Unsupervised Dendrogram Text Index and Search
using Hierarchical Clustering

Michel Abboud
E.C.E. department
Lebanese American University
Byblos, Lebanon
michel.abboud@lau.edu

Abstract—Text data retrieving depends initially on the data
indexing, emphasizing the role of different indexing techniques used
for query processing. In this context, traditional Information
Retrieval (IR) techniques based on the inverted index share a
number of challenges including limited scalability, accuracy, and
semantic awareness. In this study, we provide an improved solution
by introducing a new Machine Learning (ML) indexing technique
based on hierarchical clustering. Our Unsupervised Dendrogram
Index and Search (UDIS) approach introduces a dendrogram-like
tree index structure that allows linking data items according to their
clustering in the document corpus, providing data co-occurrence
and semantic context in index building and querying. UDIS aims at
improving the IR imbedding with a semantic tree structure,
allowing improved quality and seamless integration of semantic-
aware search results. We have empirically evaluated the impact of
UDIS index size and query execution, and their relationship with
search quality. Experiments show improved results compared with
unigram and bigram AND-and-OR inverted indices.

Keywords—Text indexing, Text querying, Information retrieval,
Unsupervised learning, Data clustering, Dendrogram.

I. INTRODUCTION

With its exponential growth and massive volume, data generation
has taken huge leaps in the last couple of years as it reached the
zettabyte range, and it is continuously rising [21]. This
phenomenon, also known as Big Data, introduces various
challenges in terms of storage, security, quality, and retrieval of
data. Information retrieval (IR) is defined as the process by which
a collection of data is represented, stored, and searched for
knowledge discovery as a response to a user request (query). One
key application that demonstrates the importance of information
retrieval is search engines such as Google, and Bing, among other
platforms. Due to the rapid increase and diversity of Web data, it
is becoming more challenging for IR solutions to provide users
with information that satisfies their needs [6]. Retrieving data
from documents depends initially on how the data is indexed,
emphasizing the role of different indexing techniques used for
efficient query processing. Traditional IR techniques are based on
the inverted index structure which perform one-by-one query
processing, and share a number of challenges including limited
scalability, accuracy, and semantic awareness. In this study, we
address the afore mentioned challenges, and provide an improved
solution by introducing a new Machine Learning (ML) indexing
technique based on hierarchical clustering. Our Unsupervised
Dendrogram Index and Search (UDIS) approach introduces a
dendrogram-like tree index structure that allows to link data
items according to their clustering in the document corpus,
providing data co-occurrence and semantic context in index
building and querying. We aim to improve the IR imbedding
within a semantic tree structure, allowing improved quality
and seamless integration of semantic-aware search results. We
have empirically evaluated the impact of UDIS index size and
query execution, and their relationship with search quality.
Experiments show improved results compared with unigram
and bigram AND-and-OR inverted indices.

Section 2 briefly describes the related works. Section 3
presents our proposal. Section 4 describes the experimental
evaluation, before concluding in Section 5 with future works.

Charbel Aoun!

Institut Catholique d'Arts et Métiers
ICAM, School of Engineering
Toulouse, France
charbel.aoun@icam.fr

Joe Tekli <
E.C.E. department
Lebanese American University
Byblos, Lebanon
joe.tekli@lau.edu.lb

II. RELATED WORKS

In Information Retrieval (IR) and database (DB) systems,
handling a user query search request is an important task that
needs to be fast and accurate, to allow a good user experience.
To accomplish this, indexing structures are used as a backbone
to almost any IR/DB engine [16]. This section briefly describes
legacy and ML-based indexing techniques.

A. Legacy Text Indexing Techniaues

Most search engines use an inverted index to store their
documents for IR. As the name suggests, inverted indices reverse
the document structure by storing for each word in a collection
of documents the set of documents it appears in. The granularity
of the position of a word stored in the inverted index can vary
depending on the application needed. Usually, the size of the
inverted index ranges from 5 to 100% of the size of the indexed
documents, depending on the way the index is stored in
compressed or uncompressed form and the preprocessing
techniques applied on the documents prior to indexing. For
instance, stemming or lemmatizing, removing stop-words, and
removing punctuation will help in reducing the size of the index
[3]. Querying the inverted index is done by searching the
indexed documents and returning the documents where each
word of the query occurrs. Then, a Boolean operation is applied
to the results (AND or OR) to get the final result of documents.
Other legacy text indices have been developed, each with its
set of properties and applications. B-tree indices consist of nodes
and branches connected from top to bottom. The top-most node
is called the root and the bottom-most nodes are called the leaves
which are usually pointers to physical data locations [12]. B-tree
indices usually have a low update, delete, and insert cost and can
be seen as structures that map keys to positions within a sorted
array [8]. B-trees are good for range and equality comparisons.
Hash indices apply a hash function to a certain key to find where
the data is stored in the disk and is best suited when working with
one key at a time [4]. Bitmap indices are built using a two-
dimensional array and usually index a certain column in a table.
The number of columns in the bitmap is equal to the number of
values that can be taken by the column to be indexed in the table
plus one column to indicate the row [20]. For example, if the
column to be indexed is “Student” and the values are “Yes” or
“No” and there are ten rows in the table, then in the bitmap we
will have three columns (Row, Yes, No) and ten rows. Next, for
each row in the original table, we check its value and set
respectively the values of the columns in the index to either 0 or
1 which is the reason behind the “bit” in the bitmap naming [10].
The bitmap index is best suited for columns with low cardinality
[23]. Multiple variations of each technique have been developed,
including B+-tree, B*-tree, hybrid B-Tree [14]. In the case of B-
tree, different hashing functions can be used to reduce collisions
and other issues for hash indices [7], and different compression
techniques for the bitmap indices can be used [23]. Moreover,
multiple hybrid techniques have emerged to solve problems in a
particular indexing method, for instance, combining B-Tree and
Hash map to reduce the number of hash map lookups [7]. Since
each index is best suited in certain situations, choosing a proper

! C. Aoun is co-affiliated with the Lab-STICC, CNRS UMR, ENSTA (Ecole Nationale Supéricure de Techniques Avancées), Brest, France

979-8-3315-8747-5/25/$31.00 ©2025 IEEE



indexing technique depending on the query types presented to a
DB greatly affects the performance and execution of the queries
[1]. Query optimizers (QO) are usually used to get index
recommendations and decide what to do with an index whether it
should be created, removed, or recreated. More recent algorithms
utilize Genetic Algorithms (GA) and ML algorithms to improve
the indexing process. In [1], an artificial neural network (ANN)
classifier is proposed as an algorithm trained to choose the most
suitable index based on certain patterns learned by the ANN from
a given dataset. Results show improved efficiency.

B. Semanic-Aware Text Indexing

Many recent studies have attempted to include semantic meaning
in the text indexing process [5], where users who are not familiar
with the data usually use terms that are syntactically different
from the data which frequently leads to irrelevant results [16].
For instance, consider user query “car”, and a data collection
about automobiles where there is no semantic knowledge
connecting “car” with “automobile”. In this case, the legacy
indexing structure looks at the syntactic difference only and
considers these words as different, without returning any results
to the user. Including semantics comes with its challenges such
as performing word sense disambiguation [18], semantic query
reformulation [15], and search result clustering [17]. Multiple
approaches suggest incorporating semantic knowledge at the
query processing level, through the expansion of the original
query with a knowledge source (e.g., Wordnet [11], or a domain
ontology [5]), and the usage of query relaxation, rewriting,
disambiguation and refinement techniques [18]. However, these
approaches generally suffer from reduced quality, speed, and
limited user involvement [16]. To partly solve some of these
issues, recent studies suggest integrating semantics at the most
basic data indexing level [15, 16]. To accomplish this task, the
authors suggest creating a combination of two graph
representations of the input, one representing the textual data,
and another represents the knowledge base graph of the terms in
the corpus. Semantic-aware search is subsequently performance
on the integrated graph structure using optimized graph-search
algorithms. In [19], the authors introduce an indexing algorithm
that uses spectral graph theory and semantic spanning forests
built from semantic relations extracted from different thesauri
(namely Wordnet and Wikipedia) to create a dense semantically
enriched representation of a document, then when queried, the
same processing technique is applied to the query to generate its
semantic representation and then the similarity between the
documents and the user query is computed using the Hausdorff
distance. The semantic indexing solutions in [ 19] were compared
with traditional indexing techniques and showed promising
results.

C. Machine Learning Indexing Techniques

More recently, few Machine Learning (ML) indexing techniques
have been proposed in the literature, e.g., [8, 9, 22]. With this
category of techniques, an index structure is seen as a model that
can be trained to predict results. For instance, a key input of the
position of an object in a sorted array can describe a B-tree, and
can be viewed as a hash map. In addition, a bitmap or bloom
filter can be seen as a model trained to output whether a record
exists or not. The ML model can dynamically learn the
distribution of the data which might be challenging for
traditional indices. For instance, in the case of hash functions, a
model can be used to learn a hashing function that fits the data
with the lowest conflicts possible which is applicable in both
hash map and bloom filter indices. For instance, the authors in
[8] have trained a two-layer fully connected neural network, and
compared it with a B-tree, resulting in a 70% faster indexing and

less memory consumption. Furthermore, the authors in [8]
propose three important models: the learning index framework
(LIF), the recursive-model indices (RMI), and hybrid indices.
The LIF is based on Tensorflow to learn simple models and
generate index configurations accordingly. The RMI is a
hierarchy of models where at each level a model predicts which
of the next level model, it thinks knows better the needed
location with a minimal error. The hybrid method merges
between the RMI and B-tree indices, replacing a model with a
B-tree whenever its performance is worse than a B-tree.
Experiments showed improved results compared with the
traditional indices: i) the learned B-tree and bloom filter indices
were faster in terms of build time and lookup and had smaller
sizes compared with their legacy counterparts, and ii) the learned
hashing function in the hash map index was able to greatly
reduce the conflict number [8]. In [9], the authors introduce
SmartIX, another ML approach to automatically index DBs
using reinforcement learning. The method is based on an agent
which job is to choose an index for the DB. The agent is a module
of five components. The first stage is to transform the current
index of the DB into the agent state to test its performance on a
benchmark (TCP-H) in the second step, and then a learning
algorithm will be rewarded based on the results. Finally, an
exploration function will decide what to do next: whether to
further investigate the new information, or look at other actions.
Empirical results in [9] show improved query time and index
storage size, compared with legacy indexing solutions. In [22],
the authors use a Convolutional Neural Network (CNN) to
implement a semantic index for biomedical documents. They
first generate the feature representation of the documents using
Wikipedia categories and Metamap, then the output of this step
is fed to a CNN with a ReLU activation function and 50%
dropout in all the layers. Next, the output of the CNN is fed to a
sequence of two classifiers: the first one predicts one out of a
chosen number of independent categories, and the second is
more specific predicting a subcategory inside the previously
chosen category. Experiments showed accuracy results which
are on a par with and sometimes surpassing existing methods.

III. MOTIVATION

When used with full text search, the traditional inverted index
and querying techniques showcase many challenges, including:
i) lack of semantics, ii) lack of query coherence where queries
are processed as separate individual terms, and iii) drawbacks of
intersection and union queries. We illustrate these issues below.

Doc:

Lorem ipsum dolor teacher sit amet, consectetur adipiscing elit.
Nam at pharetra lorem, in accumsan augue. Aenean massa nisl,
condimentum vitae school vitae, euismod nec eros. Donec ornare
eros sit amet maximus feugiat. Ut semper vulputate tortor quis
tempus class.

Example:
Query: Learning
Non augmented => result: X

Augmented => result: teacher (wl), school (w2), class (w3)

Figure 1. Sample document and query result

Query Q1: Lebanese American University — Result R1 =7

Query Q1.1: Lebanese - Result R2 =X

Query Q1.2: American — Result R3 =Y Union/Intersection = Result R1

Query Q1.3: University — Result R4 = Z

Figure 2. Sample keyword queries

Lack of semantics: Figure 1 illustrates the problem. We
notice that the non-augmented index cannot return related words



and only looks for exact matches which can affect retrieval
accuracy and might not satisfy the users’ needs.

Doc 1: Lebanese American University Lebanese Docl, Doc2

Doc 2: Lebanese American Institution American Docl, Doc2
University Docl
Institution Doc2

a. Data corpus b. Inverted index
Original Query Q1: Lebanese American University

QI.1: Lebanese R2: Docl, Doc2

Intersection:

Q1.2: American R3: Docl, Doc2
R1=R2 M R3 R4 =Docl

Q1.3: University R4: Docl

c. Query processing

Figure 3. Query processing using intersection

Lack of query coherence: the query is processed as separate
individual term-based queries, thus it does not consider the
whole initial query as one single unit of information which might
lead to loss of information, returning incomplete results. Figure
2 illustrate an example, where the target query is processed as
three separate queries. The results are then joined using set
theory through intersection or union which do not always cover
the whole initial query.

Drawbacks of intersection and union: Using intersection to
join the results of multiple sub-queries can produce limited
information about the results. For instance, consider the
documents and their inverted index in Figure 3. We notice that
the result is only Docl even though Doc2’s content are also
related to Q1. Based on the results, we can deduce that only Doc1
contains all the keywords in the query, but we cannot know
whether there exist other documents that are partly related to Q1
having a certain number of keywords occurring in Q1. For
instance, obtaining as a result: R1 = <Docl (100%), Doc2
(75%)> would be more informative and complete rather than
getting only Docl.

Using union to combine individual sub-query results into
one list might include partly irrelevant/noisy results. Consider
for instance the documents and inverted index in Figure 4. We
notice that even though Doc2 is not quite relevant to Q1, yet it is
returned as a result. Similarly, consider a large text having the
word “Institution” in it only once, then it will also be returned as
part of the result and will thus negatively affect the precision of
the query execution.

Potential solutions: using N-grams and weighed terms.
Considering N-grams to highlight the combinations of query
terms as individual units of information might solve part of the
previously stated challenges, however, it will also drastically
increase the size of the index, creating an index scalability
problem. Consider for instance the indices in Table 1 presenting
two index tables: unigram only and unigram-+bigram. We notice
that the number of entries of the index increases from 3 to 5 if
we add only consecutive words, showing the importance of
having these words with each other in the same order. However,
if there is a need to add all combinations or other n-grams, then
the number of index entries will significantly increase
accordingly. Note that weights can be added to highlight the
relevance of each index entry in describing the indexed
document(s). This process will need more storage space as well
as more creation and processing time (cf. empirical evaluation in
Section 5).

Lebanese Docl, Doc2
Doc 1: Lebanese American University American Docl
Doc 2: Lebanese Red Cross University Docl
Red Doc2
Cross Doc2

a. Data corpus b. Inverted index

Q2: Lebanese R2: Docl, Doc2

Union:

Q3: American R3: Docl
R1=R2 U R3 U R4 =Docl, Doc2

Q4: University R4: Docl
c. Query processing

Figure 4. Query processing using union

The above mentioned challenges have motivated us to design a
new unsupervised index solution allowing to process a user
query holistically, rather than individual terms, aiming to
consider the query’s semantics in the indexing structure and
improve the traditional inverted index technique by leveraging
the power of ML in this field.

Table 1. Inverted indices: unigram and bigram

a. Unigram b. Unigram + Bigram
Lebanese Docl, Doc2, Doc3 Lebanese Docl, Doc2, Doc3
American Docl, Doc2, Doc4 American Docl, Doc2, Doc4
University Docl University Doc2
Lebanese American Docl, Doc2
American University Doc2

IV. PROPOSAL

The architecture of our Unsupervised Dendrogram Index and
Search (UDIS) is show in Figure 5. It consists of two
components: i) offline index building and ii) online index search.
On the one hand, the offline component includes parsing,
preprocessing the documents, clustering the documents, and
creating the hierarchical dendrogram clustering structure.

Building the
thesaurus

Augmentation of the
feature vectors

Offline
Index
Creation

Semantic
Inclusion

User Documents

Preprocess User
Documents

Include Documents feature
Semaniics wectors

Do Not Include Semantics

Augmented Feature

Hierarchical
Clustering of
documents

I
Online i
Index
Search

Dendrogram

User Query Structure

Preprocess the query
Apply tree traversal
algorithm

Resulting Documents

Figure 5. Overall architecture of USSI



To perform semantic augmentation, two additional offline steps
are added to include semantics in the structure: i) building the
thesaurus and ii) augmenting the feature vectors prior to
clustering the documents. On the other hand, the online
component performs real-time execution of the hierarchical
structure traversal algorithm, accepting a user query as input and
producing the relevant result documents as output. The input
query is preprocessed similarly to the offline processing
pipeline, and the results are adapted to user-chosen thresholds.

A. Pre-Processing and Clustering

Figure 6 describes our preprocessing pipeline, allowing to
generate the document TF-IDF feature vectors which will be
augmented through an inputted thesaurus or directly fed to the
hierarchical clustering algorithm. Data serialization is achieved
using the python pdftotext library which converts input
documents into a text string. The lemmatization and stop words
are handled using the python NLTK library. Generating the
feature vectors is achieved using the sklearn TF-IDF vectorizer
and are saved in a Pandas dataframe whose columns represent
the feature words, rows represent each document, and each row
‘i’ — column ‘j° pair contains the weight of the word ‘j’ in the
document ‘i’ based on the TF-IDF concept. Next, the dataframe
of feature vectors is used to create a dendrogram based on the
cosine distance similarity through the SciPy hierarchical
clustering library. The outputted SciPy linkage matrix is used to
build the dendrogram index structure (section [V.D).

Extract text Lowercase Remave Stopaords, Lemmatize Preprocessed Text
puncruztions
Hierarchical
Clustering Algorinm

Documents

Non-tugmented——  Feature Veciors 4—[ TF-IDF ]

Augmented

Dendrogram
Structure

Thesaurus

—

Augmented Featura
Vectors ¢ Augment J

Figure 6. Document preprocessing and clustering

B. Thesaurus Building

Our thesaurus building component is based on the distributional
thesaurus generation algorithm we previously developed in [13].
It accepts as input: a text corpus C, as well as input parameters
designating the co-occurrence window size and the number of
top-ranked terms needed to identify related terms. The output
thesaurus consists of the list of distinct terms from C, where
every term £ is associated a co-occurrence vector y, =< occf(t;,

1), occf(ti, tr), ...> providing the co-occurrence frequencies of the
top terms co-occurring with # in C. The user can choose to
generate the thesaurus form the document corpus accepted as
input for topic extraction, or can be generated based on an
external corpus. The latter needs to be chosen to describe the
target documents at hand, since the effectiveness of the thesaurus
depends on the lexical coverage of its reference corpus.

C. Feature Vector Augmentation

We use the generated thesaurus to augment the feature vectors
and enrich them with new semantically related words. Consider
ti a word in our corpus and Y the set of words (v, y2, s, ...)
related to # in the thesaurus, and consider occi; the number of
times ¢ and y; co-occur together in the reference corpus. To get
the normalized semantic relatedness, we divide nbi; by the
maximum number of occurrences MaxOcc between any two

words in the thesaurus, denoted R:. Next, we update the original
weight of # in the feature:

Weight(t;) = Weight (t; o1q) + Z Weight(Y; 0;q) * R; * alpha (1)

Y;inYy

where alpha € [0, 1] is used to specify the effect of the co-
occurrence on the augmented weights.

Weight(Y;) = Z Weight(X; p;q) * R; * alpha )

tjinC

To implement this behavior, we copy the original dataframe of
feature vectors to make sure we have the old values of #; and then
we loop over our features, check their related words, and perform
the augmentation on the columns in the dataframe.

D. Dendrogram-based Index Structure

Following feature vector augmentation, we represent the output
of the hierarchical clustering algorithm as a dendrogram tree-like
structure that contains the needed information to apply our
traversal algorithm (described in Section IV.E). Tree nodes
represent documents and centers of each dendrogram
component, having the following attributes: left node, right
node, feature vector, deep nodes. At each center, the feature
vector is calculated as the sum of its children feature vectors,
where deeper nodes are processed recursively based their
descendent nodes (Figure 7).

Hierarchichal clustering2

FV: Feature Vactor

 FVA=FV3+FV2
o (_MNode 4

Fva = FVO + FV1

Dee 2 Dec O  Dec 1

w0 Fv2 FVO FV1
2 0 1

a. Input dendrogram b. Output tree structure

Node 4
Left node: Reference to Doc 2
Right node: Reference toNode 3
Feature vector: FV3 + Fv2
Deep Nodes: Doc0, Doc1, Doc2

¢. Node attributes

Figure 7. Index tree representation

E. Index Traversal Algorithm

While the construction of the index tree structure is done bottom-
up, its traversal is done from the top-down. The input is a user
query that contains a free text. This text will be pre-processed in
the same way as indexed documents, then a feature vector is
generated while making sure it has the same dimensions as our
queried data and will be fed to the algorithm. Next, the user
feature vector will be inserted at the root of the index tree, and
then it starts comparing it with the feature vectors of the left and
right child nodes using the cosine distance similarity (other
similarity measures can be used). Two thresholds can be set by
the user to control the traversal algorithm and the search results:

e Relevance threshold Threshrec [0,1]: Used to specify
whether we need to search the node with smaller
similarity only if the small similarity is higher than or
equal to the similarity of its parent multiplied by the
Threshre. Behavior at the extremities: 1) maximum (=1):
does not consider searching the node with smaller
similarity to the query, ii) minimum (= 0): always
considers all the children’s nodes and searches them.



e  Specificity threshold Threshsp.. € [0,1]: used to specify
when to stop searching deeper in the index tree. If a given
node has a cosine similarity value with the query >
Threshspec, then we proceed to this node and continue
searching deeper inside the index tree, else we stop.
Behavior at the extremities: i) maximum (=1), no
navigation in the index tree — returns all the documents as
results (most generic), ii) minimum (= 0), navigates the
index tree to reach the most similar leaf node — returns
only a minimal number of documents as result (most
specific), iii) default (=-1), the threshold will be
dynamically computed while traversing the index
structure and returns the node with the highest similarity.

Algorithm IndexTreeTraversal

Input: User query g; root node; Threshge; Threshspec
Output: Query result

1 Result =[]

2 ParentToSearch = []

3 If (Threshspec == -1) Then Initiatlize Threshspec = 0
4 Step 1: For each node n; € First Level Children
5 Step 2: Compute Sim(q, ni)
6
7
8

Step 3: If (min(Sim) > Threshgel x Threshspec) Then append ni to ParentNode
Step 4: If (max(Sim) = Threshspec) Then
If niis internal node Then

9 If ThreshSpec == -1 Then ThreshSpec = max(Sim)

10 Repeat from Step 1

11 Else If ni is leaf node Then Add n; to Result // Target reached
12 Else Add all leaf nodes to Result // Parent node is target
13 If (ParentToSearch is |lEmpty) Then Apply Search on each node in

14 ParentToSearch

Return Result

Figure 8. Index Tree Traversal Algorithm

The algorithm’s pseudo-code is shown in Figure 8. It checks the
highest and smallest similarity nodes: if the highest similarity
node is > Threshspec, then we navigate to it and continue the same
procedure (lines 1-6). Meanwhile, if the smallest similarity node
is > Thresspec x Threshrel, then this node is added as a parent to
search later since it might also have relevant results (lines 7-12).
Special cases such as two nodes having the same similarity are
quite rare; however if such a case occurs and both have
similarities > Threshspe, then the algorithm navigates to one
node and adds the other as a parent to search later (linel3).
Threshrel is chosen by the user, while Threshspec takes the value
of the highest similarity in each traversal level of the algorithm.
The output is a set of documents with their similarity scores
ranked in descending order of their similarities with respect to
the user query.

V. EMPIRICAL EVALUATION

A. Experimental Process and Metrics

To evaluate the quality and performance of our approach, we
compare it with multiple variations of inverted indices: i)
unigram non-augmented inverted index, ii) unigram
semantically-augmented inverted index, iii) uni/bi-gram non-
augmented inverted index, and iv) uni/bi-gram semantically-
augmented inverted index. We utilize the following metrics: 1)
index building time: we vary the size of the input dataset, 2) index
size: we vary the size of the input dataset, 3) query execution
time: we vary the number of query terms and threshold values,
and 4) query result quality: we calculate precision, recall, F-
value, and MAP values of the returned documents while varying
the number of query terms.

Build Time Index Size

R T o5 0 2 0 8 %

50
Size (MB)

w0 %
Size (MB)

—e— UDIS (our approach) not augmented
—e— UDIS (our approach) semantically augmented
—e— Inverted Index Unigram not augmented

Inverted Index Unigram semantically augmented
Inverted Index Uni/Bigram not augmented
—e— Inverted Index Uni/Bigram semantically augmented

a. Index build time b. Index size

Figure 9. Index build time and index size

B. Experimental Results

1) Index Build Time and Size

The time and size complexity of building our index are linear in
the size of the document dataset being indexed, O(nx|D|) where
n is the number of documents being index and |D| is the
maximum document size. To evaluate the latter, we use 400
documents downloaded from the United Nations’ Manara
platform? as a test dataset. Results in Figure 9.a shows that small
subset (< 40 MB) requires almost the same time as building the
unigram inverted index in both non-augmented and augmented
variations. In addition, creating a uni/bigram non-augmented
inverted index slightly takes more time since it needs to traverse
the two term features in the document. However, a significant
leap is observed in build time when creating a uni/bigram
augmented inverted index since additional processing is required
to generate all the term combinations needed from the thesaurus,
and since the inverted index was not originally created to include
semantics.

Figure 9.b shows a comparison between the different sizes
of the indices were both our approaches require more space than
the inverted index techniques. This is because our approach does
not only save the syntactic features of the documents but also
stores the structural relations built after clustering all the
documents and building the tree structure where each parent
node contains its unique feature vector equal to the addition of
its children feature vectors and the respective references to their
nodes. This additionally stored information is required to
perform index traversal during the query evaluation phase.

2) Query Execution time

To evaluate query execution time, we created a 10 term-long
query from random terms collected from our UN documents
dataset, and then for each batch of documents, we queried all the
indices 10 times starting with a 1-term query until reaching the
whole 10-term query. We vary Threshre between 0.7, 1 (returns
only the best node), and 0 (returns all the leaf nodes). Threshspec
is computed dynamically by our index tree traversal algorithm
(Figure 8). For each of the inverted indices, we utilize both
AND- and-OR operators. Results are shown in Figure 10. Here,
we make the following observations. First, the time needed to
execute a query for a given dataset size is almost constant and is
not heavily affected by the number of query terms since in all
cases the query is transformed into a feature vector that matches
the dataset feature vector. Second, the query execution time
increases with the size of the dataset where bigger index tree is
be used, and thus the time needed to navigate through it will
increase. Third, we notice a time increase when Threshgel
decreases, allowing to further investigate lower similar nodes in
the index tree traversal algorithm. Regarding the inverted index
approaches, we notice a minor increase in execution time when

? https://manara.unescwa.org/home



the number of query terms and when the size of the dataset
increase, reflecting index data retrieval speed.

a. UDIS not augmented,
Threshgel = 0.7

b. UDIS semantically
augmented, Threshge = 1

c. UDIS semantically
augmented, Threshge = 0

d. Inverted index,
Unigram, not augmented,
AND AND

e. Inverted index,
Unigram, augmented,

f. Inverted index,
Unigram, augmented, OR

Figure 10. Query execution time

2) Query Result Relevance

In this experiment, we used a smaller dataset composed of 17
UN documents each having a different semantic meaning (i.e.,
targeting each one of the 17 UN’s Sustainable Development
Goals — SDGs). Next, we created three sets of queries with their
corresponding correct answers to evaluate three different
conditions, each set is made of four queries starting with a query
of 2-3-4-5 terms respectively. A 1-term query will not be of any
significance since both traditional techniques and our approach
and will lead to the same answer. Average results are reported in
Table 2. First, selecting a Threshrel = 0 returns all the documents
sorted by their corresponding weights and acts as an inverted
index OR approach. Second, even though we observe high recall
(R) and mean average precision (MAP) values for the OR
inverted index approach, its weakness is exposed through the
low prevision (PR) and F-value metrics since it returns many
irrelevant results with only a good ranking of these results based
on the TF-IDF weights used for both approaches. Third, the
AND method is prone to missing relevant results, where it
performed well in the 2™ set of queries but failed in the others.
Fourth, by changing Threshre, the users can tune the results
according to their needs. To sum up, results in Table 2 reflect the
improved quality of our indexing technique compared with
existing inverted index solutions.

Table 2. Query relevance results (average PR, R, F-value, and MAP)

Method PR R F-Value MAP

Our Approach 0.7 1.000000 0535363 0633333 0535363

Our Approach 0 0559829 0887178 0598088 0962179
Our Approach 0.5 0847222 0730128 0719907 0730128
Our Approach 1 0750000 0.867735 0710560 0.717603
Invindex Unigram AND 0.500000 0.371795 0395833 0.371795
Invindex Unigram OR 0559829 0987179 0598088 0.970978

Invindex Uni/Bigram AND 0.500000 0.371795 0.395833 0.371795

N e o b w N = O

Invindex Uni/Bigram OR 0558829 0987179 0598088 0970976

VI. CONCLUSION

In this study, we describe a new text indexing solution by
introducing a Machine Learning (ML) indexing technique based
on hierarchical clustering. We introduce a dendrogram-like tree
index structure which allows linking data items according to
their clustering in the document corpus, providing data co-

occurrence and semantic context in index building and querying.
We have empirically evaluated the impact of index size and
query execution, and their relationship with search result quality.
Results show improved quality compared with unigram and
bigram AND-and-OR inverted index solutions.

We are currently extending our empirical evaluation on
larger datasets to evaluate the quality and performance of our
approach. We are also investigating the parallel execution of the
algorithm, allowing to navigate the index tree structure using
multi-threading, aiming to optimize query execution speed. In
the near future, we plan to examine the use of supervised
machine learning techniques [2] in combination with our
unsupervised approach in the creation of the index. In the long
run, we plan to investigate the creation of an ensemble indexing
technique, combining both the inverted index and our ML-based
index, to optimize both time performance and result quality.

REFERENCES

[1] Albert A., et. al., Intelligent Indexing—Boosting Performance in Database
Applications by Recognizing Index Patterns. Electronics, 2020. 9(9), 1348.

[2] Attieh J. and Tekli J., Supervised Term-Category Feature Weighting for
Improved Text Classification. Knowledge Based Systems 2023. 261:110215.

[3] Bruch S., et al., Efficient Inverted Indexes for Approximate Retrieval over
Learned Sparse Representations. Inter. ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR'24) 2024. pp. 152-162.

[4] Chen M., et al., GPHash: An Efficient Hash Index for GPU with Byte-
Granularity Persistent Memory. USENIX Conference on File and Storage
Technologies (FAST"25) 2025. pp. 203-220.

[5] Dash S. and RaoS., ECG Arrhythmia Detection Using Choi-Williams Time-
Frequency Distribution and Artificial Neural Network. Inter. J. of Advanced
Research in Computer and Communication Engineering, 2016. 2278-1021.

[6] Fote F., et al., Big Data Storage and Analysis for Smart Farming.
International Conference on Cloud Computing and Artificial Intelligence:
Technologies and Applications (CloudTech'20) 2020. pp. 1-8.

[7] Hu Y., et al., 4 novel hashing-inverted index for secure content-based
retrieval with massive encrypted speeches. MM Syst., 2024. 30(1): 22.

[8] Kraska T., et al., The Case for Learned Index Structures. ACM SIGMOD
Conference (SIGMOD'18), 2018. pp. 489-504.

[9]1 Licks G., et al., SmartIX: A database indexing agent based on reinforcement
learning. Applied Intelligence, 2020. 50(8): 2575-2588.

[10]Liu S., et al., ACER: Accelerating Complex Event Recognition via Two-
Phase Filtering under Range Bitmap-Based Indexes. ACM SIGKDD Conf.
on Knowledge Discovery and Data Mining (KDD'24), 2024, 1933-1943.

[11] Miller G.A. and Fellbaum C., WordNet Then and Now. Language Resources
and Evaluation, 2007. 41(2): 209-214.

[12] Qader M., Cheng S., and Hristidis V., 4 Comparative Study of Secondary
Indexing Techniques in LSM-based NoSQL Databases. ACM SIGMOD
Conference (SIGMOD'18), 2018. pp. 551-566.

[13] Sarkissian S. and Tekli J., Unsupervised Topical Organization of Documents
using Corpus-based Text Analysis. Inter. ACM Conf. on Management of
Emergent Digital EcoSystems (MEDES'21), 2021. pp. 87-94.

[14] Sun J., et al., 4 blockchain-based multi-keyword rank search scheme for B+
tree inverted index. Computer Standards & Interfaces, 2025. 93: 103968.
[15] Teklil., et al., Full-fledged Semantic Indexing and Querying Model Designed
for Seamless Integration in Legacy RDBMS. Data and Knowledge

Engineering, 2018. 117: 133-173.

[16] Tekli J., et al., SemIndex+: A Semantic Indexing Scheme for Structured,
Unstructured, and Partly Structured Data. Elsevier Knowledge-Based
Systems, 2019. 164: 378-403.

[17] Tekli J., An Overview of Cluster-based Image Search Result Organization:
Background, Techniques, and Ongoing Challenges. Knowl. Inf. Syst., 2022.
64(3): 589-642.

[18] Tekli J., Tekli G., and Chbeir R., Combining offline and on-the-fly
disambiguation to perform semantic-aware XML querying. Computer
Science and Information Systems, 2023. 20(1): 423-457.

[19] Tsatsaronis G., Varlamis 1., and Nervag K., SemaFor: semantic document
indexing using semantic forests. Inter. Conf. on Information and Knowledge
Management (CIKM'12), 2012. pp. 1692-1696.

[20] Wang J. and Athanassoulis M., CUBIT: Concurrent Updatable Bitmap
Indexing. Proceedings of the VLDB Endowment, 2024. 18(2): 399-412.

[21] Yan S., Wang J., and Liang J., Big Data Storage and Analysis System for
Space Application. Inter. Conf. on Computer Supported Cooperative Work
in Design (CSCWD'24), 2024. pp. 1764-1769.

[22] Yan Y., et al., Semantic indexing with deep learning: a case study. Big Data
Analytics, 2016. https://doi.org/10.1186/s41044-016-0007-z.

[23] Yildiz B., Optimizing bitmap index encoding for high performance queries.
Concurrency & Computation: Practice & Experience, 2021. 33(18) (2021).



