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Abstract. Visualizing the correlations between structured medical data in the
form of Electronic health records (EHRs) is of major importance for effective
and efficient medical data analysis and decision-making. This work describes an
unsupervised semi-structured and feature-based tool for dynamic EHR data
visualization called “mirrored dendrograms”. It accepts as input semi-structured
EHRs, and allows the user to select the target features to be visualized and
mapped against each other, and their relative weights on the visualization
process. It then invokes a hierarchical clustering process to cluster the data
following the user-chosen features, and produces a dendrogram structure for each
combination of target features. The dendrograms are mirrored against each other
by mapping their nodes using the transportation optimization problem, allowing
the user to dynamically zoom-in and out of the mapping at different granularity
levels. We have evaluated our solution using a sample dataset of 114 EHRs of
patients who suffer from migraine disorder. A group of 20 testers participated in
the evaluations to assess the tool compared with existing solutions. Results
showcase the tool’s performance.

Keywords: Data Visualization, Data Clustering, Dendrogram, Feature
Correlation, Similarity Computation, Data Granularity.

1 Introduction

Extracting and understanding the correlations between data features is increasingly
important in many applications, ranging over business, demographics, politics, and
more specifically medicine [5, 7, 19]. The proper exploitation of medical data
introduces many challenges in terms of data analysis and visualization, to allow
effective and efficient decision-making. The problem is further aggravated on the Web
where medical data is often loosely structured and multi-featured. In this context,
interactive data visualization comes into play as a promising solution to facilitate data
analysis. Data visualization allows unveiling patterns and trends that could be repeated
over time and space, and helps experts identify anomalies in the data [19, 23].

This work describes a new unsupervised tool for dynamic data visualization called
mirrored dendrograms. It accepts as input semi-structured medical data in the form of
Electronic Health Records (EHRs) and allows the user to select the target features to be
visualized and mapped against each other. A hierarchical clustering process is invoked
to cluster the data and produce a dendrogram structure for each combination of target
features. The tool recommends the best zooming level to display the dendrograms,
highlighting the maximum correlation (similarity) with the minimal amount of details
(granularity) presented to the user. This is based on our intuition that users wish to
acquire the most value out of the data while viewing the least amount of data, i.e., with
the least amount of effort. The dendrograms are then mirrored against each other, where
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their leaf nodes and inner nodes are mapped against each other, identifying the best
connections using the transportation optimization problem. The user can dynamically
adjust the zooming level to zoom-in and out of the mapping at different granularity
levels. Different from existing solutions like tanglegrams and heatmap dendrograms,
our work offers three main contributions: (i) connecting the dendrograms through their
internal nodes to describe their structure relationships (instead of connecting their leaf
nodes only), (ii) allowing to zoom-in and out the data to show their relationships at
different granularity levels (compared with existing static solutions), and (iii)
identifying the best zooming level between the two dendrograms which highlights the
maximum correlation with the minimal amount of details presented to the user
(acquiring the most value out of the data, while viewing the least amount of data).

We have evaluated our solution using a sample dataset of 114 EHRs of patients
who suffer from migraine disorder. A group of 20 testers participated in the evaluations
to assess the tool compared with existing solutions. Results showcase the tool’s
performance.

The remainder of this paper is organized as follows. Section 2 reviews related
visualization tools. Section 3 describes the proposal. Section 4 presents the
experimental evaluation and results, before concluding in Section 5 with future works.

2 Related Work

We provide a brief review of visualization tools based on clustering techniques,
including parallel coordinates, dendrogram, tanglegram, and heatmap visualizations.

2.1. Parallel Coordinates

Parallel coordinates is a common visualization technique that aims at representing
multi-dimensional datasets and extracting the underlying relationships between them
(cf. Figure 1). In an N-dimensional space, a single data element is plotted as a polyline
that crosses the N vertical axes, where its location on each axis is proportional to its
value for the dimension related to that axis. Data points on adjacent axes are linked
together, highlighting the correlation between the dimensions. While effective with
relatively small datasets, yet this technique can suffer from cluttering when dealing with
large data samples and dimensions [4, 18]. The authors in [18] propose a solution based
on the concept of contractible parallel coordinates, suggesting to merge highly
correlated vertical axes together (cf. Figure 1.b). This requires reordering the vertical
axes to get the most correlated ones next to each other, by computing pair-wise
correlations between all data dimensions, and then merging the most correlated ones
together into a single vertical axis.
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a. Original parallel coordinates representation b. Reduced representation following [18]

Figure 1. Sample parallel coordinates representations
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a. Sample visualization by [16] b. Sample visualization by [31]

Figure 2. Sample 3D visualizations based on parallel coordinates tool

In [16], the authors extend the usual 2D display of parallel coordinates and
introduce a new 3D visualization tool that allows visualizing the correlations between
several features at a time (cf. Figure 3.a)., compared with the traditional 2D display
which can only visualize the correlation between two dimensions at once. It enables
analyzing concurrently one-to-one relations between a central “focus” dimension and
the remaining dimensions situated around it, forming a cylinder. In [31], the authors
extend the parallel coordinates tool to add a 3D visualization considering the time
dimension (cf. Figure 2.b). They include multiple planes each representing a certain
time stamp. This forms a group of plane clusters where each plane includes the parallel
coordinates visualization depending on the timestamp of the data samples, where data
sampled at the same time is represented on the same plane.

2.2. Dendrogram

A dendrogram is a diagram representing a tree that shows the hierarchical relationships
between data points or objects [2]. It consists of a hierarchy of clusters where the leaf
nodes represent individual data points, the internal nodes represent clusters of data
points, and the root node represents the entire data set (cf. Figure 3). Dendrograms
provide a visual description, i.e., an explanation of the hierarchical clustering process
and how the clusters were formed, compared with other clustering techniques like
partitional clustering or spectral clustering where no such explanation or visualization
exists to describe the clustering process [27, 28].

1 3 2 5 ] 0

a. Hierarchical clustering b. Dendrogram structure describing the clusters in (a)

Figure 3. Sample hierarchical clustering and corresponding dendrogram structure

2.3. Tanglegram

A tanglegram allows comparing two pairs of dendrograms (cf. Figure 4). The aim is to
reduce the number of line crossings (known as entanglements) to make the visualization
clearer and easier to understand [6, 8]. Fewer (higher) crossings between the tree leaves
might indicate higher (lower) correlation between the tree structures. Yet the trees being
compared can have different internal structures or topologies, while their leaf nodes are
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presented in a matching order. This can be misleading when evaluating correlation
between tree structures [8].
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a. Few crossings (high correlation between leaves) b. Many crossings (low correlation between leaves)

Figure 4. Sample tanglegram representations based on [8]

2.4. Cluster Heatmap

Cluster heatmap shows two dendrograms in a data matrix, one positioned as row and
the other one positioned as column (cf. Figure 5). Rows and columns may be perceived
to be highly or poorly correlated according to the ordering of their dendrogram leaf
nodes, which can be misleading [20] (similarly to tanglegrams). Also, when clusters
are formed close to the root of the dendrogram, cells that are not closely clustered must
still be placed adjacent in the heatmap due to the rigid grid structure [14]. Hence, rows
or columns that are closely clustered can also end up non-adjacent in large clusters [13].

a. Cluster heatmap showing highly b. Cluster heatmap showing low
correlated rows and columns correlation between row and columns

Figure 5. Sample cluster heatmap visualizations from [17]

Few alternatives have been suggested to compensate for the limitations of cluster
heatmaps [13], including circle packing, sunburst, and radial dendrogram (cf. Figure
6). Yet most of them aim at improving the visualization of the clusters within an
individual dataset, and do not allow comparing pairs of datasets.
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a. Circle packing [29] b. Sunburst [24] c. Radial dendrogram [13] d. Force directed tree [9]

Figure 6. Suggested alternatives to cluster heatmaps
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3. Proposal

We design a new tool for interactive visualization of structured data titled mirrored
dendrograms (cf. overall architecture in Figure 7). It accepts as input two EHRs
represented as sets of semi-structured and multi-featured data, and allows the user to
select the target features to be visualized. The data is then hierarchically clustered to
produce a dendrogram for each combination of target features. The tool evaluates the
structural similarity between the produced dendrograms to identify the best zooming
level to display the data. The dendrograms’ internal nodes are mapped against each
other using an adaptation of the transportation optimization problem. The tool allowing
the users to dynamically adjust the zooming level, and the number and weight of the
connections, according to their needs.

3.1. Data Representation

We use real-world EHRs to describe our running examples, yet any other multi-featured
data can be utilized. Figure 8 shows extracts of two EHRs providing atomic feature
elements (e.g., DOB, days of migraine, age at onset) and aggregate feature elements
(e.g., personal information, migraine data, vital signs).
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Figure 7. Simplified activity diagram describing our approach’s overall architecture
Patient_EHR Patient EHR
Date Seen: 05/05,/2022 vital Signs Date Seen: 020/05/2022 Vital Signs
Personal Information Height: 170 cm Personal Information Height: 180 cm
Name: Jane Doe Weight: 63 Kg Name: Pete Jones Weight: 79 Kg
DOB: 01/01/1985 Temperature: 37 °C DOB: 01/01/1989 Temperature: 37 °C
Gender: Female Pulse: 68 bmp Gender: Male Pulse: 73 bmp
o L 5 Migraine Data lah’ ilesults
M'g:;'"g ?g"’ 25 Lab IR“"'“ i Age at Onset: 20 Glycaemia: 6.6
ge a née N . Glycaemia: 6.1 Days of Migraine: 2 LDL cholesterol: 0.0006
Days of Migraine: 1 LDL eholeterol. 0 0007 Duration of Attacks: 5h Triglycerides: 0.005
Duration of Attacks: 3h Triglycerides: 0.004
a. Sample EHR for patient 1 b. Sample EHR for patient 2

Figure 8. Sample EHRs for two migraine patients

3.2. Similarity Computation

After identifying the features of interest, the next step is to perform feature similarity
computation to conduct hierarchical clustering. Similarity between atomic feature
elements are computed according to their feature data-types (Table 1). Similarity
between aggregate feature elements is computed as the aggregation of the similarities
of their constituent atomic elements. This can be computed in several ways, using for
instance the maximum, minimum, average, or weighted sum functions [26, 28]. Here,
we make use of the weighted sum function since it enables the users to choose the
weight of each atomic feature. Given two aggregate feature elements £, and E>:
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. . 1 2 .
Sim(E,, E,) = fagg (Slmi(ei, e, )= Z w, x Sim, (e},e?) € [0, 1]
i=l.n i=l.n
(6)
given ) wi=l A (Wiy,)20 A Simg,(xy) e[0,1]
i=l.n
J
the weight of feature 7, and Sim; is the similarity according to feature i. For instance, the
similarity between two patient EHRs described in Figure 8, considering aggregate

feature elements made of atomic features gender, pulse, and glycaemia:

where e is an atomic element describing feature 7 within aggregate element Ej, w; is

Sim(E1, E2) = Wgenderxsimgender (El, E2) + Wpulsexsimpulse (El, E2) + ngycaemiaXSimglycaemia (El, EZ)

_1 1 |
~ —xSim, (Female, Male) + —xSim (68, 75) + ~xSim (6.1,6.6) = 0.653
3 3 3

gender pulse glycaemia

We consider as reference pulsen.. = 170 bpm and glycaemia.. =147 mmol/L for a

middle aged human subject, to compute the atomic similarity functions accordingly’
(cf. Table 1).

Table 1. Sample atomic element and feature vector similarity measures

. 4 |x, —x, |
Comparing two scalar values x; and x;: Sim(x,, x.)=1— i il [0, l]
Scalar values v X [€))
similarity . . max.

where Xy is the maximum value from the reference dataset from which the values

were sampled.

Comparing two date/time stamps x; and x;:

Date/Time . ‘(Xi +xmin)_(xj +xmin)|
stamps Sim(x;, ;) =1— elo, 1] @
similarity P X |

where Xax and Xuin are the maximum and minimum values from the reference dataset
from which the date/time values were sampled.

Boolean values

similarity Comparing two Boolean values x; and x;: Sim(xi, Xj) = Xi A Xj (€)]
Comparing two string values syntactically x; and x;:
String values EditDistance(x;,X )
similarity Sim(xi, xj) =1 I —— € [O, 1] (O]
x; [+
Feature vectors  Comparing two feature vectors V; and Vj: Sim(V,, V) = 1 i Sim(x',x') )
similarity i 7] n, Tk Tk

3.3. Data Clustering

In this study, we use the well-known Unweighted Pair-Group Method with Arithmetic

mean (UPGMA) average link hierarchical clustering method [12, 15], although any

form of hierarchical clustering can be utilized. Given » data points, we construct a fully

connected graph G with n nodes and nx(n-1) weighted edges. The weight of an edge
2

corresponds to the similarity (distance) between the connected nodes. We adopt an

agglomerative clustering approach where each node in the connected graph initially

! Gender is modeled as a Boolean attribute, where female and male values are represented true (1) and false (0) respectively.
We do not consider other gender types (e.g., transgender or gender neutral) since they do not exist within our patient data.
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represents an individual cluster, where the similarity between the clusters is computed
as the average of all similarities between their constituent edges. Figures 10 and 11
show the dendrograms and corresponding distance matrices produced for a sample
dataset of 7 patient EHRs, clustered accordingly to the Glycaemia and LDL features!
respectively (cf. experiments in Section 4).

3.4. Data Zooming

After performing the clustering process on the selected features and producing the
resulting dendrogram structures, the tool recommends the best zooming level to display
the dendrograms, according to a combined zooming score highlighting: i) the maximum
similarity between the dendrograms, and ii) the minimal granularity for both
dendrograms. More formally, given two dendrograms dend; and dend.:

zoomScore(dend:, dendz) = axSim(dendi, dendz) + Bx(1-Gran(dendi, dend2)) €[0, 1] (@)

where a, B € [0, 1], o + B = 1, Sim(dend,, dend>) € [0, 1], and Gran(dend,, dend.) e
[0, 1]. Similarly to the element aggregation measure mentioned in Section 3.2, we make
use of the weighted sum function since it allows users to emphasize dendrogram
similarity versus granularity according to their needs.
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(showing all data points) (with clusters (4, 6) and (2, 3)) (with cluster (1,2,3,4,6))

Figure 9. Dendrograms produced for 7 patient EHRs clustered following the Glycaemia
feature, with their distance matrices

! Glycaemia refers to the level of glucose in the patient’s blood. LDL is commonly referred to as the “bad” cholesterol since
it collects in the blood vessel walls.




Dendrogram

Initial
distance matrix

Expanded
distance matrix

Angela Moufarrej, Abdulkader Fatouh, and Joe Tekli ™

0175

0150

0128

0100

0100

0075 {

00s0 0050 0050 {
0025 0025 0023
000 ¢ 1 3 B ) 2 4 aoe 6 1,3) 5 ° (2.4) oo (6.1,3) s @24

0 1 2 3 4 5 [3 0 1,3 ]24] 5 G 0 [1.3.6] 2.4 5
0 [0.000)0.186 | 0.059 | 0.186 | 0.059 | 0.099 | 0.186 [} 0 |0.186|0.059]0.099 | 0.186 ) 0 [0.186] 0,059 | 0099
1 |0.186)0.000|0.186 | 0.016 | 0.186 | 0.186 | 0.056 1,3 0 [0.186]0.186 | 0.056 13,6 0 0186|0186
2 |o.059]0.186 | 0.000]0.186 [0.021 [ 0.099 [0.186 2,4 0 [0.015]0.186 2.4 0 10.099
3 [0.186]/0.016|0.186 | 0.000 | 0.186 | 0.186 | 0.056 5 0_|0.186 3 ]
4 [0.058]0.186 | 0.021]0.185 | 0.000 | 0.009 | 0.186 3 0
5 [0.099]0.186 ] 0.099 | 0.186 | 0.093 [ 0.000| 0.186
6 Jo1ss[oose[0186]0056]0 186]0.186 [0.000

[ 1 2 3 4 5 3 0 1 2 3 4 5; 6 0 1 2 3 4 5 [
0 ]0.000|0.186 | 0.059 ] 0.186 | 0.059 | 0.099 | 0.186 [ 0 |0186)0.059)0.186]0.059 [ 0.099 | 0.186 0 0 ]0.186]0.059)0.186]0.059 | 0.099 | 0.186
1 ]0.186)0.000 |0.186 ) 0.016 | 0.186 | 0.186 | 0.056 1 0 |oige| @ ]0.186)0.186)0.056 1 0 |0186| @ J0.1856|0.186) O
2 |0.059/0.186|0.000|0.186 ] 0.021 | 0.099 | 0.186 2 0 |0186) @ |0.099)0.186 2 0 |0186| @ [0093|0.185
3 o186/ 0.016]0.186 ] 0.000] 0.185] 0.186 | 0.056 3 0 |o.185[0.186 | 0.056 3 0.186| 0 |o.assloissl 0 |
4 [0.059[0.186 [0.021]0.186 [ 0.000] 0.099 [0.186 4 0 [0099]0.186 1 0.186] 0 |0.099]0.186
5 ]0.099]0.186 | 0.093 | 0.186 | 0.099] 0.000 | 0.186 5 o [o0as6 3 0.099] 0,186 [0.095] 0 0186
6 |0.186[0.056 | 0.186 | 0.056 | 0.186] 0.186 | 0.000 6 o 3 0.186 0.186 | 0.186] 0

a. Zoom level =7
(showing all data points)

feature, with their distance matrices

b. Zoom level =5
(with clusters (1, 3) and (2, 4))

¢. Zoom level =3

(with clusters (1, 3, 6) and (2, 4))
Figure 10. Dendrograms produced for 7 patient EHRs clustered following the LDL

The zooming algorithm is shown in Figure 11. It accepts as input two sets of
dendrograms produced for both features being compared including all zooming levels.
It then computes the zooming score for each pair of dendrograms in both sets (lines 3-
5) and identifies the pair which maximize the zooming score (lines 6-9).

Algorithm 1 — Duplicate Zooming

Input: DendSet1, DendSet2
Output: dend,, dend,

Begin
1 maxZoomScore «— 0
2 optimalZoomindices < {0, 0}
3 For each dend; € DendSet1
4 For each dend; € DendSet2
5 if (maxZoomScore < zoomScore(dend, dend;)) then
6 maxZoomScore <« zoomsScore(dend;, dend;)
7 optimalZoomindices « {i, j}
8 dend; « dend,
9 dend; « dend;
10 Return {dend;, dend,}
End

Figure 9. Pseudo code of our dendrogram zooming algorithm

3.4.1. Dendrogram Similarity

We evaluate the similarity between two dendrograms using their expanded distance
matrices. The distance between a data point x and a cluster Y in the initial matrix, is
represented as a replication of the same distance value between x and every data point
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yeY in the expanded matrix. We adopt the expanded distance matrices to maintain
identical dimensionalities for both matrices being compared, regardless of hierarchical
clustering (zooming) level (cf. Figures 9 and 10). We adopt normalized Manhattan
distance to compute the similarity between a pair of data points, yet other vector
similarity measures can be used. More formally:

Z|miJ -0y ‘

Sim(dend,, dend, ) = 1 - Dist(dend,, dend, ) / Dist(dend,, dend,) = < clo.] (8)

Z'mi,j *n |
Lj

where m; ; is the distance entry in the distance matrix corresponding to dend;, and n;
is the distance entry in the distance matrix corresponding to dend>. Table 2 shows the
pair-wise similarity scores between pairs of dendrograms produced following our
Glycemia vs LDL running example. An entry at position (4, 5) in the similarity matrix
represents the similarity score between the dendrogram of zooming level =4 for
Glycemia and the dendrogram of zooming level =5 for LDL.

Table 2. Similarity matrix for Table 3. Granularity matrix for
Glycemia vs LDL dendrograms Glycemia vs LDL dendrograms
Dend#| 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 NaN 0 0 0 0 0 0 0 0.0833 | 0.1667 | 0.2500 | 0.3333 | 0.4167 | 0.5000
B 0 | 0185102226 0.2885 | 0.2787 [ 0.2768 | 0.2755 0.0833 | 0.1667 | 0.2500 | 0.3333 | 0.4167 | 0.5000 | 0.5833
&) 0 0.2944 | 0.3971 | 0.4509 | 0.4369 | 0.4343 | 0.4324 0.1667 | 0.2500 | 0.3333 | 0.4167 | 0.5000 | 0.5833 | 0.6667
4 0 0.3189 | 0.4162 | 0.4678 | 0.4735 | 0.4806 | 0.4786 0.2500 | 0.3333 | 0.4167 | 0.5000 | 0.5833 | 0.6667 | 0.7500
5 0 0.3235 | 0.4199 | 0.4709 | 0.4766 | 0.4837 | 0.4874 0.3333 | 0.4167 | 0.5000 | 0.5833 | 0.6667 | 0.7500 | 0.8333
6 0 0.3273 | 0.4232 | 0.4741 | 0.4796 | 0.4866 | 0.4904 0.4167 | 0.5000 | 0.5833 | 0.6667 | 0.7500 | 0.8333 | 0.9167
q 0 |03312] 0.4265 | 0.4771 | 0.4825 [ 0.4896 | 0.4933 0.5 | 0.5833] 0.6667]0.7500] 0.8333 | 0.9167| 1

3.4.2. Dendrogram Granularity

In addition to maximum dendrogram similarity, our solution recommends the best
zooming level to display the dendrograms with the minimum granularity, i.e., minimum
amount of information details presented to the user. More formally:

#leaf nodes(dend ) -1

Gran(dend,, dend, ) = ax Gran(dend, ) + B x Gran(dend,) / Gran(dend ) =—— — €[0, ]] )
" #data points(dend ) -1

where o, B € [0, 1], and o + 3 = 1. A granularity score =1 means that the dendrogram
is fully zoomed-in, showing the maximum number of nodes (i.e., the maximum amount
of information details). A granularity score = 0 means that the dendrogram is fully
zoomed-out, showing the minimum number of nodes =1 (i.e., the root node only,
highlighting minimum details).

Table 3 shows the pair-wise granularity scores between all pairs of dendrograms
from our Glycemia vs LDL running example, considering equal weights for individual
granularity scores (o = 3 = 0.5). The granularity score between the dendrograms at the
lowest levels is =0. The granularity score between the dendrograms at the highest levels
=1. The granularity score increases with the zoom level, and decreases accordingly.
Following several experimental runs (cf. Section 4), we assign a weight o. = 0.8 for the
dendrogram similarity score and 3 = 0.2 for the dendrogram granularity score (other
weight configurations can be considered). Results show that the Glycemia dendrogram



Angela Moufarrej, Abdulkader Fatouh, and Joe Tekli ™

of level =3 and the LDL dendrogrma of level =4 produce the maximum zoomScore
value =0.4774, and thus will be returned by the system as the best zooming level to
display the dendrograms (cf. Figure 12).

Glycemia LDL

Dendrogram #1 Dendrogram #2

Figure 12. The best dendrogram zooming levels for Glycemia at level 3 versus LDL at level 4

3.5. Node Connections

Following the identification of the best zooming level among the paired dendrograms,
the remaining step is to connect the internal nodes of the dendrograms in order to
highlight their correlation. To achieve this, we compute dendrogram internal node
similarity as the similarity between the corresponding clusters, represented as bags of
data points. We utilize Jaccard similarity, yet other set similarity measures can be used
(e.g., Intersection, Dice). More formally, considering two dendrograms dend; and
dend,, and two internal nodes x; € dend; and y; € dend; being compared:

| cluster(x;) M cluster(y) |

Sim(x;, y;) = [0, 1] (10)

| cluster(x;) U cluster(y;) |
where cluster(x;) and cluster(y;) are the clusters represented by nodes x; and y;.
Consequently, we use the transportation optimization problem, e.g., [21, 22], to match
the related internal nodes from both dendrograms. The transportation problem seeks to
associate a number of supply centers m (sources) with a number of demand centers n
(destinations) to optimize supply delivery. We consider the internal nodes of the first
dendrogram to be the supply centers, and the internal nodes of the second dendrogram
to be the demand centers. Considering two dendrograms with m and » internal nodes
respectively, we build an mxn matrix where the rows represent the internal nodes of the
first dendrogram and the columns represent the internal nodes of the second
dendrogram. Each entry (i, j) provides the similarity between internal node x; from the
first dendrogram, and internal node y; from the second dendrogram. Consider for
instance the fully zoomed-in visualization of Glycemia vs LDL in Figure 13, with zoom
level =7 for both dendrograms. Hence, we have m-1 = n-1 = 6, resulting in a 6x6
pairwise internal node similarity matrix shown in Table 4.

Once the internal node similarity matrix is produced, we start by matching the
nodes together using the transportation problem’s minimum (least) cost method widely
adopted in the literature, e.g., [21, 22] (other approaches can be used such as penalty-
based or correction-based methods [3]). We compute cost as the inverse of similarity,
and hence we seek to minimize the cost among the matching nodes (cf. Table 4.b).
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Once all the internal node connections have been established, the system displays all
the connections having a similarity score greater than or equal to a (user or system-
defined) threshold. Figure 13.a shows the internal node connections having similarity
scores above 0.5 (sharing more than 50% similarity). Figure 13.b shows more internal
connections after lowering the similarity threshold to 0.3. Also, the thickness of the
node connections is defined proportionally to their similarity, where thicker
connections highlight more similar nodes.

—— SR endrogram a1 Denarogrem 2

a. Node connections with a threshold value of 0.5 b. Node connections with a threshold value of 0.3

Figure 13. Full zoomed-in visualization of Glycemia vs LDL

Table 4. Internal nodes similarity matrix for full zoomed-in visualization of Glycemia vs LDL

a. Initial similarity matrix b. Result of the transportation problem’s minimum
cost method, where the order of the iteratively
selected cells is shown in subscript

LD dendrogeam infernal clusters LDL dendrogram internal elusters
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4. Experimental Evaluation

We have implemented our tool using the Python programming language. We perform
text preprocessing and feature extraction using NLTK, matrix computations using
NumPy, clustering and dendrogram building using SciPy, dendrogram visualization
using MatplotLib, and GUI functionalities using Tkinter. The tool is available online'.

4.1. EHR Case Study

We used a sample dataset of 114 EHRs of patients who suffer from migraine disorder,
obtained from a private medical clinic where all EHRs were vetted by Dr. Sola Aoun
Bahous, M.D. and professor in the department of internal medicine at LAU Rizk
hospital. Sample EHR extracts are shown in Figure 7. We conducted tests to visualize
correlated and uncorrelated features and compare the results with existing tools.

1

http://sigappfr.acm.org/Projects/MirroredDendrograms/
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4.1.1. Feature Correlation

We compare: i) a pair of correlated features: days of migraine and frequency of abortive
treatment having average correlation pcc! = 0.5882, and ii) and a pair of less correlated
features: days of migraine and BMI* having average pcc = 0.1556. Table 5 shows a
subset of the data, and the corresponding mirrored dendrogram visualizations are shown
in Figure 14. A larger subset is visualized in Figure 15 with varying zooming levels.

Table 5. Sample EHR features for a subset of 25 patients

Days of

oW1 o0 12 16 % 4 12 15 15 15 I8 13 15 16 16 o 0 4 23 % 2%
Migriine

Freguency of
Abartive i L] 10 1 10 12 1 14 1413 518 15 15 15 16 16 w20 2w 2 ) £
Treatment

BMI 2709 2571 2109 2002 2862 2298 2661 2371 2768 2151 2421 2734 2799 22176 2222 1R25 19.59 2395 2087 2974 1929 2249 1975 203 2734

Based on Figure 14, we highlight the following: i) the mirrored dendrograms in Figure
14.a show similar structures with many connected nodes, reflecting high feature
correlation, ii) the mirrored dendrograms in Figure 14.b show less similar structures
with only four pairs of connected nodes, reflecting low feature correlation. Similar
observations are obtained with the larger data subset in Figure 15, where the high and
low correlations are reflected in Figure 15.a and b respectively. We obtain similar
observations using different zooming levels in Figure 15.c and d.

Days of Migraine Frequency of Abortive Treatment Days of Migraine BMI

Dendrogram #1: Dendrogram a2 Dendrogram #1 Dendrogram 82

. 0 0. ois ol ams  aso 003 242 0ea adrs sies oi2s aiso airs adw
a. Correlated features b. Less correlated features

Figure 14. Mirrored dendrogram visualizations for two pairs of sample EHR features considering a
subset of 25 patients from Table 5, shown according to the best zooming levels identified by the tool,
with node connection threshold = 0.5

4.1.2. Comparison with Alternative Solutions

In addition, we compare our tool with two alternative visualizations: tanglegram and
cluster heatmap. We use the sample dataset and pairs of EHR features from the previous
example. Results are shown in Figure 16. While designed to describe the correlations
between pairs of dendrograms, yet both tanglegram and cluster heatmap compare
dendrograms according to their leaf node mapping, and do not visualize the similarities
within the structures themselves. This can be misleading since two dendrograms can
have different internal structures, while their leaf nodes are presented in a matching

! Pearson Correlation Coefficient
2 Body Mass Index
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order, and vice versa. This is the case in Figure 16 where both the highly correlated
features in Figures 16.a and c and the less correlated features in Figures 16.b and d
produce similar tanglegram and cluster heatmap visualizations respectively, making it
difficult to judge the correlations between the compared features. Different from
tanglegram and cluster heatmap, our tool i) computes the similarity between
dendrogram structures and maps their internal nodes to describe their structure
relationships, ii) allows to zoom-in and out of the data to show their relationships at
different granularity levels (compared with existing static solutions), and iii) identifies
the best zooming level between the two dendrograms, highlighting the maximum
correlation with the minimal amount of details presented to the user.

4.2. User Study

Since our work involves visualizations perceived by users, we acquired and evaluated
the feedback from human testers to assess the quality of our visualization tool. For this
purpose, we created an online survey' considering five evaluation criteria: i) feature
correlation visualization, ii) default zooming levels, iii) zooming in and out actions, iv)
tool’s interactive functionalities, v) comparison with existing solutions (cf. Table 6). A
total of 20 were invited to contribute to the experiment, where they independently rated
every evaluation criterion on an integer scale from 1 to 10 (i.e., from highly dissatisfied
to highly satisfied). Testers were undergraduate and graduate engineering students, as
well as junior and senior engineers with background in data science, business analytics,
computer science, or computer engineering (cf. Figure 17). An invitation email was
shared by the authors and broadcast to their undergraduate and graduate engineering
students and alumni. The first 20 testers who accepted the invitation volunteered to
conduct the survey and did not receive any compensation. Testers were initially shown
a demo of the mirrored dendrogram, tanglegram, and cluster heatmap tools, providing
them with sample visualizations for every tool. Testers were also invited to use the tools
on three small data samples provided by the authors, to familiarize with their
visualizations and functionality, including the inner node connections and zooming
functionalities provided by mirrored dendrograms.

Table 6. Visualization tool’s evaluation criteria

Criterion Description Evaluation question

Ability of the tool to allow users to visually distinguish between
highly correlated features and loosely correlated features, when
mirrored against each other.

Quality of the default zooming levels suggested by the tool,

1. Feature correlation
visualization

How satisfied are you with the feature
correlation visualization of the tool?

2. Default zooming levels

highlighting the maximum correlation with the minimal amount
of details presented to the user.

How satisfied are you with the tool’s
default zooming levels?

3. Zooming in and out
actions

How efficient it is to zoom in and out of the data, and navigate
up and down the dendrogram hierarchies.

How satisfied are you with the zooming
actions of the tool?

4. Tool’s interactivity

Capacity of tool to provide interactive functionalities, including
parameter settings, similarity thresholds, node and edge
visualizations and coloring, among others.

How satisfied are you with the tool’s
interactive functionalities?

5. Comparing visualization
quality with tools

Quality of the tool’s visualization compared with existing
solutions: namely tanglegram and cluster heatmap.

How satisfied are you with the tool’s
visualization ~quality compared with
existing solutions?

! Available at: https:/github.com/ak{98/mirrored-dendrogram-tool
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c. Correlated features: Days of Migraine versus d. Less correlated features: Days of Migraine versus BMI

Frequency of Abortive Treatment

Figure 15. Mirrored dendrogram visualizations for two pairs of sample EHR features
considering a subset of 50 patients, shown according to the best zooming levels identified by
the tool, with node connection threshold = 0.5

Days of Migraine Frequency of Abortive Treatment Days of Migraine BMI
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a, Tanglegram visualization of correlated features: b. Tanglegram visualization of less correlated features:
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c. Cluster heatmap visualization of correlated features: d. Cluster visualization of less correlated features:
Days of Migraine versus Frequency of Abortive Treatment Days of Migraine versus BMI

Figure 16. Tanglegram and cluster heatmap for pairs of sample EHR features from Table 5
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a. Educational level b. Field of study c. Profession

Figure 17. Testers’ education level, and field of study, and professions

Results in Figure 18 and 19 show the compiled tester ratings, and the average rating
scores aggregated for every criterion. We summarize the results: 1) Feature correlation
visualization: Results show that 68.5% of the testers gave this criterion scores > 7/10,
achieving an average score of 7.5/10 (stdev = 1.7) ; ii) Default zooming: Results show
that 68.4% of the testers gave this criterion scores > 7/10, achieving an average score
of 7.3/10 (stdev = 1.8) ; iii) Zooming actions: Results show that 78.9% of the testers
gave this criterion scores > 7/10, achieving an average score of 7.7/10 (stdev = 1.6) ;
iv) Tools’ interactivity: Results show that 65.8% of the testers gave this criterion scores
>7/10, achieving an average score of 8.3/10 (stdev = 1.3) ; v) Comparative evaluation:
Results show that 84.2% of the testers gave the mirrored dendrograms rating scores >
7/10, compared with 36.8% and 47.4% for tanglegram and cluster heatmaps
respectively. The mirrored dendrograms achieved an average rating of 8 (stdev = 1.7),
compared with 5.85 (stdev = 2) and 6.4 (stdev = 2.5) for tanglegram and cluster
heatmaps respectively.
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Figure 18. Tester rating scores for every evaluation criterion



Angela Moufarrej, Abdulkader Fatouh, and Joe Tekli ™

10

10
5 51
6 61 6
2 4 27 2
o+ ) 04 0

reavre | oafat | 2ooming Inectty Ange plimced  Tighpam  Hawms Aveage
Correlation Zooming  Action rograms

Avergae tester ratings

Average tester ratings

4 4 4 4
2 2 . 3
§21 I . 2 2
Nl I N I BN = . m N M
g ! Mirrored  Tanglegram  Heatmap Average
Feature  Defauit  Zooming Interactivity Average Dendrograms
Correlation Zooming  Action
a. Average ratings for individual criteria b. Average ratings for comparative evaluation

Figure 19. Average tester ratings for all evaluation criteria

Results show that most testers are satisfied with the visualization tool: i) describing
feature correlations, ii) suggesting a default zooming level to compromise between
maximum correlation and minimal amount of details presented to the user, iii)
zooming-in and out the data to visualize cluster hierarchies at different levels of details,
and vi) providing improved visualizations compared with existing solutions.

5. Conclusion

We introduce an unsupervised feature-based tool for interactive data visualization titled
“mirrored dendrograms”. It accepts as input semi-structured EHRs and allows the user
to select the target features to be mapped against each other. It produces a dendrogram
structure for each combination of features, connecting the data’s internal nodes to
describe their relationships. The user can zoom-in and out of the data to show their
relationships at different granularity. The tool also identifies the best zooming level
which highlights the maximum correlation with the minimal amount of details
presented to the user. Empirical results highlight the tool’s performance. We are
currently extending the tool to consider the time dimension, producing a 3D
visualization where data belonging to the same timestamp will be clustered and
presented on a plane related to the timestamp. This is crucial to correlate time-stamped
social media data (e.g., describing social event correlations [1, 25]) and sensor network
data (e.g., describing network event correlations [10, 11]).
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