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Abstract. Lexical sentiment analysis (LSA) is of central importance in extracting and analyzing user moods and views on the 

Web. Most existing LSA approaches have utilized supervised learning techniques applied on corpus-based statistics, requiring 

extensive training data, training time, and large statistical corpora which are not always available. Other studies have utilized 

unsupervised and lexicon-based approaches to match target words in a lexical knowledge base (KB) with seed words in a 

sentiment lexicon, usually suffering from the limited coverage or inconsistent connectivity of affective concepts. In this paper, we 

introduce LISA, an unsupervised word-level knowledge graph-based LSA framework. It uses different variants of shortest path 

graph navigation techniques to compute and propagate affective scores in a lexical-affective graph (LAG), created by connecting 

a typical lexical KB like WordNet, with a reliable affect KB like WordNet-Affect Hierarchy (where any other lexical or affective 

KB can be utilized). LISA was designed in two consecutive iterations, producing two main modules: i) LISA 1.0 for affect 

navigation, and ii) LISA 2.0 for affect propagation and lookup. LISA 1.0 suffered from the semantic connectivity problem shared 

by some existing lexicon-based methods, and required polynomial execution time. This led to the development of LISA 2.0, 

which i) processes affective relationships separately from lexical/semantic connections (solving the semantic connectivity 

problem of LISA 1.0), and ii) produces a sentiment lexicon which can be searched in logarithmic time (handling LISA 1.0’s 

efficiency problem). Experimental results on the ANEW dataset show that our approach, namely LISA 2.0, while completely 

unsupervised, is on a par with existing (semi)supervised solutions, highlighting its quality and potential. 
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1.  Introduction 

Lexical sentiment analysis (or LSA) systems are automated tools which analyze words and text extracts provided by 

users, and attempt to classify them under different sentiment categories, such as: positive, negative, or neutral 

emotions. Affect analysis can be viewed as a more fine-grained approach of LSA, which involves more specific 

classes of affective emotions such as: happiness, sadness, surprise, and anger, etc. Methods that perform LSA 

utilize Natural Language Processing (NLP) and Machine Learning (ML) techniques to automatically identify the 

underlying emotions carried in the textual data.  

LSA methods are of central importance in extracting and analyzing public moods and views in a digital 

ecosystem, and are becoming increasingly popular in a wide range of Web applications covering: blog sentiment 

analysis [1, 29, 128] (analyzing bloggers’ reviews in web forms regarding certain topics, events, or people), client 

feedback analysis [35, 76, 114] (automated analysis of customer opinions on purchased products), opinion mining 

and sentiment analysis on social media [62, 111, 122] (analyzing texts or tweets posted by users on social media 

outlets, sounding their expressed emotions, suggesting reformulated sentences or emoticons based on the sentiment 

scores produced), as well as therapeutic and social emotion analysis [32, 79, 91] (e.g., helping autistic children 

express their emotions through simple texts and the associated affective feedback, e.g., fatigue, frustration, etc.).  

Most existing LSA approaches (cf. Background in Section 2) have utilized supervised learning techniques 

applied on corpus-based statistics in order to match words or textual patterns with sentiments represented as labeled 

categories, e.g., [41, 59, 65]. They usually require extensive training data, training time, and large statistical corpora 

which are not always available and require significant manual effort. In addition, most methods usually produce 

discrete sentiment labels (e.g., joy, surprise) without however evaluating sentiment intensity (valence) scores (e.g., 

20% joy, 35% surprise). On the other hand, other studies have utilized unsupervised and lexicon-based approaches, 

e.g., [40, 117, 130], in order to match target words with seed words in a sentiment lexicon (e.g., LEW list [37], or 

WNA list [115]), by evaluating their semantic similarity or distance in a reference lexical knowledge base (KB, e.g., 
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WordNet [73]). The latter usually suffer from the limited coverage of manually created sentiment lexicons, as well 

as the limited or inconsistent connectivity of affective concepts in the lexical KB (cf. Section 2.5). Recent efforts 

have focused on the automatic creation of sentiment corpora, e.g., [6, 15, 89], in order to address some of the above 

limitations. Yet most rely on (semi)supervised processes for their construction, thus sharing the limitations of 

supervised method mentioned above. 

In this study, we introduce UWKG_LISA (or LISA for short), a framework for Unsupervised Word-level 

Knowledge Graph-based Lexical Sentiment Analysis. In contrast with most existing supervised or corpus-based 

approaches, we provide an unsupervised knowledge-based solution which utilizes graph navigation techniques 

applied on a lexical-affective graph (LAG), in order to infer word affect scores while avoiding the training data and 

training time bottlenecks. The LAG is created by connecting a typical lexical KB graph like WordNet, with a 

reliable affect KB like WordNet-Affect Hierarchy (WNAH) [103] (although any other lexical or affective KB 

sharing similar properties can be utilized).  

LISA was designed in two consecutive iterations, producing two main modules: i) LISA 1.0 for affect 

navigation, and ii) LISA 2.0 for affect propagation and lookup. LISA 1.0 accepts as input a set of user input words 

(e.g., extracted from a sentence) and a set of target affect categories in a LAG, and produces as output the target 

affect scores (intensity weights) for every input word located in the LAG. It consists of two main components: i) 

linguistic pre-processing, to process input words, identifying their proper word concepts (synsets) in the lexical KB 

graph (e.g., WordNet), and ii) Max_Affect which navigates the LAG from the input word concepts to the target 

affect categories, using an adaptation of the shortest path problem in order to identify the maximum word affect 

scores. Yet, preliminary experiments and a careful analysis of LISA 1.0 highlighted two main issues regarding the 

module’s effectiveness and efficiency. On the one hand, we realized that the semantic connectivity between affect 

concepts in the LAG does not always accurately portray their affective expressiveness (e.g., concepts good and bad 

are only three hops away from each other in WordNet, despite their opposing sentiments, cf. Fig. 1 in Section 2.5), 

which reduced the module’s accuracy in computing affect scores. On the other hand, LISA 1.0’s main Max_Affect 

process requires average polynomial (quadratic) complexity in the size of the LAG, which, despite LAG navigation 

optimizations and parallelization, remained relatively time consuming.  

This led us to improve our design by producing LISA 2.0, which first i) propagates the sentiment scores over all 

connected word concepts in the LAG, from a set of user target affect categories (target emotions), and then ii) allows 

fast lookups of the computed word affect scores to perform LSA. It encompasses three main components: i) 

WNAH_Propagation which propagates the affect score of every affect category in WNAH to all other affect 

categories in WNAH, considering affective connections only, such that each category becomes fully representative 

of all of the others (solving the LAG semantic connectivity problem of LISA 1.0), ii) Back_Propagation which 

backward propagates the affect scores, from user chosen affect categories (pre-processed by WNAH_Propagation) 

to all connected concepts in the LAG, and iii) Affect_Lookup which performs fast search/lookup operations over the 

affect-scored concepts of the LAG (requiring average logarithmic time, thus alleviating the polynomial complexity 

problem of LISA 1.0). 

We have implemented LISA 1.0 and 2.0 to test and evaluate their performance. Experimental results on the 

Affective Norms for English Words (ANEW) dataset [10, 100] show that our approach, namely LISA 2.0, while 

completely unsupervised, is on a par with existing (semi)supervised solutions, highlighting its quality and potential. 

The remainder of the paper is organized as follows. Section 2 provides background information and briefly 

reviews the literature on LSA techniques. Our LISA framework is developed in Section 3. Section 4 presents 

experimental results, while Section 5 concludes with future directions. 

 

2.  Background and Related Works 

Lexical sentiment analysis (LSA) is concerned with the analysis of text containing or reflecting sentiments [93, 

104]. It is usually viewed as a sentiment classification or opinion mining activity concerned with determining the 

overall sentiment orientation of the elements (e.g., words, phrases) within a text [124]. In the following sub-sections, 

we provide a brief overview of LSA approaches, covering: i) sentiment categories; ii) granularities, iii) features, iv) 

resources, v) techniques, and vi) sentiment lexicon creation.  
 

2.1. Sentiment Categories 

Researchers in LSA usually distinguish between two kinds of sentiments: i) opinions/polarity such as like/dislike, 

generally referred to as positive/negative opinions, and ii) emotions/feelings such as happy/angry/afraid/etc., 

generally referred to as affect categories [52]. Accordingly, LSA methods can be distinguished as: i) opinion 

detection (or opinion mining) methods [49], and ii) affect analysis methods [104]. Here, two main differences can be 

identified [1]. On the one hand, opinion detection usually involves two opinion categories: positive and negative, 



and is sometimes extended to include an additional neutral category [25, 124]; whereas affect analysis usually 

involves a larger number of affect classes, ranging from a reduced set of six basic emotions in [84] (i.e., anger, fear, 

joy, love, sadness, and surprise) to a more comprehensive hierarchy of 294 sentiment categories introduced in 

WNAH [103] (cf. Section 3.1.2). On the other hand, opinions associated with text segments are usually mutually 

exclusive, i.e., a word or a phrase is either positive or negative (or neutral when considered); whereas a text segment 

might contain multiple affect categories [46, 104]. For example, verb “alarm” simultaneously reflects fear, warning, 

and excitement [104], whereas adjective “thrilled” reflects happiness and excitement [46]. More recently, researchers 

have emphasized the need to identify – not only the sentiment category – but also the intensity of the sentiment 

reflected by the text, i.e., the sentiment’s valence or strength (defined as a varying numerical range) [22, 47], 

allowing to perform more accurate and finer-scale LSA [1, 43] (e.g., word “trust” is 79% positive and 29% negative, 

and contains 82% happiness, 31% anger, and 31% sadness among other affects following the ANEW dataset [100]). 

In our current study: i) we focus on the more inclusive task of affect analysis (including both opinion and affect 

categories), while ii) evaluating affect intensity (valence) accordingly.   
 

2.2. Granularity of LSA 

Sentiments can be extracted from text at different granularity levels: i) word, ii) phrase, iii) sentence, iv) document, 

and v) aspect. Word-level LSA is the most pinpointed/fine-grained approach to LSA, where individual words are 

associated with sentiment categories [1, 93], which are then utilized to allow LSA at higher granularities of text. 

Words can be processed: i) separately (i.e., standalone) [112, 115], or ii) in-context, considering their textual 

surroundings [1, 94], the domain or topic at hand [8, 27], or the author’s perspective [30, 39]. For instance, the term 

“unpredictable” may have a negative orientation in an automotive review (e.g., “unpredictable steering”), but it 

could have a positive orientation in a movie review (e.g., “unpredictable plot”) [112]. Phrase-level SA consists of 

associating sentiments with individual phrases, where a phrase designates an expression usually made of a couple of 

words occurring close to each other in a text (e.g., “unpredictable steering”). Phrase sentiments are generally 

deduced from word-level sentiments [124, 129]. Sentence-level LSA consists in associating sentiments with 

individual sentences, based on word-level or phrase-level LSA [5, 38]. Similarly, document-level LSA consists in 

associating sentiments with individual documents (e.g., product reviews, blogs, news articles, etc.), where document 

sentiments are usually deduced from constituent sentences. A major difference between word/phrase-level LSA on 

the one hand, and sentence/document-level LSA on the other hand, is that a word/phrase usually reflects a single 

opinion (e.g., positive or negative) and/or related emotions (e.g., happy and excited) [112, 115], whereas a 

sentence/document might contain opposing opinions (e.g., containing words/phrases with positive opinions, and 

others with negative opinions) and/or un-related emotions (e.g., happy, angry, and relaxed) [25, 124]. Aspect-level 

LSA consists in extracting the main aspects of a certain text (e.g., sentence or document) where aspects represent the 

interesting features mentioned in the text describing what the text is about (e.g., “battery”, “processor”, “touch 

screen” could be aspects describing mobile phones), and then estimating the sentiment scores of the text per aspect 

(e.g., how positive or negative the opinions are on average for every aspect) [3, 96]. Methods of this category need 

to address the added challenge of performing aspect identification as a prerequisite to performing LSA [86, 122]. 

In our current study, we focus on word-level LSA where words are considered separately or in-context, 

depending on the availability of surrounding words in the provided user input. 

 

2.3. Features for LSA  
 

Different features can be utilized to perform word-level LSA, ranging over: i) lexical form, ii) semantic meaning, 

and iii) part-of-speech tag. Words targeted for LSA are usually matched against a set of seed words with manually 

or automatically associated sentiments, in order to acquire/inherit the corresponding sentiment categories. Matching 

target words with seed words can be performed syntactically (i.e., exact matching), and can take into account other 

features. For instance, the lexical form feature allows matching target words with seed words based on their base 

forms by stemming morphological variants (e.g., “laughing” is stemmed and matched with “laugh”) [43, 48]. The 

part-of-speech (POS) feature allows distinguishing between nouns, verbs, adjectives, and adverbs which might carry 

slightly different sentiment clues (e.g., adjective “funny” might have a lesser positive polarity than noun “fun”) [55, 

119]. The semantic meaning feature, as its name suggests, allows matching words based on their meanings, by 

comparing their semantic definitions and relationships w.r.t. a lexical KB like WordNet [15, 59] (e.g., word “mirth” 

is associated with concept hilarity in WordNet which means “great merriment and cheerfulness”, and thus can be 

matched with any of the concept’s synonymous terms, e.g., “playfulness”, “gaiety”, or “merriment”, if they appear 

in the set of seed words).  



Other features to perform phrase, sentence, or document-level LSA include: n-gram (word associations) [1, 78], 

syntactic structure (parse tree) [124, 132], valence shifters (intensifiers and modal operators, like “really”, “could” 

and “should”) [48, 132], and statistical features (e.g., contextual and co-occurrence frequencies) [66, 96]. 

In our current study, we target word-level LSA and thus focus on word-level features
3
. [40] 

 

2.4. Resources for LSA 
 

External resources are essential to perform LSA, providing reference data which is needed to associate sentiments 

with text. In this context, LSA methods can be distinguished as: i) corpus-based or ii) lexicon-based. The corpus-

based approach, e.g., [66, 120, 124], is data-driven, as it relies on processing large text corpora (such as OpenMind 

[99] and ISEAR [95]) to identify the probability of occurrence of textual features (e.g., lexical forms, POS tags, n-

grams, or phrasal patterns), in order to enable sentiment predictions for new texts. The lexicon-based approach, e.g., 

[15, 60, 105], is knowledge-driven, as it relies on acquiring sentiment clues from a readily available sentiment 

lexicon, i.e., a large collection of words or concepts (i.e., word senses) associated with sentiment categories (or 

intensity scores). Machine readable lexicons such as SentiWordNet [6], WNA [115], and SenticNet [16] are few of 

the most widely used sentiment lexicons in the literature. While corpus-based methods have been popular in the past 

few years [42, 63], yet they are generally data hungry and require extensive training, huge textual corpora, and a 

considerable amount of manual effort to produce a relevant sense-annotated corpus, which are not always available 

or feasible in practice. Therefore, lexicon-based methods have been receiving a lot of attention lately [63, 93]. 

Yet, lexicon-based LSA methods suffer in turn from two major limitations: i) ambiguity and ii) limited coverage 

[24, 82]. On the one hand, many widely used sentiment lexicons (such as General Inquirer [101] and LIWC [85]) 

associate sentiments with words instead of concepts (i.e., word meanings), and thus do not distinguish between the 

different meanings of the same word which might have – each – a different sentiment bearing. On the other hand, 

the limited coverage of manually created lexicons (such as the LEW list [37] and the core WNA
4
 list [115]) is 

another major concern, due to the substantial effort in manually annotating terms or concepts [24]. To address the 

above limitations, various studies have been recently developed to automatically expand/combine sentiment lexicons 

with other information or common knowledge sources (such as Wikipedia), e.g., [19, 89, 93], promoting an 

increasingly distinguished line of LSA research: Automatic Sentiment Lexicon Creation, e.g., [4, 93, 97]. We further 

describe the latter in Section 2.6. 

In our current study, we focus on lexicon-based LSA, and address both: i) the ambiguity problem by using 

unambiguous word meanings (concepts) to perform LSA, and ii) the limited coverage problem by processing a full-

fledge LAG connecting a comprehensive affect KB (WNAH) with an expressive lexical KB (WordNet)
5
.  

 

2.5. Sentiment Analysis Techniques 

LSA is usually viewed as a text-sentiment classification task. In this regard, existing approaches can be roughly 

categorized as: i) supervised, or ii) unsupervised. 
 

2.5.1. Supervised Sentiment Analysis [109] 

Supervised methods, e.g., [23, 53, 54], involve the use of supervised-learning techniques, using samples (a human 

expert manually annotates sample words/phrases with the intended sentiment in context) provided as training data 

for a learning algorithm that induces rules to be used for assigning sentiments with other occurrences of the 

word/phrase. External knowledge (mainly corpus-based) is used and combined with the human expert’s own 

knowledge of word/phrase sentiments when manually annotating the training examples. In this context, different 

kinds of classifiers have been used, including Support Vector Machines (SVM) [20, 74], Naïve Bayes (NB) [58, 

123], Maximum Entropy (ME) [69, 92], and Linear Regression [48, 127]. A few semi-supervised (or hybrid) 

approaches have also been developed, including Regularized Least Squares (RLS) classification [98], feature 

relation networks (FRN) [2], as well as different combinations of hybrid classifiers including induction rule-based, 

statistics-based, NB-based, and SVM-based [7, 90, 126].  

While effective, (semi)supervised methods suffer from several disadvantages. First, they include a learning 

phase which is time-consuming and subject to over-fitting
6
, depending on the quality, size, and domain of the 
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training data set which is not always available. Another shortcoming is that legacy supervised classifiers can only 

deal with discrete class labels (e.g., positive, calm, etc.), whereas sentiment intensity (valence) can vary along a 

continuum (e.g., 80% positive, 20% calm, etc.). Some works have attempted to address this problem by using 

regression-based classifiers [48, 75, 83]. For instance, the authors in [48] apply log-linear regression, trained on 

conjunctions and morphological features, to classify adjectives while producing corresponding opinion intensity 

scores. In [83], the authors assume that the words come from a discretization of a continuous function that maps the 

feature space to a metric space, and use regression to find the hyperplane that best fits the training data. A similar 

approach is developed in [75] where the authors use word n-grams to train a pace regression classifier [125] for 

assigning affect intensities to blogs. Nevertheless, regression-based learning methods have seen limited usage in 

LSA [1], in comparison with more popular SVM and NB methods, e.g., [20, 74, 123]. A third shortcoming is that 

supervised methods train their classifiers to recognize different classes separately, as if the produced categories are 

totally unrelated, e.g., [20, 74]. Yet, certain sentiment classes may be related [104] (cf. Section). For instance, hate 

and anger are related affects and usually co-occur together. In other words, a textual token reflecting hate would 

most probably reflect some anger, and vice versa. To our knowledge, the latter problem has only been explicitly 

addressed in [1], where the authors developed an ensemble classifier (i.e., grouping multiple classifiers) based on 

Support Vector Regression (SVR) [121]: a hybrid technique combining SVM with regression-based classification, 

in order to predict affect intensity scores while considering the correlation between different affect categories. 

Results in [1] showed improved sentiment prediction quality over legacy SVM methods. 

Our current study handles the above mentioned aspects, by: i) identifying multiple sentiment categories for every 

input word, ii) assigning different intensity scores describing the word’s expressiveness in every category (e.g., 25% 

happiness, 10% fear, 15% surprise, etc.), and iii) considering affect category relationships and their relative 

expressiveness w.r.t. each other, which was shown crucial to improving LSA performance (cf. Section 4). 
 

2.5.2. Unsupervised Sentiment Analysis [] 

Unsupervised methods, e.g., [40, 117, 130], are usually fully automated and do not require human intervention or a 

training phase. Most approaches in this category make use of a machine-readable sentiment lexicon (e.g., 

SentiWordNet [6] or WNA [115]) usually represented as a set of words/expressions or concepts with their sentiment 

categories or intensity scores. Given a target text to be processed, unsupervised LSA consists in assigning each 

constituent textual token (e.g., word or phrase) and consequently the whole target text, with a sentiment score. The 

score is a measurement of the intensity of the token w.r.t. to one (or many) sentiment category(ies). Once the score 

for every token is obtained, the score for the whole text can be calculated by applying aggregation functions (e.g., 

average, maximum, or linear combination). Clearly, the core step in this family of techniques is the way to score 

textual tokens. In this context, scoring methods can be distinguished as: i) statistical, or ii) semantic. 

Statistical scoring methods evaluate word average sentiment intensities across the lexicon’s items occurring in a 

text [67, 104]. The authors in [26, 113] assess the intensity of each word based on its co-occurrence frequency with a 

set of core words reflective of a given affect [45]. The occurrence frequencies for the core words and candidate 

words are derived from search engines such as AltaVista [45] or Yahoo [74]. For example, the core words for the 

praise affect would include “acclaim”, “praise”, “congratulations”, “homage”, and “approval” [45]. The approach 

in [26, 113] is coupled with a point-wise mutual information (PMI) scoring mechanism for assigning candidate word 

intensity scores. Traditional PMI assigns each word a score based on how often it occurs in proximity with positive 

and negative paradigm words, and has been adapted to affect categories [45]. Sentence level averaging is then 

performed based on the generated word-level PMI scores [34, 113]. The authors in [81] perform subject favorability 

determination by evaluating the syntactic dependencies among the phrases and subject term modifiers. A similar 

approach in [80] proposes a hybrid model combining PMI [112] with syntactic similarity features [81], and focuses 

on adjectives while disregarding other part-of-speech groups. The main limitation of this group of methods is the 

need for a large and expressive textual corpus on which to perform statistical analysis, which is not always available. 

Semantic scoring is based on the premise that semantically close words share similar sentiment bearings [93], 

and consists in evaluating the semantic distance between the meanings of words in a reference KB. Most semantic 

scoring LSA methods, e.g., [24, 57, 61], utilize WordNet [73] as a widely used lexical KB made of a set of word 

concepts (synsets) and their semantic relationships (e.g., synonymy, hyponymy, etc., [18, 106], cf. Section 3.1.1). In 

this context, the authors in [61] expand the seed words associated with an affect category by comparing each 
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candidate word and its synonymous terms with the seed word list [74]. The intensity for a candidate word is 

proportional to the number of times the word and its synonyms appears in the seed list [61]:  
 

1
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(words) k
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j i
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where wi is a candidate word, catj is an affect category, 
k

isyn  is one of the n synonyms of word wi, count(catj) is the 

number of words in catj divided by the total number of words considered. In [57], the authors identify the polarity of 

an input (source) word by measuring its distance from two reference (destination) concepts: good and bad in the 

WordNet graph. Distance is evaluated by counting the number of synonymy relationships (links) connecting the 

source word concept with either one of the destination concepts, such as (normalized) distances from concepts 

good/bad designate positive/negative intensity scores respectively: 
 

( ,bad) ( ,good)
( )

(good, bad)
i i

i

dist w dist w
score w

dist


  

(2) 

 

 Similar approaches were introduced in [24, 44, 68, 102, 115], which consider a set of seed concepts (instead of 

two concepts only: good and bad) as references for their distance computations. The authors also extend distance 

evaluation to consider other WordNet relations which can carry sentiments such as hypernymy/hyponymy, 

derivation, and pertainym [24, 102, 115].  

Note that applying the semantic scoring LSA approach requires word sense disambiguation (WSD) [107, 108], 

a computationally expensive pre-processing step to assign the word targeted for LSA with its semantic concept (i.e., 

identifying the meaning of the word in its context) [70], so that the latter concept can then be processed for semantic 

scoring. Another common pitfall of this category of methods is the semantic connectivity between reference 

concepts, which might not always be accurate. For instance, one can traverse the WordNet graph from concept good 

to concept bad in only three hops using the synonymy relationship (cf. Fig. 1). This seems “weird” since good and 

bad are opposing sentiments, and thus one tends to think they should be farther away from each other in the KB 

graph. This problem is shared among other lexical knowledge references such as ConceptNet [110] and Yago [51], 

where concepts are defined following their lexical meanings, rather than their affective expressiveness. In this 

context, there is a crucial need to distinguish between lexical and semantic relationships between concepts in the 

lexical knowledge graph on the one hand, and affective relationships between affect categories on the other hand.  

We address the latter in our approach by: i) introducing a heuristic WSD method (to reduce processing time), 

and ii) utilizing a separate structure to describe affective relationships: WNAH [103], a self-contained and 

independent hierarchy of affect categories, which we use to navigate between affective categories.  
 

 

 
 

 

 Nodes represent words, and 

node links represent 

synonymy relationships. 
  

 Synonymy relationships are 

bidirectional and thus are 

represented as edges having 
opposite directions. 

  
 

Fig. 1. Extract of synonymy relationship connectivity between words good and bad in WordNet [44] 

 

2.6. Sentiment Lexicon Creation 
 

Sentiment lexicon creation is attracting increasing attention, starting from an initial list of seed words with user-

defined sentiments, and making use of (semi)supervised corpus-based or lexicon-based techniques to extend the 

seed list. Early approaches like SentiSense [24] and Emolex [77] were developed via crowd-sourcing, relying on the 

wisdom of a crowd of users providing manual sentiment annotations (using Amazon’s Mechanical Turk
7
). 

SentiWordNet [6] is a semi-supervised lexical resource associating word concepts from WordNet with positive, 

negative, and objective scores ranging from 0.0 to 1.0. The authors evaluate the polarity of concepts by mining their 

glosses, considering that the glosses of positive (negative) concepts would contain terms that mostly belong to other 
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positive (negative) concepts. The authors utilize this binary relation between concepts (gloss of concept ci contains a 

term belonging to ck) to build a directed graph between concepts. A random-walk process [33] is then executed on 

the graph to disambiguate the glosses’ words and associate them with existing WordNet concepts. Consequently, 

starting from two small seed sets of manually chosen positive and negative concepts with their disambiguated 

glosses, the authors train a set of ternary classifiers to recognize concept polarity based on their glosses. Another 

polarity lexicon is SenticNet [16] which integrates several knowledge bases, namely ConceptNet [110], DBPedia 

[9], and WordNet [73], to provide common-sense LSA capability. Initial versions of lexicon: SenticNet 1 [17], 2 

[13], and 3 [15], i) integrate different pieces of knowledge from the reference knowledge bases, translate them into 

RDF (Resource Description Framework) triples (e.g., Pablo Picasso-IsA-Artist), and insert them into a graph 

through the energy-based knowledge representation (EBKR) formalism [12], ii) utilize semi-supervised learning to 

evaluate the affective associations between concepts, by iii) plotting them into a multi-dimensional vector space 

using AffectiveSpace [11]. More recent versions: SenticNet 4 [15] and 5 [16], i) apply principal component analysis 

to perform dimension reduction on the vector space, ii) use k-nearest neighbor with k-medoids classification to 

determine semantically related concepts that correspond to the same polarity, and iii) determine sentiment intensity 

levels by using specially designed discrete and continuous neural networks (DNNs and CNNs) allowing multi-

dimensional scaling [13, 14, 87]. A commonsense ontology, OntoSenticNet, was recently built on top of SenticNet, 

allowing to associate concepts, word embeddings, domain information, and external resources with sentiment 

values, including the definition of a formal conceptual hierarchy and its properties [28]. 

AffectiveSpace [11] was introduced in  as an n-dimensional vector space produced by matching concepts from 

ConceptNet [110] with those of WNA [115]. The authors applied singular value decomposition on the resulting 

concept space in order to select the 100 principal components representing common sense concepts and their 

emotions. SenticNet was later extended in [88] to produce EmoSenticNet, by integrating SenticNet with 

AffectiveSpace. The approach assigned one of the six emotion labels of WNA (i.e., anger, fear, disgust, sadness, 

surprise, and joy) to each concept of SenticNet, along with their intensity scores. The latter was conducted in two 

stages. The first stage applied fuzzy c-means clustering (FCM) in 16 ISEAR data columns [95] using WordNet 

similarity measures and co-occurrence frequencies in ISEAR to obtain membership values for every concept w.r.t. 

the six emotion categories. In the second stage, membership values belonging to the six emotion categories were 

evaluated using supervised SVM-based classification. 
 

2.7. Discussion 

To wrap up, we highlight the main issues and limitations facing existing LSA methods. On the one hand, supervised 

and corpus-based methods match words or textual features with sentiments represented as labeled categories, using 

machine learning techniques applied on text corpus statistics. They usually require extensive training data, training 

time, manual effort, and large statistical corpora which are not always available or practical. In addition, most 

methods (except for a few approaches in [48, 75, 83]) usually produce discrete sentiment labels (e.g., joy, surprise) 

without however evaluating the intensity (valence) scores of different sentiments and their relationships in 

describing the target word or text (e.g., 20% joy, 35% surprise). On the other hand, unsupervised and lexicon-based 

approaches match source words with seed words in a reference sentiment lexicon, by evaluating their semantic 

distance (w.r.t. corresponding word concept glosses, or the number of semantic links separating them) in a reference 

lexical KB (e.g., WordNet, ConceptNet). They usually suffer from the limited coverage of manually created 

sentiment lexicons (e.g., LEW list [37], or WNA list [115]) as well as the limited or inconsistent connectivity of 

affective concepts in the lexical KB (i.e., concepts good and bad are only three hops away in WordNet, despite 

describing opposing sentiments). Recent efforts have focused on the automatic creation of sentiment corpora in 

order to address the above limitations. Yet most rely on (semi)supervised processes for their construction, thus 

sharing the latter’s limitations mentioned above. 

 

3.  LISA Framework 

To address most of the limitations above, we introduce UWKG-LISA (or LISA for short), an Unsupervised Word-

level Knowledge Graph-based Lexical Sentiment Analysis framework. It uses different variants of shortest path 

graph navigation techniques to compute and propagate affective scores in a LAG. LISA’s overall architecture is 

depicted in Fig. 2. It is designed in two separate yet interconnected modules: LISA 1.0 for affect navigation, and 

LISA 2.0 for affect propagation and lookup. We develop LISA’s modules in the following subsections. 

 

 

 
 



 
Fig. 2. Simplified activity diagram describing LISA’s overall architecture 

 

3.1. Lexical Affective Graph (LAG) 

The LAG is created by connecting a typical lexical KB graph like WordNet [73], with a reliable affect reference like 

WordNet-Affect Hierarchy (WNAH) [103] (although any other lexical or affective references sharing similar 

properties can be utilized). WNAH is a commonly used affect knowledge base consisting of 294 different affect 

categories (e.g., positive emotion, joy, love, apathy, euphoria, etc.), hierarchically organized following a 

hypernymy/hyponymy (IsA/HasA) inheritance structure, where every affect category matches a lexical concept 

(synset) in WordNet. We briefly describe our usage of WordNet and WNAH in the following sub-sections. 
 

 

3.1.1. WordNet Lexical Knowledge Graph 

WordNet [73] it is a widely known machine-readable lexical KB that can be easily represented and processed as a 

graph made of a set of concepts (nodes) representing word senses (i.e., synsets), and a set of labeled links (edges) 

connecting the concepts, representing semantic relationships (hypernymy, meronymy, etc., cf. Fig. 3). A concept 

encompasses words sharing the same meaning (synonyms) as well as gloss definition (e.g., concept car 

encompasses words “car”, “auto”, “automobile”, etc., and is described by gloss “a motor vehicle with four wheels 

propelled by an internal combustion engine”). Concepts are identified using unique IDs (to distinguish between 

polysemous terms) and are organized in four separate and interconnected groups, to describe: nouns, verbs, 

adjectives, and adverbs.  

 
 

 

  
 

 

 

 Numbers next to concepts represent 

concept frequencies (computed   

based on the Brown corpus [36]).  
 

 Since all semantic and lexical 

relations considered in our study 

are symmetrical 

(hyponymy/hypernymy) or 

bidirectional (e.g., related to, 

derivation, troponymy), we 

represent them as edges having 

opposite directions. 
 

 Concepts highlighted with thick 

contours are connected to WNAH, 

and are mapped to the affect 

categories 
8
 highlighted in Fig. 4. 

 

Fig. 3. Extract of the WordNet lexical KB graph 

                                                           
8  Note that compassion and commiseration are also connected to WNAH. Nonetheless, we do not highlight them here since they do not appear in 

the WNAH extract in Fig. 4, which is utilized in our computation examples later-on. 
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WordNet has more than 18 different semantic relationships connecting concepts. Yet, in our current study, we 

only consider the relations that were shown to carry sentiments or emotions [102, 115], i.e., for noun concepts: 

hypernymy (HasA), hyponymy (IsA), instance hypernymy, instance hyponymy, and usage; for verb concepts: 

hypernymy, entailment, verb group, and troponymy; for adjective concepts: attribute (values that describe the current 

concept), similar to, and related to, and for adverb concepts: usage.  

In addition to semantic relationships, WordNet contains lexical relationships between words, and that can also 

carry sentiments or emotions, including: pertainymy (a lexical relationship that allows deriving the adjective of a 

noun), and derivation (a lexical relationship that allows to derive any word type, if it exists) [72, 73]. The previous 

mentioned relationships are used in LISA to navigate the LAG, in order to compute word concept affect scores w.r.t. 

target affect categories (cf. LISA 1.0 in Section 3.2), or back-propagate the latter’s scores throughout the LAG (cf. 

LISA 2.0 in Section 3.3). 

Note that in our current study, we utilize WordNet as the lexical reference to describe word meanings, since it 

easily connects to WNAH via their matching word concept/affect category pairs (cf. Fig. 3 and Fig. 4). Yet, our 

approach is general and can be adapted to any other lexical KB graphs such as Yago [51] or ConceptNet [110], as 

long as at least one of their lexical concepts matches one of the affect categories in WNAH. 

 
3.1.2. WordNet Affect Hierarchy (WNAH) 

WNAH consists of a set of concepts representing affective categories (e.g., joy, elation, euphoria, positive emotion, 

etc.), hierarchically organized following a hypernymy/hyponymy (IsA/HasA) structure highlighting the relationships 

between the categories (e.g., euphoria-IsA-elation, elation-IsA-joy, and joy-IsA-positive emotion, cf. Fig. 4). Most 

categories in WNAH are mapped to corresponding word concepts in WordNet (e.g., love in WNAH is mapped to the 

concept describing the first meaning of joy in Wordnet 3.0, encompassing synonymous terms, “joy”, “joyousness”, 

and, “joyfulness”, and described as “the emotion of great happiness”), except for certain composite affect categories 

(like self-pride, general-dislike, and neutral-languor) which are not connected to any WordNet concept (synset). 

Fig. 4 illustrates an extract of WNAH, highlighting the affect categories that match lexical concepts in the WordNet 

extract in Fig. 3. 

 
 

 
 

 

 Affect categories in WNAH are 

strictly connected via 

hypernymy/hyponymy relationships. 

Hence, we omit all IsA/HasA edge 

labels from the graph for ease of 

presentation. 
 

 Since hypernymy/hyponymy relations 

are symmetrical, we represent them 

as edges having opposite directions. 
 

 Concepts highlighted with thick 

contours are connected to WordNet 

extract in Fig. 3. 

 

Fig. 4. Extract of WNAH 
 

3.1.3. Sample LAG Structure 

Consequently, the LAG comes down to a lexical KB graph (e.g., WordNet) and an affect hierarchy (WNAH) 

connected together and processed as one single graph structure. As sample LAG extract, based on the WordNet and 

WNAH extracts in Fig. 3 and Fig. 4 respectively, is shown in Fig. 5. 
 

3.2. LISA 1.0 – Affect Navigation module 

The LISA 1.0 affect navigation module accepts as input a set of user words (provided separately, or extracted from 

an input sentence provided by the user) and a set of target affect categories in a LAG, and produces as output the 

target affect scores (intensity weights) for every input word located in the LAG. It consists of two main components: 

i) linguistic pre-processing, to process input words, identifying their proper word meanings (concepts) in the lexical 

KB (e.g., WordNet), i.e., locating the concepts (nodes) in the LAG, and ii) Max_Affect which navigates the LAG 

from the input word concepts to the target affect categories, using an adaptation of the shortest path problem to 

compute word affect weights. We describe both components in the following sub-sections. 
 



 

 
 

 

 Word concepts 

matching affect 
category concepts are 

highlighted with thick 

contours. 
 

 Hypernymy/hyponymy 

relationships 
connecting affect 
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are highlighted, to 
distinguish them from 

WordNet relationships     
(cf. Section 3.1.2) 
 

 

 

Fig. 5. Sample LAG based on a mapping of WordNet and WNAH extracts in Fig. 3 and Fig. 4 respectively 

 

3.2.1. Linguistic Pre-Processing component 

Linguistic pre-processing consists of four main phases: i) tokenization (identifying the separate tokens in an input 

sentence), ii) stop word removal (removing prepositions and semantically meaningless words such as: the, a, of, to, 

etc.), iii) stemming (reducing inflected or derived words to their stem, i.e., base or root, e.g., games  game, 

laughed  laugh). For instance, considering user input sentence: “The man's words were full of dryness that they 
gave us all the creeps”, the stemmer would produce as output the following sequence of words: “man word be 

dryness give creeps”. The latter will then be processed for iv) word sense disambiguation (WSD), identifying the 

proper word meanings (concepts) in the lexical KB (in our case, WordNet). Once located in the LAG, word concepts 

are then provided as input to Max_Affect in order to compute their affective weights. 

Note that our current study handles sentences as sequences of stemmed words, where the context of every word 

consisting of the words surrounding it in the sentence, is used as the main feature for semantic disambiguation, and 

subsequently for sentiment analysis (cf. Background Section 2.3).  
 

 

Algorithm: WSD_Heuristic 
 

Input: Target word: w           // target for WSD 

Context words: C[]    // context of w, consisting of a sequence of words     
Flag: LESK                   // user preference regarding using simplified LESK, or not  

Output: concept: c                // describing the meaning of the word  
 

Begin 
 

S[] = list of concepts describing all meanings of w     // following their WordNet ordering 
For i=0 to |S|                                                              // processing concepts in-order 

  If  gloss(S[i]) contains“feeling” or “emotion”         // from most to least common 

      Then c = [i]     
 

If c =                                                              // if no concept is identified yet 

      If LESK = true 
          Then c = simplified_LESK(w, C[])          // apply simplified LESK                 

             Else c = S[0]                                                    // or select the most common concept    
 

Return c 
 

End 
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Fig. 6. Pseudo-code of WSD_Heuristic process 
 

As for the WSD process, we combine: i) the well known simplified LESK algorithm [56], with ii) a simple and 

efficient heuristic method to handle the special case of direct affective words (i.e., words which directly carry 

sentiments or emotions). The simplified LESK algorithm compares the target word’s context (its surrounding words 

in a sentence) with the contexts of its different possible meanings (concepts) in the lexical KB (where the context of 

a given concept consists of the set of synonymous terms and gloss descriptions of its surrounding concepts in the KB 

graph), and chooses the concept whose context is most similar to the target word context as its proper 

(disambiguated) meaning [56]. Simplified LESK is one of the most efficient WSD algorithms [116], requiring linear 

time w.r.t. the number of possible meanings (concepts) for a given word, and their context sizes. However, after 

conducting various experiments and closely analyzing the results, we realized that most sentiment-carrying concepts 

in WordNet contain the words “feeling” or “emotion” in their gloss definitions (e.g., elation is described as “a 



feeling of joy and pride”, whereas apathy is described as “an absence of emotion or enthusiasm”). Also, the 

different possible meanings (concepts) for a given polysemous word are associated a natural ordering in WordNet, 

following their number of occurrences in a large text corpus (i.e., the Brown corpus [36], cf. Fig. 3), thus inferring 

their common usage in the English language. Based on the previous two observations, we provide a simple and 

efficient WSD heuristic method in Fig. 6, to further improve on LESK’s efficiency. It consists of the following basic 

steps: i) search the glosses of the target word’s polysemous concepts, and identify the one(s) containing terms 

“feeling” or “emotion” (lines 1-3), ii) if multiple concepts are identified, select the most common concept 

containing either terms as the proper word meaning (line 3-4), otherwise iii) if no concept glosses contain either 

terms (line 5), either apply the simplified LESK algorithm (lines 6-7) or (exclusively) select the most common 

concept as the proper meaning of the target word (line 8), following the user’s preference (indicated by the LESK 

flag, line 6). The latter option (i.e., using the most common concept) is naturally sub-optimal compared with the 

former (i.e., running LESK), yet allows for fast (constant time) processing. 

For instance, when processing direct affective word “creeps” (cf. Fig. 7.a) from sentence “man word be 
dryness give creeps”, its second meaning will be chosen as the proper meaning since it contains word “feeling” in its 

gloss definition, without having to process its context words through legacy (simplified LESK) WSD. As for indirect 

affective words like “dryness” (cf. Fig. 7.b) which concepts do not contain neither “feeling” nor “emotion” words, it 

can be: i) either processed for WSD using the simplified LESK algorithm, which would identify concept #3 as its 

proper meaning in the above sentence, or ii) its first concept (the most common one) will be chosen to reflect its 

meaning (which is not the proper meaning in the above sentence). The latter depends on the user’s preference: 

producing more reliable (simplified LESK) or faster (heuristic) disambiguation results. 
 

 

The noun “creeps” has 2 senses (none from tagged texts) 
 
1. creeps -- (a disease of cattle and sheep attributed to a 
dietary deficiency; characterized by anemia and softening of 
the ones and a slow still gait) 
2. creeps -- (a feeling of fear and revulsion; “he gives me the 
creeps”) 
 

a. Meanings (concepts) of noun “creeps” 

  
The noun “dryness” has 3 senses (first 1 from tagged texts) 
 
1. (1) dryness, waterlessness, xerotes -- (the condition of not containing or being 
covered by a liquid (especially water)) 
2. sobriety, dryness -- (moderation in or abstinence from alcohol or other drugs) 
3. dispassion, dispassionateness, dryness -- (objectivity and detachment, “her 
manner assumed a dispassion and dryness very unlike her usual tone”) 
 

b. Meanings (concepts) of noun “dryness” 
 

 

Fig. 7. Concepts describing the meanings of words “creeps” and “dryness” in WordNet 

 

3.2.2. Max_Affect component 

The Max_Affect component’s pseudo-code is described in Fig. 8. It accepts as input the users’ disambiguated word 

concepts as well as their target affective categories (i.e., the emotions they are interested in evaluating in the input 

words), and then produces as output the corresponding sentiment scores in the form of a sentiment vector whose 

dimensions correspond to the user-chosen affective categories. To do so, it utilizes an adaptation of Dijkstra’s 

shortest path distance computations [21], applied on the LAG. 

Max_Affect explores the LAG starting from one or multiple word concept nodes. From every starting concept 

node, it attempts to identify the closest path to every target affective category node, highlighting the target affect’s 

expressiveness w.r.t. the source concept(s). However, we altered Dijkstra’s original premise: instead of identifying 

the minimum weight path between two nodes, Max_Affect seeks to identify the maximum sentiment weight of a 

source concept node ci w.r.t. a target affect node aj. To do so, we compute node and edge weights as follows: 
 

i. The weight of a source concept node ci w.r.t. a target affect node aj, noted w(ci, aj) or waj(ci), is  [0, 1], 

where 0 means that affect category aj is not expressed in ci, whereas 1 means that aj is totally expressed in ci,  

Hence, the weight of ci w.r.t. a set of target affect categories A={a1,…,aJ}, consists of a vector of affect 

weights Vi = < w(ci, a1), …, w(ci, aJ) >, of J dimensions, where dimension j corresponds to a target affect 

category aj A, and its vector coordinate w(ci, aj) represents the affective weight of aj w.r.t. ci. 
 

ii. The weight of an edge outgoing from node ci and incoming into node cr, noted w(ci, cr), is  [0, 1] and 

reflects sentiment “conductance” where 0 means that the edge does not carry any sentiment expressiveness 

from ci to cj, whereas 1 means that the edge carries all the sentiment expressiveness from ci to cj. The edge 

weight is determined firstly based on the edge label (i.e., semantic relationship connecting the two nodes, 

e.g., hypernymy, related to, etc.), and secondly based on the out-degree of ci (depending on the semantic 

relationship being processed). Following [102, 115], certain semantic relations are considered to be 

“reliable” in carrying emotions (namely: hyponymy, similar to, related to, attribute, usage, derivation, and 

pertainymy) while other relations are not completely reliable in that they only partially preserve affective 



meaning (namely: hypernymy, entailment, verb group, and troponymy). We mathematically concretize the 

latter using the following simple weight function: 
 

w(ci, cr) = 
i

1      if    
- (c )

              1                  otherwise

reliable
rel

rel R
out degree

 



 
(3) 

 

where rel designates the edge’s label (semantic relationship), and Rreliable the set of sentiment reliable 

relationships (mentioned above). In other words, w(ci, cr) = 1 (maximum score) if its edge label corresponds 

to a sentiment reliable relationship, otherwise, it is determined by the out-degree of incoming node ci. The 

rationale behind the latter is that an edge designates a stronger connection between two (word concept or 

affective category) nodes when it carries most of the descriptive power from the source node to the 

destination node, such that the source node has few other out-going connections (if any, cf. Fig. 9). Note that 

Formula 3 provides one possible cost model. Other more elaborate cost functions could be utilized later 

(e.g., assigning individual scores to individual relationships, following the user’s needs).  
 

iii. Finally, instead of starting from an initial weight =0 assigned to the source lexical node ci, Max_Affect starts 

with an initial weight =1 (maximum sentiment expressiveness), and then multiplies (instead of summing) the 

source node’s weight by the weights of every edge on the maximum weight path leading to aj. If all edges on 

the path between ci and aj are of maximum sentiment conductance (i.e., they carry all of the sentiment 

expressiveness), then w(ci, aj) = waj(ci) =1 where affect aj is fully expressed in ci. Otherwise, if edges have 

diminishing sentiment conductance, then waj(ci) will decrease accordingly. 

  
 

Algorithm: Max_Affect 
 

Input: LAG graph: G                                                       // lexical affective graph, connecting in our case: WordNet with WNAH 

            Set of source word concept nodes: C               // corresponding to input word concepts (synsets), C  G            

            Set of destination affect nodes: A                    // corresponding to target affect categories (emotions), A  G              

Ouput: Set of affect vectors:                                  // affect vectors associated to every source concept node in C w.r.t. affect nodes in A 

 

Begin 
 

Initialize 
 
= {Vi

 
} i = 1… |C|   where  Vi = <w(ci, a1)=0, …, w(ci, a|A|)=0>       // affect vector Vi describing ci w.r.t. affects of A 

Initialize weights of nodes  G to 0 

Processed =                                             // Set of nodes that have been processed, i.e., for which affect vectors have been computed 
 

For every ci in C                            
{ 

Frontier = ci, Explored =                             // Frontier is defined as a priority queue based on node weight 
Initialize w(ci) =1, remove from Frontier and add to Explored         
 

While (Explored  A)                                      // while not all destination affect nodes have been reached 

{ 

For each node cj  Explored 
For each node cm outgoing from cj  

Add cm to Frontier 
Compute weight vector of cm 

w(cm) = max(w(cm), w(cm, cj)  w(cj))         // edge weight w(cm, cj) is computed following Formula 3 
 

Compute maximum weight wmax for all nodes in Frontier 
For each node cn in Frontier having w(cn) == wmax 

If cn  Processed  Then  

Compute Vi = Vn  w(cn, ci)      // using affective vector computed in previous iteration  
Add ci to Processed                    // ci has been processed, so no need continue processing it 

Goto Exit                                     // break-out of the ci loop and go to the next input lexical concept node 

Else Remove cn from Frontier and add it to Explored         
}                                       
 

Exit: 
If (ci 

 

Processed) Then 

Compute Vi = <w(a1), …, w(a|A|)>             // where w(ai) designates the affective weight of ai w.r.t. ci  
Add ci to Processed 

} 

Return  
End 
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Fig. 8. Pseudo-code of algorithm Max_Affect 



  

 

 
 

a. Considering partly reliable relationships: hypernymy/hyponymy 

 

 
 

b. Considering reliable relationship: related to 
 

 

 Recall that edges in our LAG represent symmetric 
(hyponymy/hypernymy) or bidirectional relationships 

(e.g, related to, derivation, etc.).  

 Hence, we represent the weight of an edge in the graph 

as a pair of weights separated by the “,” symbol, 
representing the weight of the edge navigated in either 

directions.  

 For instance, given the partly reliable  
hyponymy/hypernymy relationships in example a, and 

following Formula 3,  w(Liking, Approval) = 1/3, 

whereas w(Fondness, Liking) = 1 

 Likewise in example b, w(Commiseration, Condolent) 

= w(Condolent, Commiseration) = 1 since relationship 

related to is reliable (conductive) in carrying emotions 

 

Fig. 9. LAG edge weights computed on extracts from 3.1.3, following semantic relationship reliability in carrying affects 

 

Consider for instance the sample LAG in Fig. 10, where edge weights are computed following their semantic 

relationship reliability using Formula 3. Fig. 11 describes a sample run of Max_Affect, considering as source: word 

concept nodes Compassionate and Care, and as destination: affect nodes Sympathy and Liking.  
 

 
 

Fig. 10. Sample LAG (lexical affective graph) extracted from Fig. 5 

 

One can realize from Fig. 11 that the processed nodes carry their optimal (maximum) affective vector weights 

throughout the different iterations of the algorithm, such that once computed for the same target affect dimensions, 

an affective vector can be directly utilized in computing the vectors of the node’ neighbors (e.g., VCare was computed 

based on VCompassionate produced in the previous iteration, without having to run an additional iteration of the 

algorithm navigating the graph from concept node Care to target nodes Sympathy and Liking). 

 

3.2.3.Issues with Max_Affect 

While Max_Affect provides a solution to perform LSA in a completely unsupervised manner, nonetheless, it suffers 

from two main drawbacks regarding: i) effectiveness and ii) efficiency. 

In terms of effectiveness, we realized that semantic connectivity between affect concepts in the LAG does not 

always accurately portray their affective expressiveness. For instance, considering the LAG extract of Fig. 10, we 

can reach affect node liking from affect node sympathy through concept node feeling with a higher weight compared 

with the direct link between sympathy and liking, i.e., w(feeling, sympathy)=1/2 > and w(liking, sympathy)=1/3. In 

the example in Fig. 11, this led to VCompassion = <1/2, 1/4> and VCare = <1/4, 1/8> (let us refer to this as result #1). Had 

we disregarded concept node feeling which connects liking with sympathy, and only used the direct affective 

connection between the latter two, we would have obtained VCompassion = <1/2, 1/6> and VCare = <1/4, 1/12> (let’s 

refer to this as result #2). At first glance, both results sound reasonable, and one cannot really judge which is better 

and which is worse. Yet, after empirically testing Max_Affect on the manually annotated ANEW word dataset [10, 

100] (cf. Section 4), investigating Max_Affect’s produced scores, and carefully tweaking the algorithm, we realized 

that connections between affect concepts from WNAH are more reliable in carrying sentiment expressiveness 

compared with lexical and semantic connections from WordNet. In other words, when compared with human 

judgments in ANEW, results obtained when navigating the affective connections between affect nodes (similarly to 

result #2) were deemed more relevant following human sentiment ratings, compared with those obtained when 

navigating between affect nodes using otherwise lexical-or-semantic connections (similarly to result #1).  
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Considering the first source node Compassionate: 

 Initialize weight of source node to: w(Compassionate) = 1 

 Initialize affective vector of source node w.r.t. both target 

affect nodes: VCompassionate = <0, 0> 

 Iteration #1: Fill neighbors in Frontier and identify maximum 

weight: w(Compassion) =1 

       Include Compassion in Explored set 
 

 

 Iteration #2: Fill neighbors in Frontier and identify 
maximum weight:  

w(Sympathy) = w(Care) = w(Commiserate)  

                      = 1 1/2  = 1/2 

      Remove them from Frontier and include them in Explored 

 

 

  
 Iteration #3: Fill neighbors in Frontier and identify maximum 

weight: w(Commiseration) = w(Condole) = 1/2  1 = 1/2 
 

      Remove them from Frontier and include them in Explored 

 Iteration #4: Fill neighbors in Frontier and identify maximum 

weight: w(Condolent) = 1/2  1 = 1/2 
  

       Remove  it from Frontier and include it in Explored 
 

 

 

 

 
 

 Iteration #5: Fill neighbors in Frontier and identify maximum 

weight: w(Feeling)= 1/2  1/2 = 1/4 
 

 Remove it from Frontier and include it in Explored 

 

 Iteration #6: Fill neighbors in Frontier and identify 

maximum weight: w(Liking)= 1/4  1 = 1/4 

 Include it from Frontier and include it in Explored 
 

Both targets are now in Explored:  

 VCompassionate  = < w(Sympathy), w(Liking)>  = <1/2, 1/4> 
 

                    End processing of first source node 
 

 

Considering the second source node Care: 

 Initialize weight of source node to: w(Care) = 1 
 

 Initialize affective vector of source node w.r.t. both target 

affect nodes: VCare = <0, 0> 
 

Iteration #1: Fill neighbors in Frontier and identify 

maximum weight: w(Compassionate) =1/2 

 Since Compassionate  Processed, we can directly 

compute VCare = w(Compassionate)  VCompassionate    

                                          = 1/2   <1/2, 1/6>   
                                          = <1/4, 1/12> 

 

 
 

Fig. 11. Sample run of Max_Affect, from source words: Compassionate and Care, to destination affects: Sympathy and Liking 



Also pertaining to effectiveness, another issue is the nature and direction of the edge being navigated. Following 

Max_Affect, if we disregard concept node feeling from the LAG in Fig. 10 (removing it along with its connections), 

navigating from compassionate to liking would produce wliking(compassionate) = w(compassion, compassionate)  

w(sympathy, compassion)  w(liking, sympathy) = 1/211/21/3 = 1/12. While it does not look peculiar at first 

glance, yet a careful analysis of the result highlights an interesting observation regarding affect node weight 

propagation. Following Max_Affect’s logic, we cross from affect node sympathy to liking by considering the weight 

of liking carried toward sympathy: w(liking, sympathy) =1/3. This is exactly similar to the logic applied when 

navigating from a concept node toward an affect node (e.g., crossing from concept node compassion to affect node 

sympathy requires the weight of sympathy carried toward compassion, w(sympathy, compassion) = 1/2). While the 

logic seems sound when navigating from concept nodes, nonetheless, it tends to break down when propagating 

weight scores between the affect nodes themselves. For instance, crossing from sympathy to liking should carry the 

whole weight of sympathy toward liking, w(liking, sympathy)=1, and not the other way around (as described above), 

since sympathy-IsA-liking where IsA (hyponymy) is a reliable (sentiment conductive) relationship. In other words, 

reaching affect node sympathy from any concept node ci should be enough to identify ci’s sentiment weight w.r.t. 

affect liking, i.e., wliking(ci) = wsympathy(ci) (e.g., considering concept node compassionate in Fig. 10, we would expect 

wliking(compassionate) = wsympathy(compassionate) = 1/211/21=1/4). 

As for efficiency, Max_Affect requires average polynomial (quadratic) time w.r.t. the size of the LAG covered 

in the navigation process (from source concept nodes to target affect nodes) which, despite LAG navigation 

optimizations and parallelization (cf. Section 4), remained relatively time consuming. This led us to provide an 

improved solution, considering the above mentioned effectiveness and efficiency issues in designing LISA 2.0. 

 

3.3. LISA 2.0 - Affect Propagation and Lookup module 

To address the issues mentioned above, LISA 2.0 includes three main components: i) WNAH_Propagation to handle 

affect score computation between affect nodes themselves considering their affective connections only, while 

disregarding word concepts and their lexical/semantic connections in the LAG (this allowed solving the LAG 

lexical/semantic connectivity problem of LISA 1.0), ii) Back_Propagation which propagates affect scores from user 

chosen affect nodes to all connected concept nodes in the LAG
9
. The set of affect-scored concepts form a sentiment 

lexicon which can be efficiently searched by iii) Affect_Lookup to identify word concept affect scores (handling 

LISA 1.0’s efficiency problem). We describe LISA 2.0’s components in following sub-sections. 

 

3.3.1. WNAH_Propagation component 

This component computes the sentiment scores of every affect node w.r.t. every other affect node in WNAH, such 

that each affect category becomes fully representative of all of the others. In other words, every affect node aj in 

WNAH will be associated with a sentiment vector Vj consisting of 294 dimensions, where every dimension 

represents every other affect node in WNAH with its corresponding affect score w.r.t. aj. On the one hand, this 

allows disregarding all lexical and sentiment concepts and connections when navigating between affect nodes in the 

LAG. On the other hand, instead of computing the maximum weight path between a word concept node ci and all 

294 affect nodes to get their sentiment scores (following MaxAffect, cf. Section 3.2), we only need to compute the 

path from ci to the closest affect node aj, where aj would provide through its sentiment vector Vj all the scores for all 

other WNAH affect categories. The sentiment vector of ci, Vi would be equal to Vj multiplied by the maximum path 

weight from ci to aj, i.e., Vj = w(ci, aj)Vi.  

The pseudo-code of WNAH_Propagation is provided in Fig. 12. It takes as the input an affect hierarchy 

(namely: WNAH in our case, yet any other affect hierarchy can be utilized), and produces as output the set of affect 

vectors describing every affect category node in the hierarchy. After initializing all affect vectors to unit vectors 

following their reference affect nodes (cf. lines 1-3), the algorithm updates the vectors by including the weights of 

every node’s parent and children nodes in the hypernymy/hyponymy hierarchy following Formula 3 (Step 1, lines 4-

9). Affect nodes are processed in parallel (with every node assigned a dedicated thread
10

), where affect vectors are 

computed independently in every iteration. Then, the algorithm iterates once for every inner node in the hierarchy, 

processing all vectors in parallel in order to update their weights w.r.t. inner node connectivity (Step 2, lines 10-18). 

                                                           
9   Recall that our approach is different from existing graph-based LSA methods in that we distinguish the affect concept hierarchy from the lexical 

KB, in order to process affective concepts separately following their affective relationships, before mapping them with their lexical 

counterparts with their lexical and semantic connections. To do so, we consider affective and lexical/semantic relationships and their weight 
combinations differently as discussed in Sections 3.2 and 3.3. 

10  The physical implementation of the algorithm is configured to run as many threads as necessary to process the different affect nodes, where 

thread scheduling and parallel execution are left to the operating system. 



For instance, a node ai having node aj as its parent (or child), will have its affect vector updated w.r.t. the latter’s, by 

multiplying their weights while preserving the maximum weight following every vector dimension (lines 15-17).  

 
 

Algorithm: WNAH_Propagation         
 

Input:  Affect hierarchy: WNAH                      // Any hypernymy/hyponymy affect category could be used as input       

Ouput: Set of affect vectors:                    // Affect vectors associated to every affect node in WNAH 
   

Begin 
 

M = |WNAH|  
N = number of non-leaf nodes in WNAH 

Initialize 
(t0) 

= {Vi
 (t0)

} i = 1… M   where  Vi = <w(ai, a1)=0, …, w(ai, ai)=1, w(ai, aM)=0>              // Iteration t0 
 

Step 1: Create Thread for each Vi in                                                                                 // Iteration t1 
{                                                                                                             // processing all nodes simultaneously           

For m=1 to M                                                                         // applying  Formula 3 on  every  node           

If  am is parent of ai    Then  w(ai, am)
(t1)

 = 1 

i

1 
- (a )out degree

m i i m
(t1)a a a aElse  If      Then w( , )is child of   

} 
 

Step 2: For n=2 to N                                                                   // Iterations t2 to tN                               

{                                                                                                             // processing all nodes simultaneously           

Create Thread for each Vi in  
For m = 1 to M                                       // for every affective dimension am in Vi 

i m i m
n-1 n-2(t ) (t )If  w(a ,a ) w(a ,a )

          

// test if weight of dimension am was computed in previous iteration 

Then For j=1 to M                          // update vector Vi w.r.t. computed affect dimension am  

 
 

i j

i j i j i m m j

n-1

n n n-1 n-1

(t )

(t ) (t )(t ) (t ),  

If   w(a ,a ) == 0 

Then   w(a ,a ) w(a ,a ) w(a ,a ) w(a ,a )= max

 

}  
 

Return  N(t )                                                        // final affect vectors are computed in N iterations / 

End 
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Fig. 12. Pseudo-code of WNAH_Propagation algorithm 

 

Consider for instance the sample affective hierarchy in Fig. 13, extracted from Fig. 4, where edge weights are 

computed following hypernymy/hyponymy affective reliability (conductance) following Formula 3. Fig. 14 describes 

a sample run of WNAH_Propagation. 
 

 
 

 

Fig. 13. Extract of the WNAH hierarchy from Fig. 4 

 
Having computed all vectors for all affect nodes in WNAH, every affect node becomes fully descriptive of the 

affective scores of all other nodes in WNAH, such that accessing any affect node would give away all of WNAH’s 

sentiment descriptiveness. In other words, reaching one single affective node aj by navigating the LAG from an 

input user word concept ci would instantly provide ci with an affective vector Vi containing the affective scores of all 

294 WNAH affects, without having to navigate the rest of the affective node hierarchy. 
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a. Iteration t0: Initializing all affect vector weights to 0, except for the 

dimension representing the affect itself, which is assigned maximum weight = 1. 

We do not show the zeros in the matrix for ease of presentation. 

b. Iteration t1: Updating the vectors by including the weights of every 

node’s parent and children nodes in the hypernymy/hyponymy hierarchy 

following Formula 3. Vectors are processed in parallel, using multiple 

threads running simultaneously. 
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c. Iteration t2: Updating the vectors w.r.t. weights computed in the previous 

iteration. Consider node PosEm (representing positive emotion) with vector 

VPosEm for instance, w(PosEm, Liking) = 1/2 was computed in iteration t1. Hence we 

utilize it to update all weights of vector VPosEm accordingly: 

-  w(PosEm, Fond) = w(PosEm, Liking)  w(Liking, Fond) = 1/2  1/3 = 1/6 

-  w(PosEm, Appr) = w(PosEm, Liking)  w(Liking, Appr) = 1/2  1/3 = 1/6 

-  w(PosEm, Symp) = w(PosEm, Liking)  w(Liking, Symp) = 1/2  1/3 = 1/6 

 

Likewise, w(PosEm, Joy) = 1/2 computed in the previous iteration t1, allows to 

update VPosEm accordingly:  

-  w(PosEm, Elation) = w(PosEm, Joy)  w(Joy, Elation) = 1/2  1 = 1/2 

 

The same process is applied simultaneously (in parallel) to every other node 

vector in the hierarchy. 
 

 

c. Iteration t3: The same process is repeated until covering all non-leaf 

nodes in the hierarchy. Consider node PosEm with vector VPosEm for 

instance for instance, w(PosEm, Fond) = 1/6 was computed in iteration t2, 

hence we utilize it to update all weights of vector VPosEm accordingly. Yet, 

the only weight which will be updated here is: 

-  w(PosEm, Kind) = w(PosEm, Fond)  w(Fond, Kind) = 1/2  1/3 = 1/6 
 

The other weights of vector VPosEm will not be updated in this iteration 

(considering the w(PosEm, Appr), w(PosEm, Symp), and w(PosEm, Elation) computed 

in iteration t2) since maximum weights for all dimensions of VPosEm have 

been reached already. 
 

The algorithm ends in this iteration (i.e., t3) which number corresponds to 

the number of inner (non-leaf) nodes in the considered hierarchy (cf. Fig. 

13), after having computed all affect vectors w.r.t. all considered affect 

nodes in the hierarchy. 
 

 

Fig. 14. Sample run of algorithm WNA_Propagation on the WNAH extract in Fig. 13 

 

3.3.2. Back_Propagation component 

Having computed the affect scores of all affect nodes in WNAH (using WNA_Propagation), the Back_Propagation 

component propagates the produced affect scores from user chosen affect nodes to all connected concept nodes in 

the LAG. As a result, all lexical concepts connected (directly through an edge, or indirectly through a path) with any 

affect node acquires an affect score, forming a sentiment lexicon. The latter can then be utilized to perform 

sentiment analysis by simply looking-up the affect vectors of the target lexical concepts from the lexicon.  

The Back_Propagation pseudo-code is shown in Fig. 15. It is a variation of Dijkstra’s maximum weight process 

utilized in Max_Affect, with the following modifications (highlighted in the pseudo-code): i) a set of source affect 

nodes A  G along with their affect vectors A (pre-computed using WNA_Propagation); it does not require a set of 

lexical concept nodes as input since it will process all of them  G (line 1), ii) the algorithm navigates the LAG 

starting from all source affect nodes in parallel (with a dedicated thread assigned to every source node), where affect 

vectors are computed independently in every iteration (lines 4-22), iii) it navigates from every source affect node 

toward its surrounding concept nodes (lines 4-11) and beyond, back-propagating toward all connected concept nodes 

(lines 12-16), iv) affect vectors of lexical nodes are computed directly from those of their connected affect node 

vectors (lines 17-20, instead of computing their weights individually such as with Max_Affect), and v) the maximum 

affect vector weights for all concept nodes produced from every source affect node (i.e., from every thread) are 

finally retained (line 23). 
 



 

Algorithm: Back_Propagation 
 

Input: Lexical affective graph (LAG): G                      

            Set of source affect nodes: A                       // target affect nodes (emotions), A  G 

            Set of affect vectors for A: A                                    // affect vectors pre-computed for every affect node in A  

Ouput: Set of concept affect vectors:C                // affect vectors associated with every concept node in C 

 

Begin 
 

C = set of all word concept nodes in G  

Initialize weights of nodes  G to 0 
 

Frontier = , Explored =                                                     // Frontier is defined as a priority queue based on node weight 
 

Create Thread for every ai in A                                           // starting from affect nodes and navigating toward concept nodes             

{  

i = set of concept affect vectors when navigating from ai    

Initialize i
 
= {Vj

 
} j = 1… |C|   where  Vj = <w(cj, a1)=0, …, w(cj, a|A|)=0>       // affect vector Vj describing cj w.r.t. affects of A 

 

Add ai to Frontier                                                             // any affect node could be a starting node  

Initialize w(ai)=1, remove from Frontier and add to Explored         
 

While (Explored  C)                                                               // while not all concept nodes have been reached 
{ 

For each node xj  Explored                                             // xj could be an affect node or a concept node 

For each node cm outgoing from xj                                               // cm should be strictly a concept node 

Add cm to Frontier 
Compute weight vector of cm 

w(cm) = max(w(cm), w(xj)  w(xj, cm))           // edge weight w(xj, cm) is computed following Formula 3 
 

Compute maximum weight wmax for all nodes in Frontier 
For each node cn in Frontier having w(cn) == wmax 

Compute Vn = max(Vn, w(ai, cn)  Vi)                // using affective vector computed in previous iteration  
Remove cn from Frontier and add it to Explored         

}                                       
} 
 

C = max(i) i = 1… |A|                                                            // retaining maximum affective vector weights 

Return C 
End 
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Fig. 15. Pseudo-code of Back_Propagation algorithm 

 

Consider the same sample LAG example in Fig. 10, reported in Fig. 16.a for ease of presentation. Fig. 17 

describes a sample run of the Back_Propagation algorithm, starting from affective node Sympathy and propagating 

its affective scores toward all concept nodes in the graph. Remaining threads
11

 starting from other affective nodes 

are computed similarly in Fig. 18. Note that if no lexical or semantic relationships exist between affect nodes from 

outside of the affect hierarchy (e.g, if concept node feeling was not connected to affect nodes liking and sympathy), 

then one single thread, starting from any affective node in the LAG, would suffice to run Back_Propagation. 
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b. Input affect vectors for all affect 

nodes, pre-computed by 

WNA_Propagation algorithm: 

 
 

a. Sample lexical affective graph 
 

Fig. 16. Sample LAG, reported from Fig. 10, along with its input affective node vectors 

 

 
 

                                                           
11  In the physical implementation of the algorithm, thread scheduling and parallel execution are left to the operating system. 



 

 

 

 
 

a. Thread  #1: Considering source node Sympathy: 

 Initialize weight of source node: w(Sympathy) = 1 
 

 Affective vector of sympathy w.r.t. all considered affect categories 

has been (pre-computed) provided: VSympathy = <1   1/3   1   1/3> 

following dimensions Liking, Fondness, Sympathy, and Approval 

respectively 
 

 Iteration #1: Fill neighbors in Frontier and identify maximum 

weight: wSymp(Feeling) = 1 
 

 Compute affective vectors: 

Symp = 1 1/3 1 1/3
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       Remove node Feeling from Frontier and include in Explored set 
 

 

b. Iteration #2: Fill neighbors in Frontier and identify maximum 

weight: wSymp (Compassion) = w Symp(Commiseration) = 1/2 
 

 Compute affective vectors: 
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       Remove both nodes from Frontier and include in Explored set 

 

 

 

 
 

c. Iter. #3: Fill neighbors in Frontier and identify maximum weight:  

wSymp(Compassionate) = wSymp(Condolent) =  wSymp(Condole)  

                                     = wSymp(Commiserate)  = 1/2  1 = 1/2 
 

 Compute affective vectors: 

VCompassionate = VCondolent = VCondole = VCommiserate  

                              =  <1/2  1/6   1/2   1/6> 
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 Remove all latter nodes from Frontier and include them in Explored 
 

 

d. Iteration #4: Fill neighbors in Frontier and identify maximum 

weight: w(Care) = 1/2  1/2 = 1/4 
 

 Compute affective vector: VCare = <1/4   1/12    1/4    1/12> 
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 Remove Care from Frontier and include in Explored 

 

End of Thread #1 since all words have been reached from Sympathy 
 

Fig. 17. Sample run of one of the thread of the Back_Propagation algorithm on the LAG extract in Fig. 16. Threads 2-to-4 are 

described in Fig. 18. Recall that threads are executed in parallel. We only number them in this example for ease of presentation 



 

 

 

 

 

a. Thread #2: Considering source node Liking: 
 

 Produces the same results obtained from Sympathy except for 
concept node Feeling which is reached from Liking through 

w(Feeling) = 1 
 

 Hence, VFeeling = 1  VLiking =  <1   1/3    1/3    1/3> 
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 Thread #3 and 4: Considering source nodes Approval and 

Fondness produce the same result obtained with Liking 
 

           Liking = Appr = Fond 
 

 

b. Final affective weight vectors: 

                               C = max(Symp, Liking, Appr, fond) 
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Fig. 18. Sample run of the remaining threads of the Back_Propagation algorithm executed on the LAG extract in Fig. 16. Recall 

that threads are executed in parallel and are only numbered here for ease of presentation 

 

For instance, results in Fig. 17 show that word concepts compassion and commiserate express the same amount 

of sympathy, despite being at different locations in the LAG. On the one hand, compassion is linked directly with 

sympathy via a partly reliable hypernymy (HasA) relationships, resulting in wsympathy(compassion) = 1/2. On the other 

hand, commiserate is linked with sympathy through a path made of two relationships: one partly reliable (sympathy-

HasA-commiseration) and one reliable (commiseration-Derivation-commiserate), yielding wsympathy(commiserate) = 

1/2  1 = 1/2. Yet, concept compassion expresses more sympathy compared with concept care which is farther away 

in the LAG, where care is connected with sympathy via two partly reliable semantic relations (i.e., sympathy-HasA- 

compassion and compassionate-Troponymy-care) and one reliable relation in-between the latter (i.e., compassion-

Derivation-compassionate), thus yielding: wSympathy(Care) = 1/2 11/2 =1/4.   

The final concept affect scores are computed as the maximum weights among all affect vectors produced from 

every affect source node (cf. C in the final result shown in Fig. 18.b). 
 

3.3.3. Affect_Lookup component 

The resulting set of affect-scored concepts (i.e., C) forms a sentiment lexicon which can be efficiently searched to 

lookup any word concept affect score. For instance, the affect score of concept care w.r.t. affect category approval 

can be directly identified as =1/12 by looking it up from C. This is handled by the Affect_Lookup component, which 

makes use of legacy indexing techniques (e.g., B+ Tree [31]) to access and efficiently search C. We do not describe 

Affect_Lookup further here since it comes down to a typical data lookup process. 

To sum-up, the LISA 2.0 module, through its Affect_Lookup component (which makes use of the sentiment 

lexicon produced by Back-Popagation and WNA_Propagation), allows to transform the problem of LSA from a 

(polynomial) graph navigation problem (with LISA 1.0) into a fast (logarithmic) data (lexicon) lookup problem. At 

the same time, LISA 2.0’s lexicon construction process (through Back-Popagation and WNA_Propagation) is fully 

automated and does not require any training or manual effort. 
 



3.4. Complexity Analysis 

The overall time complexity of LISA 1.0 simplifies to O(|w|×|G
*
|
2
) where |w| represents the number of input words 

to be processed for LSA, G the LAG (lexical affective graph) graph utilized for affect navigation, G
*
 the part of G 

which is navigated before reaching the destination affect nodes (where the execution process ends), and |G
*
| its 

number of nodes (concepts). It is evaluated as the sum of the complexities of LISA 1.0’s main WSD_Heuristic and 

Max_Affect components. Considering one single target word w: 
 

- WSD_Heuristic simplifies to best case O(1) when the most common meaning of the word is chosen, and 

worst case O(|senses(w)| × (|context(w)|+|context(ci)|) when the simplified LESK process is executed, where 

|senses(w)| designates the total number of possible senses (concepts) of the source word w in the reference 

lexical KB (e.g., WordNet), |context(w)| the cardinality (in number of terms) of the source word’s context 

within its surrounding input text (if available), ci  senses(w) a possible sense (concept) for source word w, 

and |context(ci)| the cardinality of the context of ci in the reference KB. 

- Max_Affect simplifies to O(|G
*
|
2
) time, as it explores for every node xiG

*
 all its neighbor nodes 

neighbors(xi) in order to identify the neighbors’ maximum edge weights incoming from xi. This process is 

repeated iteratively until reaching the target (affect) nodes.  
 

As for LISA 2.0, we analyze its complexity separately for: i) affect propagation, and i) affect lookup: 
 

- In terms of affect propagation (leading to the creation of a sentiment lexicon), LISA 2.0 simplifies to 

O(|G|
2
), as the sum of the complexities of its WNAH_Propagation and Back_Propagation components: 

 

 WNAH_Propagation requires O(|WNAH|
2
) where |WNAH| designates the number of nodes in 

WNAH. While the latter is constant, one could deduce that this component would require O(1) 

constant time. Nonetheless, our approach is not limited to WNAH in its current form, and can be 

applied to any variation of it or to any other affect reference sharing similar hierarchical 

properties, thus emphasizing its dynamic complexity. 

 Back_Propagation simplifies to O(|G|
2
) as it follows a computational process comparable to that 

of Max_Affect, where back-propagation is executed on the whole of graph G. 
 

- In terms of Affect_Lookup (to perform word-level LSA based on the sentiment lexicon generated in the 

previous phase), LISA 2.0 requires O(|w|×log(|G|)) to perform data lookup for every input word on the 

affect-scored concepts of G (which form the sentiment lexicon) where legacy indexing techniques (e.g., B+ 

Tree [31]) are used to speed-up the lookup process.  

 

4.  Experimental Evaluation 

We have implemented LISA 1.0 and 2.0 to test and evaluate their performance, and compare them with recent 

alternatives in the literature. Written in Java, our implementation comprises LISA’s main modules and components, 

in addition to a linguistic pre-processing component to perform tokenization
23

, stop word removal
22

, and stemming
24

. 

WordNet 3.0 was utilized as the reference lexical KB, and WNAH as the affect KB. The experimental prototype, 

test data, and test results are available online
12

. 

In the following, we first describe the experimental data and pre-processing steps in Sections 4.1 and 4.2. 

Evaluation metrics are described in Section 4.3. Polarity and affect evaluation results are developed in Section 4.4 

and 4.5 respectively, before presenting performance evaluation results in Section 4.6. In summary, results show that 

LISA 2.0 outperforms LISA 1.0 in both LSA quality and performance, while being on a par with existing 

(semi)supervised approaches (without the need for training or manual effort). 
 

4.1. Experimental Data and Pre-Processing 

We utilized the ANEW (Affective Norms for English Words) dataset [10, 100] to evaluate our approach. Developed 

at the University of Florida’s Center for Emotion and Attention Studies, ANEW consists of 1024 words in the 

English language, manually rated in terms of pleasure, arousal, dominance in [10] as well as happiness, anger, 

sadness, fear, and dislike/disgust in [100]. Ratings were conducted by a large number of psychology students 

equally distributed between female and male candidates. Ratings for every dimension were provided on a 9-point 

scale in [10] and on a 5-point scale in [100] following the SAM (Self-Assessment Manikin) system [64], which can 

be translated into integers ([1, 9] or [1, 5] ) designating [min, max] expressiveness. For instance, pleasure was 

rated from no pleasure (=1) to extreme pleasure (=9), and arousal from not aroused (=1) to extremely aroused (=9). 

                                                           
12  Available online at: http://sigappfr.acm.org/Projects/LISA 



Hence, we normalized ANEW’s ratings using Formulas 4, 5, and 6 to obtain scores [0, 1], representing them 

in a common referential which would be easier to compare with LISA and other existing LSA methods. As for the 

afore mentioned dimensions, we considered pleasure to describe word polarity (negative-to-positive), and 

happiness, anger, sadness, fear, and dislike/disgust to describe their respective affect categories
13

.  
 

max max

1 1
  [0,1]      and     =1-   [0,1]

( ) ( )Norm Norm

pleasure pleasure

pleasure pleasure
pos neg

  
   

 

 
(4) 

max

1
  [0,1]

( )Norm

happy

happy
happy


 

    

likewise for , , ,  and    anger fear sadness dislike  
(5) 

 

Note that certain existing LSA methods, e.g., [6, 14, 53], produce polarity scores [-1, 1], varying from 

absolutely negative (score=-1) to absolutely positive (score=1). The latter were also normalized to the [0, 1] interval 

using Formula 6:  
 

1 1
  [0,1]      and     =1-   [0,1]

2 2Norm Norm

polarity polarity
pos neg

  
   

 
 

(6) 

 

4.2. LISA Score Normalization 

While sentiment scores produced by LISA are [0, 1] following the weight cost model and navigation processes 

adopted in our approach, nonetheless, the latter need to be further processed to allow a more accurate evaluation 

w.r.t. existing methods. On the one hand, polarity scores need to be normalized to obtain pos + neg = 1 while 

preserving the variation in the original values. To do so, we applied a geometric translation process on both scores 

as follows. Considering posRaw and negRaw to be the raw (original) scores produced by LISA
14

, we start by computing 

corresponding variation ratios (Step 1). Then we compute relative variations as the averages of raw and variation 

ratio scores (Step 2). The median of the relative variation scores is then computed (Step 3), followed by average 

score distances from the median (Step 4). Consequently, normalized scores are obtained by adding the obtained 

distance scores to the median (Step 5). 
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// Step 1 

 
 

// Step 2 

 
 

// Step 3 

 
 

// Step 4 
 

// Step 5 

(7) 

 
For instance, posRaw = 0.1 and negRaw = 0.3 would produce normalized scores posNorm=0.325 and negNorm=0.675, 

where posNorm+ negNorm =1. 

As for affect category scores, we normalize them w.r.t. the number of user chosen target affect categories such 

that their sum becomes equal to 1: 
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(8) 

 

where A is the set of affect categories chosen by the user as targets for LSA
15

.  

 

                                                           
13  We disregard arousal and dominance in our current experiments since they reflect behavioral rather than affective dimensions [10]. 
14 The latter are obtained from nodes positive emotion and negative emotion, either i) by reaching them through LAG navigating when using 

LISA 1.0, or ii) by looking them up from the sentiment lexicon when using LISA 2.0.  
15  Note that certain affects can be grouped in pairs of opposite categories (e.g., love-hate, like-dislike) [24], and can thus be normalized pair-wise 

similarly to polarity scores (cf. Formula 6). Yet, we adopt a more general normalization function (cf. Formula 8) in our current study in order 
to evaluate the set of non-opposite affect categories provided in ANEW. 



4.3. Evaluation Metrics 

To evaluate our approach, we ran LISA 1.0 and 2.0 on the ANEW dataset and compared our results with ANEW’s 

normalized word ratings using Pearson Correlation Coefficient (PCC) and Mean Squared Error (MSE): 

 

XY
(X,Y)   [-1, 1]

X Y
PCC



 
 


 

 
(9) 

 

2

j j

i=1...J

1

J
(X,Y) (x - y )   [0, ]   ErrMSE max   

(10) 

 

where: x  X and y  Y designate ANEW (human) and system (LISA) generated sentiment scores respectively, X  

and Y denote the standard deviations of X and Y respectively, XY denotes the covariance between X and Y, and J = 

max(|X|, |Y|) is the maximum vector size
16

. The values of PCC are  [-1, 1], i.e., 1 for maximum correlation, 0 for no 

correlation, and -1 for negative correlation
17

. MSE is a distance measure evaluating the separation between X and Y 

as the average of the squares of their difference errors. MSE [0, maxErr], i.e., 0 for minimum error distance and 

maxErr for maximum error distance, where maxErr=1 in our case since both X and Y values [0, 1].   

A high quality LSA method would naturally produce: i) high PCC scores: which means that the system 

generated sentiment scores are closely correlated with the user (ANEW) ratings; ii) and low MSE scores: meaning 

that the system generated sentiment scores are not distant from the user ratings. In addition to comparing one 

approach’s PCC improvement to another’s MSE distance, and given the matching boundaries of PCC and MSE in 

our experimental scenario (with maxErr=1), we combine them into a single measure which we designate as: 

closeness, computed as the linear combination of the absolute value of PCC with the inverse of MSE: 
 

 ( , ) (X,Y) (1 ) 1 (X,Y)        [-1, 1]closeness X Y PCC MSE       

 
where α ∈ [0, 1] 

 
(11) 

 

Therefore, high absolute PCC (considering both positive and negative correlation) and low MSE would produce 

high closeness, indicating (in the case of positive PCC) excellent LSA quality. 

4.4. Polarity Evaluation Quality 
 

We compared LISA 1.0 and 2.0 with ANEW as well as four recent polarity (opinion) detection methods available 

online: SentiWordNet 3 [6], SenticNet 3 [14], SenticNet 5 [16]
18

, and AlchemyAPI [53]. The results of alternative 

solutions were produced based on the sentiment scores extracted from their original studies (available online). For 

each of the latter methods, we identified the ANEW words matching with the corresponding lexicon entries to 

produce the corresponding polarity scores. A snapshot of the results is provided in Fig. 19 and Fig. 20. The 

complete set of empirical graphs and corresponding data is provided online
19

. Results are also summarized Table 1. 

Fig. 19 shows positive polarity scores w.r.t. ANEW, where words have been ranked following ANEW’s positive 

intensities (from highest to lowest). Similar graphs were produced for negative polarity scores and are provided 

online. Three main observations can be made here. First, one can realize that LISA 2.0 produced results which are 

more consistently distributed following ANEW’s ratings compared with LISA 1.0. Second, LISA 2.0’s results show 

concentrations of score points around the ANEW reference score line, with clusters of points forming around 

positive polarity scores = 0.8, 0.64, 0.5, 0.37, and 0.18 (highlighted in Fig. 19.b) following ANEW’s slope. This 

highlights LISA 2.0’s quality in producing scores which correlate more closely with ANEW’s manual ratings 

compared with LISA 1.0. Third, most alternative solutions which are supervised produce polarity scores which are 

                                                           
16  X and Y are expected to have the same size, i.e., producing sentiment scores for the same number of words in the test dataset. Nonetheless, 

different sizes for X and Y can be accounted for in both PCC and MSE formulas, when rating LSA methods which do not produce sentiment 
scores for certain words. In this case, the scores of words missing from X (Y) are considered to be as different as possible from the available 

word scores in Y (X), such that x=1-y, and vice versa for Y, where x and y remain [0, 1]. The latter simulates the concept of “maximum 

distance” for an unprocessed word, which in our case will always be bounded in the [0, 1] interval. 
17  The values of PCC  [-1, 1] such that: -1 designates that one of the variables is a decreasing function of the other variable (i.e., words deemed 

sentiment-expressive by human testers are deemed non-expressive of that sentiment by the system, and vice versa), 1 designates that one of the 

variables is an increasing function of the other variable (i.e., words are deemed expressive/non-expressive of a given sentiment by human 

testers and the system alike), and 0 means that the variables are not correlated. 
18  SenticNet 5 is an improved version of SenticNet 3 which performs dimension reduction and multi-dimensional scaling of the lexicon’s feature 

vector space, using specially designed recurrent neural networks to improve sentiment scoring (cf. Section 2). 
19   http://sigappfr.acm.org/Projects/LISA 



relatively dispersed in the polarity space (show in Fig. c, d, and e). This reflects their supervised learning nature, 

which produces results that are varied and reflective of the diversity of their training data, compared with LISA’s 

less dispersed and more rigorously structured (clustered) results, reflecting the structured nature of its LAG 

reference and graph computation process. 
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c. SentiWordNet 3 

 

    
 

 

 
 

 

 
 

 
 

d. SenticNet 3 

 
 

e. SenticNet 5  
 

f. AlchemyAPI 

Fig. 19. Positive polarity scores w.r.t. the ANEW dataset 

 

The above results are also highlighted in the PCC graphs in Fig. 20, where LISA 1.0 and 2.0 show a more 

structured result organization, compared with loosely structured and more diverse polarity scoring behavior with 

alternative supervised solutions.  

Results compiled in Table 1 show that LISA 2.0’s performance, in terms of both PCC and MSE, is on a par with 

existing (supervised learning) approaches, namely SentiWordNet and SenticNet 3. SenticNet 5, which performs 

dimension reduction and multi-dimensional scaling of SenticNet’s feature vector space, produced improved results, 

highlighting the impact of feature vector dimensionality on LSA quality. IBM’s AlchemyAPI opinion mining 

engine produced the best results, distinctively surpassing all other approaches including LISA. 
 

Table 1.  Average PCC, MSE, and combined closeness scores for positive and negative polarity 
 

 PCC MSE 
Closeness 

20 
 Positive Negative Avg. Positive Negative Avg. 

AlchemyAPI 0.7476 0.7477 0.7477 0.0322 0.0321 0.0322 0.8578 

SenticNet 5 0.6370 0.6249 0.63095 0.0368 0.0282 0.0325 0.7992 

SentiWordNet 3 0.4934 0.4934 0.4934 0.0482 0.0482 0.0482 0.7226 

LISA 2.0 0.4496 0.4496 0.4496 0.0605 0.0606 0.0606 0.6945 

SenticNet 3 0.4504 0.4343 0.4424 0.0864 0.0807 0.0836 0.6794 

LISA 1.0 0.2497 0.1872 0.2185 0.2247 0.2281 0.2264 0.4961 

 

 

 

 

 

                                                           
20 We consider α = 0.5, assigning equal weight to PCC and MSE 
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Fig. 20. PCC graphs for positive polarity scores 

 

4.5. Affect Evaluation Quality 
 

We also compared LISA 1.0 and 2.0 with ANEW as well as two alternative methods available online: 

EmoSenticNet [88], and Tone Analyzer [54]. A snapshot of the results is provided in Fig. 21 and Fig. 22. The 

complete set of empirical graphs and corresponding data is provided online
21

. Results are summarized Table 2. 

Fig. 21 shows dislike/disgust polarity scores w.r.t. ANEW, where words have been ranked following ANEW’s 

dislike intensities (from highest to lowest). Fig. 22 provides corresponding PCC graphs. Similar graphs were 

produced for the other four affective categories (i.e., happiness, anger, sadness, fear) and are provided online. 

Results here reflect observations similar to the ones made earlier with polarity scores: i) LISA 2.0 produced results 

which are more evenly distributed along ANEW’s ratings compared with LISA 1.0, ii) LISA 2.0’s results show 

concentrations of score points around the ANEW score line, with clusters of points forming around dislike intensity 

scores = 0.67, 0.46, 0.32, 0.18, and 0.09 (highlighted in Fig. 21.b), iii) IBM’s Tone Analyzer, which is a supervised 

learning solution, produced affect scores that are relatively dispersed in the affective space (cf. Fig. 21.d), compared 

with LISA’s clustered results, reflecting the former’s supervised learning nature and the diversity of the training 

data, iv) EmoSenticNet, which is a semi-supervised sentiment lexicon, produced discrete affect category labels (in 

the form of scores {0, 1} for every affect category, where the score of a word that belongs to the category =1, 

otherwise, it is =0). It does not produce affective intensity levels as clearly reflected in the binary nature of its results 

(in Fig. 21.c). 

Results compiled in Table 2 show that LISA 2.0’s performance, in terms of both PCC and MSE, is on a par with 

existing (semi)supervised approaches. IBM’s Tone Analyzer results, while more varied and dispersed than LISA’s, 

slightly surpassed the latter’s effectiveness w.r.t. the ANEW experimental dataset. This highlights LISA’s potential 

as an unsupervised word-level LSA method capable of contending with existing supervised solutions. Nonetheless, 

we clarify that LISA only performs word-level analysis at this stage, while Tone Analyzer is capable of sentence 

and document-level analyses.  

 

                                                           
21 http://sigappfr.acm.org/Projects/LISA 
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Fig. 21. Dislike/disgust affective scores w.r.t. the ANEW dataset 
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Fig. 22. PCC graphs for dislike/disgust affect scores 
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Table 2.  Average PCC, MSE, and closeness scores for happiness, anger, sadness, fear, and dislike/disgust affective categories 

 PCC MSE 
Closeness 

 Happiness Anger Sadness Fear Dislike Avg. Happiness Anger Sadness Fear Dislike Avg. 

Tone Analyzer 0.1997 0.1488 0.1299 0.0756 0.1513 0.14106 0.1146 0.0458 0.0543 0.0458 0.0542 0.06294 0.60959 

LISA 2.0 0.2251 0.1667 0.0108 0.0807 0.1669 0.13004 0.1935 0.0293 0.0609 0.0269 0.0608 0.07428 0.5929 

EmoSenticNet 0.1512 -0.0369 0.0394 0.0838 0.0671 0.06092 0.2932 0.2943 0.3208 0.2849 0.3207 0.30278 0.40953 

LISA 1.0 0.1257 0.0697 0.0045 0.0338 0.0698 0.0607 0.2322 0.0343 0.2292 0.0404 0.2286 0.15294 0.48423 
 

We are currently investigating phrase-level and sentence-level LSA, combining LISA’s functionality with 

additional features such as word associations, valence shifters, and a dedicated emoji affect lexicon [40], to perform 

unsupervised LSA on short social media texts (such as Facebook comments and Twitter messages).     
 

4.6. Time Performance 

We also conducted efficiency tests to assess the running times of both LISA 1.0 and 2.0 modules. Following our 

complexity analysis in Section 3.4, LISA 1.0’s time complexity simplifies to O(|w|×|G
*
|
2
) where |w| represents the 

number of input words to be processed, and |G
*
| the number of navigated nodes (concepts) in the LAG (lexical 

affective graph) G processed before reaching the destination affect nodes. As for LISA 2.0, its affect propagation 

process in the LAG (generating the sentiment lexicon) requires O(|G|
2
), whereas its affect lookup process (acquiring 

affect scores from the generated sentiment lexicon) simplifies to O(|w|×log(|G|)).  

We varied the number of user input words, as well as the size of the LAG by generating different extracts w.r.t. 

its total size (considering for instance: 10%, 20%, …, or 100% of the LAG). Every extract contained all affective 

nodes to allow LSA processing. The total size of our LAG (mapping WordNet 3.0 with WNAH) was around 30 

Mbytes, including more than 117k concepts. The characteristics of a set of sample LAG chunks used in our 

experiments are summarized in Table 3. Experiments were carried out on an HP ProLiant ML350 Generation 5 (G5) 

Dual-Core Intel ® XeonTM 5000 processor with 2.66 GHz processing speed and 16 GB of RAM. 

 
 

 
 

  

 
 

a. LISA 1.0, varying the number of inout source words  b. LISA 1.0, varying the number of concepts in the LAG 
 

   
 

 
 

  

 
 

c. LISA 2.0, varying the number of input source words  d. LISA 2.0, varying the number of concepts in the LAG 
 

 
 

Fig. 23. Time performance w.r.t. the number of input words, and the number of concepts processed in the LAG 
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Table 3. Characteristics of sample LAG chunks utilized in our experiments 
 

N# of Concepts 

(Synsets) 
11,738 23,475 35,212 46,949 58,686 70,423 82,160 93,897 105,634 117,659 

Chunk % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Size (in MBs) 2.7707 3.9466 7.6498 9.5691 12.1641 13.8941 18.2191 19.9491 23.4091 26.0041 

Avg. Branch
22

 1.4533 1.6257 1.7553 1.9236 2.0697 2.2259 2.3736 2.5285 2.6677 2.8223 

Avg. Span
23

 2.1035 2.2299 2.3665 2.5213 2.8849 3.5362 3.7411 4.1947 5.9852 7.5119 

 
 

 

  

 

 
 

 
 

 

a. Number of navigated concepts = 1800 
  

 
 

b. Number of navigated concepts = 4200  
 

c. Number of navigated concepts = 6000 

 

    
 

 

  

 

 
 

 
 

a. Number of input words = 1 
 

 
 

b. Number of input words = 5  
 

c. Number of input words = 10 

 

Fig. 24. Comparing the time performance of LISA 1.0 and LISA 2.0 (affect lookup) 

 

Results in Fig. 23 and Fig. 24 show sentiment analysis time w.r.t. the number of user input words and the 

number of navigated concepts in the LAG, comparing LISA 1.0’s main navigation process, with LISA 2.0’s affect 

lookup process, as well as two variants of LISA 1.0: i) LISA 1.0_IDProcessing, an enhanced version of LISA 1.0 

which allows for faster LAG navigation by processing the concepts’ IDs from the WordNet KB (cf. Appendix I), 

and ii) LISA 1.0_DeltaStepping, a parallelized version of LISA 1.0 following the Delta Stepping shortest path 

parallel processing paradigm (cf. Appendix I). 

Results in Fig. 23.a and c highlight LISA 1.0 and LISA 2.0 (affect lookup)’s linear dependencies on the number 

of input words processed for sentiment analysis. Fig. 23.b and d respectively show the latter’s quadratic and 

logarithmic dependencies on the number of concepts processed in the LAG. Comparative time results in Fig. 24 

clearly show the major difference between LISA 1.0’s execution time, including its DeltaStepping and IDProcessing 

variants on the one hand, and LISA 2.0’s affect lookup time on the other hand. LISA 2.0’s affect lookup process 

requires on average 0.18 ‰ of LISA 1.0’s time to produce affective scores. 

Time results in Fig. 25 highlight LISA 2.0 affective propagation’s quadratic dependency on the size (in number 

of concepts) of the LAG. It took around 4 days to process our complete LAG which maps the whole of WordNet 

with WNAH (cf. Fig. 25.b). Note that LISA 2.0’s affective propagation is done offline prior to performing user LSA 

operations (which are handled by LISA 2.0’s affect lookup process).  

 

                                                           
22  Average number of outgoing edges per node, i.e., node fan-out. 
23  Length of the path from a root (most abstract) concept node to a leaf (most specific) node in the LAG (considering hierarchical relations only, 

e.g., hypernymy/hyponymy, to avoid loops). 
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a. Considering a LAG extract of 6000 concepts  b. Considering our whole LAG  made of 117659 concepts 

 
 

Fig. 25. Time performance of LISA 2.0 affective propagation 

 

5. Conclusion 

This paper introduces LISA, an unsupervised word-level knowledge graph-based LSA framework, which uses 

different variants of shortest path graph navigation techniques to compute and propagate affective scores in a 

lexical-affective graph (LAG). LISA was designed in two consecutive iterations, producing two modules: i) LISA 

1.0 for affect navigation, and ii) LISA 2.0 for affect propagation and lookup. LISA 1.0 suffered from the semantic 

connectivity problem shared by some existing lexicon-based methods, and required polynomial execution time. This 

led to the development of LISA 2.0, which i) processes affective relationships separately from lexical/semantic 

connections (solving the semantic connectivity problem of LISA 1.0), and ii) produces a sentiment lexicon which 

can be searched in logarithmic time to perform word-level LSA (handling LISA 1.0’s efficiency problem). 

Experiments on the ANEW dataset show that LISA 2.0 outperforms LISA 1.0 in both LSA quality and performance, 

while being on a par with existing (semi)supervised approaches (without the need for training or manual effort). 

We are currently investigating phrase-level and sentence-level LSA, combining LISA’s functionality with 

additional features such as word associations, valence shifters, and a dedicated emoji affect lexicon [40], to perform 

unsupervised LSA on short social media texts (such as Facebook comments and Twitter messages). We are also 

considering author stylistic features [131] including different text writing attributes which can emphasize 

sentiments, such as i) punctuation (e.g., “!”, “-”, “?”) which can intensify or weaken a sentiment, iii) abbreviations 

(e.g., “US”, “UK” instead of mentioning the full names of countries) which, coined with context features, might 

highlight familiarity and thus intensity certain sentiments, and iii) unusual word spellings such as the use of capital 

case letters (e.g., “COOL”) as well as character repetitions (e.g., “greeeeat”) which can intensify sentiments [42]. 

We are also investigating the extension of our LAG structure to consider unambiguous word concepts mined form 

concept glosses in the lexical KB, following the intuition that the gloss of a concept describing an affect category 

would contain words that might be related (with different intensities) to that category [6]. In the near future, we aim 

to explore implicit semantics (a.k.a. latent semantics) [107], i.e., semantics which can be inferred from the statistical 

analysis of word/phrase embeddings (feature vectors), following their co-occurrence in a corpus [50]. This is 

different from conventional concept-based LSA, which utilizes explicit concepts representing real-life entities (e.g., 

concepts within a conventional KB such as WordNet or Wikipedia) [118]. Latent feature representations, combined 

with dimension reduction and scaling [16], allow capturing certain syntactic and semantic regularities and 

relationships between words and phrases represented as feature vectors [50] (e.g., identifying that “failure” is 

related to “sadness” following their feature vector offsets), which we aim to investigate and possibly combine with 

our LAG structure toward unsupervised knowledge-based and corpus-based LSA. 
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Appendices 
 

Appendix I. LISA 1.0 ID Processing 
 

LISA 1.0_IDProcessing aims to speed-up the process of finding the closest target affect concept w.r.t. a source word 

concept in the LAG, by making use of the concepts’ IDs from WordNet (defined as integer numbers). By analyzing 

the structure of WordNet, one can realize that the IDs of concepts occurring in the same hypernymy/hyponymy path 

in WordNet increase as the corresponding concepts’ depths increase in the hypernymy/hyponymy hierarchy. LISA 

1.0_IDProcessing makes use of the latter behavior to allow a faster identification of the target affect concept that is 

closest to the source word concept in the WordNet hierarchy.  
 

 

Algorithm: IDProcessing         
 

Input: LAG graph: G                                                   // lexical affective graph, connecting in our case: WordNet with WNAH 
 Word concepts graph: C                       // corresponding to input word concepts (synsets) in WordNet, C  G            
 Source concept: c                            
 Set of destination affect nodes A                        // corresponding to target affect categories (emotions), A  G 

 Set of affect vectors for: A                                                      // affect vectors for every target affect node  

Output: Source concept affective vector: Vc               // affect vectors associated to every affect node in WNAH 
   

Begin 
 

Vc = <w(c, a1)=0, …, w(c, a|A|)=0>  

For each ai  A 
{ 

If ID(c) = ID(ai)  where a  A    Then Vc = Va  A 
Else  
{     

If ID(c)  [minID, maxID] Then 
{ 

clb = lowerBound(c, C)                 // smallest ID that is higher than the ID of c  

cup = upperBound(c, C)                    // largest ID that is lower than the ID of c 
} 
Else 
{ 

clb = highestNbAncestors(c, C)       // following WordNet IsA/HasA hierarchy 

cup = lowestNbAncestors(c, C)         // following WordNet IsA/HasA hierarchy 
}  
Run MaxAffect to compute the weight of clb and cup 
w(c, ai)= max(w(c, clb), w(c, cup)) 

} 
} 
Return Vc 

End 
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Fig. 26. Summarized pseudo-code of LISA 1.0_IDProcessing 

 



The algorithm’s pseudo-code is provided in Fig. 26. First, it identifies the ID of the source word concept, and 

then compares it with the IDs of all affect concepts, which are comprised within a [minID, maxID] interval, where 

minID=05770995 (representing concept recognition) and maxID=14565279 (representing concept insecurity) in 

WordNet 3.0. Note that non-affective concepts are also included within the [minID, maxID] interval in WordNet. 

Here, we identify three different possibilities: 
 

1. If the word concept maps to an affective concept, then it directly receives the affective vector of the latter.  

2. If the ID of the source concept is included within the affective concepts’ ID range, the algorithm identifies 

the two affective concepts which IDs are closest to the source word concept ID: i) the one that has the 

smallest ID higher than that of the source concept, and ii) the one that has the largest ID lower that the 

source’s. The closest affective concept will be one of the two afore identified concepts, i.e., the one with the 

highest affective weight w.r.t. the source concept (following Formula 3). 

3. If the source concept ID does not fall within the identified interval, then its closest affective concept would 

be one of the boundary affective concepts. These could be either: i) shallower in the WordNet 

hypernymy/hyponymy hierarchy, i.e., having a higher number of ancestors compared with the other affective 

concepts, or ii) deeper in the WordNet hypernymy/hyponymy hierarchy, i.e., having a lesser number of 

ancestors compared with the other affective concepts.   
 

In cases 2 and 3, having identified the closest affective concepts following thier concept IDs, LISA 1.0’s 

Max_Affect algorithm is applied between the source concept and each of the boundary concepts in order to identify 

(the one yielding) the maximum affective intensity score. 

 

Appendix II. LISA 1.0 Delta Stepping 
 

LISA 1.0_DeltaStepping is a parallelized version of LISA 1.0 following the Delta Stepping (DS) shortest path 

parallel processing paradigm [71].  

 
 

Algorithm: DeltaStepping      
 

Input: LAG graph: G                                                        // lexical affective graph, connecting in our case: WordNet with WNAH 

 Set of source word concept nodes: C                 // corresponding to input word concepts (synsets), C  G            
 Set of destination affect nodes: A                         // corresponding to target affect categories (emotions), A  G              

Ouput: Set of affect vectors:                                     // affect vectors associated to every source concept node in C w.r.t. affect nodes in A 

   

Begin 
 

Initialize 
 
= {Vi

 
} i = 1… |C|   where  Vi = <w(ci, a1)=0, …, w(ci, a|A|)=0>        

Initialize weights of nodes  G to 0 
 

For each ci  C 

Create thread for each aj  A 
{ 

If ci = aj  Then w(ci, aj)=1 
Else If ci isDecendentOf cj Or aj isDecendentOf ci Then 
{ 

AllBuckets = fillBuckets(ci, aj) 
i
j i jIdentify p =path(c ,a )  

i
i j jCompute w(c , a ) in  p  following Formula 3 

} Else 
{ 

s =  LCA(ci, aj)                                   // Lowest common ancestor  
AllBuckets = fillBuckets(s, aj) 

s
j jIdentify p =path(s,a )  

s
j jCompute w(s, a ) in  p  following Formula 3

 

w(wi, cj) = w(s, cj) 
} 

 

Return  
End 
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Fig. 27. Summarized pseudo-code of algorithm LISA 1.0_DeltaStepping 

 

 



The algorithm’s pseudo-code is summarized in Fig. 27 and can be described in four main steps: 
  

1. First, it identifies the nodes that are located on the same path between the source node and the destination 

node. Here, we considered hypernymy/hyponymy hierarchical relationships only to simplify processing 

(maximizing efficiency to the detriment of quality). 

2. Second, it sets the weight of every one of these nodes following Formula 3.  

3. Third, it divides the nodes into buckets following their weight ranges, where each bucket would contain the 

nodes having similar weights. Weight ranges are defined as multiples of a user chosen value: Δ (delta).  

4. Finally, the buckets are processed in parallel, with every bucket assigned to a dedicated thread in order to 

identify the nodes with the smallest weights, multiplying the weights in order to get the distance. 

 
Fig. 28 to Fig. 30 describe an example of how LISA 1.0_DeltaStepping is processed on a hypernymy/hyponymy 

hierarchy. Fig. 28 shows the source and destination nodes where the source is an ancestor of the destination. Fig. 29 

shows how nodes are divided into buckets (to be multithreaded), while setting the weight of each node following 

Formula 3. In Fig. 30, the nodes between the source and the destination are processed for distance computations. 
 

 
 

Fig. 28. Nodes on the path between the source and the destination 

 

 
 

 

Fig. 29. Nodes are divided into buckets 

 

 
 

Fig. 30. Distance computation for intermediary nodes 


