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Abstract—Text data retrieving depends initially on the data 
indexing, emphasizing the role of different indexing techniques used 
for query processing. In this context, traditional Information 
Retrieval (IR) techniques based on the inverted index share a 
number of challenges including limited scalability, accuracy, and 
semantic awareness. In this study, we provide an improved solution 
by introducing a new Machine Learning (ML) indexing technique 
based on hierarchical clustering. Our Unsupervised Dendrogram 
Index and Search (UDIS) approach introduces a dendrogram-like 
tree index structure that allows linking data items according to their 
clustering in the document corpus, providing data co-occurrence 
and semantic context in index building and querying. UDIS aims at 
improving the IR imbedding with a semantic tree structure, 
allowing improved quality and seamless integration of semantic-
aware search results. We have empirically evaluated the impact of 
UDIS index size and query execution, and their relationship with 
search quality. Experiments show improved results compared with 
unigram and bigram AND-and-OR inverted indices. 

Keywords—Text indexing, Text querying, Information retrieval, 
Unsupervised learning, Data clustering, Dendrogram. 

I. INTRODUCTION 
With its exponential growth and massive volume, data generation 
has taken huge leaps in the last couple of years as it reached the 
zettabyte range, and it is continuously rising [21]. This 
phenomenon, also known as Big Data, introduces various 
challenges in terms of storage, security, quality, and retrieval of 
data. Information retrieval (IR) is defined as the process by which 
a collection of data is represented, stored, and searched for 
knowledge discovery as a response to a user request (query). One 
key application that demonstrates the importance of information 
retrieval is search engines such as Google, and Bing, among other 
platforms. Due to the rapid increase and diversity of Web data, it 
is becoming more challenging for IR solutions to provide users 
with information that satisfies their needs [6]. Retrieving data 
from documents depends initially on how the data is indexed, 
emphasizing the role of different indexing techniques used for 
efficient query processing. Traditional IR techniques are based on 
the inverted index structure which perform one-by-one query 
processing, and share a number of challenges including limited 
scalability, accuracy, and semantic awareness. In this study, we 
address the afore mentioned challenges, and provide an improved 
solution by introducing a new Machine Learning (ML) indexing 
technique based on hierarchical clustering. Our Unsupervised 
Dendrogram Index and Search (UDIS) approach introduces a 
dendrogram-like tree index structure that allows to link data 
items according to their clustering in the document corpus, 
providing data co-occurrence and semantic context in index 
building and querying. We aim to improve the IR imbedding 
within a semantic tree structure, allowing improved quality 
and seamless integration of semantic-aware search results. We 
have empirically evaluated  the impact of UDIS index size and 
query execution, and their relationship with search quality. 
Experiments show improved results compared with unigram 
and bigram AND-and-OR inverted indices.  

Section 2 briefly describes the related works. Section 3 
presents our proposal. Section 4 describes the experimental 
evaluation, before concluding in Section 5 with future works. 

                                                           
1 C. Aoun is co-affiliated with the Lab-STICC, CNRS UMR, ENSTA (Ecole Nationale Supérieure de Techniques Avancées), Brest, France 

II. RELATED WORKS 
In Information Retrieval (IR) and database (DB) systems, 
handling a user query search request is an important task that 
needs to be fast and accurate, to allow a good user experience. 
To accomplish this, indexing structures are used as a backbone 
to almost any IR/DB engine [16]. This section briefly describes 
legacy and ML-based indexing techniques. 
 
A. Legacy Text Indexing Techniaues 
Most search engines use an inverted index to store their 
documents for IR. As the name suggests, inverted indices reverse 
the document structure by storing for each word in a collection 
of documents the set of documents it appears in. The granularity 
of the position of a word stored in the inverted index can vary 
depending on the application needed. Usually, the size of the 
inverted index ranges from 5 to 100% of the size of the indexed 
documents, depending on the way the index is stored in 
compressed or uncompressed form and the preprocessing 
techniques applied on the documents prior to indexing. For 
instance, stemming or lemmatizing, removing stop-words, and 
removing punctuation will help in reducing the size of the index 
[3]. Querying the inverted index is done by searching the 
indexed documents and returning the documents where each 
word of the query occurrs. Then, a Boolean operation is applied 
to the results (AND or OR) to get the final result of documents.  

Other legacy text indices have been developed, each with its 
set of properties and applications. B-tree indices consist of nodes 
and branches connected from top to bottom. The top-most node 
is called the root and the bottom-most nodes are called the leaves 
which are usually pointers to physical data locations [12]. B-tree 
indices usually have a low update, delete, and insert cost and can 
be seen as structures that map keys to positions within a sorted 
array [8]. B-trees are good for range and equality comparisons. 
Hash indices apply a hash function to a certain key to find where 
the data is stored in the disk and is best suited when working with 
one key at a time [4]. Bitmap indices are built using a two-
dimensional array and usually index a certain column in a table. 
The number of columns in the bitmap is equal to the number of 
values that can be taken by the column to be indexed in the table 
plus one column to indicate the row [20]. For example, if the 
column to be indexed is “Student” and the values are “Yes” or 
“No” and there are ten rows in the table, then in the bitmap we 
will have three columns (Row, Yes, No) and ten rows. Next, for 
each row in the original table, we check its value and set 
respectively the values of the columns in the index to either 0 or 
1 which is the reason behind the “bit” in the bitmap naming [10]. 
The bitmap index is best suited for columns with low cardinality 
[23]. Multiple variations of each technique have been developed, 
including B+-tree, B*-tree, hybrid B-Tree [14]. In the case of B-
tree, different hashing functions can be used to reduce collisions 
and other issues for hash indices [7], and different compression 
techniques for the bitmap indices can be used [23]. Moreover, 
multiple hybrid techniques have emerged to solve problems in a 
particular indexing method, for instance, combining B-Tree and 
Hash map to reduce the number of hash map lookups [7]. Since 
each index is best suited in certain situations, choosing a proper 



indexing technique depending on the query types presented to a 
DB greatly affects the performance and execution of the queries 
[1]. Query optimizers (QO) are usually used to get index 
recommendations and decide what to do with an index whether it 
should be created, removed, or recreated. More recent algorithms 
utilize Genetic Algorithms (GA) and ML algorithms to improve 
the indexing process. In [1], an artificial neural network (ANN) 
classifier is proposed as an algorithm trained to choose the most 
suitable index based on certain patterns learned by the ANN from 
a given dataset. Results show improved efficiency. 

B. Semanic-Aware Text Indexing 
Many recent studies have attempted to include semantic meaning 
in the text indexing process [5], where users who are not familiar 
with the data usually use terms that are syntactically different 
from the data which frequently leads to irrelevant results [16]. 
For instance, consider user query “car”, and a data collection 
about automobiles where there is no semantic knowledge 
connecting “car” with “automobile”. In this case, the legacy 
indexing structure looks at the syntactic difference only and 
considers these words as different, without returning any results 
to the user. Including semantics comes with its challenges such 
as performing word sense disambiguation [18], semantic query 
reformulation [15], and search result clustering [17]. Multiple 
approaches suggest incorporating semantic knowledge at the 
query processing level, through the expansion of the original 
query with a knowledge source (e.g., Wordnet [11], or a domain 
ontology [5]), and the usage of query relaxation, rewriting, 
disambiguation and refinement techniques [18]. However, these 
approaches generally suffer from reduced quality, speed, and 
limited user involvement [16]. To partly solve some of these 
issues, recent studies suggest integrating semantics at the most 
basic data indexing level [15, 16]. To accomplish this task, the 
authors suggest creating a combination of two graph 
representations of the input, one representing the textual data, 
and another represents the knowledge base graph of the terms in 
the corpus. Semantic-aware search is subsequently performance 
on the integrated graph structure using optimized graph-search 
algorithms. In [19], the authors introduce an indexing algorithm 
that uses spectral graph theory and semantic spanning forests 
built from semantic relations extracted from different thesauri 
(namely Wordnet and Wikipedia) to create a dense semantically 
enriched representation of a document, then when queried, the 
same processing technique is applied to the query to generate its 
semantic representation and then the similarity between the 
documents and the user query is computed using the Hausdorff 
distance. The semantic indexing solutions in [19] were compared 
with traditional indexing techniques and showed promising 
results. 

C. Machine Learning Indexing Techniques 
More recently, few Machine Learning (ML) indexing techniques 
have been proposed in the literature, e.g., [8, 9, 22]. With this 
category of techniques, an index structure is seen as a model that 
can be trained to predict results. For instance, a key input of the 
position of an object in a sorted array can describe a B-tree, and 
can be viewed as a hash map. In addition, a bitmap or bloom 
filter can be seen as a model trained to output whether a record 
exists or not. The ML model can dynamically learn the 
distribution of the data which might be challenging for 
traditional indices. For instance, in the case of hash functions, a 
model can be used to learn a hashing function that fits the data 
with the lowest conflicts possible which is applicable in both 
hash map and bloom filter indices. For instance, the authors in 
[8] have trained a two-layer fully connected neural network, and 
compared it with a B-tree, resulting  in a 70% faster indexing and 

less memory consumption. Furthermore, the authors in [8] 
propose three important models: the learning index framework 
(LIF), the recursive-model indices (RMI), and hybrid indices. 
The LIF is based on Tensorflow to learn simple models and 
generate index configurations accordingly. The RMI is a 
hierarchy of models where at each level a model predicts which 
of the next level model, it thinks knows better the needed 
location with a minimal error. The hybrid method merges 
between the RMI and B-tree indices, replacing a model with a 
B-tree whenever its performance is worse than a B-tree. 
Experiments showed improved results compared with the 
traditional indices: i) the learned B-tree and bloom filter indices 
were faster in terms of build time and lookup and had smaller 
sizes compared with their legacy counterparts, and ii) the learned 
hashing function in the hash map index was able to greatly 
reduce the conflict number [8]. In [9], the authors introduce 
SmartIX, another ML approach to automatically index DBs 
using reinforcement learning. The method is based on an agent 
which job is to choose an index for the DB. The agent is a module 
of five components. The first stage is to transform the current 
index of the DB into the agent state to test its performance on a 
benchmark (TCP-H) in the second step, and then a learning 
algorithm will be rewarded based on the results. Finally, an 
exploration function will decide what to do next: whether to 
further investigate the new information, or look at other actions. 
Empirical results in [9] show improved query time and index 
storage size, compared with legacy indexing solutions. In [22], 
the authors use a Convolutional Neural Network (CNN) to 
implement a semantic index for biomedical documents. They 
first generate the feature representation of the documents using 
Wikipedia categories and Metamap, then the output of this step 
is fed to a CNN with a ReLU activation function and 50% 
dropout in all the layers. Next, the output of the CNN is fed to a 
sequence of two classifiers: the first one predicts one out of a 
chosen number of independent categories, and the second is 
more specific predicting a subcategory inside the previously 
chosen category. Experiments showed accuracy results which 
are on a par with and sometimes surpassing existing methods.  
 

III. MOTIVATION 
When used with full text search, the traditional inverted index 
and querying techniques showcase many challenges, including: 
i) lack of semantics, ii) lack of query coherence where queries 
are processed as separate individual terms, and iii) drawbacks of 
intersection and union queries. We illustrate these issues below. 

 

 
 

 
 

Figure 1. Sample document and query result 
 

 
Figure 2. Sample keyword queries 

 
Lack of semantics: Figure 1 illustrates the problem. We 

notice that the non-augmented index cannot return related words 



and only looks for exact matches which can affect retrieval 
accuracy and might not satisfy the users’ needs. 

 
Doc 1: Lebanese American University 
Doc 2: Lebanese American Institution 

Lebanese Doc1, Doc2 
American Doc1, Doc2 
University Doc1 
Institution Doc2 

 

 

a. Data corpus 
 
 

 

b. Inverted index 

 
c. Query processing 

 

Figure 3. Query processing using intersection 
 

Lack of query coherence: the query is processed as separate 
individual term-based queries, thus it does not consider the 
whole initial query as one single unit of information which might 
lead to loss of information, returning incomplete results. Figure 
2 illustrate an example, where the target query is processed as 
three separate queries. The results are then joined using set 
theory through intersection or union which do not always cover 
the whole initial query.  

Drawbacks of intersection and union: Using intersection to 
join the results of multiple sub-queries can produce limited 
information about the results. For instance, consider the 
documents and their inverted index in Figure 3. We notice that 
the result is only Doc1 even though Doc2’s content are also 
related to Q1. Based on the results, we can deduce that only Doc1 
contains all the keywords in the query, but we cannot know 
whether there exist other documents that are partly related to Q1 
having a certain number of keywords occurring in Q1. For 
instance, obtaining as a result: R1 = <Doc1 (100%), Doc2 
(75%)> would be more informative and complete rather than 
getting only Doc1. 

Using union to combine individual sub-query results into 
one list might include partly irrelevant/noisy results. Consider 
for instance the documents and inverted index in Figure 4. We 
notice that even though Doc2 is not quite relevant to Q1, yet it is 
returned as a result. Similarly, consider a large text having the 
word “Institution” in it only once, then it will also be returned as 
part of the result and will thus negatively affect the precision of 
the query execution. 

Potential solutions: using N-grams and weighed terms. 
Considering N-grams to highlight the combinations of query 
terms as individual units of information might solve part of the 
previously stated challenges, however, it will also drastically 
increase the size of the index, creating an index scalability 
problem. Consider for instance the indices in Table 1 presenting 
two index tables: unigram only and unigram+bigram. We notice 
that the number of entries of the index increases from 3 to 5 if 
we add only consecutive words, showing the importance of 
having these words with each other in the same order. However, 
if there is a need to add all combinations or other n-grams, then 
the number of index entries will significantly increase 
accordingly. Note that weights can be added to highlight the 
relevance of each index entry in describing the indexed 
document(s). This process will need more storage space as well 
as more creation and processing time (cf. empirical evaluation in 
Section 5). 

 
Doc 1: Lebanese American University 
Doc 2: Lebanese Red Cross 
 

Lebanese Doc1, Doc2 
American Doc1 
University Doc1 

Red Doc2 
Cross Doc2 

 

 

a. Data corpus b. Inverted index 
 

 
c. Query processing 

 

Figure 4. Query processing using union 
 
The above mentioned challenges have motivated us to design a 
new unsupervised index solution allowing to process a user 
query holistically, rather than individual terms, aiming to 
consider the query’s semantics in the indexing structure and 
improve the traditional inverted index technique by leveraging 
the power of ML in this field. 
 

Table 1. Inverted indices: unigram and bigram 
 

a. Unigram  b. Unigram + Bigram 
 

Lebanese Doc1, Doc2, Doc3     Lebanese Doc1, Doc2, Doc3 
American Doc1, Doc2, Doc4  American Doc1, Doc2, Doc4 
University Doc1  University Doc2 

   Lebanese American Doc1, Doc2 
   American University Doc2 

 
IV. PROPOSAL 

The architecture of our Unsupervised Dendrogram Index and 
Search (UDIS) is show in Figure 5. It consists of two 
components: i) offline index building and ii) online index search. 
On the one hand, the offline component includes parsing, 
preprocessing the documents, clustering the documents, and 
creating the hierarchical dendrogram clustering structure.  
 

 
 

Figure 5. Overall architecture of USSI 

Index 
Creation 

Index  
Search 



To perform semantic augmentation, two additional offline steps 
are added to include semantics in the structure: i) building the 
thesaurus and ii) augmenting the feature vectors prior to 
clustering the documents. On the other hand, the online 
component performs real-time execution of the hierarchical 
structure traversal algorithm, accepting a user query as input and 
producing the relevant result documents as output. The input 
query is preprocessed similarly to the offline processing 
pipeline, and the results are adapted to user-chosen thresholds. 

 

A. Pre-Processing and Clustering 
Figure 6 describes our preprocessing pipeline, allowing to 
generate the document TF-IDF feature vectors which will be 
augmented through an inputted thesaurus or directly fed to the 
hierarchical clustering algorithm. Data serialization is achieved 
using the python pdftotext library which converts input 
documents into a text string. The lemmatization and stop words 
are handled using the python NLTK library. Generating the 
feature vectors is achieved using the sklearn TF-IDF vectorizer 
and are saved in a Pandas dataframe whose columns represent 
the feature words, rows represent each document, and each row 
‘i’ – column ‘j’ pair contains the weight of the word ‘j’ in the 
document ‘i’ based on the TF-IDF concept. Next, the dataframe 
of feature vectors is used to create a dendrogram based on the 
cosine distance similarity through the SciPy hierarchical 
clustering library. The outputted SciPy linkage matrix is used to 
build the dendrogram index structure (section IV.D). 
 

 
Figure 6. Document preprocessing and clustering 

B. Thesaurus Building 
Our thesaurus building component is based on the distributional 
thesaurus generation algorithm we previously developed in [13]. 
It accepts as input: a text corpus C, as well as input parameters 
designating the co-occurrence window size and the number of 
top-ranked terms needed to identify related terms. The output 
thesaurus consists of the list of distinct terms from C, where 
every term ti is associated a co-occurrence vector 

OccVV =< occf(ti, 

tj), occf(ti, tk), …> providing the co-occurrence frequencies of the 
top terms co-occurring with ti in C. The user can choose to 
generate the thesaurus form the document corpus accepted as 
input for topic extraction, or can be generated based on an 
external corpus. The latter needs to be chosen to describe the 
target documents at hand, since the effectiveness of the thesaurus 
depends on the lexical coverage of its reference corpus.  
 

C. Feature Vector Augmentation 
We use the generated thesaurus to augment the feature vectors 
and enrich them with new semantically related words. Consider 
ti a word in our corpus and Y the set of words (y1, y2, y3, …) 
related to ti in the thesaurus, and consider occi-j the number of 
times ti and yj co-occur together in the reference corpus. To get 
the normalized semantic relatedness, we divide nbi-j by the 
maximum number of occurrences MaxOcc between any two 

words in the thesaurus, denoted Ri. Next, we update the original 
weight of ti in the feature: 
 

 (1) 

 

where alpha  [0, 1] is used to specify the effect of the co-
occurrence on the augmented weights. 
 

 (2) 

 
To implement this behavior, we copy the original dataframe of 
feature vectors to make sure we have the old values of ti and then 
we loop over our features, check their related words, and perform 
the augmentation on the columns in the dataframe. 
 

D. Dendrogram-based Index Structure 
Following feature vector augmentation, we represent the output 
of the hierarchical clustering algorithm as a dendrogram tree-like 
structure that contains the needed information to apply our 
traversal algorithm (described in Section IV.E). Tree nodes 
represent documents and centers of each dendrogram 
component, having the following attributes: left node, right 
node, feature vector, deep nodes. At each center, the feature 
vector is calculated as the sum of its children feature vectors, 
where deeper nodes are processed recursively based their 
descendent nodes (Figure 7). 
 

  
 

a. Input dendrogram 
 

b. Output tree structure 
 

 
c. Node attributes 

 

Figure 7. Index tree representation 
 

E. Index Traversal Algorithm 
While the construction of the index tree structure is done bottom-
up, its traversal is done from the top-down. The input is a user 
query that contains a free text. This text will be pre-processed in 
the same way as indexed documents, then a feature vector is 
generated while making sure it has the same dimensions as our 
queried data and will be fed to the algorithm. Next, the user 
feature vector will be inserted at the root of the index tree, and 
then it starts comparing it with the feature vectors of the left and 
right child nodes using the cosine distance similarity (other 
similarity measures can be used). Two thresholds can be set by 
the user to control the traversal algorithm and the search results: 
 

 Relevance threshold ThreshRel  [0,1]: Used to specify 
whether we need to search the node with smaller 
similarity only if the small similarity is higher than or 
equal to the similarity of its parent multiplied by the 
ThreshRel. Behavior at the extremities: i) maximum (=1): 
does not consider searching the node with smaller 
similarity to the query, ii) minimum (= 0): always 
considers all the children’s nodes and searches them. 



 Specificity threshold ThreshSpec  [0,1]: used to specify 
when to stop searching deeper in the index tree. If a given 
node has a cosine similarity value with the query  
ThreshSpec, then we proceed to this node and continue 
searching deeper inside the index tree, else we stop. 
Behavior at the extremities: i) maximum (=1), no 
navigation in the index tree – returns all the documents as 
results (most generic), ii) minimum (= 0), navigates the 
index tree to reach the most similar leaf node – returns 
only a minimal number of documents as result (most 
specific), iii) default (=-1), the threshold will be 
dynamically computed while traversing the index 
structure and returns the node with the highest similarity. 

AAlgorithm IndexTreeTraversal 
IInput: User query q; root node; ThreshRel; ThreshSpec 
OOutput: Query result  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Result = [] 
ParentToSearch = [] 
If (ThreshSpec == -1) Then Initiatlize ThreshSpec = 0 

Step 1: For each node ni  First Level Children  
Step 2: Compute Sim(q, ni) 
Step 3: If (min(Sim)  ThreshRel  ThreshSpec) Then append ni to ParentNode  
Step 4: If (max(Sim)  ThreshSpec)  Then 

If ni is internal node Then 
If ThreshSpec == -1 Then ThreshSpec = max(Sim) 
Repeat from Step 1 

Else If ni is leaf node Then Add ni to Result         // Target reached 
Else Add all leaf nodes to Result                           // Parent node is target 

If (ParentToSearch is !Empty)  Then Apply Search on each node in 
ParentToSearch 
Return Result 

Figure 8. Index Tree Traversal Algorithm 

The algorithm’s pseudo-code is shown in Figure 8. It checks the 
highest and smallest similarity nodes: if the highest similarity 
node is  ThreshSpec, then we navigate to it and continue the same 
procedure (lines 1-6). Meanwhile, if the smallest similarity node 
is  ThresSpec  ThreshRel, then this node is added as a parent to 
search later since it might also have relevant results (lines 7-12). 
Special cases such as two nodes having the same similarity are 
quite rare; however if such a case occurs and both have 
similarities  ThreshSpec, then the algorithm navigates to one 
node and adds the other as a parent to search later (line13). 
ThreshRel is chosen by the user, while ThreshSpec takes the value 
of the highest similarity in each traversal level of the algorithm. 
The output is a set of documents with their similarity scores 
ranked in descending order of their similarities with respect to 
the user query. 
 

V. EMPIRICAL EVALUATION 

A. Experimental Process and Metrics 
To evaluate the quality and performance of our approach, we 
compare it with multiple variations of inverted indices: i) 
unigram non-augmented inverted index, ii) unigram 
semantically-augmented inverted index, iii) uni/bi-gram non-
augmented inverted index, and iv) uni/bi-gram semantically-
augmented inverted index. We utilize the following metrics: 1) 
index building time: we vary the size of the input dataset, 2) index 
size: we vary the size of the input dataset, 3) query execution 
time: we vary the number of query terms and threshold values, 
and 4) query result quality: we calculate precision, recall, F-
value, and MAP values of the returned documents while varying 
the number of query terms. 
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a. Index build time b. Index size 
 

Figure 9. Index build time and index size 

B. Experimental Results 
 

1) Index Build Time and Size 
 

The time and size complexity of building our index are linear in 
the size of the document dataset being indexed, O(n |D|) where 
n is the number of documents being index and |D| is the 
maximum document size. To evaluate the latter, we use 400 
documents downloaded from the United Nations’ Manara 
platform2 as a test dataset. Results in Figure 9.a shows that small 
subset (< 40 MB) requires almost the same time as building the 
unigram inverted index in both non-augmented and augmented 
variations. In addition, creating a uni/bigram non-augmented 
inverted index slightly takes more time since it needs to traverse 
the two term features in the document. However, a significant 
leap is observed in build time when creating a uni/bigram 
augmented inverted index since additional processing is required 
to generate all the term combinations needed from the thesaurus, 
and since the inverted index was not originally created to include 
semantics. 

Figure 9.b shows a comparison between the different sizes 
of the indices were both our approaches require more space than 
the inverted index techniques. This is because our approach does 
not only save the syntactic features of the documents but also 
stores the structural relations built after clustering all the 
documents and building the tree structure where each parent 
node contains its unique feature vector equal to the addition of 
its children feature vectors and the respective references to their 
nodes. This additionally stored information is required to 
perform index traversal during the query evaluation phase. 
 
2) Query Execution time 
To evaluate query execution time, we created a 10 term-long 
query from random terms collected from our UN documents 
dataset, and then for each batch of documents, we queried all the 
indices 10 times starting with a 1-term query until reaching the 
whole 10-term query. We vary ThreshRel between 0.7, 1 (returns 
only the best node), and 0 (returns all the leaf nodes). ThreshSpec 
is computed dynamically by our index tree traversal algorithm 
(Figure 8). For each of the inverted indices, we utilize both 
AND- and-OR operators. Results are shown in Figure 10. Here, 
we make the following observations. First, the time needed to 
execute a query for a given dataset size is almost constant and is 
not heavily affected by the number of query terms since in all 
cases the query is transformed into a feature vector that matches 
the dataset feature vector. Second, the query execution time 
increases with the size of the dataset where bigger index tree is 
be used, and thus the time needed to navigate through it will 
increase. Third, we notice a time increase when ThreshRel 
decreases, allowing to further investigate lower similar nodes in 
the index tree traversal algorithm. Regarding the inverted index 
approaches, we notice a minor increase in execution time when 

UDIS (our approach) not augmented 
UDIS (our approach) semantically augmented 
Inverted Index Unigram not augmented 

Inverted Index Unigram semantically augmented 
Inverted Index Uni/Bigram not augmented 
Inverted Index Uni/Bigram semantically augmented 



the number of query terms and when the size of the dataset 
increase, reflecting index data retrieval speed. 
 

a. UDIS not augmented, 
ThreshRel = 0.7 

b. UDIS semantically 
augmented, ThreshRel = 1 

c. UDIS semantically 
augmented, ThreshRel = 0 

 

   
d. Inverted index, 

Unigram, not augmented, 
AND 

e. Inverted index, 
Unigram,  augmented, 

AND 

f. Inverted index, 
Unigram,  augmented, OR 

 

Figure 10. Query execution time 
 
2) Query Result Relevance 
 

In this experiment, we used a smaller dataset composed of 17 
UN documents each having a different semantic meaning (i.e., 
targeting each one of the 17 UN’s Sustainable Development 
Goals – SDGs). Next, we created three sets of queries with their 
corresponding correct answers to evaluate three different 
conditions, each set is made of four queries starting with a query 
of 2-3-4-5 terms respectively. A 1-term query will not be of any 
significance since both traditional techniques and our approach 
and will lead to the same answer. Average results are reported in 
Table 2. First, selecting a ThreshRel = 0 returns all the documents 
sorted by their corresponding weights and acts as an inverted 
index OR approach. Second, even though we observe high recall 
(R) and mean average precision (MAP) values for the OR 
inverted index approach, its weakness is exposed through the 
low prevision (PR) and F-value metrics since it returns many 
irrelevant results with only a good ranking of these results based 
on the TF-IDF weights used for both approaches. Third, the 
AND method is prone to missing relevant results, where it 
performed well in the 2nd set of queries but failed in the others. 
Fourth, by changing ThreshRel, the users can tune the results 
according to their needs. To sum up, results in Table 2 reflect the 
improved quality of our indexing technique compared with 
existing inverted index solutions. 
 

Table 2. Query relevance results (average PR, R, F-value, and MAP) 
 

 
 

VI. CONCLUSION 
In this study, we describe a new text indexing solution by 
introducing a Machine Learning (ML) indexing technique based 
on hierarchical clustering. We introduce a dendrogram-like tree 
index structure which allows linking data items according to 
their clustering in the document corpus, providing data co-

occurrence and semantic context in index building and querying. 
We have empirically evaluated the impact of index size and 
query execution, and their relationship with search result quality. 
Results show improved quality compared with unigram and 
bigram AND-and-OR inverted index solutions. 

We are currently extending our empirical evaluation on 
larger datasets to evaluate the quality and performance of our 
approach. We are also investigating the parallel execution of the 
algorithm, allowing to navigate the index tree structure using 
multi-threading, aiming to optimize query execution speed. In 
the near future, we plan to examine the use of supervised 
machine learning techniques [2] in combination with our 
unsupervised approach in the creation of the index.  In the long 
run, we plan to investigate the creation of an ensemble indexing 
technique, combining both the inverted index and our ML-based 
index, to optimize both time performance and result quality. 
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