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Abstract—Large language models (LLMs) have resulted in
significant improvements in understanding and generating
natural language. However, their deployment in resource-
constrained environments is limited by their high computational
demands. Hence, Knowledge Distillation (KD) has emerged to
address such challenges by enabling the transfer of knowledge
from a large, pre-trained model (teacher) to a smaller, more
efficient model (student). Yet, some bottlenecks exist in the
effectiveness of this technique, such as the “capacity gap”
between the teachers’ learning abilities and that of the student
models, which may negatively impact the distilled model. We
address this limitation by introducing a Tutor-Enhanced
Iterative Distillation (TEID) to fill the capacity gap, by adding
an intermediate-sized tutor model and selective learning
strategy to the traditional distillation setup. To achieve further
compression, the TEID is repeated iteratively on the tutor and
the previously resultant student, with a new smaller student
model. Empirical results on the GLUE benchmark show results
in mitigating the model capacity gap, while showcasing the need
to improve the efficiency and scalability of the distilled models.

Keywords—Knowledge distillation, Large language models,
Capacity gap, Tutor-enhanced model.

1. INTRODUCTION

Large language models (LLMs) have revolutionized the field
of natural language processing (NLP) by achieving
unprecedented performance in various tasks such as text
classification, sentiment analysis, and language inference [15,
16]. However, their deployment in real-world applications is
significantly hindered by their substantial computational
demands and the increasing size of these models as
advancements in the field progress [1, 6]. This presents a
formidable challenge, especially in resource-constrained
environments where computational resources are limited.
Knowledge Distillation (KD) has emerged as a promising
technique to mitigate this issue by training a smaller, more
efficient model (the student) to replicate the performance of a
larger, pre-trained model (the teacher) [4, 14].

Despite the effectiveness of KD in reducing the
computational load of LLMs, the process is often impeded by
the capacity gap between the student and teacher models. This
gap refers to the disparity in complexity and learning capacity
between the two models, making it challenging for the student
to accurately mimic the behavior of the teacher [3, 5].
Previous research has identified this capacity gap as a critical
bottleneck, affecting the performance of the distilled models
and limiting the efficiency gains from the distillation process
[9, 17]. Various strategies have been proposed to address this
issue, including architectural adjustments to the student
model, modifications to the training procedures, and the use
of intermediate representations from the teacher [2, 16].

To address the capacity gap in KD, this research
introduces a novel distillation approach featuring a three-
tiered hierarchy comprising a teacher, a tutor, and a student
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model. This Tutor-Enhanced Iterative Distillation (TEID)
method incorporates an intermediate tutor model that bridges
the gap between the teacher and student, facilitating improved
knowledge transfer. The tutor model, being smaller than the
teacher but larger than the student, acts as an intermediary,
smoothing the transition of knowledge and enhancing the
learning capacity of the student model [1, 12]. In addition to
the three-tiered hierarchy, the proposed methodology employs
a selective learning strategy, where the student model learns
from either the teacher or the tutor based on the effectiveness
of the knowledge transfer [6]. The approach dynamically
adjusts the source of supervision for the student model,
optimizing the training process and ensuring that the student
receives the most beneficial learning signals [10, 13].
Furthermore, the TEID method introduces a continuous
updating and re-distillation process. In this iterative approach,
the tutor model is continuously refined and used as a new
teacher to further compress a new student model, potentially
leading to more efficient and effective model compression
over multiple iterations. This continuous refinement aims to
progressively enhance the performance of the distilled
models, making them more suitable for deployment in
resource-constrained environments [13, 14]. Empirical results
on the GLUE benchmark show that TEID mitigates the gap of
model capacity and improves the efficiency and performance
of distilled models. By addressing the critical challenges in
KD for LLMs, this work represents a significant advancement
in the field, offering a scalable solution for deploying state-of-
the-art language models in real-world applications with
limited computational resources.

The remainder of this paper is organized as follows.
Section 2 provides background and preliminary notions.
Section 3 reviews related works, while Section 4 describes our
TEID proposal. Section 5 presents the experimental results,
before concluding in Section 6 with future works.

2. RELATED WORKS

The capacity gap issue in KD has been addressed by various
approaches to bridge the learning capacity differences
between teacher and student models. Here, we discuss related
works revolving around the capacity gap in KD, dynamic
distillation, teacher selection, and multi-tier systems, which
provide insights relevant to our proposed solution.

2.1. Knowledge Distillation

Knowledge distillation (KD) is a model compression
technique that involves transferring knowledge from a large,
pre-trained model (the teacher) to a smaller, more efficient
model (the student). The student is trained to mimic the
teacher’s behavior, aiming to retain much of the teacher’s
performance while reducing computational requirements.
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Dynamic knowledge distillation (DKD) frameworks,
e.g., [7, 18], improve upon traditional KD by adapting the
learning process to the evolving competency of the student
model [13], which result in improved performance and
training efficiency. The DKD framework introduces three
key adjustments: teacher model adoption, data selection, and
KD objective adaptation. Teacher Model Adoption: Unlike
traditional static KD, where the teacher model remains the
same throughout the training process, DKD dynamically
selects the teacher model based on the student’s evolving
competency, providing the student with appropriate
supervision as it evolves. The framework shows that selecting
a smaller teacher initially and transitioning to a larger teacher
later improves the student’s performance [1]. Dynamic Data
Selection: DKD frameworks also dynamically select training
data based on the uncertainty of the student’s predictions,
prioritizing challenging instances to enhance efficiency and
effectiveness, achieving comparable results with fewer
samples [3]. KD Objective Adaptation: The supervision
signals from different KD objectives (e.g., aligning
prediction probabilities and intermediate representations) are
dynamically adjusted throughout the training process, to
provide the student with the most relevant training signals at
each stage of its development [2].

2.2. Capacity Gap in Knowledge Distillation

The capacity gap in KD refers to the discrepancy between the
learning capacities of the teacher and student models. This
gap can lead to ineffective knowledge transfer and
suboptimal performance of the distilled model. Several
papers address this issue and propose solutions to mitigate the
capacity gap. Residual KD (RKD) is one such method that
introduces an assistant model that learns the residual error
between the feature maps of the student and teacher models,
improving the student’s performance without increasing the
total computational cost [4]. The RKD method demonstrates
superior performance on datasets like CIFAR-100 and
ImageNet by effectively narrowing the performance gap
between the student and teacher models. The authors in [3]
propose a technique called KD via Weighted Ensemble of
Teaching Assistants (TAKD), which uses intermediate
teaching assistants to progressively transfer knowledge from
teacher to student, making learning more manageable and
effective, thus addressing the capacity gap. The authors in [9]
discuss hint-based training which leverages intermediate
feature representations or hints from the teacher to guide the
student, improving learning and reducing the impact of the
capacity gap. Overall, addressing the capacity gap in KD is
crucial for the effective deployment of LLMs in resource-
constrained environments.

2.3. Teacher Selection Strategies

Effective teacher selection strategies is critical in KD, as the
size and quality of the teacher model can impact the
effectiveness of knowledge transfer [1]. Uncertainty-Based
Teacher Adoption: Techniques that dynamically select
teacher models based on the student’s prediction uncertainty
have been proposed. These methods ensure that the student
learns from the most appropriate teacher model at each stage
of training, thereby improving the overall performance of the
student model. Teacher Size and Quality: Studies have shown

that a larger teacher does not always result in a better student.
The competency of the student and the capacity gap between
the teacher and student must be considered when selecting a
teacher model. Properly matching the teacher and student
models’ capacities can lead to better knowledge transfer and
improved performance.

2.4. Multi-Tier Knowledge Distillation

Multi-tier Knowledge Distillation (KD) methods address the
capacity gap by introducing intermediary models, such as
tutors, to provide smoother, stepwise knowledge transfer. For
instance, the Tutor-Enhanced Iterative Distillation (TEID)
approach, for example, places a tutor between teacher and
student to progressively bridge performance disparities [2].
This process follows an iterative distillation strategy, where
the tutor is refined and then serves as the teacher for training
progressively  smaller  students, enabling efficient
compression over multiple iterations. By allowing students to
learn in manageable stages, intermediate tutor models
enhance both the effectiveness and efficiency of KD,
demonstrating significant performance gains in resource-
constrained environments.

In summary, dynamic teacher selection and multi-tier
distillation address the capacity gap in KD by adapting the
learning process and choosing suitable teacher models to
improve effectiveness and efficiency.

3. TUTOR-ENHANCED ITERATIVE DISTILLATION

This research introduces Tutor-Enhanced Iterative
Distillation (TEID) to address the capacity gap in traditional
KD for LLMs (cf. Figure 2). TEID employs a teacher—tutor—
student setup, where the intermediate-sized tutor bridges the
large teacher and smaller student, enabling more gradual and
efficient knowledge transfer.

The key components of the TEID framework are as
follows (cf. Figure 1): i) Teacher Model: A large, pre-trained
model that serves as the primary source of knowledge, ii)
Tutor Model: An intermediate-sized model that learns from
the teacher and, in turn, aids the learning, as a stepping stone
for knowledge transfer, and iii) Student Model: A smaller
model that learns from both the teacher and the tutor.
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Figure 1. TEID process overview

3.1. Selective Learning Strategy

A cornerstone of the TEID framework is its selective learning
strategy, allowing the student to dynamically choose to learn
from either the teacher or the tutor, based on which source
offers better performance for a given batch of data. It operates
as follows: i) For each batch of training data, the student
model computes the distillation loss using the outputs from
both the teacher and tutor models, ii) The loss values are



compared, and the student model updates its parameters
based on the model (teacher or tutor) that provides the lower
loss, thereby offering better guidance.

Algorithm 1 Traditional Knowledge Distillation
Input: Teacher model T'. Student model S. Training data Dyrain. Validation data Dya. Temperature
7. Weight a
Output: Best student model §
1 Initialize the teacher model 1" and student model S:
Set the teacher model T' to evaluation mode:
for cach cpoch do
2 for each batch (r]y) € Dirain do
3 v T(x) // Forward pass through teacher
zs + S(x) // Forward pass through student
Laisein — DistillationLoss(zg. zp. 7. 7. )
Backpropagate Laistin

Update student model § parameters

4 | Evaluate the student model § on Dyq
Save the student model S if validation accuracy improves

Figure 2. Pseudocode of traditional KD model

3.2. Iterative Distillation Process

To maintain the effectiveness of the tutor, the TEID
framework includes a mechanism for continuous updating
and re-distillation. Specifically, whenever the student model
learns from the teacher, the tutor model is also updated to
learn from the teacher. This process ensures that the tutor
model remains a reliable intermediary for knowledge
transfer.

Algorithm 2 Tutor-Enhanced Terative Distillation
Tnput: Teacher model ', Tutor model U/, Student model S, Training data Dyam, Validation data
Diat, Temperature 7, Weight

Output: Best student model §
5 Initialize the teacher model T', tutor model U, and student model S
Set the teacher model 7" and tutor model U to evaluation mode
for each epoch do

for each batch (z.y) € Diygin do
. or  T(x)
2y < U(x)
25« S(x)
Ly + DistillationLoss(z
Ly + DistillationLoss(z

>

// Forward pass through teacher

// Forward pass through tutor

// Forward pass through student
y.T)
20, Y, T, @)

if L7 < Ly then
8 L+ Lr
Update tutor model U from teacher model 7
9 else
10 | L« Ly
11 | | Backpropagate £ Update student model § parameters
12 Evaluate the student model S on D,

| Save the student model S if validation accuracy improves

Figure 3. Pseudo-code of TEID model

To achieve further compression and efficiency, the TEID
framework employs an iterative distillation procedure (cf.
Figure 2). This process involves repeating the distillation on
the tutor model and the resultant student model, using a new,
smaller student model at each iteration. The iterative
procedure is as follows: i) In the first iteration, the student
model learns from both the teacher and the tutor models, and
the tutor model is updated as needed, ii) In subsequent
iterations, the tutor becomes the new teacher, the previous
student model becomes the new tutor, and a new, smaller
student model is introduced - the process of selective learning
and continuous updating is repeated, iii) This iterative
approach enables the creation of progressively smaller and
more efficient models while retaining the benefits of the
original large-scale teacher model.

4. EVALUATION METHODOLOGY

This section details the experimental setup used in our study,
which aims to evaluate the effectiveness of Tutor-Enhanced
Iterative Distillation (TEID) compared to traditional
Knowledge Distillation (KD, cf. Figure 4).

4.1. Dataset

We utilize the Stanford Sentiment Treebank (SST-2) dataset
from the General Language Understanding Evaluation

(GLUE) benchmark. SST-2 is a binary classification task
where the goal is to determine the sentiment (positive or
negative) of a given sentence. The dataset consists of 67,349
training samples, 872 validation samples, and 1,821 test
samples. This dataset is suitable for evaluating the
performance of sentiment analysis models.
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Figure 4. Overview of TEID experiment
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4.2. Teacher Model Fine-tuning

The teacher is a pre-trained BERT base model with 12 layers.
It is fine-tuned on the SST-2 dataset to adapt it for binary
classification. The fine-tuning process involves adjusting the
BERT model’s final layer to output two logits corresponding
to the labels. The training procedure includes: i) Optimizer:
AdamW, ii) Learning Rate: 2e-5, iii) Batch Size: 32 for
training, 8 for validation, and iv) Number of Epochs: 4.

4.3. Traditional Knowledge Distillation

We consider two models: i) Student model with 9 layers and
i) Tutor model with 11 layers.

Student Model with 9 Layers: A student model with 9
layers is distilled from the fine-tuned 12-layer BERT teacher
using traditional KD. The distillation process involves the
following steps: i) Compute the logits from the teacher model
for each training sample, ii) Train the student model to match
the teacher’s logits using a combination of cross-entropy loss
with the ground truth labels and Kullback-Leibler (KL)
divergence loss with the teacher’s softened logits, iii) Use a
temperature scaling factor of T = 1.0 and an interpolation
weight a = 0.5 to balance the two loss components, iv) Apply
early stopping with a patience of 2 epochs based on validation
accuracy to prevent overfitting.

Tutor Model with 11 Layers: tutor model with 11 layers
is distilled from the fine-tuned 12-layer BERT teacher using
the same KD process described above. This tutor model will
later serve as an intermediate model in the TEID process.

4.4. Tutor-Enhanced Iterative Distillation (TEID)

Here, we also consider two models: i) First iteration: 10-layer
student, and ii) Second iteration: 9-layer student.

First Iteration: 10-Layer Student: The first iteration
of TEID involves distilling knowledge from both the 12-layer
teacher and the 11-layer tutor to a 10-layer student model.
The process includes: i) Forward pass through the teacher,
tutor, and student models for each training batch, ii) Compute
the distillation losses between the student and both the
teacher and tutor, iii) Select the lower loss and update the
student model accordingly, iv) Periodically update the tutor
model using the teacher model to ensure it remains a reliable
intermediate, and v) Apply early stopping with a patience of
5 epochs based on validation accuracy to ensure training
efficiency and prevent overfitting.

Second Iteration: 9-Layer Student: In the second
iteration of TEID, the previously trained 11-layer tutor
becomes the new teacher, the 10-layer student becomes the
new tutor, and a new 9-layer student is introduced.
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Figure 5. Teacher/Tutor selection results

5. EMPIRICAL RESULTS

This section presents the results of our experiments,
comparing the performance of the teacher model, the
traditional KD models, and the TEID models on the SST-2
binary classification task. The teacher, a fine-tuned BERT
base with 12 layers, achieved an accuracy of 93% on the SST-
2 validation set, which is consistent with the scores reported
in the literature for BERT base models on the SST-2 dataset.
The final 9-layer student obtained from TEID is compared
with the other 9-layer student model, previously distilled
directly from the 12-layer BERT teacher using traditional
KD. Both models are evaluated on the SST-2 validation set
using i) accuracy, ii) precision, iii) recall, and iv) F1 score.

5.1. Traditional Knowledge Distillation (KD)

9-Layer Student Model: distilled from the 12-layer teacher
using traditional KD achieved a validation accuracy of
74.77%. This indicates a significant drop in performance
compared to the teacher, but it demonstrates the feasibility of
distilling knowledge into a smaller model (cf. Figure 6.a).

11-Layer Tutor Model: distilled from the 12-layer
teacher using traditional KD achieved a validation accuracy
0180.39%. This model served as an intermediate in our TEID
approach, showing better performance compared to the 9-
layer student model (cf. Figure 6.b).

5.2. Tutor-Enhanced Iterative Distillation (TEID)

10-Layer Student Model: In the first iteration of TEID, we
distilled knowledge from both the 12-layer teacher model and
the 11-layer tutor model into a 10-layer student model.
Unfortunately, the 10-layer student model achieved a
validation accuracy of only 49.08%, indicating poor
performance (cf. Figure 6.c). Due to this suboptimal result,
we decided to stop the TEID process at this iteration. During
this iteration, we logged the number of times the teacher
model and the tutor model were selected for distillation. The
teacher model was selected only 3 times out of 4210 batches,
while the tutor model was selected for the remaining batches.
This log helps us analyze the effectiveness of selecting the
tutor model over the teacher model during the distillation
process.

Table 1 summarizes the validation accuracy of all models.
The results indicate that while traditional KD can effectively
distill knowledge into smaller models, the first iteration of
TEID did not perform as well. Further analysis is required to
understand the reasons behind the performance of the 10-
layer student model in the TEID process.

Confusion Matrix
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0 1
Predicted label

a. 9-Layer Student after traditional KD
Confusion Matrix
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-200
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b. 11-Layer Tutor after traditional KD
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-100
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c. 10-Layer Student after TEID

Figure 6. Tutor-Enhanced iterative distillation results



Table 1. Validation accuracy of various models on the SST-2 dataset

Model Teacher Model| Student Model | Tutor Model Student Model
(12 layers) | (9 layers, KD) |(11 layers, KD)| (10 layers, TEID)
Validation
Accuracy (%) 93.00 74.77 80.39 49.08

The experimental results reveal several critical insights
into the performance and limitations of the Tutor-Enhanced
Iterative Distillation (TEID) method compared to traditional
Knowledge Distillation (KD).

Poor Performance of TEID: The first iteration of TEID,
which aimed to distill knowledge from both the 12-layer
teacher and the 11-layer tutor into a 10-layer student, resulted
in a validation accuracy of only 49.08%. This poor
performance prompted us to terminate the TEID process at
this stage. The drop in accuracy indicates that the TEID
method in this experiment, was not effective in transferring
knowledge to the 10-layer student model.

Analysis of Confusion Matrix: The confusion matrix for
the 10-layer student model (cf. Figure 6.c) indicates that the
model is predicting all instances as class 0 and not predicting
any instances as class 1. This behavior results in 100% Recall
for class 0 and 0% Precision for class as well as an undefined
F-score for class 1 due to the absence of predicted instances,
which significantly impacts the overall performance metrics.
This imbalance in predictions highlights a severe deficiency
in the student model’s ability to generalize and correctly
classify both classes.

5.3. Tutor Model Selection in TEID

During the TEID process, the selection logs reveal that the
tutor was selected almost exclusively, with the teacher being
chosen only 3 times out of 4,210 batches (cf. Figure 5). This
overwhelming preference for the tutor defies the primary
purpose of TEID, which is to leverage both the teacher and
tutor to enhance knowledge transfer to the student.

Several factors may contribute to this issue: i) Loss
Comparison Bias: The distillation loss comparison might
inherently favor the tutor model, especially if the tutor’s
intermediate representations are closer to those of the student,
resulting in lower distillation losses, ii) Suboptimal Tutor
Model: The 11-layer tutor, although better than the student,
may not be significantly better than the teacher, leading to an
ineffective distillation process, iii) Implementation Issues:
Potential bugs or biases in the implementation of the TEID
process might lead to the tutor being unfairly favored during
selection. This behavior suggests that the current TEID
implementation needs to be refined to ensure a balanced and
effective utilization of both the teacher and tutor models.

6. CONCLUSION

This paper introduces a novel Tutor-Enhanced Iterative
knowledge Distillation (TEID) solution to fill the knowledge
capacity gap between LLMs. It innovates over classical KD
methods by adding an intermediate-sized tutor model that
assists in improved knowledge transfer. TEID uses a selective
learning strategy to enable the student model to learn from
either the teacher or the tutor model, alongside a continuous
updating and re-distillation of the tutor. To achieve further
compression, the TEID is repeated iteratively on the tutor and
the previously resultant student, with a new smaller student
model. Empirical results demonstrate that 12-layer BERT

teacher model achieved improved accuracy. Traditional KD
yielded a 9-layer student with lesser performance, but the first
iteration of TEID showed suboptimal results, with the 10-
layer student model performing poorly and consistently
predicting a single class. While TEID presents a promising
approach to enhance knowledge transfer, our results indicate
that significant refinements are needed to achieve its
potential. Future work should focus on improving the
algorithm to balance the use of teacher and tutor models
effectively. Future directions include assessing TEID
performance and re-evaluating the loss function to ensure a
more balanced comparison between the teacher and tutor,
potentially by introducing weights or scaling factors. Another
future direction is refining the algorithm to prevent biases in
model selection and ensure fair utilization of both teacher and
tutor [3, 8].
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