
* Corresponding author

Depthwise Separable Convolutions and Variational

Dropout within the context of YOLOv3

Joseph Chakar, Rayan Al Sobbahi, and Joe Tekli*

Lebanese American University, 36 Byblos, Mount Lebanon, Lebanon

{joseph.elchakar, rayan.alsobbahi}@lau.edu, joe.tekli@lau.edu.lb

Abstract. Deep learning algorithms have demonstrated remarkable performance

in many sectors and have become one of the main foundations of modern

computer-vision solutions. However, these algorithms often impose prohibitive

levels of memory and computational overhead, especially in resource-constrained

environments. In this study, we combine the state-of-the-art object-detection

model YOLOv3 with depthwise separable convolutions and variational dropout

in an attempt to bridge the gap between the superior accuracy of convolutional

neural networks and the limited access to computational resources. We propose

three lightweight variants of YOLOv3 by replacing the original network’s

standard convolutions with depthwise separable convolutions at different

strategic locations within the network, and we evaluate their impacts on

YOLOv3’s size, speed, and accuracy. We also explore variational dropout: a

technique that finds individual and unbounded dropout rates for each neural

network weight. Experiments on the PASCAL VOC benchmark dataset show

promising results where variational dropout combined with the most efficient

YOLOv3 variant lead to an extremely sparse solution that reduces 95% of the

baseline network’s parameters at a relatively small drop of 3% in accuracy.

Keywords: Computer Vision, Object Detection, Convolutional Neural Network,

Depthwise Separable Convolution, Network Sparsification, Variational Dropout.

1 Introduction

Convolutional Neural Networks (CNNs) have witnessed tremendous growth following

the release of AlexNet [1] at the ImageNet Large Scale Visual Recognition Challenge

2012 (ILSVRC2012) competition [2]. Due to their accuracy and generalizability

compared with traditional techniques, CNNs have become the dominant approach for

a variety of real-life applications, particularly in the field of computer vision.

Perhaps one of the most fundamental problems in this area is the task of object

detection, which is characterized by two main categories of deep learning based

solutions: i) two-stage and ii) single-stage detectors. In two-stage detectors like R-CNN

(Regions with CNN features) [3], Fast R-CNN [4], and Faster R-CNN [5], region

proposal networks generate regions of interest that are sent down a detection pipeline.

In contrast, the single-stage framework treats object detection as a regression problem

by learning the bounding box coordinates and class probabilities in one forward pass

over a dense sampling of possible locations. State-of-the-art one-stage detectors include

mailto:joseph.elchakar,%20@lau.edu
mailto:rayan.alsobbahi@lau.edu

2

SSD (Singe Shot MultiBox Detector) [6] and YOLO (You Only Look Once) [7-9].

While two-stage detectors reach higher accuracy levels, single-stage ones usually

achieve higher inference speeds. In this context, the trade-off between accuracy and

speed continues to be a major challenge for modern convolutional object detectors.

Among the one-stage models, YOLOv3 [9] is one of the most recent and popular

when it comes to balancing these two key performance criteria for practical

applications. Despite its efficient architecture, YOLOv3 still has millions of parameters

that come with a heavy computational cost and a large run-time memory footprint. The

computational resources required to train such a large neural network on large

benchmark datasets like PASCAL VOC (Pattern Analysis, Statistical Modelling and

Computational Learning Visual Object Classes) [10] and MS COCO (Microsoft

Common Objects in Context) [11] can often be prohibitive, and this issue of high

computation overhead and power consumption often hinders its deployment on

resource-constrained devices.

In this study, we reduce YOLOv3’s size and induce a high state of sparsity within

its network in order to produce an efficient object-detection model fit for resource-

limited environments. To do so, we propose three lightweight variants of YOLOv3 by

replacing its standard convolutions with depthwise separable convolutions at different

strategic locations, and we evaluate their impacts on the original network’s size, speed,

and accuracy using the PASCAL VOC benchmark dataset. We then apply variational

dropout [12] to the most efficient YOLOv3 variant, which leads to an extremely sparse

solution that effectively compresses the baseline model by a factor of 20, thus reducing

95% of the latter’s parameters at a relatively small decrease of 3% in its accuracy,

depending on the batch size.

The remainder of the paper is organized as follows. Section 2 provides preliminary

notions regarding depthwise separable convolutions and variational dropout. Section 3

briefly reviews the background and related works. Section 4 presents our proposal.

Section 5 describes our experimental evaluation and results, before concluding in

Section 6 with future directions.

2 Preliminaries

2.1 YOLOv3 Model

The concept of the YOLO object-detection algorithm [7-9] is built on a unique set of

characteristics that stands out from traditional systems in order to reduce computational

complexity and achieve real-time inference speeds while maintaining high accuracy. It

reasons globally about the full image by handling the task of object detection as an

integrated regression problem to predict bounding boxes and their associated class

probabilities in one single evaluation. First, the input image is divided into an S × S

grid, where each grid cell is responsible for detecting the object that falls into it.

Furthermore, the classification network architecture relies on 1×1 reduction layers

followed by 3×3 convolutional layers. Lastly, a multi-part loss function that combines:

i) a confidence loss, ii) a bounding box loss whenever the prediction box contains

objects, and iii) a classification loss, is used to optimize the neural network’s

3

parameters. The original version of YOLO [7] has many shortcomings, e.g.: i) it

imposes strong spatial constraints on bounding box predictions, ii) it struggles with

detecting and localizing small objects, and iii) it is not able to properly generalize to

objects with new or unusual aspect ratios. The second version, YOLOv2 [8], comes

with several improvements and has established itself on standard detection tasks like

PASCAL VOC. It introduces predefined anchor boxes that assist the prediction boxes,

as well as a multi-scale training method, which offers a tradeoff between speed and

accuracy by allowing the model to run at varying input image sizes. In the third and

most powerful installment in this series, YOLOv3 [9], the backbone network has been

upgraded to the state-of-the-art Darknet-53 feature extractor, on top of which several

convolutional layers are stacked for the task of detection. YOLOv3 is capable of

accurately detecting large, medium, and small objects by making predictions at three

consecutive scales located at three different stages within the network. At each scale, a

3D tensor encodes: i) the four bounding box offsets, ii) the level of confidence of having

an object, and iii) the corresponding class predictions.

Despite being cited as one of the fastest deep learning based object detectors,

YOLOv3 has a large runtime memory footprint. In an attempt to resolve this issue, the

YOLO series comes with a lightweight version called tiny YOLO, which decreases the

number of floating point operations per second (FLOPS) by over 85%. However, this

reduction in model size and inference time comes with a sharp drop of around 20% in

the MS COCO detection accuracy. In this regard, striking a good balance between

accuracy and speed remains a major computer-vision challenge to date. Various

approaches to produce efficient machine learning models have been proposed in the

literature e.g., [13-16], but for the sake of this study, we mainly focus on deep learning

based object-detection solutions that use i) depthwise separable convolutions or ii)

network sparsification as their underlying foundations.

2.2 Depthwise Separable Convolutions

A depthwise separable convolution is a form of factorized convolution. It separates the

latter’s spatial and channel components into two layers: i) a depthwise convolutional

layer, which applies a single filter to each input channel, and ii) a pointwise or 1×1

convolutional layer, which multiplies the depthwise layer’s outputs to generate the

same output of the original convolution.

Compared with the standard convolution, which filters the input channels and

combines them into a new set of outputs in a single step, the depthwise separable

convolution substantially reduces a convolutional neural network’s size and

computational cost. In fact, a standard convolutional layer takes a DF × DF × M feature

map as input and outputs a DG × DG × N feature map, where DF and DG are the respective

spatial width and height of the square input and output feature maps, and M and N

respectively designate the number of input channels and number of output channels.

This standard network unit is thus parameterized by a convolutional kernel K of size

DK × DK × M × N. Similarly, DK here represents the spatial dimension of the kernel,

which is taken to be square. For the average convolution with a stride of one and

padding where the input and output feature maps have the same spatial dimensions, the

4

computational cost depends multiplicatively on the input depth N, the output depth M,

the kernel size DK × DK, and the feature map size DF × DF, and comes down to:

Using the alternative separable representation, the standard convolution is first broken

into a depthwise convolution that filters the input channels and comes at the

computational cost of 𝐷𝐾
2 × 𝑀 × 𝐷𝐹

2. An additional 1×1 pointwise layer is then needed

to generate new features across the N output channels, at the computational cost of 𝑀 ×
𝑁 × 𝐷𝐹

2. Consequently, the total computational cost of the depthwise separable

convolution is equal to the sum of the two previous terms:

As can be seen, this approach is significantly more efficient than the traditional one,

and this translates into a drastic reduction in computation of:

Similar to MobileNets [17], YOLOv3 relies heavily on 3 × 3 convolutional filters. This

conversion thus lowers the computation of each convolution by up to 9 times. Even

though these calculations do not take the effect of having strides and valid padding into

consideration, these results safely generalize to input and output feature maps of

different sizes. Nonetheless, this drop in the number of parameters is associated with a

minor drop in performance. In Section 4, we describe three experimental setups that

produce different reductions in size and accuracy based on which YOLOv3 standard

convolutions are changed to depthwise separable convolutions.

2.3 Network Sparsification using Variational Dropout

Sparsification is another leading approach to address the speed-versus-accuracy

challenge of object-detection models. Sparsity is achieved when a proportion of a

model is comprised of zero values. With most of the elements set to zero, sparse matrix

formats can be used to store and perform efficient mathematical operations on the

resulting weight matrices. Dropout [18] is a popular and empirically effective way of

sparsifying a neural network and controlling over-fitting by randomly dropping out or

ignoring a certain pre-defined percentage of neural network units during training.

Variational dropout (VD) [19] is a more recent neural network regularization technique

originally proposed as a Bayesian reinterpretation of Gaussian dropout [20], which is a

more efficient approximation of the standard (binary) dropout. Simply put, variational

dropout is a generalization of Gaussian dropout with learnable dropout rates. It has been

later extended in [12] to include more specific dropout rates, where individual weight

parameters with high dropout values can be removed post-training to get highly sparse

models with a virtually identical performance.

For a training set D of N samples (𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑁 and a classification problem where the

goal is to learn the weight parameters w of the conditional probability p(y|x, w),

Bayesian inference is used to update an initial belief over w in the form of a prior

 𝐷𝐾
2 × 𝑀 × 𝑁 × 𝐷𝐹

2 (1)

 𝐷𝐾
2 × 𝑀 × 𝐷𝐹

2 + 𝑀 × 𝑁 × 𝐷𝐹
2 (2)

 𝐷𝐾
2 × 𝑀 × 𝐷𝐹

2 + 𝑀 × 𝑁 × 𝐷𝐹
2

𝐷𝐾
2 × 𝑀 × 𝑁 × 𝐷𝐹

2 =
1

𝑁
+

1

𝐷𝐾
2 (3)

5

distribution p(w) with observed data D into a belief in the form of a posterior

distribution p(w|D):

Since computing the true posterior distribution p(w|D) is computationally intractable,

an approximation is used instead [12]. In variational inference, the parameters ϕ of

some model 𝑞𝜙 (𝑤) are optimized such that the approximated parameterized model is

as close as possible to the true posterior distribution, as evaluated by the Kullback-

Leibler (KL) divergence between the two distributions. In practice, this divergence is

minimized by maximizing the variational lower-bound equation, which is the

difference between the expected log-likelihood 𝐿𝐷(𝜙) and the KL-divergence

regularization of 𝑞𝜙 (𝑤) with respect to p(w), as shown below:

where:

Using the Stochastic Gradient Variational Bayes (SGVB) algorithm [19], the log-

likelihood is reduced to the standard cross-entropy loss, which is typically used to

minimize the divergence of the predicted label from the true one, while the KL

divergence term serves as a regularization term. Note that in the standard formulation

of VD, the weights of neural network are assumed to be drawn from a fully-factorized

Gaussian approximate posterior:

where 𝜃𝑖𝑗 and 𝜎𝑖𝑗
2 = 𝛼𝑖𝑗𝜃𝑖𝑗

2 are the mean and variance of this Gaussian distribution, with

𝛼𝑖𝑗 being a parameter that defines the dropout rate 𝑝𝑖𝑗 of the weight 𝑤𝑖𝑗 as follows:

If 𝛼𝑖𝑗 = 0, then 𝑤𝑖𝑗 is fully preserved with no dropout rate. In contrast, when 𝛼𝑖𝑗 →

+∞, 𝑝𝑖𝑗 → 1, 𝑤𝑖𝑗 can be completely removed to sparsify the model. For each training

step, the weights are sampled from the normal distribution N, and the so-called re-

parameterization trick [21, 22] is used to differentiate the loss with respect to the

parameters through this sampling operation:

where 𝜖𝑖𝑗~ 𝒩(0,1). Via this parameterization, the mean and variance of the neural

network parameters can be directly optimized. For a log-uniform prior on the weights

p(w), the KL divergence component of the 𝐷𝐾𝐿(𝑞𝜙 (𝜔𝑖𝑗)||𝑝(𝜔𝑖𝑗) objective function

can be accurately approximated using the following equation [12]:

 𝑝(𝑤|𝐷) = 𝑝(𝐷|𝑤)/p(𝐷) (4)

 𝐿(𝜙) = 𝐿𝐷(𝜙) − 𝐷𝐾𝐿(𝑞𝜙 (𝑤)||𝑝(𝑤)) (5)

 𝐿𝐷(𝜙) = ∑ 𝑬𝑞𝜙
[𝑙𝑜𝑔(𝑝(𝑦|𝑥, 𝑤))]

(𝑥,𝑦)∈Ɗ

 (6)

 𝑤𝑖𝑗 ~ 𝑞𝜙(𝑤𝑖𝑗) = 𝒩(𝜃𝑖𝑗 , 𝜎𝑖𝑗
2) (7)

 𝑝𝑖𝑗 =
𝛼𝑖𝑗

1 + 𝛼𝑖𝑗
 (8)

 𝑤𝑖𝑗 = 𝜃𝑖𝑗(1 + √𝛼𝑖𝑗𝜖𝑖𝑗) ~ 𝒩(𝑤𝑖𝑗|𝜃𝑖𝑗 , 𝛼𝑖𝑗𝜃𝑖𝑗
2) (9)

6

where k1=0.63576, k2 = 1.87320, k3 = 1.48695, and C = –k1.

The authors in [12] highlight some difficulties in training certain models with a

learnable sparse architecture from a random initialization, as large portions of the model

tend to adopt high dropout rates before a useful representation is learned from the data.

To address this issue, they propose to start from a pre-trained network or use warm-up,

i.e., re-scale the KL divergence term during the training by adding a regularizer

coefficient, and then gradually increase it from 0 to 1. We adopt a similar approach in

our study, but we instead apply variational dropout to an efficient and lightweight

YOLOv3 variant based on depthwise separable convolutions.

3 Related Works

3.1 Depthwise Separable Convolution Approaches

Recently, several deep learning models have been built on depthwise separable

convolutions. MobileNets [17] are a family of fast and small-sized deep neural

networks which are based on depthwise separable convolutions and include two global

hyperparameters to tune their latency and accuracy. The first parameter is a width

multiplier, which can scale down the input and output channels of a given layer to thin

the latter uniformly. The second is a resolution multiplier, which can be applied to the

input image to reduce the internal representation of every layer. After varying these two

hyper-parameters, different trade-offs for reducing the network size and accuracy are

achieved, and the authors compare their results with those of popular models in various

applications. Instead of building new models from scratch, many researchers have

focused on redesigning YOLO’s architecture in order to create lighter versions that

increase inference speed while maintaining high detection accuracy. One example of a

small-sized YOLOv3 variant that relies on depthwise separable convolutions is Mini-

YOLOv3 [23], which consists of a new backbone network with a parameter size of only

16% that of Darknet-53. In the residual layers of Mini-YOLOv3, the authors use a 1×1

convolution to increase the input dimension and then decrease it, leaving the 3×3 layer

in an inverted bottleneck with larger input/output dimensions. To compensate for the

large calculations associated with these operations, the authors group the convolutions

and add a channel shuffle to enable cross-group information flow. Furthermore, they

introduce a Multi-Scale Feature Pyramid Network (MSFPN) based on a U-shaped

structure to improve the performance of the multi-scale object detection task. In this

MSFPN, a Concat model first fuses the backbone’s three feature maps to generate the

base feature. An Encoder-Decoder then generates a group of multi-scale features, and

a Feature Fusion model finally aggregates the three feature maps and group of multi-

scale features into a feature pyramid. The Mini-YOLOv3 model achieves accuracy

levels comparable to those of YOLOv3 on the MS COCO dataset, but at double the

inference speed. Another example of a lightweight model is YOLOv3-Lite [24]. The

feature extraction backbone of this network is 13-layers deep and is built entirely on

𝐷𝐾𝐿 ≈

𝑘1

1 + 𝑒−(𝑘2+ 𝑘3𝑙𝑜𝑔𝛼𝑖𝑗)
− 0.5 log (1 +

1

𝛼𝑖𝑗

) + 𝐶 (10)

7

depthwise separable convolutions. Similarly to YOLOv3, each convolution layer is

followed by batch normalization and ReLU non-linearity layers. The authors also adopt

the idea of a feature pyramid network that combines low- and high-resolution

information at three different scales to detect large, medium, and small scale objects.

Their lightweight detection network uses the YOLOv3 bounding box regression

strategy, and it reaches a detection accuracy comparable to that of YOLOv3 on a custom

dataset for cracks in aircraft structures.

3.2 Network Sparsification Approaches

Some of the recent solutions that have been proposed to sparsify the YOLOv3 neural

network are presented in [25, 28]. In the first study [25], the authors impose channel-

level sparsity on YOLOv3’s convolutional layers by applying L1 regularization to the

𝛾 regularizer of the batch normalization layers. L1 regularization is a technique used to

penalize a neural network’s loss function in proportion to the sum of the absolute values

of the weights. It helps drive the weights of irrelevant features to zero, thus sparsifying

the model. The authors also integrate a spatial pyramid pooling (SPP) module, which

consists of multiple parallel maxpool layers with different kernel sizes, in order to

extract additional multi-scale features and further improve the detection accuracy. They

then apply L1 regularization to their YOLOv3-SPP3 model and use a penalty factor to

optimize the resulting L1 loss term. After the sparsity training, the authors introduce a

global threshold to control the pruning ratio and carefully prune each feature channel

to maintain the integrity of the network connections. Finally, they follow a fine-tuning

operation and incremental pruning strategy to compensate for any performance

degradation and prevent over-pruning. Their proposed SlimYOLOv3 model is

evaluated on the VisDrone2018-Det benchmark dataset [26] for Unmanned Aerial

Vehicles (UAV) applications [27], and experimental results using different pruning

ratios show a decrease in parameter size of down to 92% with a detection accuracy

comparable to that of YOLOv3. In [28], the authors use variational dropout to sparsify

YOLOv3 on a self-collected dataset about road traffic in Vietnam. Both YOLOv3 and

YOLOv3-VD are initialized from the pre-trained weights obtained on the COCO

dataset, but during the training of YOLOv3-VD, a scaling factor is used to balance the

variational dropout loss term with the network loss function. The authors successfully

eliminate up to 91% of the original network weight parameters with only a 3% drop in

accuracy, and their experimental results show that the sparsity level gradually increases

such that the final layers can be completely pruned.

4 Proposal: Separable YOLOv3 with Variational Dropout

After careful examination of the YOLOv3 architecture, we set out to study the size-

accuracy trade-off associated with substituting standard convolutions with depthwise

separable ones and adding variational dropout. Our approach’s overall process is

depicted in Fig. 1, and consists of three main components: i) integrating depthwise

separable convolutions in YOLOv3 to produce three lightweight variants, ii) training

these three separable models on the PASCAL VOC dataset, and then iii) applying

8

variational dropout to the best performing model. We rely on a TensorFlow

implementation of YOLOv31, which is an overall faithful reproduction of the original

model [9] but with several tweaks such as: i) replacing the original loss with a GIoU

(General Intersection of Union) loss, ii) using cosine scheduling for the learning rate,

and iii) implementing different data augmentation techniques. Even though they

drastically affect the network’s performance, these modifications have no impact on

this study, since all the experiments are done under the same settings.

Fig. 1. Simplified activity diagram describing our approach

4.1 Separable YOLOv3 Configurations

We produce three separable models by replacing YOLOv3’s standard convolutions

with depthwise separable ones at different locations within the network:

- SEP: All standard convolutions are replaced with depthwise separable

convolutions, except those with a 1×1 filter, since reducing and then restoring the

dimensions of the multiple 1×1 convolutions spread throughout the network

would greatly weaken the feature learning and expression ability of the model.

Note that this exception is extended to the two remaining models.

- SEP-BRANCH: All standard convolutions are replaced with depthwise

separable convolutions, except for the detection layers, which are marked by the

last two convolutions of each of YOLOv3’s three detection scales.

- SEP-BACKBONE: Only the standard convolutions of the Darknet-53 backbone

are replaced with depthwise separable convolutions.

Note that each convolution in YOLOv3 is followed by a batch normalization layer and

a leaky ReLU activation function. Similarly, batch normalization and the leaky ReLU

nonlinearity are applied after each of the depthwise and pointwise 1×1 convolutions.

4.2 Separable YOLOv3 Model

We conduct the variational tests on the best performing model, which turns out to be

SEP-BRANCH based on our empirical results reported in Section 5. We follow Gale

et al.’s [29] TensorFlow implementation of variational dropout, which is publicly

available online2.

Given that the depthwise separable factorization splits the standard convolution into

a depthwise convolution and a pointwise convolution, with 𝑤𝑑𝑖𝑗
and 𝑤𝑝𝑖𝑗

 as their

respective weights, we apply a variational distribution with learnable parameters 𝜃, 𝜎2,

1 https://github.com/YunYang1994/tensorflow-yolov3
2 https://github.com/google-research/googleresearch/tree/master/state_of_sparsity/layers/variational_dropout

YOLOv3

Integrating Depthwise

Separable Convolutions

SEP

SEP-BRANCH

SEP-BACKBONE

Model Training

and Evaluation

Applying

Variational Dropout
SEP-BRANCH-VD

Pascal VOC

Input Output

Three separable
YOLOv3 variants

https://github.com/YunYang1994/tensorflow-yolov3
https://github.com/google-research/googleresearch/tree/master/state_of_sparsity/layers/variational_dropout

9

and 𝛼 on each weight. We then appropriately sum the two resulting KL-divergence

terms and add them to the global network loss, along with the divergence term of the

standard convolutions. The multi-part loss function becomes as follows:

Knowing that training the model with VD from the start is not recommended [12], we

use a regularizer coefficient 𝜆 to balance YOLOv3’s loss and the KL-divergence term.

Similarly to the study in [27], we gradually ramp the regularizer coefficient to induce

sparsity. We train the model without any VD loss (𝜆 = 0) from the obtained VOC

weights until we reach convergence after 35 epochs. We then set the divergence

coefficient to 𝜆 = 10-6 for 10 epochs, and raise it to 𝜆 = 10-5 for an additional 10 epochs.

Afterwards, we notice that additional training starts to increase the network’s sparsity

level at the expense of its accuracy. As a result, we lower the learning rate to 10-6 to

fine-tune the model sparsity over 10 epochs.

5 Experimental Results

5.1 Separable YOLOv3 Models

We train YOLOv3 and its three depthwise separable variants (SEP, SEP-BRANCH,

and SEP-BACKBONE) from scratch and under the same configuration settings on the

PASCAL VOC dataset (VOC2007+2012 trainval for the train set, and VOC2007 test

for the test set): i) a total number of 100 epochs (including 5 warm-up epochs), ii) a

learning rate starting at 10-4 and gradually decreasing to 10-6 following a cosine

scheduling, and iii) a batch size of 8. The training was conducted on Google Colab3

using a Tesla P100 GPU. The performance of each separable model is compared to that

of the original network in terms of i) mean average precision (mAP), ii) model size,

and iii) inference speed. Our goal is to find the drop in accuracy associated with the

convolutional factorization and to identify the most efficient model. Results are

provided in Table 1 and visualized in Fig. 2.

Table 1. Results for YOLOv3 and its separable variants for a 416×416 input

Model
mAP

(IoU = 0.5)

of trainable

parameters

Model

size (MB4)

Inference time

(milliseconds)

YOLOv3 71.48% 61,626,049 951 32.88

SEP 68.09% 12,211,426 201 26.55

SEP-BRANCH 68.45% 17,706,594 284 27.07

SEP-BACKBONE 68.89% 28,696,930 451 28.22

3 https://colab.research.google.com/
4 The model size represents the size of the checkpoint files obtained during the training, which are

significantly larger than the compressed files used for inference.

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐺𝐼𝑜𝑈 + 𝐿𝐶𝑜𝑛𝑓 + 𝐿𝑃𝑟𝑜𝑏 + 𝜆𝐷𝐾𝐿 (11)

https://colab.research.google.com/

10

Results show that the conversion to depthwise separable convolutions seems to be

associated with a slight drop in accuracy, compared with a sharp decrease in the number

of trainable parameters and model size. Even though only the Darknet-53 backbone is

subject to this conversion in the SEP-BACKBONE architecture, the latter’s accuracy

is comparable to that of its counterparts and fails to justify its significant increase in

model size. This is probably due to the fact that two types of convolutions do not mix

well together, especially when they show large differences in their number of

parameters and feature extraction capabilities. While all the separable models seem to

be on a par with YOLOv3 in terms of accuracy, the SEP-BRANCH model reduces 70%

of YOLOv3’s size with only a 3% drop in accuracy, and thus offers the best trade-off

between accuracy and speed.

a. mAP (IoU = 0.5) b. Trainable parameters (millions)

c. Model size (MB) d. Inference time (milliseconds)

Fig. 2. Results for YOLOv3 and its separable variants for a 416×416 input

5.2 YOLOv3 Model

In the second stage of this work, we apply variational dropout to the SEP-BRANCH

model in order to produce a sparse and compact model suitable for real-time

applications. Even though adding variational dropout doubles the total number of

trainable parameters, the SEP-BRANCH model with variational dropout – noted SEP-

BRANCH-VD – still amounts to less than 60% of YOLOv3’s trainable parameters. We

train both the SEP-BRANCH and SEP-BRANCH-VD models using the same settings

adopted in the previous experiment, to the exception of batch size, which we set to 2

(instead of 8). We use a smaller batch size to cater for the large computation overhead

associated with the variational dropout terms. Results obtained on the PASCAL VOC

dataset are shown in Table 2. They demonstrate the effectiveness of variational dropout

when applied to the depthwise separable convolutions of a deep and complex network

YOLOv3 SEP-BACKBONE SEP-BRANCH SEP

71.48%

68.89%

68.45%

68.09%

60% 65% 70% 75%

61.63

28.70

17.71

12.21

0 20 40 60 80

951

451

284

201

0 200 400 600 800 1000

32.88

28.22

27.07

26.55

0 10 20 30 40

11

like YOLOv3 trained on a large benchmark dataset. They also show that this technique

can drop most of the model’s weights without damaging its performance. In fact, for a

batch size of 2, SEP-BRANCH-VD reaches a mAP equal to that of SEP-BRANCH

with only 18% of the latter’s parameters, and just 5% of YOLOv3’s baseline

parameters. However, adding variational dropout has two major drawbacks: i) it

requires more than double the training time, and ii) it requires significantly larger

computational resources to run on a larger batch size of 8 and preserve the original

mAP levels. Nonetheless, for a batch size of 8, we expect the SEP-BRANCH-VD

model to sustain a mAP of at least 68% and thus, relatively to YOLOv3, limit the drop

in accuracy to 3%.

Table 2. Results of SEP-BRANCH trained with variational dropout

Model
mAP

(IoU = 0.5)

of weight

parameters

of zero weight

parameters
Sparsity level

YOLOv3

(batch size of 8)
71.48% 61,626,049 - -

SEP-BRANCH

(batch size of 8)
68.45% 17,706,594 - -

SEP-BRANCH

(batch size of 2)
65.35% 17,706,594 - -

SEP-BRANCH-VD

(batch size of 2)
65.42% 17,706,594 14,584,999 82.37%

During inference, we set to zero all weight parameters with a 𝑙𝑜𝑔𝛼 value greater than

3, as they correspond to weights with a dropout rate larger than 95% [12]. Accuracy

can be traded for more sparsity by decreasing the 𝑙𝑜𝑔𝛼 threshold. For example, with a

threshold of 1, the SEP-BRANCH-VD model achieves 84.3% global sparsity with 64%

test set accuracy. We provide in Table 3 the test set accuracy and global sparsity levels

under different thresholds, and our results show that the drop in accuracy does not

justify the minor increase in sparsity.

Table 3. SEP-BRANCH-VD results under different logα thresholds

𝒍𝒐𝒈𝜶 threshold mAP Sparsity level

3 65.42% 82.37%

2 64.85% 83.20%

1 64.04% 84.30%

0 60.41% 85.50%

Considering that variational dropout distributes sparsity non-uniformly across the

neural network layers, we can make several observations regarding sparsity ratio

distribution across the convolutional weights:

- First, the overall sparsity level seems to be gradually increasing throughout the

network, which is consistent with the findings in [28]. The first convolutions are

12

almost fully condensed (sparsity levels go from 0% to 30%), whereas the last ones

are almost entirely sparse (sparsity levels between 60% and up to 97%).

- Second, the average sparsity level for the depthwise convolutions is 11%, in

contrast with 58% for the pointwise convolutions. This can be due to the fact that

depthwise convolutions extract features from the input channels, while pointwise

convolutions combine the filtered inputs into a new set of output channels.

- Third, higher sparsity ratios are achieved in standard convolutions (average

sparsity level of 70%) compared with depthwise separable convolutions. In

particular, the highest sparsity levels are seen at the detection layers, where they

reach values greater than 90%.

- Fourth, by examining the sparsity distribution across the different convolutional

layers, we notice that the zero values are spread rather randomly across the weight

matrices, and do not follow any recognizable pattern.

Lastly, given that a new YOLOv4 model [30] has just been released, we hope that the

redundancy seen within the convolutional weights leads to a better understanding of the

workings and generalization properties of YOLOv3, and in the future helps the design

of more efficient models that focus on parameter and layer quality rather than quantity.

6 Conclusion

6.1 YOLOv3 Model

This study introduces a lightweight and sparse YOLOv3-based model by combining

depthwise separable convolutions with VD. We first propose three different YOLOv3

variants by integrating depthwise separable convolutions at different strategic locations

within the original network. Results for all three models are satisfactory, with the most

efficient model reducing YOLOv3’s size by a factor of 3.5 at only a 3% drop in

accuracy. We then apply VD to this compact model and further eliminate more than

82% of its weight values, thus effectively removing 95% of YOLOv3’s total parameters

without any additional drop in accuracy – given that the same batch size is used. The

obtained results i) validate the effectiveness of depthwise separable convolutions, ii)

demonstrate that a deep and complex neural network based on YOLOv3 and depthwise

separable convolutions can undergo extensive sparsification on a large benchmark

dataset, and iii) give insights into the relevance of the different YOLOv3 layers.

6.2 Discussion and Future Works

The scope of our present work includes evaluating certain properties related to

depthwise separable convolutions and VD within the context of YOLOv3, rather than

reaching a global optimum and maximizing the mAP. Therefore, the training

hyperparameters need to be reviewed and carefully fine-tuned if higher accuracy levels

are to be achieved for all the models evaluated in this study. Moreover, YOLOv3 is

typically trained on the MS COCO dataset, and the resulting weights are usually used

to initialize the training on PASCAL VOC or any custom dataset. It would be therefore

interesting to replicate our experiments on the significantly larger and more varied

13

COCO dataset and check whether depthwise separable convolutions can leverage the

transfer learning property on the VOC dataset as well as standard convolutions do. It

would be also interesting to learn whether the sparse topology learned on the COCO

dataset using VD can be used to initialize the training on the VOC dataset, since

performing the training phase in a fully sparse manner would greatly accelerate the

time-to-solution and might even allow the training to be conducted on resource-

constrained embedded devices. Finally, knowing that sparsification is an intermediate

but crucial step to network compression, our approach can be combined with data

compression techniques like quantization and Huffman coding [31] and then integrated

with light-weight deep learning frameworks such as TensorFlow Lite in order to reach

real-time processing for on-device inference.

References

[1] Krizhevsky, A., Sutskever, I., and Hinton, G. (2017). ImageNet classification with deep

convolutional neural networks. Communications of the ACM, 60(6):84–90

[2] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet large scale visual

recognition challenge. Inter. Journal of Computer Vision, 115(3), 211–252.

doi:10.1007/s11263-015-0816-y

[3] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic segmentation. IEEE Conf. on Comp. Vision &

Pattern Recogn. (CVPR’14), 580–587

[4] Girshick, R. (2015). Fast R-CNN. 2015 IEEE Inter. Conf. on Computer Vision (ICCV’15),

1440–1448

[5] Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: Towards real-time object

detection with region proposal networks. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 39(6):1137–1149

[6] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016).

Ssd: Single shot multibox detector. Computing Research Repository, CoRR abs/1512.02325

[7] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified,

real-time object detection. 2016 IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR’16), 779–788

[8] Redmon, J., and Farhadi, A. (2016). Yolo9000: Better, faster, stronger. Computing Research

Repository, CoRR abs/1612.08242

[9] Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. Computing

Research Repository, CoRR abs/1804.02767

[10] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010). The

pascal visual object classes (Voc) challenge. Inter. J. of Computer Vision, 88(2):303–338.

doi:10.1007/s11263-009-0275-4

[11] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,

Ramanan, D., Zitnick, C. L., and Dollár, P. (2015). Microsoft COCO: Common objects in

context. Computing Research Repository, CoRR abs/1405.0312

[12] Molchanov, D., Ashukha, A., and Vetrov, D. (2017). Variational dropout sparsifies deep

neural networks. Computing Research Repository, CoRR abs/1701.05369

[13] Salem, C., Azar, D., Tokajian, S., (2018). An Image Processing and Genetic Algorithm-

Based Approach for the Detection of Melanoma in Patients. Methods of Information in

Medicine, doi: 10.3412/ME17-01-0061

14

[14] F. N. Abu-Khzam, S. Li, C. Markarian, F. M. auf der Heide, P. Podlipyan, (2019). Efficient

parallel algorithms for parameterized problems. Theoretical Computer Science, volume 786,

pp. 2-12

[15] Abu-Khzam, F. N., Markarian, C., auf der Heide, F. M., and Schubert, M. (2018).

Approximation and Heuristic Algorithms for Computing Backbones in Asymmetric Ad-hoc

Networks. Theory of Computing Systems, 62(8):1673-1689

[16] Abu-Khzam, F. N., Daudjee, K., Mouawad, A. E., and Nishimura, N. (2015). On Scalable

Parallel Recursive Backtracking. Journal of Parallel and Distributed Computing, 84:65-75

[17] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,

M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile

vision applications. Computing Research Repository, CoRR abs/1704.04861

[18] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.

(2012). Improving neural networks by preventing co-adaptation of feature

detectors. Computing Research Repository, CoRR abs/1207.0580

[19] Kingma, D. P., Salimans, T., and Welling, M. (2015). Variational dropout and the local

reparameterization trick. Computing Research Repository, CoRR abs/1506.02557

[20] Wang S. & Manning C., Fast dropout training (2013). Inter. Conf. on Machine Learning

(ICML’13), 118–126

[21] Kingma, D. P., and Welling, M. (2014). Auto-encoding variational bayes. Computing

Research Repository, CoRR abs/1312.6114

[22] Rezende, D., Mohamed, S., and Wierstra, D. (2014). Stochastic Backpropagation and

Approximate Inference in Deep Generative Models. Inter. Conf. on Machine Learning, 32,

II-1278–II-1286

[23] Mao, Q., Sun, H., Liu, Y., and Jia, R. (2019). Mini-YOLOv3: Real-time object detector for

embedded applications. IEEE Access, 7:133529–133538

[24] Li, Y., Han, Z., Xu, H., Liu, L., Li, X., and Zhang, K. (2019). YOLOv3-lite: A lightweight

crack detection network for aircraft structure based on depthwise separable

convolutions. Applied Sciences, 9(18):3781

[25] Zhang, P., Zhong, Y., and Li, X. (2019). SlimYolov3: Narrower, faster and better for real-

time uav applications. 2019 IEEE/CVF Inter. Conf. on Computer Vision Workshop

(ICCVW’19), pp. 37–45

[26] Zhu P. et al. (2019) VisDrone-VDT2018: The vision meets drone video detection and

tracking challenge Results. In: Leal-Taixé L., Roth S. (eds) Computer Vision – ECCV 2018

Workshops (ECCV’18), pp. 496-518

[27] Ebrahimi, D., Sharafeddine, S., Ho, P., Assi, C., (2020), Autonomous UAV trajectory for

localizing ground Objects: A Reinforcement Learning Approach. In IEEE Trans. on Mobile

Computing, doi: 10.1109/TMC.2020.2966989

[28] Sang, D. V., and Hung, D. V. (2019). YOLOv3-VD: A sparse network for vehicle detection

using variational dropout. Inter. Sym. on Information and Communication Technology

(SoICT’19), 280–284

[29] Gale, T., Elsen, E., and Hooker, S. (2019). The State of sparsity in deep neural networks.

Computing Research Repository, CoRR abs/1902.09574

[30] Bochkovskiy, A., Wang, C. Y., and Liao, H. Y. (2020). YOLOv4: optimal speed and

accuracy of object detection. Computing Research Repository, CoRR abs/2004.10934

[31] Han, S., Mao, H., and Dally, W. J. (2016). Deep compression: Compressing deep neural

networks with pruning, trained quantization and Huffman coding. Computing Research

Repository, CoRR abs/1510.00149

https://dblp.uni-trier.de/db/journals/corr/corr1902.html#abs-1902-09574

