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Abstract. Deep learning algorithms have demonstrated remarkable performance 

in many sectors and have become one of the main foundations of modern 

computer-vision solutions. However, these algorithms often impose prohibitive 

levels of memory and computational overhead, especially in resource-constrained 

environments. In this study, we combine the state-of-the-art object-detection 

model YOLOv3 with depthwise separable convolutions and variational dropout 

in an attempt to bridge the gap between the superior accuracy of convolutional 

neural networks and the limited access to computational resources. We propose 

three lightweight variants of YOLOv3 by replacing the original network’s 

standard convolutions with depthwise separable convolutions at different 

strategic locations within the network, and we evaluate their impacts on 

YOLOv3’s size, speed, and accuracy. We also explore variational dropout: a 

technique that finds individual and unbounded dropout rates for each neural 

network weight. Experiments on the PASCAL VOC benchmark dataset show 

promising results where variational dropout combined with the most efficient 

YOLOv3 variant lead to an extremely sparse solution that reduces 95% of the 

baseline network’s parameters at a relatively small drop of 3% in accuracy. 

Keywords: Computer Vision, Object Detection, Convolutional Neural Network, 

Depthwise Separable Convolution, Network Sparsification, Variational Dropout. 

1 Introduction 

Convolutional Neural Networks (CNNs) have witnessed tremendous growth following 

the release of AlexNet [1] at the ImageNet Large Scale Visual Recognition Challenge 

2012 (ILSVRC2012) competition [2]. Due to their accuracy and generalizability 

compared with traditional techniques, CNNs have become the dominant approach for 

a variety of real-life applications, particularly in the field of computer vision. 

Perhaps one of the most fundamental problems in this area is the task of object 

detection, which is characterized by two main categories of deep learning based 

solutions: i) two-stage and ii) single-stage detectors. In two-stage detectors like R-CNN 

(Regions with CNN features) [3], Fast R-CNN [4], and Faster R-CNN [5], region 

proposal networks generate regions of interest that are sent down a detection pipeline. 

In contrast, the single-stage framework treats object detection as a regression problem 

by learning the bounding box coordinates and class probabilities in one forward pass 

over a dense sampling of possible locations. State-of-the-art one-stage detectors include 
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SSD (Singe Shot MultiBox Detector) [6] and YOLO (You Only Look Once) [7-9]. 

While two-stage detectors reach higher accuracy levels, single-stage ones usually 

achieve higher inference speeds. In this context, the trade-off between accuracy and 

speed continues to be a major challenge for modern convolutional object detectors. 

Among the one-stage models, YOLOv3 [9] is one of the most recent and popular 

when it comes to balancing these two key performance criteria for practical 

applications. Despite its efficient architecture, YOLOv3 still has millions of parameters 

that come with a heavy computational cost and a large run-time memory footprint. The 

computational resources required to train such a large neural network on large 

benchmark datasets like PASCAL VOC (Pattern Analysis, Statistical Modelling and 

Computational Learning Visual Object Classes) [10] and MS COCO (Microsoft 

Common Objects in Context) [11] can often be prohibitive, and this issue of high 

computation overhead and power consumption often hinders its deployment on 

resource-constrained devices. 

In this study, we reduce YOLOv3’s size and induce a high state of sparsity within 

its network in order to produce an efficient object-detection model fit for resource-

limited environments. To do so, we propose three lightweight variants of YOLOv3 by 

replacing its standard convolutions with depthwise separable convolutions at different 

strategic locations, and we evaluate their impacts on the original network’s size, speed, 

and accuracy using the PASCAL VOC benchmark dataset. We then apply variational 

dropout [12] to the most efficient YOLOv3 variant, which leads to an extremely sparse 

solution that effectively compresses the baseline model by a factor of 20, thus reducing 

95% of the latter’s parameters at a relatively small decrease of 3% in its accuracy, 

depending on the batch size. 

The remainder of the paper is organized as follows. Section 2 provides preliminary 

notions regarding depthwise separable convolutions and variational dropout. Section 3 

briefly reviews the background and related works. Section 4 presents our proposal. 

Section 5 describes our experimental evaluation and results, before concluding in 

Section 6 with future directions. 

2 Preliminaries 

2.1 YOLOv3 Model 

The concept of the YOLO object-detection algorithm [7-9] is built on a unique set of 

characteristics that stands out from traditional systems in order to reduce computational 

complexity and achieve real-time inference speeds while maintaining high accuracy. It 

reasons globally about the full image by handling the task of object detection as an 

integrated regression problem to predict bounding boxes and their associated class 

probabilities in one single evaluation. First, the input image is divided into an S × S 

grid, where each grid cell is responsible for detecting the object that falls into it. 

Furthermore, the classification network architecture relies on 1×1 reduction layers 

followed by 3×3 convolutional layers. Lastly, a multi-part loss function that combines: 

i) a confidence loss, ii) a bounding box loss whenever the prediction box contains 

objects, and iii) a classification loss, is used to optimize the neural network’s 
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parameters. The original version of YOLO [7] has many shortcomings, e.g.: i) it 

imposes strong spatial constraints on bounding box predictions, ii) it struggles with 

detecting and localizing small objects, and iii) it is not able to properly generalize to 

objects with new or unusual aspect ratios. The second version, YOLOv2 [8], comes 

with several improvements and has established itself on standard detection tasks like 

PASCAL VOC. It introduces predefined anchor boxes that assist the prediction boxes, 

as well as a multi-scale training method, which offers a tradeoff between speed and 

accuracy by allowing the model to run at varying input image sizes. In the third and 

most powerful installment in this series, YOLOv3 [9], the backbone network has been 

upgraded to the state-of-the-art Darknet-53 feature extractor, on top of which several 

convolutional layers are stacked for the task of detection. YOLOv3 is capable of 

accurately detecting large, medium, and small objects by making predictions at three 

consecutive scales located at three different stages within the network. At each scale, a 

3D tensor encodes: i) the four bounding box offsets, ii) the level of confidence of having 

an object, and iii) the corresponding class predictions. 

Despite being cited as one of the fastest deep learning based object detectors, 

YOLOv3 has a large runtime memory footprint. In an attempt to resolve this issue, the 

YOLO series comes with a lightweight version called tiny YOLO, which decreases the 

number of floating point operations per second (FLOPS) by over 85%. However, this 

reduction in model size and inference time comes with a sharp drop of around 20% in 

the MS COCO detection accuracy. In this regard, striking a good balance between 

accuracy and speed remains a major computer-vision challenge to date. Various 

approaches to produce efficient machine learning models have been proposed in the 

literature e.g., [13-16], but for the sake of this study, we mainly focus on deep learning 

based object-detection solutions that use i) depthwise separable convolutions or ii) 

network sparsification as their underlying foundations. 

 

2.2 Depthwise Separable Convolutions 

A depthwise separable convolution is a form of factorized convolution. It separates the 

latter’s spatial and channel components into two layers: i) a depthwise convolutional 

layer, which applies a single filter to each input channel, and ii) a pointwise or 1×1 

convolutional layer, which multiplies the depthwise layer’s outputs to generate the 

same output of the original convolution. 

Compared with the standard convolution, which filters the input channels and 

combines them into a new set of outputs in a single step, the depthwise separable 

convolution substantially reduces a convolutional neural network’s size and 

computational cost. In fact, a standard convolutional layer takes a DF × DF × M feature 

map as input and outputs a DG × DG × N feature map, where DF and DG are the respective 

spatial width and height of the square input and output feature maps, and M and N 

respectively designate the number of input channels and number of output channels. 

This standard network unit is thus parameterized by a convolutional kernel K of size 

DK × DK × M × N. Similarly, DK here represents the spatial dimension of the kernel, 

which is taken to be square. For the average convolution with a stride of one and 

padding where the input and output feature maps have the same spatial dimensions, the 
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computational cost depends multiplicatively on the input depth N, the output depth M, 

the kernel size DK × DK, and the feature map size DF × DF, and comes down to: 
 

 

Using the alternative separable representation, the standard convolution is first broken 

into a depthwise convolution that filters the input channels and comes at the 

computational cost of 𝐷𝐾
2  × 𝑀 × 𝐷𝐹

2. An additional 1×1 pointwise layer is then needed 

to generate new features across the N output channels, at the computational cost of 𝑀 ×
𝑁 × 𝐷𝐹

2. Consequently, the total computational cost of the depthwise separable 

convolution is equal to the sum of the two previous terms: 
 

 

As can be seen, this approach is significantly more efficient than the traditional one, 

and this translates into a drastic reduction in computation of: 
 

 

Similar to MobileNets [17], YOLOv3 relies heavily on 3 × 3 convolutional filters. This 

conversion thus lowers the computation of each convolution by up to 9 times. Even 

though these calculations do not take the effect of having strides and valid padding into 

consideration, these results safely generalize to input and output feature maps of 

different sizes. Nonetheless, this drop in the number of parameters is associated with a 

minor drop in performance. In Section 4, we describe three experimental setups that 

produce different reductions in size and accuracy based on which YOLOv3 standard 

convolutions are changed to depthwise separable convolutions. 

 

2.3 Network Sparsification using Variational Dropout 

Sparsification is another leading approach to address the speed-versus-accuracy 

challenge of object-detection models. Sparsity is achieved when a proportion of a 

model is comprised of zero values. With most of the elements set to zero, sparse matrix 

formats can be used to store and perform efficient mathematical operations on the 

resulting weight matrices. Dropout [18] is a popular and empirically effective way of 

sparsifying a neural network and controlling over-fitting by randomly dropping out or 

ignoring a certain pre-defined percentage of neural network units during training. 

Variational dropout (VD) [19] is a more recent neural network regularization technique 

originally proposed as a Bayesian reinterpretation of Gaussian dropout [20], which is a 

more efficient approximation of the standard (binary) dropout. Simply put, variational 

dropout is a generalization of Gaussian dropout with learnable dropout rates. It has been 

later extended in [12] to include more specific dropout rates, where individual weight 

parameters with high dropout values can be removed post-training to get highly sparse 

models with a virtually identical performance. 

For a training set D of N samples (𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑁 and a classification problem where the 

goal is to learn the weight parameters w of the conditional probability p(y|x, w), 

Bayesian inference is used to update an initial belief over w in the form of a prior 

 𝐷𝐾
2 × 𝑀 × 𝑁 × 𝐷𝐹

2 (1) 

 𝐷𝐾
2 × 𝑀 × 𝐷𝐹

2 +  𝑀 × 𝑁 × 𝐷𝐹
2 (2) 

 𝐷𝐾
2 × 𝑀 × 𝐷𝐹

2 +  𝑀 × 𝑁 × 𝐷𝐹
2

𝐷𝐾
2 × 𝑀 × 𝑁 × 𝐷𝐹

2 =
1

𝑁
+

1

𝐷𝐾
2 (3) 
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distribution p(w) with observed data D into a belief in the form of a posterior 

distribution p(w|D): 

 

Since computing the true posterior distribution p(w|D) is computationally intractable, 

an approximation is used instead [12]. In variational inference, the parameters ϕ of 

some model 𝑞𝜙 (𝑤) are optimized such that the approximated parameterized model is 

as close as possible to the true posterior distribution, as evaluated by the Kullback-

Leibler (KL) divergence between the two distributions. In practice, this divergence is 

minimized by maximizing the variational lower-bound equation, which is the 

difference between the expected log-likelihood 𝐿𝐷(𝜙) and the KL-divergence 

regularization of 𝑞𝜙 (𝑤) with respect to p(w), as shown below: 
 

where: 

 

Using the Stochastic Gradient Variational Bayes (SGVB) algorithm [19], the log-

likelihood is reduced to the standard cross-entropy loss, which is typically used to 

minimize the divergence of the predicted label from the true one, while the KL 

divergence term serves as a regularization term. Note that in the standard formulation 

of VD, the weights of neural network are assumed to be drawn from a fully-factorized 

Gaussian approximate posterior: 
 

 

where 𝜃𝑖𝑗 and 𝜎𝑖𝑗
2 = 𝛼𝑖𝑗𝜃𝑖𝑗

2  are the mean and variance of this Gaussian distribution, with 

𝛼𝑖𝑗 being a parameter that defines the dropout rate 𝑝𝑖𝑗 of the weight 𝑤𝑖𝑗 as follows: 
 

 

If 𝛼𝑖𝑗 = 0, then 𝑤𝑖𝑗 is fully preserved with no dropout rate. In contrast, when 𝛼𝑖𝑗 →

+∞, 𝑝𝑖𝑗 → 1, 𝑤𝑖𝑗 can be completely removed to sparsify the model. For each training 

step, the weights are sampled from the normal distribution N, and the so-called re-

parameterization trick [21, 22] is used to differentiate the loss with respect to the 

parameters through this sampling operation: 
 

 

where 𝜖𝑖𝑗~ 𝒩(0,1). Via this parameterization, the mean and variance of the neural 

network parameters can be directly optimized. For a log-uniform prior on the weights 

p(w), the KL divergence component of the 𝐷𝐾𝐿(𝑞𝜙 (𝜔𝑖𝑗)||𝑝(𝜔𝑖𝑗) objective function 

can be accurately approximated using the following equation [12]: 

 

 𝑝(𝑤|𝐷) =  𝑝(𝐷|𝑤)/p(𝐷) (4) 

 𝐿(𝜙) = 𝐿𝐷(𝜙) − 𝐷𝐾𝐿(𝑞𝜙 (𝑤)||𝑝(𝑤)) (5) 

 𝐿𝐷(𝜙) = ∑ 𝑬𝑞𝜙 
[𝑙𝑜𝑔(𝑝(𝑦|𝑥, 𝑤))]

(𝑥,𝑦)∈Ɗ

 (6) 

 𝑤𝑖𝑗 ~ 𝑞𝜙(𝑤𝑖𝑗) =  𝒩(𝜃𝑖𝑗 , 𝜎𝑖𝑗
2 ) (7) 

 𝑝𝑖𝑗 =
𝛼𝑖𝑗

1 + 𝛼𝑖𝑗
 (8) 

 𝑤𝑖𝑗 = 𝜃𝑖𝑗(1 + √𝛼𝑖𝑗𝜖𝑖𝑗) ~ 𝒩(𝑤𝑖𝑗|𝜃𝑖𝑗 , 𝛼𝑖𝑗𝜃𝑖𝑗
2 )  (9) 
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where k1=0.63576, k2 = 1.87320, k3 = 1.48695, and C = –k1. 

The authors in [12] highlight some difficulties in training certain models with a 

learnable sparse architecture from a random initialization, as large portions of the model 

tend to adopt high dropout rates before a useful representation is learned from the data. 

To address this issue, they propose to start from a pre-trained network or use warm-up, 

i.e., re-scale the KL divergence term during the training by adding a regularizer 

coefficient, and then gradually increase it from 0 to 1. We adopt a similar approach in 

our study, but we instead apply variational dropout to an efficient and lightweight 

YOLOv3 variant based on depthwise separable convolutions. 

3 Related Works 

3.1 Depthwise Separable Convolution Approaches 

Recently, several deep learning models have been built on depthwise separable 

convolutions. MobileNets [17] are a family of fast and small-sized deep neural 

networks which are based on depthwise separable convolutions and include two global 

hyperparameters to tune their latency and accuracy. The first parameter is a width 

multiplier, which can scale down the input and output channels of a given layer to thin 

the latter uniformly. The second is a resolution multiplier, which can be applied to the 

input image to reduce the internal representation of every layer. After varying these two 

hyper-parameters, different trade-offs for reducing the network size and accuracy are 

achieved, and the authors compare their results with those of popular models in various 

applications.  Instead of building new models from scratch, many researchers have 

focused on redesigning YOLO’s architecture in order to create lighter versions that 

increase inference speed while maintaining high detection accuracy. One example of a 

small-sized YOLOv3 variant that relies on depthwise separable convolutions is Mini-

YOLOv3 [23], which consists of a new backbone network with a parameter size of only 

16% that of Darknet-53. In the residual layers of Mini-YOLOv3, the authors use a 1×1 

convolution to increase the input dimension and then decrease it, leaving the 3×3 layer 

in an inverted bottleneck with larger input/output dimensions. To compensate for the 

large calculations associated with these operations, the authors group the convolutions 

and add a channel shuffle to enable cross-group information flow. Furthermore, they 

introduce a Multi-Scale Feature Pyramid Network (MSFPN) based on a U-shaped 

structure to improve the performance of the multi-scale object detection task. In this 

MSFPN, a Concat model first fuses the backbone’s three feature maps to generate the 

base feature. An Encoder-Decoder then generates a group of multi-scale features, and 

a Feature Fusion model finally aggregates the three feature maps and group of multi-

scale features into a feature pyramid. The Mini-YOLOv3 model achieves accuracy 

levels comparable to those of YOLOv3 on the MS COCO dataset, but at double the 

inference speed. Another example of a lightweight model is YOLOv3-Lite [24]. The 

feature extraction backbone of this network is 13-layers deep and is built entirely on 

 
𝐷𝐾𝐿 ≈

𝑘1

1 + 𝑒−(𝑘2+ 𝑘3𝑙𝑜𝑔𝛼𝑖𝑗) 
− 0.5 log (1 +

1

𝛼𝑖𝑗

) + 𝐶 (10) 
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depthwise separable convolutions. Similarly to YOLOv3, each convolution layer is 

followed by batch normalization and ReLU non-linearity layers. The authors also adopt 

the idea of a feature pyramid network that combines low- and high-resolution 

information at three different scales to detect large, medium, and small scale objects. 

Their lightweight detection network uses the YOLOv3 bounding box regression 

strategy, and it reaches a detection accuracy comparable to that of YOLOv3 on a custom 

dataset for cracks in aircraft structures. 

 

3.2 Network Sparsification Approaches 

Some of the recent solutions that have been proposed to sparsify the YOLOv3 neural 

network are presented in [25, 28]. In the first study [25], the authors impose channel-

level sparsity on YOLOv3’s convolutional layers by applying L1 regularization to the 

𝛾 regularizer of the batch normalization layers. L1 regularization is a technique used to 

penalize a neural network’s loss function in proportion to the sum of the absolute values 

of the weights. It helps drive the weights of irrelevant features to zero, thus sparsifying 

the model. The authors also integrate a spatial pyramid pooling (SPP) module, which 

consists of multiple parallel maxpool layers with different kernel sizes, in order to 

extract additional multi-scale features and further improve the detection accuracy. They 

then apply L1 regularization to their YOLOv3-SPP3 model and use a penalty factor to 

optimize the resulting L1 loss term. After the sparsity training, the authors introduce a 

global threshold to control the pruning ratio and carefully prune each feature channel 

to maintain the integrity of the network connections. Finally, they follow a fine-tuning 

operation and incremental pruning strategy to compensate for any performance 

degradation and prevent over-pruning. Their proposed SlimYOLOv3 model is 

evaluated on the VisDrone2018-Det benchmark dataset [26] for Unmanned Aerial 

Vehicles (UAV) applications [27], and experimental results using different pruning 

ratios show a decrease in parameter size of down to 92% with a detection accuracy 

comparable to that of YOLOv3. In [28], the authors use variational dropout to sparsify 

YOLOv3 on a self-collected dataset about road traffic in Vietnam. Both YOLOv3 and 

YOLOv3-VD are initialized from the pre-trained weights obtained on the COCO 

dataset, but during the training of YOLOv3-VD, a scaling factor is used to balance the 

variational dropout loss term with the network loss function. The authors successfully 

eliminate up to 91% of the original network weight parameters with only a 3% drop in 

accuracy, and their experimental results show that the sparsity level gradually increases 

such that the final layers can be completely pruned. 

4 Proposal: Separable YOLOv3 with Variational Dropout 

After careful examination of the YOLOv3 architecture, we set out to study the size-

accuracy trade-off associated with substituting standard convolutions with depthwise 

separable ones and adding variational dropout. Our approach’s overall process is 

depicted in Fig. 1, and consists of three main components: i) integrating depthwise 

separable convolutions in YOLOv3 to produce three lightweight variants, ii) training 

these three separable models on the PASCAL VOC dataset, and then iii) applying 
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variational dropout to the best performing model. We rely on a TensorFlow 

implementation of YOLOv31, which is an overall faithful reproduction of the original 

model [9] but with several tweaks such as: i) replacing the original loss with a GIoU 

(General Intersection of Union) loss, ii) using cosine scheduling for the learning rate, 

and iii) implementing different data augmentation techniques. Even though they 

drastically affect the network’s performance, these modifications have no impact on 

this study, since all the experiments are done under the same settings.   

 
 

Fig. 1. Simplified activity diagram describing our approach 

4.1 Separable YOLOv3 Configurations 

We produce three separable models by replacing YOLOv3’s standard convolutions 

with depthwise separable ones at different locations within the network: 
 

- SEP: All standard convolutions are replaced with depthwise separable 

convolutions, except those with a 1×1 filter, since reducing and then restoring the 

dimensions of the multiple 1×1 convolutions spread throughout the network 

would greatly weaken the feature learning and expression ability of the model. 

Note that this exception is extended to the two remaining models. 

- SEP-BRANCH: All standard convolutions are replaced with depthwise 

separable convolutions, except for the detection layers, which are marked by the 

last two convolutions of each of YOLOv3’s three detection scales. 

- SEP-BACKBONE: Only the standard convolutions of the Darknet-53 backbone 

are replaced with depthwise separable convolutions. 
 

Note that each convolution in YOLOv3 is followed by a batch normalization layer and 

a leaky ReLU activation function. Similarly, batch normalization and the leaky ReLU 

nonlinearity are applied after each of the depthwise and pointwise 1×1 convolutions.  
 

4.2 Separable YOLOv3 Model 

We conduct the variational tests on the best performing model, which turns out to be 

SEP-BRANCH based on our empirical results reported in Section 5. We follow Gale 

et al.’s [29] TensorFlow implementation of variational dropout, which is publicly 

available online2. 

Given that the depthwise separable factorization splits the standard convolution into 

a depthwise convolution and a pointwise convolution, with 𝑤𝑑𝑖𝑗
and 𝑤𝑝𝑖𝑗

 as their 

respective weights, we apply a variational distribution with learnable parameters 𝜃, 𝜎2, 

                                                           
1 https://github.com/YunYang1994/tensorflow-yolov3 
2 https://github.com/google-research/googleresearch/tree/master/state_of_sparsity/layers/variational_dropout 

YOLOv3 
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and 𝛼 on each weight. We then appropriately sum the two resulting KL-divergence 

terms and add them to the global network loss, along with the divergence term of the 

standard convolutions. The multi-part loss function becomes as follows: 
 

 

Knowing that training the model with VD from the start is not recommended [12], we 

use a regularizer coefficient 𝜆 to balance YOLOv3’s loss and the KL-divergence term. 

Similarly to the study in [27], we gradually ramp the regularizer coefficient to induce 

sparsity. We train the model without any VD loss (𝜆 = 0) from the obtained VOC 

weights until we reach convergence after 35 epochs. We then set the divergence 

coefficient to 𝜆 = 10-6 for 10 epochs, and raise it to 𝜆 = 10-5 for an additional 10 epochs. 

Afterwards, we notice that additional training starts to increase the network’s sparsity 

level at the expense of its accuracy. As a result, we lower the learning rate to 10-6 to 

fine-tune the model sparsity over 10 epochs. 

5 Experimental Results 

5.1 Separable YOLOv3 Models 

We train YOLOv3 and its three depthwise separable variants (SEP, SEP-BRANCH, 

and SEP-BACKBONE) from scratch and under the same configuration settings on the 

PASCAL VOC dataset (VOC2007+2012 trainval for the train set, and VOC2007 test 

for the test set): i) a total number of 100 epochs (including 5 warm-up epochs), ii) a 

learning rate starting at 10-4 and gradually decreasing to 10-6 following a cosine 

scheduling, and iii) a batch size of 8. The training was conducted on Google Colab3 

using a Tesla P100 GPU. The performance of each separable model is compared to that 

of the original network in terms of i) mean average precision (mAP), ii) model size, 

and iii) inference speed. Our goal is to find the drop in accuracy associated with the 

convolutional factorization and to identify the most efficient model. Results are 

provided in Table 1 and visualized in Fig. 2. 
 

Table 1. Results for YOLOv3 and its separable variants for a 416×416 input 
 

Model 
mAP 

(IoU = 0.5) 

# of trainable 

parameters 

Model 

size (MB4) 

Inference time 

(milliseconds) 

YOLOv3 71.48% 61,626,049 951 32.88 

SEP 68.09% 12,211,426 201 26.55 

SEP-BRANCH 68.45% 17,706,594 284 27.07 

SEP-BACKBONE 68.89% 28,696,930 451 28.22 

  

                                                           
3  https://colab.research.google.com/ 
4 The model size represents the size of the checkpoint files obtained during the training, which are 

significantly larger than the compressed files used for inference. 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐺𝐼𝑜𝑈 + 𝐿𝐶𝑜𝑛𝑓 + 𝐿𝑃𝑟𝑜𝑏 + 𝜆𝐷𝐾𝐿  (11) 

https://colab.research.google.com/
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Results show that the conversion to depthwise separable convolutions seems to be 

associated with a slight drop in accuracy, compared with a sharp decrease in the number 

of trainable parameters and model size. Even though only the Darknet-53 backbone is 

subject to this conversion in the SEP-BACKBONE architecture, the latter’s accuracy 

is comparable to that of its counterparts and fails to justify its significant increase in 

model size. This is probably due to the fact that two types of convolutions do not mix 

well together, especially when they show large differences in their number of 

parameters and feature extraction capabilities. While all the separable models seem to 

be on a par with YOLOv3 in terms of accuracy, the SEP-BRANCH model reduces 70% 

of YOLOv3’s size with only a 3% drop in accuracy, and thus offers the best trade-off 

between accuracy and speed. 
 

 

 
 

  

a. mAP (IoU = 0.5) b. Trainable parameters (millions) 

  

c. Model size (MB) d. Inference time (milliseconds) 

 

Fig. 2. Results for YOLOv3 and its separable variants for a 416×416 input 

 

5.2 YOLOv3 Model 

In the second stage of this work, we apply variational dropout to the SEP-BRANCH 

model in order to produce a sparse and compact model suitable for real-time 

applications. Even though adding variational dropout doubles the total number of 

trainable parameters, the SEP-BRANCH model with variational dropout – noted SEP-

BRANCH-VD – still amounts to less than 60% of YOLOv3’s trainable parameters. We 

train both the SEP-BRANCH and SEP-BRANCH-VD models using the same settings 

adopted in the previous experiment, to the exception of batch size, which we set to 2 

(instead of 8). We use a smaller batch size to cater for the large computation overhead 

associated with the variational dropout terms. Results obtained on the PASCAL VOC 

dataset are shown in Table 2. They demonstrate the effectiveness of variational dropout 

when applied to the depthwise separable convolutions of a deep and complex network 
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like YOLOv3 trained on a large benchmark dataset. They also show that this technique 

can drop most of the model’s weights without damaging its performance. In fact, for a 

batch size of 2, SEP-BRANCH-VD reaches a mAP equal to that of SEP-BRANCH 

with only 18% of the latter’s parameters, and just 5% of YOLOv3’s baseline 

parameters. However, adding variational dropout has two major drawbacks: i) it 

requires more than double the training time, and ii) it requires significantly larger 

computational resources to run on a larger batch size of 8 and preserve the original 

mAP levels. Nonetheless, for a batch size of 8, we expect the SEP-BRANCH-VD 

model to sustain a mAP of at least 68% and thus, relatively to YOLOv3, limit the drop 

in accuracy to 3%. 

 
Table 2. Results of SEP-BRANCH trained with variational dropout 

 

Model 
mAP  

(IoU = 0.5) 

# of weight 

parameters  

# of zero weight 

parameters 
Sparsity level 

YOLOv3 

(batch size of 8) 
71.48% 61,626,049 - - 

SEP-BRANCH 

(batch size of 8) 
68.45% 17,706,594 - - 

SEP-BRANCH 

(batch size of 2) 
65.35% 17,706,594 - - 

SEP-BRANCH-VD 

(batch size of 2) 
65.42% 17,706,594 14,584,999 82.37% 

 
During inference, we set to zero all weight parameters with a 𝑙𝑜𝑔𝛼 value greater than 

3, as they correspond to weights with a dropout rate larger than 95% [12]. Accuracy 

can be traded for more sparsity by decreasing the 𝑙𝑜𝑔𝛼 threshold. For example, with a 

threshold of 1, the SEP-BRANCH-VD model achieves 84.3% global sparsity with 64% 

test set accuracy. We provide in Table 3 the test set accuracy and global sparsity levels 

under different thresholds, and our results show that the drop in accuracy does not 

justify the minor increase in sparsity. 

 
Table 3. SEP-BRANCH-VD results under different logα thresholds 

 

𝒍𝒐𝒈𝜶 threshold mAP Sparsity level 

3 65.42% 82.37% 

2 64.85% 83.20% 

1 64.04% 84.30% 

0 60.41% 85.50% 

 
Considering that variational dropout distributes sparsity non-uniformly across the 

neural network layers, we can make several observations regarding sparsity ratio 

distribution across the convolutional weights:  

- First, the overall sparsity level seems to be gradually increasing throughout the 

network, which is consistent with the findings in [28]. The first convolutions are 



12 

almost fully condensed (sparsity levels go from 0% to 30%), whereas the last ones 

are almost entirely sparse (sparsity levels between 60% and up to 97%).  

- Second, the average sparsity level for the depthwise convolutions is 11%, in 

contrast with 58% for the pointwise convolutions. This can be due to the fact that 

depthwise convolutions extract features from the input channels, while pointwise 

convolutions combine the filtered inputs into a new set of output channels.  

- Third, higher sparsity ratios are achieved in standard convolutions (average 

sparsity level of 70%) compared with depthwise separable convolutions. In 

particular, the highest sparsity levels are seen at the detection layers, where they 

reach values greater than 90%.  

- Fourth, by examining the sparsity distribution across the different convolutional 

layers, we notice that the zero values are spread rather randomly across the weight 

matrices, and do not follow any recognizable pattern.  
 

Lastly, given that a new YOLOv4 model [30] has just been released, we hope that the 

redundancy seen within the convolutional weights leads to a better understanding of the 

workings and generalization properties of YOLOv3, and in the future helps the design 

of more efficient models that focus on parameter and layer quality rather than quantity. 

6 Conclusion 

6.1 YOLOv3 Model 

This study introduces a lightweight and sparse YOLOv3-based model by combining 

depthwise separable convolutions with VD. We first propose three different YOLOv3 

variants by integrating depthwise separable convolutions at different strategic locations 

within the original network. Results for all three models are satisfactory, with the most 

efficient model reducing YOLOv3’s size by a factor of 3.5 at only a 3% drop in 

accuracy. We then apply VD to this compact model and further eliminate more than 

82% of its weight values, thus effectively removing 95% of YOLOv3’s total parameters 

without any additional drop in accuracy – given that the same batch size is used. The 

obtained results i) validate the effectiveness of depthwise separable convolutions, ii) 

demonstrate that a deep and complex neural network based on YOLOv3 and depthwise 

separable convolutions can undergo extensive sparsification on a large benchmark 

dataset, and iii) give insights into the relevance of the different YOLOv3 layers. 

 

6.2 Discussion and Future Works 

The scope of our present work includes evaluating certain properties related to 

depthwise separable convolutions and VD within the context of YOLOv3, rather than 

reaching a global optimum and maximizing the mAP. Therefore, the training 

hyperparameters need to be reviewed and carefully fine-tuned if higher accuracy levels 

are to be achieved for all the models evaluated in this study. Moreover, YOLOv3 is 

typically trained on the MS COCO dataset, and the resulting weights are usually used 

to initialize the training on PASCAL VOC or any custom dataset. It would be therefore 

interesting to replicate our experiments on the significantly larger and more varied 



13 

COCO dataset and check whether depthwise separable convolutions can leverage the 

transfer learning property on the VOC dataset as well as standard convolutions do. It 

would be also interesting to learn whether the sparse topology learned on the COCO 

dataset using VD can be used to initialize the training on the VOC dataset, since 

performing the training phase in a fully sparse manner would greatly accelerate the 

time-to-solution and might even allow the training to be conducted on resource-

constrained embedded devices. Finally, knowing that sparsification is an intermediate 

but crucial step to network compression, our approach can be combined with data 

compression techniques like quantization and Huffman coding [31] and then integrated 

with light-weight deep learning frameworks such as TensorFlow Lite in order to reach 

real-time processing for on-device inference. 
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