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Abstract. This paper describes a new synthetic data generation pipeline
called 3DGENie designed to generate 3D point clouds to train deep learn-
ing computer vision models. 3DGENie uses procedural layout generation
to produce region layout trees. It then applies 3D scene construction and
asset randomization to produce scenes populated with 3D assets. Syn-
thetic sensors are placed in the virtual environment to simulate data cap-
ture from the 3D scenes as if monitored by real-world sensors. 3DGENie
uses Nvidia Omniverse as its scene building platform and Pixar’s Uni-
versal Scene Description (USD) for 3D graphics representation to allow
for seamless interchange across platforms. Our main application focuses
on the generation of industrial car assembly lines, yet 3DGENie can be
used across different applications. We conduct experiments to evaluate
the generated 3D point clouds, using several deep learning semantic seg-
mentation models. Results highlight the quality of our pipeline.

Keywords: Synthetic Data · 3D Point clouds · Data Generation Pipeline
· Procedural Generation · Computer Vision · Semantic Segmentation.

1 Introduction

A main R&D pillar in the modern car manufacturing industry revolves around
investigating the usage of digital assets to train 3D computer vision models,
before deploying them in the real-world. Yet, there is a clear absence of 3D vision
datasets for industrial applications, compared with their 2D counterparts [17].
However, creating real datasets with the level of scale and complexity required
in industry can sometimes be expensive or even impractical, especially when
generating 3D point cloud datasets. This requires the usage of industry-scale 3D
scanners to acquire accurate 3D mappings, followed by manual labelling, which
entails huge financial, logistical, and temporal challenges.
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To address these challenges, we propose a novel synthetic data generation
pipeline called 3DGENie designed to facilitate the generation of 3D point cloud
datasets. It uses procedural generation to produce region layout trees. It then
applies 3D scene construction and asset randomization algorithms to produce
3D scenes populated with 3D assets according to user-chosen generation strate-
gies, allowing different types of set-ups (e.g., generating a synthetic assembly line
requires layouts and randomizations that are different from generating a supply
chain storage post). Synthetic sensor placement allows to simulate data capture
from the generated 3D scenes as if it were monitored by real-world cameras
and sensors. 3DGENie uses Nvidia Omniverse [30] as its scene building platform
which leverages the latest achievements in GPU technology, and Pixar’s Uni-
versal Scene Description (USD) [32] for 3D graphics representation to allow a
seamless interchange across multiple industry platforms. We conducted various
experiments to evaluate the quality of the generated 3D point clouds, using sev-
eral deep learning semantic segmentation models. Results highlight the quality
and potential of our pipeline.

The rest of the paper is organized as follows: Section 2 briefly reviews the
related works. Section 3 describes our 3DGENie pipeline. Section 4 describes the
experimental evaluation, before concluding with future directions in Section 5.

2 Related Work

We briefly cover real and synthetic point cloud datasets for machine learning,
and synthetic data generation pipelines.

2.1 Point Cloud Datasets

Real-World datasets: SensatUrban [18] and Semantics3D [7] are legacy real-
world datasets in the area of urban and natural scenes. SemanticKIITI [11]
is based on the odometry of the KITTI benchmark [1], which is derived from
a LiDAR mounted on a car as it travels various types of roads. While these
datasets provide high-quality 3D point clouds, their production is extremely
time-consuming and requires manual labor and resources.

CAD model-based datasets: ModelNet [2] and ShapeNet [3] are large
labeled collections of 3D CAD models. While CAD-based datasets allow design
flexibility and extensibility, they show various limitations, chiefly: i) the data
representation does not resemble the output of a real sensor like a depth camera
or LiDAR, and ii) the models being collected randomly from online sources,
do not guarantee high-quality data. OmniObject3D [24] scans daily objects (in
contrast with industrial objects) and generates point clouds from 3D meshes
rather than direct capture from LiDAR, which limits its capability of mimicking
real-world sensor data.

Advanced annotation datasets: PartNet [12] introduces part-level anno-
tations. ScanNet [6] streamlines the capture and annotation of RGB-D data for
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Table 1: Comparing 3D datasets.
Dataset # Models # Categories Annotations

ModelNet [2] 151,128 models 660 Classification
ShapeNetCore [3] 51,300 models 55 Classification with parts annotation
PartNet [12] 573,585 parts in 26,671

models
24 Semantic, instance, and hierarchical segmenta-

tion
ScanNet [6] 1,513 objects 20 camera poses, surface reconstructions, and in-

stance segmentation
ScanObjectNN [14] 2,902 objects 15 Classification
OmniObject3D [24] 6,000 objects 190 Textured meshes, point clouds, images, videos
SensatUrban [18] >7.6 km2 13 Semantic segmentation
Semantics3d [7] >4B points 8 Semantic segmentation
SemanticKITTI [11] 43,552 scans 28 Semantic segmentation

indoor scenes, using a depth sensor and an iPad. In a follow-up study, ScanOb-
jectNN [14] leverages the strengths of SceneNN [4] and ScanNet [6] to provide
high-quality real point clouds for indoor scenes.

To sum up, creating datasets from real point clouds is extremely challeng-
ing and time-consuming. Hence the need for faster and more efficient solutions,
namely synthetic data pipelines.

Table 1 summarizes the properties of existing 3D point cloud datasets.

2.2 Synthetic Data Generation Pipelines

LiDAR simulations for autonomous vehicles: Recent advancements in
synthetic 3D data generation have focused on producing LiDAR simulations for
autonomous vehicles, e.g., [10] [15] [9]. LiDARsim [15] draws from real-world data
to replicate real-world scenarios. In [10], [9], and [19], the pipelines use CARLA
autonomous driving simulator [5] and the Unity 3D game engine. However, the
customizations implemented in [10][9] are limited to changing the number and
color of cars and basic environment variables like the weather and background.

Indoor room generation and flight simulations: ControlRoom3D [21]
generates 3D indoor room meshes using semantic proxy rooms, albeit with limi-
tations in variety and manual proxy definitions. STPLS3D [20] creates large-scale
annotated point clouds that blend real and synthetic environments. Cities are
first generated using CityEngine and different 3D model variations for the build-
ings. 3D reconstruction is done using the images to generate the point clouds.

To sum up, most existing data generation pipelines focus on LiDAR simula-
tions, e.g., [10] [15] [9], and make use of predefined scenes or proxy layouts [9]
[21] which can limit data variety. In other works [10], the data is generated from
video games, which can negatively impact realism. In contrast, 3DGENie relies
on procedural generation to allow for increased and controlled variety, and uses
Nvidia Omniverse as a powerful platform to allow more realism and support a
wider range of data and simulations.

3 3DGENie Synthetic Data Generation Pipeline

We propose a new synthetic data generation pipeline called 3DGENie designed
to generate controlled 3D point clouds. An overview of 3DGENie is depicted
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Fig. 1: 3DGENie data generation pipeline.

in Figure 1, and consists of three main steps: (i) layout generation, (ii) scene
creation, and (iii) data generation. First, it uses procedural layout generation
to produce region layouts Figure 2, which is a 2D description of the different
regions that make up the final scene. Second, it applies 3D scene construction
and asset randomization to produce scenes populated with 3D assets. Third,
it places synthetic sensors in the virtual environment to simulate data capture
from the 3D scenes as if monitored by real-world sensors.

3.1 Layout Generation

The first step of the pipeline is layout generation, which lays the foundation for
the 3D scenes that will be constructed in subsequent steps. Unlike synthetic im-
ages which can be gathered in bulk from a single scene, we can only generate a
single point cloud scan from a scene, which is a significant limitation for 3D syn-
thetic data generation. To address this issue, we propose using layout generation
to automatically generate thousands of layouts from simple user input. Users can
combine different generation techniques to cover different requirements. Most im-
portantly, 3DGENie is extensible to using additional or alternative generation
techniques, such as evolutionary, generative, or adversarial AI models, following
the user’s needs.
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Fig. 2: Visualized layout

Layout Generation Components and Properties - We start first by in-
troducing the main components and properties that are used in our Layout
Generation process.

Component 1. Layout - It describes the different regions that make out
the virtual environment, and the spatial relations between them in 2D space
(Figure 5. b). We represent a layout as a list of regions, organized hierarchically
in a tree where each node can have zero or multiple children. A layout acts like
a blueprint for constructing the 3D scenes.

Component 2. Region - It is a rectangular area defined by its position
in 2D space (x, y) and dimensions (w, h). A region has a region type and an
orientation (described below), forming the building block of a scene layout and
a main component of the layout generation algorithm.

Property 1. Region type - It describes the content of a region and is
visualized throughout this work as the color of the region. Region types are
defined by the user in the form of an input and can be linked to a specific group
of 3D models.

Property 2. Region orientation - regions are inherently oriented in 2D
space with: "up", "down", "left" or "right", this plays a major role both when
generating children regions and when building the final 3D scene. For example, if
we generate a path for smart transportation robots (STR) [27] and then divide it
further into regions where we have an STR, it is crucial to know the orientation
of the path in order to correctly orient the children’s region accordingly.

Region Generators These are functions that take a region and divide it into a
list of smaller children regions. Region generators exhibit a stochastic behavior,
so if they are executed multiple times using the same parameters, the outputs
would be different. The accumulation of this randomness over multiple genera-
tion steps allows to generate different layouts from a single input. In our current
implementation, we consider three kinds of region generators and their use cases
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Fig. 3: Visualization of different region generators.

Fig. 4: Samples from the SORDI library.

for our industrial applications (Figure 3). Our pipeline is extensible to more
generators as needed.

Generator 1. Assembly line (Figure 3. c) - it creates the area where
an assembly line will go, adding a path for forklifts and STRs running parallel
to the assembly line. This is usually the first generator executed to create an
assembly line region spanning the entire scene. It randomizes the position as well
as the orientation of the main assembly line, and also randomizes the number of
paths and their spacing.

Generator 2. Random Rooms (Figure 3. a) - given a range of room
sizes (min_width, max_width, min_height, and max_height) and the number
of rooms (min, max), this generator places rooms randomly inside the parent
region. We use this generator to populate empty regions with different formations
of pallet cages, boxes, and racks. This generator is mainly used in the initial
stages of the generation process to roughly define large areas which will be
divided further down the line to add more details.

Generator 3. Grid (Figure 3. b) - it divides the parent regions into a
grid with a user specified cell size, where each cell is converted into a region with
the appropriate type and orientation.

3.2 Layout Generation Algorithm

The pseudo-code for our procedural layout generation process is described in
1. It accepts as input a list of elements where each element represents a level
in the generation process, starting from the higher (broader) levels and going
toward the lower (and more detailed) levels. This input is in the form of a JSON
file written by the user once, and used to generate hundreds of scenes. Every
element in the list, i.e., every level description, is represented as a key-value
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Algorithm 1 LayoutGeneration
Input: inputFile is a JSON file for the input strategy
Output: The root node of the generated layout tree
Begin

1: layouts← [EmptyLayout]
2: generators← extractGenerators(inputFile)
3: for idx ∈ generators do
4: if generators[idx] == Merge then
5: mergedLayout←Merge(layouts[−1])
6: layouts.append(mergedLayout)
7: else
8: generatedLayout← ExecuteGenerators(layouts[−1], generators[idx])
9: layouts.append(generatedLayout)
10: end if
11: end for
12: return layouts[−1]

End

Fig. 5: Sample input list representation (a) and output layout tree (b) for the
layout generation algorithm

dictionary where: the keys are the region types, and the values are the region
generators. The first step in the generation process is to parse the input and
build an equivalent generation dictionary composed of region generators with
the correct input parameters which will be applied to an empty layout (1, lines
1-2). The second step consists in generating the output tree using the previously
parsed input (1, line 8). Using a breadth-first approach (2, lines 2-5), we traverse
the tree level by level until the maximum depth is reached (2, line 6). At each
level, we generate new regions based on the input (2, line 9). The generated
regions are then used to build the tree as we traverse it (2, lines 10-20). In
addition, we introduce a special merge layer operation (1, lines 4-6) to identify
and merge identical and bordering regions into a more compact form regardless
of the region generator used. This makes it easier to introduce and use new
generators, thus improving the pipeline’s extensibility.

Subsequently, the algorithm produces as output a 2D layout (1, line 12) that
will serve as the foundation for constructing 3D scenes using the scene creation
(step #2) of the pipeline. The output layout consists of a tree structure where
each node represents a region, and its child nodes represent the regions that
result from the execution of a region generator on that node.
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Algorithm 2 ExecuteGenerators
Input: root The root node of the starting tree, generators: Region generators
Output: The root node of the expanded layout tree
Begin

1: function ExecuteGenerators(root, generators)
2: queue← EmptyQueue
3: queue.put(root)
4: while queue is not empty do
5: node← queue.get()
6: if node.depth ≥ generators.size or node.gen = None then
7: continue
8: else
9: regions← node.gen.generate(node.region)
10: for region in regions do
11: gen← None
12: for node.depth + 1 < i < len(generators) do
13: if region.type ∈ generators[i] then
14: gen← generators[i][region.type]
15: break
16: end if
17: end for
18: childNode← RegionNode(region, gen, node.depth + 1)
19: node.addChild(childNode)
20: queue.put(childNode)
21: end for
22: end if
23: end while
24: return root
25: end function

End

3.3 Scene Creation

Scene creation is step # 2 in the 3DGENie pipeline (Figure 1). It transforms
the 2D layout trees into detailed and realistic virtual scenes (Figure 6. left). The
main goal is to populate virtual scenes with 3D assets following the generated
layout tree structure.

Scene Construction - We adopt Nvidia Omniverse [30] as our scene build-
ing platform, since it leverages the latest advancements in GPU technology to al-
low for industry-grade scalability moving forward (in contrast with using legacy
game engines used in existing solutions, cf. Section 2.2). In addition, we use
high-fidelity physics simulation [31] and virtual sensors within IsaacSim [30] and
adopt Pixar’s Universal Scene Description (USD) [32] to allow for seamless in-
terchange across platforms. We use BMW Group’s SORDI library Figure 4 [27],
which includes a comprehensive collection of realistic and simulation-ready 3D
assets that cover a wide range of industrial objects. Each region in the layout
is associated with a set of assets, we randomly choose one of these assets when
creating the region to introduce more variety. Thus, our scenes are not only
detailed and realistic, but also diverse, reflecting the complexity of real-world
industrial environments.

5

5 Nvidia Omniverse [30] is a GPU-accelerated platform that provides realistic 3D
rendering, physics simulation, and virtual sensor capabilities.
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Fig. 6: (a, c, e, g) Reconstructed scene, (b, d, f, h) Generated point cloud.

Scene Randomization - Randomization is crucial in breaking patterns and
biases that have a negative effect on machine learning models. By introducing
randomization to an asset’s placement and properties, we improve our synthetic
data and support the development of robust machine learning models. It also
helps simulate the unpredictable nature of real-world scenarios. In this context,
we make use of IsaacSim Replicator [30] to introduce additional randomization
by modifying various aspects of the scene, including, but not limited to, the
visibility, arrangement, and colors of objects.

3.4 Data Generation

The third step of the 3DGENie pipeline is data generation, which enables the
generation of not only point clouds but also photo-realistic images and other
forms of data. The process of data generation is twofold: (i) sensor placement,
and (ii) data collection and storage.

Sensor placement - We use the 2D layout generated in step #1 of 3DGENie
to strategically position sensors within the scene. To achieve optimal placement,
different strategies can be employed, using meta-heuristic or deterministic pro-
cesses based on the user’s needs. We investigated multiple sensor placement tech-
niques including grid-based sampling, random placement, and greedy coverage
algorithms, but chose the genetic algorithm as it experimentally produced supe-
rior coverage results with minimal fine-tuning. The algorithm is characterized by
the following parameters: sensor: a circle with a center and a fixed radius, x: de-
sired number of sensors, chromosome: list of x sensor centers, fitness: evaluated
based on the union of covered pixels and their regions.

Data Collection and Storage - 3DGENie generates the point cloud data
and converts them into a suitable storage format. This includes not only raw sen-
sor outputs, but also the annotations required to train machine learning models.
3DGENie converts the raw data produced within Omniverse into formats that
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are usable for training machine learning models, supporting an extensible library
of formats like Semantic KITTI [11].

3.5 Requirements and Deploying 3DGENie

3DGENie requires a system with GPU capabilities to leverage Nvidia Omni-
verse’s rendering and simulation features. The pipeline uses a microservices ar-
chitecture based on Docker, it’s easy to deploy and requires no external Omni-
verse installation. Users need access to 3D asset libraries (such as BMW’s SORDI
library or custom USD-formatted models) and should have basic familiarity with
JSON formatting for creating input strategy files. The modular architecture of
3DGENie means that users can run the complete pipeline end-to-end or utilize
individual components separately based on their needs.

4 Experimental Evaluation

4.1 Experimental Data

Real Data - We prepared a dataset of real 3D point cloud scans from car as-
sembly lines. The scans were created using the NavVis VLX 2 [29] wearable laser
scanning system, capable of generating colored and high-density point clouds.
The scans were labelled manually by an industry expert, using a dedicated point
cloud labeling tool that we developed in Omniverse. To maintain an acceptable
input size and point density, we cropped each scene into smaller chunks, and
then performed random down-sampling to 25,000 points on each. The final real
dataset comprises around 4 million points and 5 classes (car, stillage, forklift,
dolly, and background, cf. Table 2).

Synthetic data - We used 3DGENie to generate our synthetic point cloud
dataset. To create the input strategies, we studied the layouts of different ar-
eas within multiple car manufacturing plants. Consequently, we generated 499
virtual scenes, each scene covered using 40 cameras configured to capture point
clouds with a 512x512 resolution. We cleaned the data by removing point clouds
that have few points or low percentage of labeled points. We then randomly se-
lected a sub-sample of 56 scenes, which we found to have an acceptable training
time of around 10 hours on average using an Nvidia A100 GPU. The resulting
synthetic dataset comprises around 22 million points and covers 10 classes (in-
cluding the 5 classes considered in the real dataset, cf. Table 2). We use 50% of
the data for training and the other 50% as a test dataset.

The readers can refer to [33] for a more detailed description of the experi-
mental data and evaluation results.

4.2 Semantic Segmentation Models

We selected three different semantic segmentation models, each known for its
unique approach. RandLA-Net [16]: directly infers per-point semantics for
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Table 2: Descriptions of real and synthetic point cloud datasets.
Class Name # points in real dataset # points in synthetic dataset

Background 3,474,905 (84.02%) 17,836,676 (81.746%)
Car 451,442 (10.75%) 348,676 (1.6%)
Stillage 98,772 (2.35%) 1,481,681 (6.79%)
Forklift 69,260 (1.65%) 157,985 (0.72%)
Dolly 51,887 (1.23%) 56,039 (0.26%)
Pallet - 186,153 (0.85%)
Rack - 1,120,530 (5.13%)
Small Load Carrier - 52,597 (0.24%)
STR - 3,038 (0.014%)
Cabinet - 539,688 (2.47%)
Jack - 39,117 (0.18%)

large-scale point clouds. Novel local feature aggregation module that progres-
sively increases the receptive field for each 3D point, effectively preserving ge-
ometric details. SparseConvNet [8]: stands out for its use of sparse convolu-
tional operations, enabling it to process sparse point clouds efficiently. PVCNN
[13]: combines the efficiency of point-based processing with the structural ad-
vantages of volumetric convolutions. The PVCNN model is capable of achieving
high accuracy at lower memory usage.

4.3 Experimental Results

We conducted two sets of experiments: (i) mixing real and synthetic data, and
(ii) training on synthetic and fine-tuning on real Data.

Experiment 1: Mixing Real and Synthetic Data - In this set of ex-
periments, we study how varying proportions of synthetic data impact semantic
segmentation models. We created 10 training datasets with synthetic data in-
creasing from 0% to 90% in 10% increments. To account for dataset size changes,
we adjusted the number of training epochs. Results in Table 3 and Table 4 show
that mixing synthetic with real data consistently improved performance across
all models, which exhibited the same behavior: an increase in performance over
a range of the synthetic data ratio and a sharp decline in performance if we keep
adding more synthetic data. We were able to improve the performance of all the
models where most of them peaked between 40% to 60%.

Experiment 2: Train on Synthetic and Fine-tune on Real Data - We
explored pretraining models on synthetic point clouds, followed by fine-tuning
on real data. Models are first trained on the full synthetic dataset with vary-
ing epochs (starting from 20) until convergence, then fine-tuned on the full real
dataset. All models outperformed their real-data-only baselines after pretrain-
ing on synthetic data. As shown in Table 6, performance increased with more
synthetic training epochs, but declined beyond a point, suggesting overfitting to
synthetic data reduced fine-tuning effectiveness.
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Table 3: mAcc of the models across the dataset variants
Model Train

0
Train
10

Train
20

Train
30

Train
40

Train
50

Train
60

Train
70

Train
80

Train
90

RandLaNet 0.608 0.628 0.630 0.658 0.660 0.653 0.668 0.672 0.680 0.706
SparseConvNet 0.606 0.664 0.629 0.625 0.629 0.638 0.689 0.672 0.654 0.545
PVCNN 0.665 0.689 0.681 0.684 0.707 0.687 0.699 0.678 0.668 0.629

Table 4: mIoU of the models across the dataset variants
Model Train

0
Train
10

Train
20

Train
30

Train
40

Train
50

Train
60

Train
70

Train
80

Train
90

RandLaNet 0.553 0.576 0.582 0.603 0.611 0.612 0.623 0.623 0.628 0.641
SparseConvNet 0.546 0.596 0.567 0.5740 0.586 0.588 0.613 0.608 0.603 0.512
PVCNN 0.600 0.611 0.604 0.609 0.623 0.617 0.610 0.609 0.611 0.572

4.4 Autonomous Driving Scenario

Experimental Data Real Data
The experiment utilized the SemanticKITTI dataset [11], a comprehensive 3D
point cloud dataset for autonomous driving collected with a Velodyne HDL-64E
lidar sensor. The dataset, filmed in various environments in Karlsruhe, Germany,
contains 22 sequences, with 21 for training/testing and one for benchmarking.
It offers dense annotations across 28 semantic categories. For the experiment,
8000 point clouds were selected to align with the classes in a synthetic dataset.
The data was split 80/20 into training and testing sets, resulting in a training
dataset of 68,183,108 points and a test dataset of 1,865,540 points.

Synthetic Data
The synthetic dataset was created using 3DGENie to replicate real-world driv-
ing environments. A total of 625 virtual scenes were generated, featuring diverse
environmental conditions. A Velodyne VLS-128 lidar sensor was used in simu-
lations to mimic the density and distribution of real data, employing idealized
ray tracing and normalized intensity processing to ensure high accuracy. That
is a different type of sensor than the one used for the industrial dataset, and
highlights 3DGENie flexible and modular nature. The final dataset contains
over 741 million points spread across 6 semantic classes that match those in
SemanticKITTI [11], facilitating realistic and precise data analysis.

Experiment: Mixing Real and Synthetic Data Based on the results of
scenario 1, and seeing how data mixing gives better results than fine-tuning, we
create 10 datasets. By using the training set from our processed SemanticKITTI
data [11], and mixing it with an increasing amount of synthetic data we create
the datasets shown in Table 7.
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Table 5: mAcc of the models after fine-tuning.
Model 20 eps 40 eps 60 eps 80 eps 100 eps Converge

RandLaNet 0.6664 0.6604 0.6706 0.6704 0.655 0.609
Sparse
ConvNet

0.6154 0.6892 0.6722 0.6682 0.6636 0.6652

PVCNN 0.6558 0.6342 0.6702 0.6466 0.63 0.6898

Table 6: mIoU of the models after fine-tuning.
Model 20 eps 40 eps 60 eps 80 eps 100 eps Converge

RandLaNet 0.626 0.6214 0.6262 0.6298 0.6082 0.5616
Sparse
ConvNet

0.5614 0.6294 0.6092 0.6245 0.6158 0.594

PVCNN 0.6024 0.584 0.6234 0.5784 0.578 0.6072

Results: In Experiment 1 of the autonomous driving scenario, synthetic data
was incrementally added to real data, improving model performance as measured
by mAccuracy and mIoU across three models. RandLaNet achieved its highest
mIoU (0.719) and mAccuracy (0.811) with 40% synthetic data. SparseConvUNet
also reached peak performance at the same ratio, with a mIoU of 0.640 and
mAccuracy of 0.727. PVCNN showed best results at 20% synthetic data with a
mIoU of 0.567 and mAccuracy of 0.675, but performance declined beyond this
point. The study demonstrates the benefit of synthetic data, though at higher
ratios (80–90%), performance either plateaued or diminished, likely due to the
domain gap from an excess of synthetic data.

Comparison with existing data generation pipelines: We compared
3DGENie data generation tool with SynLIDAR, a pipeline built on Unreal En-
gine 4. Results show 3DGENie achieves better mean accuracy (mAcc), while
SynLIDAR scores higher in Intersection over Union (IoU) metrics for specific

(a) 3DGENie synthetic sample (b) SemanticKITTI real sample

Fig. 7: PC samples for autonomous driving.
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Table 7: Datasets used for autonomous driving scenario.
Ratio # Real Points # Synthetic Points Total # Points
0% 68,183,108 - 68,183,108
20% 68,183,108 20,139,194 88,322,302
40% 68,183,108 55,173,277 123,356,385
60% 68,183,108 123,351,787 191,534,895
80% 68,183,108 334,300,790 402,483,898
90% 68,183,108 741,049,322 809,232,430

Table 8: mAcc and mIoU of the models across the datasets variant for the au-
tonomous driving scenario.

Ratio mAccuracy mIoU
RandLaNet PVCNN SparseConvUNet RandLaNet PVCNN SparseConvUNet

0% 0.77 0.66 0.69 0.71 0.561 0.61
20% 0.809 0.675 0.706 0.707 0.567 0.625
40% 0.811 0.666 0.727 0.719 0.561 0.640
60% 0.815 0.669 0.695 0.714 0.521 0.613
80% 0.793 0.684 0.672 0.685 0.535 0.587
90% 0.820 0.660 0.699 0.691 0.529 0.627

networks. Despite close overall performance, 3DGENie offers a significant ad-
vantage in efficiency, as it allows rapid generation of new scenes in minutes and
datasets in hours, whereas SynLIDAR requires manual, time-consuming scene
construction. The findings demonstrate that 3DGENie maintains data quality
while offering greater flexibility and quicker data generation capabilities than
manual methods.

Table 9: mAcc across different model’s for 3DGENie and SynLIDAR
RandLaNet PVCNN SparseConvUNet

3DGENie SynLIDAR 3DGENie SynLIDAR 3DGENie SynLIDAR
20.00% 0.80955 0.79200 0.67493 0.63618 0.70670 0.68247
40.00% 0.81134 0.80477 0.66615 0.65297 0.72671 0.69633
60.00% 0.81524 0.80859 0.66957 0.64972 0.69453 0.69505
80.00% 0.79336 0.81203 0.68419 0.64352 0.67289 0.70142
90.00% 0.81991 0.79747 0.65941 0.63738 0.69999 0.69609

5 Conclusion

This paper introduces 3DGENie, a new pipeline for synthetic 3D point cloud
data generation. It uses procedural generation to produce region layout trees,



3DGENie 15

Table 10: mIoU across different model’s for 3DGENie and SynLIDAR
RandLaNet PVCNN SparseConvUNet

3DGENie SynLIDAR 3DGENie SynLIDAR 3DGENie SynLIDAR
20.00% 0.70736 0.7347 0.56732 0.55605 0.62514 0.61195
40.00% 0.71895 0.74360 0.56093 0.57339 0.6404 0.62330
60.00% 0.71463 0.76069 0.52139 0.54637 0.61341 0.62831
80.00% 0.68491 0.76152 0.53488 0.56154 0.60663 0.63613
90.00% 0.69108 0.74085 0.52901 0.55505 0.62754 0.62811

and applies 3D scene construction and asset randomization to produce scenes
with 3D assets. We conducted various experiments to evaluate the performance
of multiple computer vision models. Results consistently showed improved per-
formance across all models. Our empirical study was conducted in a real-world
car manufacturing setting, proving the value of synthetic point clouds for indus-
trial applications. We are currently extending 3DGENie to support additional
forms of annotations to perform instance segmentation [25], object recognition
[23] and 6D pose estimation[26]. We are also building on 3DGENie to generate
a range of synthetic data types, including new LiDAR simulations [15] [9], and
RGB-D sensors for applications requiring color and depth information [6] (e.g.,
autonomous vehicle navigation [28], and virtual reality applications [22]). We
also envision exploring the integration of recent Large Language Models (LLMs)
or Vision-Language Models (VLMs) as layout generators, enabling natural lan-
guage input to guide layout creation as future work.
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