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Abstract—Advanced robotic technologies such as self-driving 
cars, autonomous robots, and unmanned aerial vehicles require 
rigorous testing to expose flaws in their control software. Developing 
suitable testing environments is a challenging task due to the 
difficulty of designing adequate testing environments that uncover 
faults in the robotics control software. In this paper, we create a 
custom Simulation Evolutionary Single-Shot Generative 
Adversarial Network titled SESS-GAN. It makes use of single shot 
tokenized GANs to generate a preliminary simulation environment 
model, which is then fed into an evolutionary algorithm for fine-
tuning. This process increases the risk score of the simulations; 
meaning these environments will cause the autonomous robot 
control software to fail/near fail, allowing testers to evaluate its 
performance accordingly. Empirical results highlight the potential 
of our solution with multiple use case environments. 

Keywords—Autonomous driving robots, testing environment, 
simulation, generative adversarial network, evolutionary algorithm. 

I. INTRODUCTION 

There is an ever-increasing demand for advanced robotic 
technologies such as self-driving cars, independent robots, and 
unmanned aerial vehicles. These autonomous systems have the 
potential to revolutionize the way we live and work. As a result, 
it becomes increasingly crucial to ensure that their control 
software is thoroughly tested to identify and mitigate any 
potential flaws. Therefore, creating suitable testing environments 
for these advanced robotic technologies becomes a major 
requirement. Nonetheless, designing environments that can 
uncover faults in autonomous robotics software is a difficult and 
challenging task given the complexity of these systems.  

In this study, we aim to develop a model which generates 
testing environments that can simulate real-world scenarios and 
identify flaws in their control software. To do so, we put forward 
a custom Generative Adversarial Network (GAN) named SESS-
GAN (Simulation Evolutionary Single-Shot GAN). It leverages 
single-shot tokenized GANs to generate a preliminary model that 
is then fed into an evolutionary algorithm for fine-tuning. 
Through this process, we can develop simulations that increase 
the risk score of their environments, which means that they will 
cause the autonomous robot control software to fail or near-fail 
more frequently. Our work can have significant implications for 
the development and testing of advanced robotic technologies, by 
creating simulations that are more effective at identifying 
potential flaws in control software, ultimately leading to safer and 
more reliable autonomous systems. 

Section II briefly describes the related works. Section III 
described our approach. Section IV presents the evaluation 
metrics and results, before concluding in Section V. 

II. RELATED WORKS 

A. Procedural Content Generation 
 

Several procedural content generation techniques allow to create 
simulation environments to test and simulated robotic control 
software [1]. Procedural generation has been widely used in the 
gaming industry to create realistic and immersive environments. 
It is based on algorithms that generate content automatically, 
allowing developers to create vast and diverse game worlds 
without the need for manual creation of every asset. The 

                                                           
1 C. Aoun is co-affiliated with the Lab-STICC, CNRS UMR, ENSTA (Ecole Nationale Supérieure de Techniques Avancées), Brest, France 

advantage of procedural generation is that it can create 
environments that are highly realistic, with complex and nuanced 
rules that accurately reflect the real-world conditions that 
autonomous robots will encounter [7]. By generating 
environments with a wide range of variables, such as terrain, 
weather, and lighting, it is possible to test how control software 
performs under a range of conditions. This can provide valuable 
insight into the behavior of autonomous systems and help to 
identify and mitigate potential flaws.  

However, defining complex rules can be difficult with 
procedural generation, especially in situations where the rules are 
not well-defined or where the environment is particularly 
complex. In some cases, it may be necessary to manually define 
rules for each new environment, which can be extremely time-
consuming and sometimes impossible. In addition, there is always 
the risk that the generated environment may not accurately reflect 
the real-world conditions that autonomous robots will encounter. 
To overcome these challenges, researchers are exploring new 
techniques for procedural generation that can automatically learn 
the rules of an environment through machine learning algorithms 
[5]. By training these algorithms on real-world data, it may be 
possible to generate environments that accurately reflect the real-
world conditions that autonomous robots will encounter, without 
the need for manual rule definition [13]. 

Procedural generation has the potential to be an effective 
technique for creating simulation environments to test robotic 
control software. Yet, the challenges associated with defining 
complex rules and generating environments that accurately reflect 
real-world conditions must be carefully considered and addressed 
to ensure the effectiveness of this approach. 

 
B. GAN-based Generation 

 

More recent solutions to perform content generation utilize 
machine learning models, namely Generative Adversarial 
Networks (GANs), which have been used successfully in various 
applications, including generating maps and environments [1, 3]. 
Unlike procedural generation, which requires manual rule 
definition, GANs can generate environments by learning from a 
dataset of real-world examples. This makes it possible to generate 
environments that accurately reflect the real-world conditions that 
autonomous robots will encounter [9, 15]. However, creating a 
proper dataset for GAN training can be a significant challenge. In 
some cases, it may be necessary to collect large amounts of data, 
which can be time-consuming and expensive. Additionally, the 
quality of the dataset can have a significant impact on the 
performance of the GAN. If the dataset is biased or incomplete, 
the generated environments may not accurately reflect the real-
world conditions that autonomous robots will encounter. Another 
major limitation of regular GANs is that they require a 
differentiable loss function [2, 4]. This means that the loss 
function must be smooth and continuous, allowing gradients to be 
calculated and used for backpropagation during the training 
process. While this is not a problem for many applications, it can 
be a significant limitation for certain scenarios, such as in 
robotics, where it is difficult to differentiate the finding faults in 
a control software metric, since it will come from running an 
actual robotic simulation on the generated environments. To 
overcome some of these limitations, researchers are exploring 
new techniques for training GANs in non-differentiable 
environments [8]. One approach is to use reinforcement learning, 
where the GAN learns from its interactions with the environment 
rather than relying solely on a predefined dataset [6, 12].  979-8-3315-8747-5/25/$31.00 ©2025 IEEE 



 
 

 
 

Fig. 1. Overall SESS-GAN architecture 
 

In conclusion, GANs have the potential to be an effective 
technique for generating simulation environments to test robotic 
control software. However, creating a proper dataset and 
overcoming the limitations associated with differentiable loss 
functions are important challenges that must be addressed to 
ensure the effectiveness of this approach. Ongoing research in this 
area is expected to lead to new techniques and advancements that 
will make GANs an even more valuable tool for testing and 
improving autonomous systems. 

 
C. Evolutionary Search-based Frameworks 

 

Evolutionary search-based frameworks represent another 
approach to generating realistic simulation environments for 
testing robotic control software. This technique involves using 
optimization algorithms to iteratively refine an initial solution 
based on a fitness function. By continuously evaluating the fitness 
of the solution and making incremental improvements, this 
approach can generate simulation environments that are well-
suited for testing the performance of autonomous systems. 
Evolutionary search-based frameworks have been successfully 
applied in a variety of applications, including generating maps for 
simulations [10]. 
     However, this approach can be computationally intensive, 
requiring significant processing power and time to generate high-
quality simulation environments [16]. Another challenge with 
this approach is defining appropriate fitness functions [11]. The 
fitness function represents the criteria that the optimization 
algorithm uses to evaluate the quality of the generated simulation 
environment. It is essential to define a fitness function that 
accurately captures the real-world conditions that the 
autonomous robots will encounter. However, determining the 
appropriate fitness function can be a difficult and time-
consuming task, particularly for complex environments [10, 11]. 

III. PROPOSAL 

In this study, we put forward a custom model named Simulation 
Evolutionary Single-Shot GAN (SESS-GAN, cf. Fig. 1). It 
leverages single-shot tokenized GANs to generate a preliminary 
model that is then fed into an evolutionary algorithm for fine-

tuning. Compared with legacy GANs, our model is designed to 
develop simulations that increase the risk score of their 
environments, which means that they will cause the autonomous 
robot control software to fail or near-fail more frequently. 
 
A. Overall Process 
We train a single-shot tokenized GAN on a single environment. 
The model is composed of a pyramid of fully convolutional 
GANs, with each GAN being responsible for learning the patch 
distribution at a different scale of the image. This allows the 
generation of new samples of arbitrary size and aspect ratio, with 
significant variability while preserving the visual content of the 
original image. Unlike previous single-image GAN schemes, 
single shot GAN is not limited to texture images and is not 
conditional, meaning that it generates samples from noise. 
 

 
 

Fig. 2. Overall single shot GAN architecture (reported from [14]) 
 
This pre-trained GAN serves as the initial population for 

genetic evolution tuning. The genetic evolution tuning process 
involves creating a population of the pre-trained GAN and 
evaluating each member's fitness score, which reflects how well 
it performs on the environment generation task. The fitness score 
calculation does not require differentiability, making it 
applicable to environments where the loss metric is non-
differentiable. In our case, it will be computed by running 
simulations on the generated environments of each member of 
the population and combining metrics which we will discuss in 



the following sections (e.g., similarity of the generated 
environment to the original environment, the diversity of the 
generated environments, and the playability of the levels). These 
metrics are used to evaluate the fitness of each member and rank 
them accordingly.  The best-performing GANs are selected and 
subjected to genetic operations such as crossover and mutation, 
creating a new population of GANs with slightly different 
weights and biases. This process is repeated for generations until 
the GANs converge to a satisfactory performance level. 

The main advantage of our SESS-GAN solution is its ability 
to generate environments that are coherent and realistic while 
also being adaptable to different scenarios. The single-shot 
tokenized GAN learns the internal distribution of patches within 
the image and generates high-quality, diverse samples that carry 
the same visual content as the original image. The genetic 
evolution tuning process helps to fine-tune the GAN's parameters 
and biases to better fit the environment generation task, ensuring 
that the generated environments are more diverse and accurate. 

Furthermore, SESS-GAN can generate environments that 
are adaptable to different scenarios, as it can be fine-tuned for 
different environments by modifying the fitness function. This 
flexibility allows our solution to be applied to a wide range of 
applications beyond video game environment generation, such 
as virtual reality, computer graphics, and simulation. Overall, 
SESS-GAN is a powerful and flexible solution for generating 
coherent and realistic environments. 

Fig. 3 shows an example showing a simulation robot control 
software, and Fig. 4 shows the corresponding Unity simulation a 
generated factory environment. 

 

        
         

Fig. 3: Nearness-Diagram algorithm 
 

 
 

Fig. 4. Simulation environment example 
 
B. Running Simulations 
For training and testing our SESS-GAN model, we needed a 
high-fidelity simulation environment that could accurately 
represent the physics of the generated environments. After 
considering several options, we decided to use Unity due to its 
powerful physics engine and high level of fidelity. Unity is a 
popular game engine that supports high-quality graphics, physics 
simulations, and advanced AI. We used the headless mode of 
Unity to run our simulations without any graphical user interface, 
which significantly improved the speed of the simulation. 
Furthermore, we were able to speed up the simulation time to 
achieve faster training of our model. The physics engine in Unity 
was particularly useful for our training as it allowed us to 
accurately model the physical interactions in the environment 
and simulate collisions between objects. By running simulations 
in Unity, we were able to obtain the fitness score of GAN models 
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in the fine-tuning stage of our SESS-GAN model, which helped 
improve its performance and generalization capabilities. The use 
of Unity for our simulation environment provided us with a high-
fidelity, accurate, and efficient platform to train and test our 
SESS-GAN model. Its physics engine allowed us to accurately 
model the physical interactions between objects in the 
environment, which was crucial for our training. The headless 
mode and simulation speed-up capabilities of Unity also helped 
us achieve faster training times. 

The model and its initial training data are made available 
online2 for further research and evaluation by the community. 
 

IV. EVALUATION 
 

A. Evaluation Metrics 
We define two types of metrics in our evaluation study: i) 
simulation metrics and ii) environment metrics. Simulation 
metrics are used to evaluate the quality of the generated 
environments in terms of safety and risk. They include collision 
count, which measures the number of collisions that occur 
between the robot and objects in the environment, and proximity 
time, which measures the amount of time the robot spends in 
close proximity to objects. The risk score is calculated as the 
product of collision count and the ratio of proximity time to 
simulation time. On the other hand, environment metrics are used 
to evaluate the diversity and novelty of the generated 
environments. These metrics include tile KL divergence [7], 
which measures the similarity between the distributions of tiles 
in the generated environments and the original environment, and 
layout uniqueness [7], which measures the uniqueness of the 
layout of the generated environments compared to the original 
environment. These metrics are important in ensuring that the 
generated environments are not only safe but also diverse and 
interesting for the robot to explore. 
 

 
 

Fig. 5. Factory training environment 
 
B. Input Training Environments 
We consider three distinct testing scenarios to evaluate our 
solution. These include: i) a factory scene with autonomous 
robots, ii) a race track with a self-driving car, and iii) an area with 
regular and low obstacles where an autonomous drone is 
navigating. We aim to evaluate SESS-GAN's ability to learn and 
generate diverse and realistic simulation environments for these 
dynamic and complex scenarios. Through this evaluation, we 
aim to demonstrate the potential of SESS-GAN in generating 
high-quality environments and its fault-revealing power. 

Factory Scene with Autonomous Robots: This environment 
involves multiple autonomous robots navigating through a 
factory setting (cf. Fig. 5). This environment is represented as a 
32×32 grid, including two discrete tokens used to encode terrain: 
i) Ground (G): traversable space for robots, and ii) Wall (W): 
obstacles that block movement. This can be challenging for the 
robot control software to navigate through various obstacles and 
avoid collisions with other robots. Additionally, the robot agent 
must be able to complete tasks assigned to it within the factory, 
such as picking up objects, moving them, and placing them in the 
correct location. 



 
 

Fig. 6. Racetrack training environment 
 

Race Track with Self-Driving Car: The second testing 
scenario involves a self-driving car navigating through a race- 
track (cf. Fig. 6). The race track environment is modeled as a 
128×128 grid, providing higher resolution for fine-grained path 
planning. It uses two tokens: i) Track (T): the valid path the car 
can drive on, and ii) Out of Bounds (O): non-drivable zones 
where the car must not enter. The robot control software must 
navigate through the track at high speeds, while avoiding 
obstacles and other cars. 
 

 
 

Fig. 7. Drone training environment 
 

Autonomous Drone with Obstacles: The third testing 
scenario involves an autonomous drone navigating through an 
area with both regular and low obstacles (cf. Fig. 7). The drone 
testing area is encoded as a 32×32 grid, using three tokens: i) 
Ground (G): open areas that can be flown over, ii) Wall (W): tall 
obstacles that must be fully avoided, and iii) Ground Obstacles 
(O): low-height objects that the drone can fly over, but must still 
be detected and considered during path planning. This will 
require the robot control software to navigate through tight 
spaces and make quick decisions to avoid obstacles. The ability 
to fly over low obstacles provides an interesting challenge for the 
robot agent to navigate through the environment efficiently. 

Overall, these three testing scenarios provide a diverse range 
of challenges for the SESS-GAN generator, from navigating 
through tight spaces, avoiding obstacles, to completing tasks 
assigned within a factory setting. We evaluate the output 
environments based on the metrics introduced previously. 

C. Types of Discovered Faults 
In the course of our simulations, a fault in the obstacle avoidance 
system was detected and is illustrated in Fig. 8.1, wherein a 
flying agent collides with a dummy flying agent as it was not 
within its field of view. As depicted in Fig. 2, the obstacle 
avoidance algorithm utilized is a basic projection along the 
velocity direction, which may result in the neglect of any moving 
obstacles that approach from a wider angle, such as from behind 
or at an obtuse angle. 

In the second identified fault, illustrated in Fig. 8.b, the agent 
under observation had previously been travelling from the upper 
part of the map, and had subsequently accumulated significant 
velocity. Upon encountering a sharp turn, the agent failed to 

decelerate in time, resulting in a collision with the surrounding 
wall. This demonstrates a problem with the agent’s braking 
system. 

In Fig. 8.c, we present the third fault discovered in our 
simulation environment. The agent in question is required to 
navigate through a narrow space with multiple turns. Due to its 
actuation mechanism, the agent is unable to turn in place and 
must move to execute a turn. As a result, the agent collides 
several times with the surrounding walls while trying to navigate 
through the narrow path. 

 

 

 

a. Narrow Field of View 
 

 
c. Narrow space turns b. Fast sharp turn 

 

Fig. 8: Types of detected faults 

D. Output Environment Results 
After training SESS-GAN in three different testing scenarios, we 
generated output environments to evaluate the model's 
performance. These output environments were generated by 
feeding the trained SESS-GAN model with noise vectors as 
inputs, which the model then transformed into realistic-looking 
synthetic environments that mimic the characteristics of the 
original training environments. By generating these output 
environments, we aim to analyze the model's ability to capture 
and replicate the visual and structural features of the original 
training environments, and to assess the model's generalization 
and robustness in generating diverse and realistic-looking 
synthetic environments. In the following part, we will discuss in 
detail the output environments generated by SESS-GAN for each 
of the three training environments, and we will provide visual 
and quantitative analysis of the model's performance. 

Fig. 9 shows output environments generated from training 
the SESS-GANs on the three different training scenarios. For 
each training environment, we will show four output 
environments representing the output of genetic evolution 
tuning after: 0, 50, 100, and 200 generations. 

Factory Scene with Autonomous Robots: The factory 
environment consists of autonomous robots navigating through 
a factory scene. The goal is to generate an environment that 
challenges the robots to navigate through it, revealing any faults 
or weaknesses in their navigation algorithms. As the SESS-GAN 
is trained on this environment, the generated environments 
become more complex, with smaller gaps and tighter spaces, 
making it increasingly difficult for the robots to navigate 
through. In the initial output environment after 0 generations, the 
gaps are relatively wide and the environment is relatively simple. 
However, after 50 generations, the gaps become smaller, 
requiring more precise navigation. By 100 generations, the 
environment becomes even more complex, with narrow passages 
and tight turns. After 200 generations, the environment is highly 
challenging, with very small gaps that require precise navigation. 
This progression of environments reveals the faults and 
weaknesses in the robot's navigation algorithms, allowing 
improvements to be made. 

 
 



 

 Generation 0                        Generation 50 

 
 
 
Factory 
 
 
 
 
 
 
Race 
Track 
 
 
 
 
 
Drone 

 
  

Generation 100                       Generation 200 
 

 
 
 
Factory 
 
 
 
 
 
Race 
Track 
 
 
 
 
 

Drone 

 
 

Fig. 9: Output environments 

Race Track with Self-Driving Car: The racetrack 
environment consists of a self-driving car navigating through a 
racetrack. The goal is to generate an environment that challenges 
the car's navigation algorithms, revealing faults or weaknesses. 
As the SESS-GAN is trained on this environment, the generated 
environments become more challenging, with sharper corners 
and smaller passages. In the initial output environment after 0 
generations, the environment is relatively simple, with wide 
turns and straightaways. However, after 50 generations, the 
corners become sharper and the passages become narrower. By 
100 generations, the environment becomes even more 
challenging, with tight turns and very narrow passages. After 200 
generations, the environment is highly complex, with very sharp 
turns and extremely narrow passages. This progression of 
environments reveals the faults and weaknesses in the car's 
navigation algorithms, allowing for improvements to be made. 

Autonomous Drone with Obstacles: The drone 
environment consists of an autonomous drone navigating 
through an area with regular and low obstacles that it can fly 
over. The goal is to generate an environment that challenges the 
drone's navigation algorithms, revealing faults or weaknesses. 
As the SESS-GAN is trained on this environment, the generated 
environments become more complex, with sections that can only 
be accessed by the drone. In the initial output environment after 
0 generations, the environment is relatively simple, with few 
obstacles and open spaces. However, after 50 generations, the 
environment becomes more complex, with obstacles that the 
drone must fly over or around. By 100 generations, the 
environment becomes even more challenging, with sections that 
can only be accessed by the drone and more obstacles to navigate 

around. After 200 generations, the environment is highly 
complex, with many obstacles and areas that can only be 
accessed by the drone. This progression of environments reveals 
the faults and weaknesses in the drone's navigation algorithms, 
allowing for improvements to be made. 
 
E. Simulation Metrics Evaluation 
Results in Fig. 10 illustrate proximity time, collision count, and 
simulation time metrics across generations of our algorithm. Fig. 
10.a depicting simulation time vs. generation, shows a general 
upward trend, indicating that as the algorithm progresses, it 
produces increasingly complex environments that require more 
time to simulate. This aligns with the objective of evolving 
environments that challenge the robot agents more intensively. 
Fig. 10.b tracks proximity time, measuring the cumulative time 
agents spend near obstacles without colliding. This metric helps 
quantify near-miss behavior, which reflects tighter navigation 
and higher environmental complexity. Fig. 10.c. shows the 
collision count per generation, offering insight into how often 
agents fail to avoid obstacles. A rising trend here may suggest 
increasingly difficult environments, while a decrease could 
indicate improved agent performance or conservative navigation 
strategies. Together, these graphs provide a comprehensive view 
of how environment difficulty evolves throughout the 
generations. For instance, the average number of collisions 
between generation #0 and generation #100 went from 3.9 to 7.5, 
the average proximity time went from 6.77 seconds to 7.87 
seconds, and the average simulation time went from 11.9 seconds 
to 13.43 seconds, producing an average risk score between 2.21 
to 4.39. Therefore, we can confirm that our initial fine-tuning led 
to GANs which generate ‘harder’ environments where the robot 
control softwares fail or near-fail more often 
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Fig. 10. Simulation metrics evaluation results 
 
F. Environment Metrics Evaluation 
Results in Fig. 11 show the TPKL divergence results in the form 
of 3×3 grids, where each cell represents the divergence between 
environments generated by a specific training set and a reference 
environment type. The diagonal elements reflect the divergence 



between generated environments and the corresponding 
environment they were trained on. As expected, these diagonal 
values are consistently lower, indicating that the generative 
model successfully captures and reproduces the structural 
characteristics specific to each environment type. In contrast, the 
off-diagonal elements—representing divergences between 
generated environments and other original environments types, 
and they tend to show higher values, confirming that the 
generated environments are distinct. This matrix structure 
provides strong evidence that the generator is meaningfully 
learning type-specific distributions rather than converging to a 
single overfitted representation. 
 
 

 

 

 
a. Factory use case matrix b. Racing track use case matrix 

 
 

c. Autonomous drone use case matrix 
 

Fig. 11. TPKL divergence results 
 
In addition to TPKL divergence, and inspired by the evaluation 
approach in TOAD-GAN [2] , we assess structural variability by 
evaluating the uniqueness of the sampled patches. To do, we 
compute the uniqueness of square patches within our generated 
environments. Specifically, we sample 8×8 and 16×16 patches 
for each of the simulation environments and compute uniqueness 
percentages accordingly. Across all environments, the generated 
layouts show high average uniqueness scores. The factory and 
drone scenarios achieve over 91% average uniqueness, 
indicating a strong diversity in their generated environments. 
The racetrack scenario, while slightly lower at 81.14%, still 
maintains a high level of variation, especially at higher 
resolutions. This shows that we are able to produce distinct 
environment layouts, avoiding redundancy across generations 
 

Table 1. Structural variability through uniqueness results  
 

 Sample patches Avg. Uniqueness 8x8 16x16 
Factory 82.69 % 100 % 91.34 % 

Race track 66.67 % 95.60 % 81.14 % 
Drone 33 % 98.20 % 91.27 % 

 

G. Discussion 
To sum up, our experiments show that SESS-GAN effectively 
generates environments that increase in complexity across 
generations, as indicated by rising simulation time, proximity 
time, and collision count. TPKL divergence results confirm that 
the model captures environment-specific structures, and 
uniqueness scores highlight strong layout diversity. These 
outcomes support the model’s ability to produce fault-revealing 
simulations for control software testing.  

Due to the uniqueness of our study, a direct comparison with 
existing approaches was not feasible. To the best of our 
knowledge, this is the first study to conduct such simulation 
experiments in this specific context. As such, we identify the 

development of appropriate benchmarks and comparative 
methodologies as an important direction for future work. 
 

V. CONCLUSION 
 

This paper introduces the SESS-GAN model which leverages 
single-shot tokenized GANs to generate a preliminary model that 
is then fed into an evolutionary algorithm for fine-tuning. Our 
work promises significant implications for the development and 
testing of robotic control software, as the use of SESS-GAN can 
create simulations that are more effective at identifying potential 
flaws in control software, aiming to produce safer and more 
reliable autonomous systems. The model is made available 
online for further research and evaluation by the community.  

We are currently extending SESS-GAN’s evaluation by 
testing on larger and more complex environments, considering 
different types of control systems, e.g., [17, 18]. Subsequently, 
we plan to test the model on different kinds of control algorithm 
software, to assess the model’s robustness and generalization 
capabilities, and potential for different types of control systems. 
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