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Abstract—Advanced robotic technologies such as self-driving
cars, autonomous robots, and unmanned aerial vehicles require
rigorous testing to expose flaws in their control software. Developing
suitable testing environments is a challenging task due to the
difficulty of designing adequate testing environments that uncover
faults in the robotics control software. In this paper, we create a
custom  Simulation Evolutionary  Single-Shot  Generative
Adversarial Network titled SESS-GAN. It makes use of single shot
tokenized GANSs to generate a preliminary simulation environment
model, which is then fed into an evolutionary algorithm for fine-
tuning. This process increases the risk score of the simulations;
meaning these environments will cause the autonomous robot
control software to fail/mear fail, allowing testers to evaluate its
performance accordingly. Empirical results highlight the potential
of our solution with multiple use case environments.

Keywords—Autonomous driving robots, testing environment,
simulation, generative adversarial network, evolutionary algorithm.

1. INTRODUCTION

There is an ever-increasing demand for advanced robotic
technologies such as self-driving cars, independent robots, and
unmanned aerial vehicles. These autonomous systems have the
potential to revolutionize the way we live and work. As a result,
it becomes increasingly crucial to ensure that their control
software is thoroughly tested to identify and mitigate any
potential flaws. Therefore, creating suitable testing environments
for these advanced robotic technologies becomes a major
requirement. Nonetheless, designing environments that can
uncover faults in autonomous robotics software is a difficult and
challenging task given the complexity of these systems.

In this study, we aim to develop a model which generates
testing environments that can simulate real-world scenarios and
identify flaws in their control software. To do so, we put forward
a custom Generative Adversarial Network (GAN) named SESS-
GAN (Simulation Evolutionary Single-Shot GAN). It leverages
single-shot tokenized GANSs to generate a preliminary model that
is then fed into an evolutionary algorithm for fine-tuning.
Through this process, we can develop simulations that increase
the risk score of their environments, which means that they will
cause the autonomous robot control software to fail or near-fail
more frequently. Our work can have significant implications for
the development and testing of advanced robotic technologies, by
creating simulations that are more effective at identifying
potential flaws in control software, ultimately leading to safer and
more reliable autonomous systems.

Section II briefly describes the related works. Section III
described our approach. Section IV presents the evaluation
metrics and results, before concluding in Section V.

II. RELATED WORKS

A. Procedural Content Generation

Several procedural content generation techniques allow to create
simulation environments to test and simulated robotic control
software [1]. Procedural generation has been widely used in the
gaming industry to create realistic and immersive environments.
It is based on algorithms that generate content automatically,
allowing developers to create vast and diverse game worlds
without the need for manual creation of every asset. The
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advantage of procedural generation is that it can create
environments that are highly realistic, with complex and nuanced
rules that accurately reflect the real-world conditions that
autonomous robots will encounter [7]. By generating
environments with a wide range of variables, such as terrain,
weather, and lighting, it is possible to test how control software
performs under a range of conditions. This can provide valuable
insight into the behavior of autonomous systems and help to
identify and mitigate potential flaws.

However, defining complex rules can be difficult with
procedural generation, especially in situations where the rules are
not well-defined or where the environment is particularly
complex. In some cases, it may be necessary to manually define
rules for each new environment, which can be extremely time-
consuming and sometimes impossible. In addition, there is always
the risk that the generated environment may not accurately reflect
the real-world conditions that autonomous robots will encounter.
To overcome these challenges, researchers are exploring new
techniques for procedural generation that can automatically learn
the rules of an environment through machine learning algorithms
[5]. By training these algorithms on real-world data, it may be
possible to generate environments that accurately reflect the real-
world conditions that autonomous robots will encounter, without
the need for manual rule definition [13].

Procedural generation has the potential to be an effective
technique for creating simulation environments to test robotic
control software. Yet, the challenges associated with defining
complex rules and generating environments that accurately reflect
real-world conditions must be carefully considered and addressed
to ensure the effectiveness of this approach.

B. GAN-based Generation

More recent solutions to perform content generation utilize
machine learning models, namely Generative Adversarial
Networks (GANs), which have been used successfully in various
applications, including generating maps and environments [1, 3].
Unlike procedural generation, which requires manual rule
definition, GANs can generate environments by learning from a
dataset of real-world examples. This makes it possible to generate
environments that accurately reflect the real-world conditions that
autonomous robots will encounter [9, 15]. However, creating a
proper dataset for GAN training can be a significant challenge. In
some cases, it may be necessary to collect large amounts of data,
which can be time-consuming and expensive. Additionally, the
quality of the dataset can have a significant impact on the
performance of the GAN. If the dataset is biased or incomplete,
the generated environments may not accurately reflect the real-
world conditions that autonomous robots will encounter. Another
major limitation of regular GANs is that they require a
differentiable loss function [2, 4]. This means that the loss
function must be smooth and continuous, allowing gradients to be
calculated and used for backpropagation during the training
process. While this is not a problem for many applications, it can
be a significant limitation for certain scenarios, such as in
robotics, where it is difficult to differentiate the finding faults in
a control software metric, since it will come from running an
actual robotic simulation on the generated environments. To
overcome some of these limitations, researchers are exploring
new techniques for training GANs in non-differentiable
environments [8]. One approach is to use reinforcement learning,
where the GAN learns from its interactions with the environment
rather than relying solely on a predefined dataset [6, 12].
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Fig. 1. Overall SESS-GAN architecture

In conclusion, GANs have the potential to be an effective
technique for generating simulation environments to test robotic
control software. However, creating a proper dataset and
overcoming the limitations associated with differentiable loss
functions are important challenges that must be addressed to
ensure the effectiveness of this approach. Ongoing research in this
area is expected to lead to new techniques and advancements that
will make GANs an even more valuable tool for testing and
improving autonomous systems.

C. Evolutionary Search-based Frameworks

Evolutionary search-based frameworks represent another
approach to generating realistic simulation environments for
testing robotic control software. This technique involves using
optimization algorithms to iteratively refine an initial solution
based on a fitness function. By continuously evaluating the fitness
of the solution and making incremental improvements, this
approach can generate simulation environments that are well-
suited for testing the performance of autonomous systems.
Evolutionary search-based frameworks have been successfully
applied in a variety of applications, including generating maps for
simulations [10].

However, this approach can be computationally intensive,
requiring significant processing power and time to generate high-
quality simulation environments [16]. Another challenge with
this approach is defining appropriate fitness functions [11]. The
fitness function represents the criteria that the optimization
algorithm uses to evaluate the quality of the generated simulation
environment. It is essential to define a fitness function that
accurately captures the real-world conditions that the
autonomous robots will encounter. However, determining the
appropriate fitness function can be a difficult and time-
consuming task, particularly for complex environments [10, 11].

[II. PROPOSAL

In this study, we put forward a custom model named Simulation
Evolutionary Single-Shot GAN (SESS-GAN, cf. Fig. 1). It
leverages single-shot tokenized GANs to generate a preliminary
model that is then fed into an evolutionary algorithm for fine-

Save best generator

tuning. Compared with legacy GANs, our model is designed to
develop simulations that increase the risk score of their
environments, which means that they will cause the autonomous
robot control software to fail or near-fail more frequently.

A. Overall Process

We train a single-shot tokenized GAN on a single environment.
The model is composed of a pyramid of fully convolutional
GANSs, with each GAN being responsible for learning the patch
distribution at a different scale of the image. This allows the
generation of new samples of arbitrary size and aspect ratio, with
significant variability while preserving the visual content of the
original image. Unlike previous single-image GAN schemes,
single shot GAN is not limited to texture images and is not
conditional, meaning that it generates samples from noise.
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Fig. 2. Overall single shot GAN architecture (reported from [14])

This pre-trained GAN serves as the initial population for
genetic evolution tuning. The genetic evolution tuning process
involves creating a population of the pre-trained GAN and
evaluating each member's fitness score, which reflects how well
it performs on the environment generation task. The fitness score
calculation does not require differentiability, making it
applicable to environments where the loss metric is non-
differentiable. In our case, it will be computed by running
simulations on the generated environments of each member of
the population and combining metrics which we will discuss in



the following sections (e.g., similarity of the generated
environment to the original environment, the diversity of the
generated environments, and the playability of the levels). These
metrics are used to evaluate the fitness of each member and rank
them accordingly. The best-performing GANSs are selected and
subjected to genetic operations such as crossover and mutation,
creating a new population of GANs with slightly different
weights and biases. This process is repeated for generations until
the GANs converge to a satisfactory performance level.

The main advantage of our SESS-GAN solution is its ability
to generate environments that are coherent and realistic while
also being adaptable to different scenarios. The single-shot
tokenized GAN learns the internal distribution of patches within
the image and generates high-quality, diverse samples that carry
the same visual content as the original image. The genetic
evolution tuning process helps to fine-tune the GAN's parameters
and biases to better fit the environment generation task, ensuring
that the generated environments are more diverse and accurate.

Furthermore, SESS-GAN can generate environments that
are adaptable to different scenarios, as it can be fine-tuned for
different environments by modifying the fitness function. This
flexibility allows our solution to be applied to a wide range of
applications beyond video game environment generation, such
as virtual reality, computer graphics, and simulation. Overall,
SESS-GAN is a powerful and flexible solution for generating
coherent and realistic environments.

Fig. 3 shows an example showing a simulation robot control
software, and Fig. 4 shows the corresponding Unity simulation a
generated factory environment.

Most threatening

Fig. 3: Nearness-Diagram algorithm

Fig. 4. Simulation environment example

B. Running Simulations

For training and testing our SESS-GAN model, we needed a
high-fidelity simulation environment that could accurately
represent the physics of the generated environments. After
considering several options, we decided to use Unity due to its
powerful physics engine and high level of fidelity. Unity is a
popular game engine that supports high-quality graphics, physics
simulations, and advanced Al. We used the headless mode of
Unity to run our simulations without any graphical user interface,
which significantly improved the speed of the simulation.
Furthermore, we were able to speed up the simulation time to
achieve faster training of our model. The physics engine in Unity
was particularly useful for our training as it allowed us to
accurately model the physical interactions in the environment
and simulate collisions between objects. By running simulations
in Unity, we were able to obtain the fitness score of GAN models

in the fine-tuning stage of our SESS-GAN model, which helped
improve its performance and generalization capabilities. The use
of Unity for our simulation environment provided us with a high-
fidelity, accurate, and efficient platform to train and test our
SESS-GAN model. Its physics engine allowed us to accurately
model the physical interactions between objects in the
environment, which was crucial for our training. The headless
mode and simulation speed-up capabilities of Unity also helped
us achieve faster training times.

The model and its initial training data are made available
online? for further research and evaluation by the community.

IV. EVALUATION
A. Evaluation Metrics

We define two types of metrics in our evaluation study: i)
simulation metrics and ii) environment metrics. Simulation
metrics are used to evaluate the quality of the generated
environments in terms of safety and risk. They include collision
count, which measures the number of collisions that occur
between the robot and objects in the environment, and proximity
time, which measures the amount of time the robot spends in
close proximity to objects. The risk score is calculated as the
product of collision count and the ratio of proximity time to
simulation time. On the other hand, environment metrics are used
to evaluate the diversity and novelty of the generated
environments. These metrics include tile KL divergence [7],
which measures the similarity between the distributions of tiles
in the generated environments and the original environment, and
layout uniqueness [7], which measures the uniqueness of the
layout of the generated environments compared to the original
environment. These metrics are important in ensuring that the
generated environments are not only safe but also diverse and
interesting for the robot to explore.

Fig. 5. Factory training environment

B. Input Training Environments

We consider three distinct testing scenarios to evaluate our
solution. These include: i) a factory scene with autonomous
robots, ii) a race track with a self-driving car, and iii) an area with
regular and low obstacles where an autonomous drone is
navigating. We aim to evaluate SESS-GAN's ability to learn and
generate diverse and realistic simulation environments for these
dynamic and complex scenarios. Through this evaluation, we
aim to demonstrate the potential of SESS-GAN in generating
high-quality environments and its fault-revealing power.

Factory Scene with Autonomous Robots: This environment
involves multiple autonomous robots navigating through a
factory setting (cf. Fig. 5). This environment is represented as a
32x32 grid, including two discrete tokens used to encode terrain:
i) Ground (G): traversable space for robots, and ii) Wall (W):
obstacles that block movement. This can be challenging for the
robot control software to navigate through various obstacles and
avoid collisions with other robots. Additionally, the robot agent
must be able to complete tasks assigned to it within the factory,
such as picking up objects, moving them, and placing them in the
correct location.

2 https:/github.com/Charbel199/SESS-GAN




Fig. 6. Racetrack training environment

Race Track with Self-Driving Car: The second testing
scenario involves a self-driving car navigating through a race-
track (cf. Fig. 6). The race track environment is modeled as a
128x128 grid, providing higher resolution for fine-grained path
planning. It uses two tokens: i) Track (T): the valid path the car
can drive on, and ii) Out of Bounds (O): non-drivable zones
where the car must not enter. The robot control software must
navigate through the track at high speeds, while avoiding
obstacles and other cars.

Fig. 7. Drone training environment

Autonomous Drone with Obstacles: The third testing
scenario involves an autonomous drone navigating through an
area with both regular and low obstacles (cf. Fig. 7). The drone
testing area is encoded as a 32x32 grid, using three tokens: 1)
Ground (G): open areas that can be flown over, ii) Wall (W): tall
obstacles that must be fully avoided, and iii) Ground Obstacles
(O): low-height objects that the drone can fly over, but must still
be detected and considered during path planning. This will
require the robot control software to navigate through tight
spaces and make quick decisions to avoid obstacles. The ability
to fly over low obstacles provides an interesting challenge for the
robot agent to navigate through the environment efficiently.

Opverall, these three testing scenarios provide a diverse range
of challenges for the SESS-GAN generator, from navigating
through tight spaces, avoiding obstacles, to completing tasks
assigned within a factory setting. We evaluate the output
environments based on the metrics introduced previously.

C. Types of Discovered Faults

In the course of our simulations, a fault in the obstacle avoidance
system was detected and is illustrated in Fig. 8.1, wherein a
flying agent collides with a dummy flying agent as it was not
within its field of view. As depicted in Fig. 2, the obstacle
avoidance algorithm utilized is a basic projection along the
velocity direction, which may result in the neglect of any moving
obstacles that approach from a wider angle, such as from behind
or at an obtuse angle.

In the second identified fault, illustrated in Fig. 8.b, the agent
under observation had previously been travelling from the upper
part of the map, and had subsequently accumulated significant
velocity. Upon encountering a sharp turn, the agent failed to

decelerate in time, resulting in a collision with the surrounding
wall. This demonstrates a problem with the agent’s braking
system.

In Fig. 8.c, we present the third fault discovered in our
simulation environment. The agent in question is required to
navigate through a narrow space with multiple turns. Due to its
actuation mechanism, the agent is unable to turn in place and
must move to execute a turn. As a result, the agent collides
several times with the surrounding walls while trying to navigate
through the narrow path.

a. Narrow Field of View

c. Narrow space turns b. Fast sharp turn

Fig. 8: Types of detected faults

D. Output Environment Results

After training SESS-GAN in three different testing scenarios, we
generated output environments to evaluate the model's
performance. These output environments were generated by
feeding the trained SESS-GAN model with noise vectors as
inputs, which the model then transformed into realistic-looking
synthetic environments that mimic the characteristics of the
original training environments. By generating these output
environments, we aim to analyze the model's ability to capture
and replicate the visual and structural features of the original
training environments, and to assess the model's generalization
and robustness in generating diverse and realistic-looking
synthetic environments. In the following part, we will discuss in
detail the output environments generated by SESS-GAN for each
of the three training environments, and we will provide visual
and quantitative analysis of the model's performance.

Fig. 9 shows output environments generated from training
the SESS-GANSs on the three different training scenarios. For
each training environment, we will show four output
environments representing the output of genetic evolution
tuning after: 0, 50, 100, and 200 generations.

Factory Scene with Autonomous Robots: The factory
environment consists of autonomous robots navigating through
a factory scene. The goal is to generate an environment that
challenges the robots to navigate through it, revealing any faults
or weaknesses in their navigation algorithms. As the SESS-GAN
is trained on this environment, the generated environments
become more complex, with smaller gaps and tighter spaces,
making it increasingly difficult for the robots to navigate
through. In the initial output environment after 0 generations, the
gaps are relatively wide and the environment is relatively simple.
However, after 50 generations, the gaps become smaller,
requiring more precise navigation. By 100 generations, the
environment becomes even more complex, with narrow passages
and tight turns. After 200 generations, the environment is highly
challenging, with very small gaps that require precise navigation.
This progression of environments reveals the faults and
weaknesses in the robot's navigation algorithms, allowing
improvements to be made.
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Fig. 9: Output environments

Race Track with Self-Driving Car: The racetrack
environment consists of a self-driving car navigating through a
racetrack. The goal is to generate an environment that challenges
the car's navigation algorithms, revealing faults or weaknesses.
As the SESS-GAN is trained on this environment, the generated
environments become more challenging, with sharper corners
and smaller passages. In the initial output environment after 0
generations, the environment is relatively simple, with wide
turns and straightaways. However, after 50 generations, the
corners become sharper and the passages become narrower. By
100 generations, the environment becomes even more
challenging, with tight turns and very narrow passages. After 200
generations, the environment is highly complex, with very sharp
turns and extremely narrow passages. This progression of
environments reveals the faults and weaknesses in the car's
navigation algorithms, allowing for improvements to be made.

Autonomous Drone with Obstacles: The drone
environment consists of an autonomous drone navigating
through an area with regular and low obstacles that it can fly
over. The goal is to generate an environment that challenges the
drone's navigation algorithms, revealing faults or weaknesses.
As the SESS-GAN is trained on this environment, the generated
environments become more complex, with sections that can only
be accessed by the drone. In the initial output environment after
0 generations, the environment is relatively simple, with few
obstacles and open spaces. However, after 50 generations, the
environment becomes more complex, with obstacles that the
drone must fly over or around. By 100 generations, the
environment becomes even more challenging, with sections that
can only be accessed by the drone and more obstacles to navigate

around. After 200 generations, the environment is highly
complex, with many obstacles and areas that can only be
accessed by the drone. This progression of environments reveals
the faults and weaknesses in the drone's navigation algorithms,
allowing for improvements to be made.

E. Simulation Metrics Evaluation

Results in Fig. 10 illustrate proximity time, collision count, and
simulation time metrics across generations of our algorithm. Fig.
10.a depicting simulation time vs. generation, shows a general
upward trend, indicating that as the algorithm progresses, it
produces increasingly complex environments that require more
time to simulate. This aligns with the objective of evolving
environments that challenge the robot agents more intensively.
Fig. 10.b tracks proximity time, measuring the cumulative time
agents spend near obstacles without colliding. This metric helps
quantify near-miss behavior, which reflects tighter navigation
and higher environmental complexity. Fig. 10.c. shows the
collision count per generation, offering insight into how often
agents fail to avoid obstacles. A rising trend here may suggest
increasingly difficult environments, while a decrease could
indicate improved agent performance or conservative navigation
strategies. Together, these graphs provide a comprehensive view
of how environment difficulty evolves throughout the
generations. For instance, the average number of collisions
between generation #0 and generation #100 went from 3.9 to 7.5,
the average proximity time went from 6.77 seconds to 7.87
seconds, and the average simulation time went from 11.9 seconds
to 13.43 seconds, producing an average risk score between 2.21
to 4.39. Therefore, we can confirm that our initial fine-tuning led
to GANs which generate ‘harder’ environments where the robot
control softwares fail or near-fail more often
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Fig. 10. Simulation metrics evaluation results

F. Environment Metrics Evaluation

Results in Fig. 11 show the TPKL divergence results in the form
of 3x3 grids, where each cell represents the divergence between
environments generated by a specific training set and a reference
environment type. The diagonal elements reflect the divergence



between generated environments and the corresponding
environment they were trained on. As expected, these diagonal
values are consistently lower, indicating that the generative
model successfully captures and reproduces the structural
characteristics specific to each environment type. In contrast, the
off-diagonal elements—representing divergences between
generated environments and other original environments types,
and they tend to show higher values, confirming that the
generated environments are distinct. This matrix structure
provides strong evidence that the generator is meaningfully
learning type-specific distributions rather than converging to a
single overfitted representation.
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Fig. 11. TPKL divergence results

In addition to TPKL divergence, and inspired by the evaluation
approach in TOAD-GAN [2], we assess structural variability by
evaluating the uniqueness of the sampled patches. To do, we
compute the uniqueness of square patches within our generated
environments. Specifically, we sample 8x8 and 16x16 patches
for each of the simulation environments and compute uniqueness
percentages accordingly. Across all environments, the generated
layouts show high average uniqueness scores. The factory and
drone scenarios achieve over 91% average uniqueness,
indicating a strong diversity in their generated environments.
The racetrack scenario, while slightly lower at 81.14%, still
maintains a high level of variation, especially at higher
resolutions. This shows that we are able to produce distinct
environment layouts, avoiding redundancy across generations

Table 1. Structural variability through uniqueness results

Sample patches Avg. Uniqueness

8x8 16x16
Factory 82.69 % 100 % 91.34 %
Race track 66.67 % 95.60 % 81.14 %
Drone 33 % 98.20 % 91.27 %

G. Discussion

To sum up, our experiments show that SESS-GAN effectively
generates environments that increase in complexity across
generations, as indicated by rising simulation time, proximity
time, and collision count. TPKL divergence results confirm that
the model captures environment-specific structures, and
uniqueness scores highlight strong layout diversity. These
outcomes support the model’s ability to produce fault-revealing
simulations for control software testing.

Due to the uniqueness of our study, a direct comparison with
existing approaches was not feasible. To the best of our
knowledge, this is the first study to conduct such simulation
experiments in this specific context. As such, we identify the

development of appropriate benchmarks and comparative
methodologies as an important direction for future work.

V. CONCLUSION

This paper introduces the SESS-GAN model which leverages
single-shot tokenized GANs to generate a preliminary model that
is then fed into an evolutionary algorithm for fine-tuning. Our
work promises significant implications for the development and
testing of robotic control software, as the use of SESS-GAN can
create simulations that are more effective at identifying potential
flaws in control software, aiming to produce safer and more
reliable autonomous systems. The model is made available
online for further research and evaluation by the community.
We are currently extending SESS-GAN’s evaluation by
testing on larger and more complex environments, considering
different types of control systems, e.g., [17, 18]. Subsequently,
we plan to test the model on different kinds of control algorithm
software, to assess the model’s robustness and generalization
capabilities, and potential for different types of control systems.
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