’s nodes and edges). At the query 

processing level, the framework provides a parallelized (multithreaded) querying algorithm, coupled with a dedicated 

relevance scoring measure allowing to retrieve and rank relevant query answers. Our theoretical study and empirical 

evaluation highlight interesting observations: i) SemIndex+’s structure can be built in average linear time, and its size 

is of average linear space w.r.t. the sizes of the input data and knowledge sources used, ii) query processing time is 

linear in the size of the SemIndex+ structure, and varies linearly w.r.t. to the number query terms (keywords) as well 

as the link distance threshold designating the breadth of the SemIndex+ graph to be covered during querying, iii) 

following the chosen link distance threshold, SemIndex+ is more or less costly in query processing time compared 

with alternative solutions (i.e., inverted index search, query relaxation, query disambiguation, and query refinement), 

nonetheless, iv) it is usually and significantly more effective in producing semantic-aware and higher quality results, 

such that SemIndex+’s improvement in query result quality clearly surpasses its increased query execution time. 

We are currently exploring various techniques to improve SemIndex+ query processing time. First, we have 

started testing the querying algorithm on a parallel processing platform (using the open source Apache Hadoop1). 

Preliminary results show a significant reduction in query execution time as the number of concurrent threads (multi-

cores) increases toward matching the number of query terms and staring index nodes. We are also investigating DB 

index partitioning techniques (horizontal [84], vertical [1], and graph-based [48]) to distribute SemIndex+ on multiple 

sites in order to allow more parallelization. We also plan to investigate query-driven optimization techniques, such as 

multi-term indexing [86] (i.e., associating more than one single term with every entry in the seed inverted index, 

(<term1, term2, …, termN> docIDs[]) which could be useful to reduce processing overhead for intersecting the 

inverted lists of multi-term queries, as well as incremental query result fetching [75] (returning successive subsets of 

the partial results until the final result is “good” enough, such that the minimum number of responses or the minimum 

range satisfying the query are found). Extending SemIndex+ to perform incremental result fetching could prove to be 

efficient by limiting the breadth and depth of the SemIndex+ graph navigated by the querying algorithm. 
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Appendix I: Experimental Test Data Characteristics and Results 
 

Table 7. Characteristics of IMDB movies table chunks. 
 

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Size (in MBs) 7.6183 15.0223 22.1164 29.7024 37.0124 43.8552 52.0411 58.5117 66.7324 74.1111 

N# of data objects 14,304 28,608 42,912 57,217 71,521 85,825 100,130 114,434 128,738 143,043 

N# of Attributes
1
 70,511 124,139 196,844 204,914 296,858  377,915 446,181 520,983 594,267 671,946 

N# of Terms 638,459 1,209,423 1,967,252 2,534,272 3,199,881 4,014,704 4,723,916 5,337,436 6,225,128 7,046,035 

Size (in MBs) of InvIndex 24.0366 48.193 70.9162 92.3598 115.9013 138.9912 160.0991 189.8099 214.5981 237.6099 

 
Table 8. Characteristics of WordNet chunks. 

 

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Size (in MBs) 2.7707 3.9466 7.6498 9.5691 12.1641 13.8941 18.2191 19.9491 23.4091 26.0041 

N# of Senses (Synsets) 11,738 23,475 35,212 46,949 58,686 70,423 82,160 93,897 105,634 117,371 

Avg. Branch2 1.4533 1.6257 1.7553 1.9236 2.0697 2.2259 2.3736 2.5285 2.6677 2.8223 

Size (in MBs) of InvIndex 3.2031 4.5625 8.8437 11.0625 14.0625 16.0625 21.0625 23.0625 27.0625 30.0625 

 
Table 9. Characteristics of SemIndex+ chunks. 

 

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Size (in MBs) 36.9219 68.2188 100.2813 133.3281 158.3594 202.4063 237.4688 273.5156 306.5938 339.625 

N# of Data Nodes 14304 28608 42912 57217 71521 85825 100130 114434 128738 143043 

N# of Attribute Nodes
2
 5 5 5 5 5  5 5 5 5 5 

N# of Attribute Node Occurrences 70,511 124,139 196,844 204,914 296,858  377,915 446,181 520,983 594,267 671,946 

N# of (Matching) Index Term Nodes 19090 36396 52388 67511 82370 96231 108828 122119 134258 146625 

N# of (Missing) Index Terms Nodes 54165 79174 101594 121078 141534 158663 174111 186930 195897 210279 

N# of Sense Nodes (Synsets) 11738 23475 35212 46949 58686 70423 82160 93897 105634 117371 

Total N# of Nodes 99302 167658 232111 292760 354116 411147 465234 517385 564532 617323 

Avg. Branch 1.7746 4.2493 5.8399 7.5746 8.6564 9.2882 9.9577 10.575 10.9745 11.3173 

 
Table 10. Characteristics of InvIndex (w.r.t. IMDB) chunks. 

 

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Size (in MBs) 25.5781 49.6250 73.6719 98.7188 122.7656 147.8125 171.8594 195.8906 220.9375 244.9844 

N# of Data Objects 14304 28608 42912 57217 71521 85825 100130 114434 128738 143043 

N# of Index Terms 73255 115570 153982 188589 223904 254894 282939 309049 330155 356904 

 

 

 

 

 

                                                 

1  Number of attribute occurrences in all data objects of the IMDB movies dataset. 
2  The number of attribute nodes in our current SemIndex+ graph is equal to 5 (denoting title, year, plot, genre and info) regardless of chunk 

size, since attribute nodes are added once to the index (cf. ER model in Fig. 10) following their first occurrence in the dataset, and are 

then referenced as many times as needed to construct 3-uniform data edges (corresponding to the number of attribute node occurrences).   



 

 

Table 11. Precision, recall, f-value, and MAP results obtained with SemIndex+ querying versus alternative solutions, 

averaged per link distance () and per number of terms (k). 
 

a. Average precision (PR) results 
 

 =1 =2 =3 =4 =5  k=2 k=3 k=4 k=5  Avg. 

SemIndex+ 0.2758 0.3234 0.5193 0.3805 0.3189  0.4226 0.3632 0.2502 0.4184  0.3636 

InvIndex 0.2758 (invariant with )  0.6032 0.5000 0.0000 0.0000  0.2758 

QueryRelax 0.2179 (invariant with )  0.4243 0.1440 0.2233 0.0800  0.2179 

QueryDisam 0.2639 (invariant with )  0.6032 0.1183 0.2108 0.1233  0.2639 

QueryRefine 0.3762 (invariant with )  0.5562 0.3485 0.2667 0.3333  0.3762 

 

b. Average recall (R) results 
 

SemIndex+ 0.0327 0.0570 0.1487 0.3358 0.4684  0.2570 0.2219 0.1656 0.1895  0.2085 

InvIndex 0.0327 (invariant with )  0.0943 0.0365 0.0000 0.0000  0.0327 

QueryRelax 0.1412 (invariant with )  0.1178 0.1474 0.1889 0.1108  0.1412 

QueryDisam 0.1281 (invariant with )  0.0943 0.1089 0.1644 0.1447  0.1281 

QueryRefine 0.0508 (invariant with )  0.0943 0.0365 0.0000 0.0000  0.0508 

 

c. Average f-value results 
 

SemIndex+ 0.1543 0.1902 0.3340 0.3581 0.3711  0.3398 0.2888 0.1937 0.3038  0.2815 

InvIndex 0.1543 (invariant with )  0.3488 0.2683 0.0000 0.0000  0.1543 

QueryRelax 0.1796 (invariant with )  0.2711 0.1457 0.2061 0.0954  0.1796 

QueryDisam 0.1960 (invariant with )  0.3488 0.1136 0.1876 0.1340  0.1960 

QueryRefine 0.2135 (invariant with )  0.3488 0.2683 0.0000 0.0000  0.2135 

 

d. Average mean average precision (MAP) results 

 

SemIndex+ 0.0273 0.0443 0.0982 0.2264 0.3002  0.1708 0.1222 0.1377 0.1264  0.1393 

InvIndex 0.0273 (invariant with )  0.0776 0.0317 0.0000 0.0000  0.0273 

QueryRelax 0.0527 (invariant with )  0.0599 0.0558 0.0829 0.0120  0.0527 

QueryDisam 0.0570 (invariant with )  0.0814 0.0814 0.0814 0.0814  0.0570 

QueryRefine 0.0394 (invariant with )  0.0872 0.0481 0.0162 0.0061  0.0394 
 

                                         

Table 12. Percentages of increase in query execution time and query result quality, when using SemIndex+ versus 

alternatives solutions. 
 

a. Percentage of increase in query execution time (Efficiency 100) 
 

 =1 =2 =3 =4 =5  k=2 k=3 k=4 k=5  Avg. 

InvIndex 0.59% 503.50% 1273.76% 2600.51% 4195.00%  1231.06% 1393.27% 1321.47% 2020.51%  1701.74% 

QueryRelax -5.90%1 464.52% 1185.03% 2426.09% 3917.60%  2032.25% 1127.12% 1480.63% 1286.97%  1622.48% 

QueryDisam -93.07% -58.42% -5.34% 86.07% 195.94%  23.07% 6.19% -8.31% 86.81%  26.88% 

QueryRefine -93.24% -59.45% -7.69% 81.45% 188.59%  35.48% 0.08% 5.60% 31.89%  21.83% 
 

b. Percentage of increase in query result quality (Effectiveness 100) 
 

InvIndex 0.00% 61.99% 258.95% 727.99% 997.79%  119.96% 285.04% 1276.85% 1164.46%  543.67% 

QueryRelax -48.08% -15.90% 86.36% 329.88% 469.95%  184.92% 119.06% 66.02% 952.53%  238.31% 

QueryDisam -52.00% -22.24% 72.30% 297.44% 426.95%  109.80% 151.04% 103.40% 320.13%  156.31% 

QueryRefine -30.58% 12.46% 149.19% 474.80% 662.09%  95.81% 154.21% 749.38% 1986.36%  472.64% 

 
 

Appendix II: Missing Terms Linkage Algorithm 

Connecting unmapped searchable term nodes from G . iV  to KBG . iV  , which we identify as missing terms in SIG , can 

be handled using an adaptation of distributional thesauri construction methods, e.g., [18, 87], to allow mining the 

syntactic/lexical relatedness between the missing terms and the index terms in SIG . Note that a distributional thesaurus 

is a thesaurus generated automatically from a given textual corpus (such as the Brown corpus [38], COCA [31], or 

even the textual collection  being indexed), by finding words that co-occur together or that have similar contexts in 

the corpus. To that end, we introduce the MissingTerms_Linkage algorithm in Fig. 18. It accepts as input: the 

SemIndex+ graph SIG , a reference text corpus C, as well as two input parameters: c1 and c2 designating respectively 

the co-occurrence window size and the number of top-ranked terms needed to identify related terms. For each missing 

term ti in SIG  (cf. Fig. 18.b, line 1), the algorithm creates a relatedness vector RV(ti) (line 3) to store the co-occurrence 

                                                 

1 A negative percentage of increase underlines a decrease percentage. 



 

frequencies of surrounding terms. It identifies a window of size c1, consisting of c1 terms occurring to the left and right 

of the missing term in the reference corpus and which also exist among the index terms of SIG  (line 4), and adds all 

window term frequencies to the relatedness vector (line 5). For example, suppose “horror” is a missing term, i.e., it 

does not appear in the WordNet lexicon extract but appears in object O1 of the data collection (cf. Fig. 5). If window 

size c1 = 2, using the data collection itself Part as reference corpus, then terms “strange”, “car”, “thriller” and 

“cell” would be in the surrounding window of “horror”, and hence the relatedness score between “horror” and all 

these terms is increased. Once the vector has been obtained, we normalize vector scores w.r.t. overall maximum term 

co-occurrence frequency (line 6), and identify the c2 top-ranked terms of the missing term ti, which are considered as 

the most related terms to ti in SIG  (line 7). Then, a link is created to connect ti’s term node with each top-ranked term 

tk node in SIG . These links are represented as index edges in SIG .Ei labeled: occurs-with (cf. Fig. 7 where term 

“horror” links with “car”, considered as its most related (top-ranked, i.e., highest co-occurrence frequency) term1). 

 
 

Algorithm MissingTerms_Linkage 
 

Input:  SIG        // SemIndex+ graph 

              C            // Reference text corpus 
 c1, c2       // Input parameters: window size and top-ranked terms                 

Ouput: SIG      // SemIndex+ graph with missing term links 
 

Begin 

For each missing term ti in SIG                            

 {                                                                                                  

       Create RV(ti) from C given SIG     // Relatedness vector for term ti                 
  

       For each term tj in window(ti, c1, C)                        
 

       { Add Freq(tj) to RV(ti)  }                                                         
              
       RV(ti) = RV(ti) / Max(RV(ti))         // Normalizing RV(ti) scores       

             
       Ti = set of c2 top-ranked terms in RV(ti)                                  
      
       For each term tk in Ti                                                                  

       {   Create link between term nodes ti and tk in SIG                 

            Label the link “occurs-with” }                                                 

}                                                                                                        

Return SIG                                                                                           

End 
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Fig. 18.  Pseudocode of the MissingTerms_Linkage algorithm. 

 

Note that the effectiveness of algorithm MissingTerms_Linkage depends on the number of missing terms, which 

in turn depends on the semantic coverage and expressiveness of the knowledge base used and its relatedness with the 

input textual collection (e.g., using a medical knowledge base to semantically map terms in a textual collection 

describing sports events will obviously lead to a substantial number of missing terms in the resulting SemIndex+ 

graph, thus negatively affecting index construction performance). The algorithm’s impact on SemIndex+ querying 

effectiveness and efficiency will be evaluated in a dedicated future study. 
 

 

Appendix III: Alternative Algorithms used in our Experimental Study 
 

1. Legacy Inverted Index Search (InvIndex) 

It's a standard containment keyword-based query [62] that: 
 

1- Retrieves textual identities that contain a set of keywords, 

2- Queries the inverted (term, objectIDs[]) list with every term in the query, to identify objects IDs associated to all 

(or at least one) query terms (based on the query type at hand: conjunctive or disjunctive), 

3- Assigns a score to every potential query answer (data object) considering a predefined relevance ordering 

scheme, in order to return the results ranked by their order of scores in ascending order. 
 

 

 

 

                                                 

1  A missing term can link with more than one (top-ranked) related terms, if more than one related terms were ranked with the same 
maximum co-occurrence frequency with the missing term.  



 

 

2. Query Relaxation (QueryRelax) 

It consists in expanding the user query to include more interesting (semantically related) words [64], which would 

help identify more interesting results. The main steps of the algorithm can be described as follows: 
 

1- Perform Part-Of-Speech tagging, 

2- Select the most common sense for each token (e.g., based on WordNet’s usage frequency, computed based on 

the Brown text corpus), 

3- For each selected sense si, include in the query: synonymous terms in the synset that is si, as well as the 

synonymous terms of all senses included in the direct semantic context of si [82], i.e., senses that are related to si 

via a semantic relationship (e.g., hypernymy, hyponymy, meronymy, etc.), 

4- Run the resulting query using InvIndex, as a traditional keyword containment query on the data collection’s 

inverted index (syntactic processing), and return the results to the user. 

 

3. Query Disambiguation (QueryDisam) 

It consists in applying word sense disambiguation [81] on query keywords, associating every keyword with its proper 

meaning (i.e., synset in WordNet) in order to execute the query accordingly [7]. The main steps of the algorithm can 

be described as follows: 
 

1- Perform WSD on query terms using the simplified Lesk algorithm [3],  

2- For each of the identified senses, include in the query: the sense’s synonymous terms, 

3- Run the resulting query using InvIndex, and return the results to the user 

 

4. Query Refinement (QueryRefine) 

It consists in refining the user query to remove certain terms and include more (semantically) descriptive terms, which 

would help identify more interesting results [67]. The main steps of the algorithm can be described as follows: 
 

1- Run the InvIndex algorithm on the original query, and return the query results to the user, 

2- For every term of the original query, provide the user with alternative suggestions in the form of a list of 

semantically related terms: the synonyms of all possible senses (synsets) of the query term, 

3- Allow the user to add and remove terms to/from the original query, considering system provided suggestions 

(step 2) or her own choice of terms, 

4- Run the refined query using InvIndex, and return the results to the user 
 


