Data Redundancy Management in Connected Environments

Elio Mansour
Univ. Pau & Pays Adour, E2S UPPA, LIUPPA
Anglet, 64600, France
elio.mansour@univ-pau.fr

Joe Tekli
Lebanese American University, E.C.E. Dept.
36 Byblos, Lebanon
joe.tekli@lau.edu.lb

ABSTRACT

Connected environments are typically defined as physical infras-
tructures (e.g., building) equipped with sensors that produce and
exchange raw data. Although the sensed data is considered to con-
tain useful and valuable information, yet it might include various
inconsistencies such as data redundancies, anomalies, and missing
values. In this work, we focus on managing sensor data redundan-
cies in connected environments. Existing works often suffer from
(i) disregarding either network core or edge device redundancies;
(ii) disregarding the limited capabilities of edge devices; and (iii)
disregarding sensors mobility and the dynamicity of the network.
To address these limitations, we propose a framework for data
redundancy management at the device level, denoted DRMF. We
describe its modules, and clustering-based algorithms. Moreover,
our proposal detects temporal, and spatial-temporal redundancies
in order to consider both static and mobile devices/sensors. Finally,
we present our experimental protocol and share preliminary results.

CCS CONCEPTS

« Information systems — Data cleaning; - Computer systems
organization — Sensor networks.

KEYWORDS
Connected Environments, Internet of Things, Data Redundancy

ACM Reference Format:

Elio Mansour, Faisal Shahzad, Joe Tekli, and Richard Chbeir. 2020. Data
Redundancy Management in Connected Environments. In 16th ACM Sym-
posium on QoS and Security for Wireless and Mobile Networks (Q2SWinet 20),
November 16-20, 2020, Alicante, Spain. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3416013.3426451

1 INTRODUCTION

Recent advances in data management and sensing technologies
have allowed physical infrastructures (e.g., buildings, homes, and

Faisal Shahzad
Univ. Pau & Pays Adour, E2S UPPA, LIUPPA
Anglet, 64600, France
faisal.shahzad@univ-pau.fr

Richard Chbeir
Univ. Pau & Pays Adour, E2S UPPA, LIUPPA
Anglet, 64600, France
richard.chbeir@univ-pau.fr

cities) to become more connected. Using sensor networks, these con-
nected environments produce huge amounts of sensed data that can
be exploited for various high-level applications (e.g., environment
monitoring, event detection, and energy management). Although
the sensed data is considered to contain useful and valuable in-
formation, pre-processing is still needed in most cases since the
observations are in raw form and often suffer from various inconsis-
tencies [3, 10] (e.g., redundancies, anomalies, and missing values).
In this work, we focus on handling sensor data redundancies in con-
nected environments. Removing unnecessarily redundant data is
pivotal since it (i) allows improved querying over the gathered data
[7]; (ii) reduces the communication costs and resource consump-
tion of edge devices that share the data regularly; and (iii) provides
Al-based services with cleaned and ready-to-use data sets for their
underlying advanced algorithms. Existing works [2, 4, 6, 8, 9] target
data redundancy in connected environments, however they suffer
from the following limitations:

(1) Disregarding either network core or edge device redundancies:
one should be able to query the edge and the core of the net-
work (e.g., to detect the redundancies produced by a device,
and aggregate the readings from multiple devices in the envi-
ronment). Therefore, it is important to handle redundancies
not only at the base station level, but also at the device level.
Disregarding the limited resources of edge devices: devices at
the edge of the network often have limited resources (e.g.,
processing, memory, and power). Moreover, devices need to
exchange data as well as push data to the core. Therefore,
it is important not to deplete device resources by excessive
communications and heavy processing of redundant data.
Disregarding environment dynamicity: dynamic environments
include mobile devices/sensors in addition to static nodes.
Considering mobile devices allows the detection of new re-
dundancies generated by device mobility.

—~
S
~

—
&Y
=

In this paper, we propose to handle data redundancy in connected
environments at the device level. We consider both static and mo-
bile devices that embed sensors, monitor the generated data, and
detect redundancies based on temporal and spatial features. Elimi-
nating redundancies at the device level would improve querying
performance in the entire network, and reduce costly computa-
tions/communications while considering user needs (e.g., querying
the edge and core of the network), device needs (e.g., avoiding ex-
cessive resource usage), and external services (e.g., enabling the
execution of advanced processing and mining services on the data).

https://doi.org/10.1145/3416013.3426451
https://doi.org/10.1145/3416013.3426451

To do so, we address the detection of temporal and spatial-temporal
redundancies which affect static and mobile devices respectively.
We introduce the formal definitions and develop the needed algo-
rithms to handle both types of redundancies. Preliminary evaluation
and tests results highlight the potential of our proposal.

In the following, we describe our motivating scenario in Section
2. Then, we compare the related works in Section 3. We detail
the framework of our proposal, and present our algorithms for
redundancy detection at device level in Section 4. The experimental
protocol and preliminary results are provided in Section 5. Finally,
Section 6 concludes the paper and discusses future works.

2 MOTIVATING SCENARIO

Consider the following scenario that illustrates a section of a smart
parking. Please note that this example does not summarize all data
redundancy issues in a connected environment, and is used to high-
light the main needs and challenges related to this work. Figure 1
illustrates three parking spaces each containing a static device, and
two mobile devices moving in the parking: a mobile phone, and a
vehicle. Each device embeds one or more sensors, is equipped with
a local memory for temporary storage of observations, and is capa-
ble of processing queries and exchanging data with neighbouring
devices. Moreover, all devices can push data into the central data-
base. For the sake of brevity, we only consider three types of sensor
observations in this example: temperature, occupancy, and COx,
sensed periodically by the devices’ sensors. Finally, the parking
manager uses the aforementioned data to monitor specific events,
e.g., bad air quality, fires, free parking spaces. To do so, the parking
manager has the following needs:

o Need 1. Considering redundancies at the core and edge: for
querying the parking devices to monitor sensor breakdowns,
and anomalies and the central database to retrieve aggre-
gated data, and apply data processing and mining services.

o Need 2. Considering the limited resources of edge devices: for
having an efficient and low cost inter-device data exchange
in order to combine and retrieve location-based information
from the parking.

o Need 3. Considering environment dynamicity: for querying
mobile devices while considering spatial-temporal features.

Statie
Device

] 1

1

. Temperature !
Sensor |

1

[

[

. Occupancy
Sensor

—
Querying
CO, Sensor Devices

= e
0 s ! ok

& (SN BN
Observation i Ej
Occupancy - L = \
Observation | T T T T TT TS oo oo T T m s
Sensed/Shared Data
() onaacve
9 Observation Querying
Database

Inter-device
® Communication Database

Figure 1: The Smart Parking

As a result, the static and mobile sensors in the smart parking
environment will be producing large amounts of data, exchanging
some of them among each other, and sending them periodically

to the database even if no significant changes occur in the sensed
data. For instance, if a car is parked for hours in the same spot,
redundant occupancy data is sent during all the occupancy time.
Similarly, redundant CO; and temperature data will be periodically
produced, exchanged, and stored even when the parking is not
witnessing any activity (e.g., cars movements, people walking). The
large amount of sensor data produced and exchanged in the smart
parking environment highlight various challenges from user, device,
and dynamicity perspectives:

o User Perspective: How to run simple queries on static/mobile
devices and retrieve data efficiently without over-consuming
the devices’ limited resources? How to run aggregate queries,
or advanced mining services on the central database without
causing latency issues?

e Device Perspective: How to minimize unnecessary data ex-
changes between devices to avoid wasting power, processing,
memory, and network resources?

e Dynamicity Perspective: How to detect dynamic spatial-
temporal redundancies generated by device mobility?

In this work, we tackle the data redundancy problem at the device
level in order to address the aforementioned challenges. Before
detailing the proposal, we first present and compare some existing
approaches for data redundancy management in sensor networks.

3 RELATED WORKS

To compare existing approaches, we propose the following criteria
based on the challenges and limitations discussed in Section 2:

e Criterion 1. Core & edge redundancy consideration: stating
if the approach handles data redundancy at the device and
database levels. This enables efficient querying on the edge
and core of the network (cf. Need 1).

e Criterion 2. Edge device resource consideration: denoting if
the approach considers the limited resources of edge devices
when processing and exchanging data (cf. Need 2).

e Criterion 3. Dynamicity consideration: specifying if the ap-
proach considers dynamic redundancies due to device mo-

bility (cf. Need 3).

We review next some of the existing approaches on data redundancy
in connected environments.

3.1 Existing Approaches

The authors in [4] present a data reduction scheme for Internet of
Things (IoT) using data filtering and fusion. Their approach handles
redundancies at the device layer before forwarding non-redundant
data to sink nodes. Redundancy detection is solely based on data
value deviations. Although, this work handles redundancies at the
edge of the network, it does not cover redundant data from mobile
devices (cf. Criterion 3). Therefore, specific spatial-temporal redun-
dancies at device level are not handled. In [8], the authors address
data redundancies at the core of the network using a supervised
machine learning solution based on Support Vector Machine (SVM).
They build an aggregation tree for the given size of the network
and then apply SVM to recognize data redundancies. In this work,
the authors target temporal and spatial redundancies once the data
is consolidated in a central node, which provides a redundancy-free

data repository that could be mined using advanced data processing
techniques (cf. Criterion 1). However, redundancies are not handled
at the device level, and data exchange between devices at the edge
remains costly due to unnecessary communications. Moreover, the
authors do not consider spatial-temporal redundancies generated
by mobile devices (cf. Criterion 2 and 3). In [2], the authors fo-
cus on the spatial distribution of sensors in the environment, and
how it can be managed in order to prevent redundancies. To do
so, a graph of nodes and detected events is constructed from raw
sensory data to identify nodes producing redundant data. Next,
these so-called "redundant” nodes are either relocated or put into
sleep mode using a circle packing technique to enhance coverage
while minimizing energy usage during relocation. This work only
handles redundancy from a sensor deployment perspective (i.e.,
avoiding deploying sensors that provide the same type of data in
the same area). Therefore, the emphasis is on detecting redundant
sensor nodes and not the data itself. Moreover, the proposal does
not consider sensor mobility (cf. Criterion 3). In [9], the authors
present a data de-duplication technique in healthcare-based Inter-
net of Things (IoT). They propose a Controlled Window-size based
Chunking Algorithm (CWCA) to identify cut-points in sensor data
distributions. The data de-duplication is applied at the collector
node (i.e., at the core and does not consider edge node redundan-
cies). More recently, the authors in [6] propose a data redundancy
elimination technique using an unsupervised learning approach
based on data clustering. The authors suggest clustering the edge
nodes based on their produced sensory data in order to aggregate
identical data to eliminate redundancies, before storing the data
in the cloud. However, these works [6, 9] do not consider device
mobility and spatial-temporal redundancies (cf. Criterion 3).

3.2 Comparison Summary

Table 1 shows that none of the aforementioned works cover all the
required criteria addressed in our present study. Most approaches
focus on handling redundancies at the core of the network, thus
neglecting the impact of redundancies on the edge devices where
resources are often limited (e.g., power, processing, and memory).

Criterion 1 Criterion 2 Criterion 3
Core & Edge | Edge Resources | Dynamicity
Chowdhury S. et al. [2] X X X
Ismael W. et al. [4] v v X
LiS. etal. [6] v v X
Patil P. et al. [8] X X x
Ullah A. et al. [9] X X x

Table 1: Related Works Recap
4 PROPOSAL

To address the limitations identified in the previous section, we
introduce DRMF, a Data Redundancy Management Framework. In
this study, we show how DRMF handles sensor data redundancy at
the edge device level, considering both static and mobile devices,
in order to eliminate redundancies from the source before reaching
the core of the network. The DRMF overall architecture is depicted
in Figure 2. It consists of two main modules: (i) datatype filtering
which separates the input data into type-based data collections;
and (ii) redundancy cleaning which detects then cleans temporal
or spatial-temporal redundancies from each data collection. In the
following subsections, we start by describing the nature of sensory
data in a dynamic environment. Then, we detail the redundancy

management at device level. Finally, we focus on the redundancy
checker sub-module in order to detail the proposed redundancy
detection algorithms.

} o Data Repositories B [Other Devices >T !
1 8 ¥ | o O = @ S ol
&2 =l | S9ELE
198 Datal | Ll e]
o e st B
T Redundancy — free Data Collections

z (6' w Redundancy Remover A

s | &£ 1

° €

§ ::: .§ g Temporal Spatial-temporal

?, £ \g Redundancy Checker Redundancy Checker)

€ g

K] E A Data Collections

LE ™ Data Collection...
- T

>

g § z 1-feature Filtering (Sensor/Datatype)

S J
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, % observations _________________
B (gz J
I @
g8 |32 I i
2
'3 E \a 2 @ 3
e g] '
i el e i

Figure 2: The DRMF Architecture

4.1 Sensory Data in a Dynamic Environment

Connected environments contain diverse devices each embedding
one or more sensors that provide data from the real world. Static
devices are immobile, therefore the data generated by such devices
could be redundant temporally. However, mobile devices move
around in the environment while producing data. This potentially
generates spatial-temporal redundancies. In the following, we pro-
vide a set of formal definitions that allow us to describe data items
and both temporal and spatial dimensions (cf. Criterion 3).
Definition 1 (Data Items). We formally define a data item d as a
5-tuple:
d:{a,0,t,1l,s) where: (1)

e a is the data attribute

e v is the data value

e t is the creation temporal stamp of d (cf. Definition 2)

o | is the creation location stamp of d (cf. Definition 3)

o s is the data source that produced/created d []

Definition 2 (Temporal Stamp Definition). A temporal stamp ¢
designates a single discrete temporal value formally defined as a
2-tuple:

t = (format,value) where: 2)

e format is a string indicating the format of the date-time
value of t (e.g., "dd-MM-yyyy hh:mm:ss")

e value is the timestamp value (e.g., 10-11-2020 15:34:23 fol-

lowing the sample time format mentioned above) []

Definition 3 (Location Stamp Definition). A location stamp [is s
a discrete and instantaneous location value defined as a 2-tuple:

I = (format,value) where: (3)

e format is the location referential format following which
the location stamp value will be represented (e.g., default
GPS, or Cartesian, Spherical, Cylindrical)

e value = (x,y,z) is a discrete and instantaneous value, where
X, y, and z designate individual coordinate values (the co-
ordinates can be translated into the referential of choice
following the designated format) []

Table 2 shows an excerpt of the data produced by a device having
two embedded sensors S1, and S2 that produce CO; and temperature
observations respectively.

¢ 1
a v . value s
format
format value X y z
dd/mm/yyyy | 10/02/2019]
COZ 98 hhemm:ss 10:00:00 cartesian 8 12 8 S1
dd/mm/yyyy | 10/02/2019)
CO,y 109 hhemmess 10:02:00 cartesian | 6 | 8 | 6 | S1
dd/mm/yyyy | 10/02/2019
CO, 110 A 10:04:00 cartesian | 2 | 4 | 8 | S1
dd/mm/yyyy | 10/02/2019
CO, 111 hhimmess 10:06:00 cartesian | 4 | 6 | 4 | S1
” dd/mm/yyyy | 10/02/2019
Temperature | 22 e 10:08:00 cartesian | 6 | 4 | 8 | S2

Table 2: Data Items Example
4.2 Redundancy Management

In a typical connected environment, the sensor observations are
temporarily stored in the device’s memory, before the data is even-
tually transmitted to a permanent storage repository or another
device. In DRMF, we propose to detect and handle redundancies
prior to data storage or transmission. As a result, our redundancy
management process consists of two steps: (i) datatype filtering;
and (ii) redundancy cleaning.

4.2.1 Step 1: Datatype Filtering. Since the device could embed vari-
ous sensors, the internal memory could contain different datatypes
(i.e., different data attributes or features). The example provided
in Table 2 shows two different datatypes: COz, and temperature.
Therefore in order to detect redundancies in the data stored locally
on the device, one starts by filtering the data into collections having
the same attributes (or datatypes), hence the datatype filtering mod-
ule. In this step, the data is split into separate collections based on
the datatype. In the following step, we detect redundancies within
each data collection (cf. Figure 2). To illustrate the datatype filter-
ing process, the data shown in Table 2 produces two distinct data
collections: the first for CO, data (first four tuples); and the second
for temperature data containing the last tuple.

4.2.2 Step 2: Redundancy Cleaning. In this step, the redundancy
checker applies our redundancy detection algorithms over the sen-
sor’s locally stored data. More specifically, the aforementioned
algorithms cluster the data based on the deviation of the data item
values, while also considering the temporal, or spatial-temporal
spread (or coverage) of the clusters (i.e., sets of redundant data). We
propose to detect redundancies using an unsupervised cluster-based
approach for two main reasons: (i) to avoid applying supervised
learning which requires training time and computation power on
the edge where resources are limited; and (ii) since training data
for supervised learning algorithms might not be available at the
device level. We provide two redundancy checking algorithms: one
for temporal redundancy detection, specifically designed to handle
data from static devices; and another for spatial-temporal redun-
dancy detection, specifically designed to handle data from mobile
devices. A temporal redundancy (cf. Definition 4) is defined as a
cluster of redundant values spanning over a specific time coverage
(cf. Definition 5). Similarly, a spatial-temporal redundancy (cf. Defi-
nition 6) is defined as a cluster of redundant values spanning over
a specific time coverage, and spatial coverage (cf. Definition 7).

Definition 4 (Temporal Redundancy). A temporal redundancy tr
is defined as a 2-tuple:

tr : (coveraget, D) where: 4)

e coveragey is the temporal coverage during which the data is
temporally redundant
e D= Uj:o d; is a cluster of redundant data items where:
- VdjeD, dj.t € coveraget.dt
- Vdji,djz €D, dji.a=djz.a
- VkeN', div=deentroid0 =00 where:
* deentroid-v 1s the centroid value of all data items in D
* Jyp is an acceptable deviation threshold

Remark. The threshold &, is calculated based on the data distribu-
tion within the redundant data set D. []

Definition 5 (Temporal Coverage Definition). A temporal cover-
age coverage; is a time interval consisting of an ordered collection
of temporal stamps enclosed within a start and an end stamp, de-
scribing the temporal coverage of a sensor observation (e.g., video
feed) or a group of observations (e.g., scalar measurements, images).
Formally, it is defined as a 2-tuple:

coverager = (8t,gt) where: (5)

e 5: = [ts,te] is a temporal interval where:
— s < e is the start temporal stamp
— te is the end temporal stamp

® g; is a temporal granularity or unit of the temporal coverage
(e.g., millisecond, second, minute, etc.)]

Definition 6 (Spatio-Temporal Redundancy). A spatio-temporal
redundancy str is defined as a 3-tuple:

str : (coveraget, coverage, D) where: (6)

e coverage; is the temporal coverage
e coveragey is the location coverage
e D= U§=0 d; is a cluster of redundant data where:
-V dj €D, d]-.t € coveraget.Ot
- VdjeD, dj.l e coverage;.5;
-V djlydjz eD, dj].a = djz.a
- VkeN", div=deentroid0 =00 where:
* deentroid-v 1s the centroid value of all data items in D
* Jyp is an acceptable deviation threshold [

Definition 7 (Location Coverage Definition). A location coverage
coverage is the set of spatial stamps designating the surface cov-
erage in which a sensor observation is created (e.g., area in which
a video stream or a bunch of mobile measurements are recorded).
Formally, it is defined as a 2-tuple:

coverage; = (61,9;) where: (7)

e §; = (shape,L) defines the area of the location coverage
where:
- L=Uj,iVieNis a set of location stamps
— shape is a mathematical abstraction used to describe the
location coverage, as a continuous coverage area (e.g.,
rectangle, circle), or non-continuous coverage area (e.g.,
disk, path, polygon, random)
e g; is the location granularity or unit of the location coverage
(e.g., millimeter, centimeter, meter).

Remark. The shape of a location coverage depends on the sensors
and the environment where they are deployed. For instance, the

shape could be lines (for mobile sensor observation tracking), con-
tinuous rectangles or squares (e.g., in an office), or non-continuous
disks or random shapes (e.g., in a forest excluding lakes). []

To illustrate the temporal redundancy detection process, con-
sider the CO; data collection presented in Table 3. If we apply the
temporal redundancy detection algorithm with a deviation thresh-
old 8y = 3, we detect one temporal redundancy (containing values
109, 110, and 111) and spanning over a temporal coverage of 4
minutes (from 10/02/2019 10:02:00 till 10/02/2019 10:06:00).

¢ 1
a v value s
format
format value X y 7
dd/mm/yyyy | 10/02/2019 . , -
COy | 98 hhmrmces 10:00:00 cartesian | 8 | 12 | 8 | S1
dd/mm/yyyy | 10/02/2019 e
COy 109 hh:mm:ss 10:02:00 cartesian 6 8 6 S1
dd/mm/yyyy | 10/02/2019 .) .
CO, | 110 hhmmes 10:04:00 cartesian | 2 | 4 | 8 | S1
dd/mm/yyyy | 10/02/2019 o
COy 111 hhemmess 10:06:00 cartesian 4 6 4 S1

Table 3: CO, Data Collection

In the following, the redundancy remover summarizes each de-
tected redundancy by a representative data item (tuple) in the out-
put. To illustrate, the (temporally) redundancy-free CO; collection is
presented in Table 4. In this example, we summarize the redundancy
tuples by calculating the averages for each column. The summaris-
ing method (e.g., mean, median, centroid) is a system parameter
that can be configured in the redundancy cleaner module. Finally,
the output can be either stored in a data repository, used to answer
a user query, or exchanged with other devices. As a result, the re-
dundancy elimination process applied here has led to a smaller data
collection without any loss of useful information. This improves
query answering at the device level (cf. Criterion 1), avoids deplet-
ing the device resources when answering queries/exchanging data
with other devices (cf. Criterion 2), and helps store redundancy-free
data in the centralized repositories where advanced services could
be applied on the data (cf. Criterion 1).

¢ 1
a v value s
format
Format Value x| v | 2
dd/mm/yyyy | 10/02/2019 .)
COy | 98 hhmmees 10:00:00 cartesian | 8 | 12 | 8 | S1
N dd/mm/yyyy | 10/02/2019 .
COy 110 hh:mmsss 10:04:00 cartesian 4 6 6 St

Table 4: Redundancy-free CO; Data Collection

4.3 Redundancy Detection Algorithms

The redundancy checker module (cf. Figure 2) consists of two clus-
tering algorithms for the detection of temporal redundancies from
static devices, and the detection of spatial-temporal redundancies
from mobile devices. The generated clusters contain redundant
data based on value similarity. In addition, the temporal and spatial-
temporal coverage of each cluster is calculated to keep track of the
temporal and/or spatial spread of each redundancy.

Algorithm 1 groups the data into clusters of temporally redundant
data. It takes a data collection C as input, and produces a set TR
of temporal redundancies (clusters) as output. First, the algorithm
sorts all data items in the input collection by ascending time. Then,
for each data item, the algorithm checks if a cluster already exists.
If not, a new cluster is created with the current data item added
as its centroid (lines 3-6). However, if a cluster already exists, the
algorithm checks if the current data item belongs to the aforemen-
tioned cluster. This is done by measuring the distance between the

data item and the cluster centroid values and comparing it to a
deviation threshold &y (line 8). If the current data item belongs to
the cluster, a new centroid is computed and the algorithm checks
the next value in the collection (lines 9-10). This step is repeated
until the algorithm finds a value that does not belong to the cluster.
In this case, the temporal coverage of the cluster is calculated (lines
12-13), the cluster (i.e., temporal redundancy) is added to the output
list (line 14), and the variable cluster content (D) is reset (line 15) in
order to generate a new cluster and look for other redundancies.

Algorithm 1: Temporal Redundancy Checker

Input :C // C is a data item collection (i.e., a set of data items)

Output: TR // TR is a set of temporal redundancies found within C

Parameters: Sy, gy // 8y is a value threshold; g; is a temporal unit
Local Variables:SC, covy, centroid, D, ming, maxy, 8
/* SC is the temporally sorted collection; covy is a temporal coverage; centroid
is the centroid of a set of values; D is a cluster of data items; min; is the
oldest timestamp in a set; max; is the most recent timestamp in a set; &f is a
temporal interval %/

// Begin algorithm

1 Initialize TR « &

2 SC « sort;(C) // sort data items by ascending timestamps
3 foreach data item d; € SC do

1 if (A cluster of redundant data D) then

5 Create new cluster D

6 Tnitialize centroid « dj.v

7 else

8 if (Absolute difference |dj.v — centroid| < 5)then

9 Add data item to cluster D < d;

10 Update centroid < Avg(all dj.v € D)

11 else

12 Identify temporal interval 8; < [miny, max;] of D

13 Compute temporal coverage w.r.t. time unit covy < (gy,5¢)
14 Add new temporal redundancy TR « (covy, D)

15 Flush out cluster D

16 end

17 end
18 end

19 Return TR

Algorithm 2: Spatial-Temporal Redundancy Checker

Input :C // C is a data item collection (i.e., a set of data items)

Output:STR // STR is a set of spatio-temporal redundancies found within C

Parameters: Sg. gz, 9] // 8y is a value threshold; g; is a temporal unit, g; is a
location unit
LocalVariables:SC‘covt,coz}l,centroid, D, ming, maxy, L, 5[‘(‘)‘1,shape
/* SC is the temporally sorted collection; cov; is a temporal coverage; covy is a
location coverage; centroid is the centroid of a set of values; D is a cluster of
data items; min; is the oldest timestamp in a set; maxy is the most recent
timestamp in a set; L is a set of locations; &y is a temporal interval; :deltal is a

location area; shape is a geometrical shape */
// Begin algorithm
Initialize STR « &
SC « sort; (C)
foreach data item d; € SC do

// sort data items by ascending timestamps

1
2

3

4 if ($ cluster of redundant data D) then

5 Create new cluster D

6 Tnitialize centroid « dj.v

7 else

8 if (Absolute difference |d;.v — centroid| < 8y) then

9 Add data item to cluster D « d;

10 Update centroid < Avg(all d;.v € D)

11 Add data item location to L < d;.l

12 else

13 Identify shape < getShape(L)

14 Identify temporal interval 8; < [min;, max;] of D
15 Identify location area 8 < (shape,L) of D

16 Compute temporal coverage w.r.t. time unit covy < (g, S5¢)
17 Compute location coverage w.r.t. location unit cov +

(91:91)

18 Add new spatio — temporal redundancy STR « (covg, covy, D)
19 Flush out cluster D

20 end

21 end
22 end

23 Return STR

Similarly, Algorithm 2 takes a data collection as input in order to
generate a set of clusters as output, where each cluster represents
a spatial-temporal redundancy. The clustering principles are the

same in both algorithms. However, the spatial-temporal redundancy
checker calculates the spatial coverage for each redundancy (i.e.,
cluster) in addition to the temporal coverage. This entails keeping
track of data location stamps in each cluster (line 11) and calculat-
ing the characteristics of the coverage area (lines 13, 15, and 17).
Note that both clustering algorithms calculate the temporal and
spatial-temporal coverage of each cluster respectively, in order to
keep track of the temporal and spatial spread of each redundancy.

5 EXPERIMENTATION & RESULTS

We propose here an experimental protocol in order to evaluate both
algorithms. We detail the objectives of the experimentation, the
evaluation metrics, and the experiments. Then, we present some
preliminary performance results for Algorithm 1.

5.1 Experimental Protocol

5.1.1 Experimentation Objectives. The objectives of the experimen-
tation are two-fold: (i) highlighting the proposal’s ability to detect
redundancies accurately - this requires evaluating the accuracy of
the clustering algorithms when detecting redundancies and compar-
ing them with existing works; and (ii) highlighting the feasibility of
implementing the proposed approach at device level - this requires
evaluating the performance of our proposal in order to show that
the costs are acceptable at the network edge (limited resources).
5.1.2 Evaluation Metrics. In order to evaluate the accuracy of the
redundancy detection (i.e., clustering) task we compare the clus-
tering result with ground truth data (from a chosen data set) and
measure Precision, Recall, F-measure, and Accuracy accordingly [1].
We adopt these metrics since they are the most commonly used in
the literature, and therefore facilitate the comparison with existing
works. In order to evaluate the performance of our proposal, we
measure the run-time, processor (CPU) consumption, and memory
(RAM) consumption.

5.1.3 Proposed Experiments. We propose the following experi-
ments for the evaluation of both algorithms:

e Experiment 1: Deviation Threshold Impact. In this test, we
evaluate the accuracy of the algorithms by gradually in-
creasing the deviation threshold in order to produce a more
compact or relaxed clustering. For each value, we compare
the clustering result with the ground truth by measuring the
Precision, Recall, and F-measure.

o Experiment 2: Input Data Size Impact. In this test, we evaluate
the performance of both algorithms by gradually increasing
the input data size, and measuring the required time to detect
redundancies, as well as the RAM consumption and CPU
consumption during each iteration.

e Experiment 3: Cluster Size Impact. In this test, we vary the de-
viation threshold value in order to create clusters of various
sizes and spreads. This test allows to measure the perfor-
mance of the algorithms, and analyze how the creation of
more or less clusters affects overall run-time, CPU consump-
tion, and RAM consumption.

5.2 Preliminary Results

We ran Experiment 2 on Algorithm 1 while measuring the execution
run-time. The algorithm was developed in Python 3.8 using the
PyCharm IDE. We ran the test on a Dell machine running Windows

10 and having a Core i5 8" " Generation 1.8 GHZ processor, and
16 GB of RAM. We chose the publicly available Intel Lab Data set
[5], and tested the algorithm on 38,656 records. Figure 3 shows the
obtained results: where the algorithm’s run-time increases linearly
with the increase of input data size, such that the required time
to detect temporal redundancies remains under 4ms for 38K+ data
items. These results are promising and highlight the need for low
processing costs at the edge where device resources are limited.

w

¥ N &
[LEENSERUENTERIN
\

Execution Time
) N
(TN

=)

0 10000 20000 30000 40000 50000
Data Size

Figure 3: Experiment 2 Results

6 CONCLUSION & FUTURE WORK

In this paper, we address the problem of handling data redundancy
in connected environments. We introduce DRMF, a data redundancy
management framework which handles sensor data redundancy at
the edge device level, considering both static and mobile devices, in
order to eliminate redundancies from the source before reaching the
core of the network. It includes two clustering algorithms that detect
temporal and spatial-temporal data redundancies, and a module for
redundancy removal/summarizing. We are currently conducting an
extensive experimental study to evaluate our approach. As future
work, we plan to investigate the auto-adjustment of the deviation
threshold, per device, based on historical runs. In addition, we aim
to detect composite redundancies that are generated by data fusion
from multiple sensors.

REFERENCES

[1] Enrique Amigd et al. 2009. A comparison of extrinsic clustering evaluation
metrics based on formal constraints. Information retrieval 12, 4 (2009), 461-486.

[2] S.Chowdhury and A. Benslimane. 2018. Relocating Redundant Sensors in Ran-
domly Deployed Wireless Sensor Networks. In 2018 IEEE Global Communications
Conference (GLOBECOM). IEEE, 1-6.

[3] Qinlu He, Zhanhuai Li, and Xiao Zhang. 2010. Data deduplication techniques. In
2010 International Conference on Future Information Technology and Management
Engineering, Vol. 1. IEEE, 430-433.

[4] Waleed M Ismael, Mingsheng Gao, Asma A Al-Shargabi, and Ammar Zahary.
2019. An In-Networking Double-Layered Data Reduction for Internet of Things
(IoT). Sensors 19, 4 (2019), 795.

[5] Farid Lalem and Ahcéne Bounceur. 2016. Faulty Data Detection in Wireless
Sensor Networks Based on Copula Theory.

[6] Shijing Li, Tian Lan, Bharath Balasubramanian, Moo-Ryong Ra, Hee Won Lee,
and Rajesh Panta. 2019. EF-Dedup: Enabling Collaborative Data Deduplication
at the Network Edge. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 986-996.

[7] Elio Mansour, Richard Chbeir, and Philippe Arnould. 2019. EQL-CE: An Event

Query Language for Connected Environment Management. In Proceedings of the

15th ACM International Symposium on QoS and Security for Wireless and Mobile

Networks. 43-51.

Prakashgoud Patil and Umakant Kulkarni. 2013. SVM based data redundancy

elimination for data aggregation in wireless sensor networks. In 2013 International

Conference on Advances in Computing, Communications and Informatics (ICACCI).

IEEE, 1309-1316.

Ata Ullah et al. 2019. Secure Healthcare Data Aggregation and Deduplication

Scheme for FoG-Orineted IoT. In 2019 IEEE International Conference on Smart

Internet of Things (SmartloT). IEEE, 314-319.

Ata Ullah, Iqra Sehr, Muhammad Akbar, and Huansheng Ning. 2018. FoG assisted

secure De-duplicated data dissemination in smart healthcare IoT. In 2018 IEEE

International Conference on Smart Internet of Things (SmartloT). IEEE, 166-171.

[8

[9

[10

	Abstract
	1 Introduction
	2 Motivating Scenario
	3 Related Works
	3.1 Existing Approaches
	3.2 Comparison Summary

	4 Proposal
	4.1 Sensory Data in a Dynamic Environment
	4.2 Redundancy Management
	4.3 Redundancy Detection Algorithms

	5 Experimentation & Results
	5.1 Experimental Protocol
	5.2 Preliminary Results

	6 Conclusion & Future Work
	References

