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Abstract—The purpose of this study is to create a software system to 
facilitate the organization of and searching for social images acquired 
from social sites on the Web (such as Facebook or Flikr), taking into 
account the images’ features as well as user preferences. To achieve our 
goal, we design a solution based on image clustering, grouping together 
images sharing similar semantic and visual features, to simplify their 
organization and querying. This requires low-level and high-level image 
feature extraction and processing, where: low-level features represent 
color, texture, and shape image descriptors, whereas high-level features 
consist of textual descriptors extracted from image annotations and 
surrounding texts. Our system consists of modular components for: i) 
feature extraction and representation (low-level and high-level), ii) 
partitional image clustering (initial clustering phase executed when the 
user first connects to the system), iii) incremental clustering (updating 
clusters produces in the previous phase by processing newly published 
images), iv) fast image querying (using features of cluster 
representatives), and v) personalized images/search results visualization 
(using various user-chosen cluster display techniques). Preliminary 
experiments highlight the efficiency and practicality of our tool. 

Keywords—Social Web Images, Image Clustering, Content-based 
Image Retrieval, Text-based Image Retrieval, Personalized Image 
Organization. 

I. INTRODUCTION 
In the past two decades, the amount of images published on the Web, 
especially on social sites like Facebook and Flikr, has been increasing 
exponentially. This was further fueled by the increasing availability of 
photo taking gadgets such as smart phones, pads, and tables, as well as 
the increased user connectivity to the Web using wireless network and 
mobile Internet connectivity. Yet, with the increased availability of 
social Web images comes the challenge of managing these images in a 
personalized manner, so that a user can efficiently organize and search 
for images based on her needs (e.g., grouping together and/or 
searching for similar images taken at a certain place and/or time, 
tagged with a certain friend, etc.).  

To address this problem, we have designed and implemented a 
solution called SICOS, for Social Image Cluster-based Organization 
and Search, allowing to group together images sharing similar 
semantic and visual features, to simplify their organization and 
querying. This requires low-level and high-level image feature 
extraction and processing, where: low-level features represent color, 
texture, and shape image descriptors, whereas high-level features 
consist of textual descriptors extracted from image annotations and 
surrounding text.  

The overall architecture of SICOS is shown in Fig. 1, and 
consists of 7 main components for: i) image retrieval from a social 
site (e.g., Facebook, Flikr, etc.), ii) feature extraction and 
representation (low-level and high-level), iii) image similarity 
computation, needed to perform: iv) partitional image clustering 
(initial clustering phased executed when the user first connects to the 
system), v) incremental clustering (updating clusters produces in the 
initial phase by processing newly published images), vi) image 
visualization (following different user chosen views, e.g., grid, fish-

eye, etc.) and vii) fast image querying (using features of cluster 
representatives). It accepts as input: social Web images (downloaded 
from a social site like Facebook), user image organization parameters 
(highlighting the kinds of image features the user is interested in, as 
well as image organization parameters), and user search parameters 
(text-based and/or content based user queries). The system then 
performs image storage and organization following user organization 
preferences, and returns search results to answer user queries. 

Different from existing image search and result organization 
solutions which are either: i) generic, addressing Web-based image 
processing (and not specifically geared toward social image 
processing), e.g., [1, 2], ii) computationally expensive, performing 
automatic face or object recognition, e.g., [3, 4], and/or event 
detection and identification, e.g., [4, 5], in indexing and searching for 
social images, and iii) requiring specific conditions or contextual data 
to work properly (cf. Section II); we provide here a computationally 
efficient solution integrating legacy techniques from Web-based and 
social image processing, requiring minimal contextual/input data, to 
provide the following functionality: 

 

- Efficient indexing and storage of images with the 
corresponding feature information,  

- Comparing images based on low-level visual features 
including: color, texture, and shape descriptors 

- Comparing images based on high-level textual features, 
including: tags, captions, comments, and geographic location,  

- Clustering images based on low-level and high-level feature 
similarities,  

- Simple access to images through cluster representatives, 
- Allowing different user-friendly cluster visualizations, 
- Searching images based on low-level visual features, 
- Searching images based on high-level textual features. 

 
 

 

Fig. 1. Overall SICOS architecture. 

The remainder of the paper is organized as follows. Section II 
briefly describes related works. Section III presents background 
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information concerning the different techniques used in developing 
our solution. Section IV describes our SICOS system, its components, 
and functionality. Section V presents and discusses experimental 
results, before concluding with current directions in Section VI. 

 

II. RELATED WORKS 
 

Organizing and searching among personal images published on social 
sites can be extremely tedious and time consuming, since these can 
be published with or without proper user (publisher) generated 
descriptions. Hence, a user query (e.g., searching for pictures related 
to keyword query “Byblos site”) would return image results 
containing multiple topics mixed together, where the user (publisher) 
cannot be expected to have the time or patience to scroll through the 
huge result list. Things become even worse when one topic is 
overwhelming but is not what the user desires [6]. In addition, the 
user could entirely miss her search goal due to information and/or 
cognitive overload. 

A possible solution is to help the user reformulate the query by 
suggesting alternative or more precise search criteria. For instance, 
query disambiguation and relaxation techniques [7-9] could be used 
to help narrow down the search result diversity (allowing more 
specific queries such as “Byblos archeological site” or “ancient site 
in Byblos”). Yet, such techniques do not entirely solve the problem 
since even the results of refined queries could be difficult to grasp 
(e.g., refined query “ancient site in Byblos” might return different 
images describing different sites in Byblos, such as the Fortress, the 
old market, the old house by the shore, the roman ruins, etc.).  

Another possibility is to better organize the output information 
(prior and/or after query refinement), providing a means to facilitate 
the assimilation of the search results by the user. Hence, image 
search result organization [10] has been recently investigated as a 
simple and efficient solution to improving image retrieval quality on 
the Web [11]. Most methods in this context exploit image clustering 
(i.e., identifying groups of mutually similar images) as a 
methodology capable of topic extraction and returning semantically 
more meaningful image search results to the user [1, 2] (than merely 
a list of images sorted by similarity to the query). The general 
assumptions are that (i) mutually similar documents (e.g., images) 
tend to be similar to the same query [12], and (ii) semantically 
similar images (i.e., images with similar underlying topics) tend to be 
grouped together in some feature space [1]. In other words, 
identifying the different topics (clusters) of image search results 
would aid the user in understanding and navigating the result set, in 
order to efficiently identify her search request (cf. sample search 
result clusters in Figures 4-6). 

While most existing image search result organization techniques 
have been developed for general purpose Web-based image retrieval 
systems, e.g., [1, 2, 10-12], few approaches have been developed to 
handle social Web images, e.g., [3, 13, 14]. One group of methods 
relies on automatic pattern recognition techniques [4], such as face, 
object, or clothes recognition [3] in order to identify individuals and 
then tag and organize images accordingly. Methods in this category 
are computationally expensive and require specific conditions to 
work properly [4], including: visible faces or distinctive clothing in 
images, and good lighting [14]. Another group of methods relies on 
user generated meta-data, namely tag names, allowing to organize 
images in tree-like structures such as Galois sub-hierarchies [13-15], 
aiming to incrementally capitalize on existing information by 
allowing images to inherit descriptions of other existing images. 
They make use of event extraction and identification techniques 
which are computationally expensive and require contextual meta-
data (e.g., predefined event categories) [16, 17] which might not be 
always available.  

In this study, we integrate different techniques from existing 
Web-based and social image processing, aiming to design i) a 
computationally efficient solution, ii) flexible and adaptable 
following the user’s needs (the user is involved in every phase of the 
processing), iii) requiring minimal (contextual) input data, and iv) 
providing various functionality toward personalized social image 
management and search (cf. Section I). Our solution can be viewed 
as a flexible and open platform on top of which different application 
specific functionality can be implemented (e.g., pattern recognition, 
event extraction, image classification, automatic image annotation, 
semantic image feature learning, among others). 

 

III. PRELIMINARIES 

A. Image Representation 
 

1) Low Level Features: A digital image is represented by a 
number of colored pixels. Different color spaces exist in the literature 
such as CIE XYZ which attempts to produce a color space based on 
human eye color perception. Other such color spaces include CIE 
RGB, CIELAB, etc., [18, 19]. 

Low level features are image characteristics/descriptors that are 
related to the color distribution and their combination in an image. 
Those descriptors can be divided into 3 groups: color, texture, and 
shape. Color descriptors are used to represent the colors present in 
the image such as color histogram; texture features are used to 
describe color patterns and geometric color distributions in an image; 
while shape descriptors allow detecting different shapes and objects 
in an image. A prominent image color descriptor is the color 
histogram which represents the color distribution in the image. That 
is, each cell in the histogram contains the number of pixels in the 
image having a specific RGB value. For example, one can know the 
number of pixels that have R = 30, G = 30 and B = 30, by checking a 
specific index in the histogram. The values for each of the three 
colors varies from 0 to 255 with the white color being represented by 
255 for all three values and the black color being represented by 0 for 
all three values [19]. A prominent image texture descriptor is the 
texture color histogram which describes certain patterns and shapes 
in an image based on their color distributions. The combination of the 
colors forms common shapes that are used for scene understanding. 
Extracting the texture color histogram is done through image 
segmentation [20], dividing the image into several parts/regions 
according to some criteria. A prominent shape descriptor is the edge 
histogram which describes edges in the images. Therefore, images 
containing cities and buildings might appear similar because of the 
common edges in the images. Edge (or contour) detection can be 
performed using different linear (convolution) and/or non-linear 
(median and mean) local filters [21, 22]. One effective and 
computationally efficient (linear) filter technique is the Haar 
Transform [23] which we adopt in our study1.  

Note that image features can be represented as vectors, which 
can be efficiently processed using typical similarity measures such as 
cosine similarity and/or the Euclidean distance, to compute the 
similarity between two images. Similarity evaluation between images 
is essential in a battery of applications, including image indexing and 
retrieval [24] as well as image classification and clustering [25, 26]. 
Note that color descriptors are the most commonly used since they 
are relatively easy to process (in comparison with texture and/or 
shape features) while producing good enough results [18]. 

In developing SICOS, we utilized the open source Java Lire 
library to extract low level image features [27]. The extracted features 

                                                           
1  Other edge detection filters can be utilized (individually or combined with 

Haar Transform) such as Sobel, Roberts, Laplacien, and/or Canny [21, 22]. 



are defined using the MPEG 7 standard [28] as descriptors and 
supporting tools, including: dominant color (DC), scalable color (SC), 
and color layout (CL) as the main color features, color and edge 
directivity descriptor (CEDD) and fuzzy color and texture histogram 
(FCTH) as the main texture descriptors, and Gabor filter (GF) and 
edge histogram (EH) as the main edge descriptors. 

2) High Level Features: Another set of descriptors that can be 
used to describe social Web images are the so-called high-level 
features, which designate  the textual content of the image including 
textual descriptors such as tags, captions, comments surrounding the 
image, places, and more recently, hash-tags in social media. In 
contrast with low-level features which describe the visual content of 
the image, high-level features attempt to describe the semantics of 
the image (e.g., who, where, what, etc.) [19], given that the 
surrounding text of Web and social images can be helpful in 
portraying the meaning of an image.  

Moreover, when performing similarity evaluation between 
images, using high-level features to perform the comparison process 
can prove to be faster than comparing bulkier low-level features. 
Comparison using low-level features requires evaluating the 
similarity between two large vectors of bytes corresponding to the 
low-level description of each image, while comparison using high-
level features may entail the comparison of merely two different 
strings of text. With the ever increasing demand for faster results, this 
may prove to be a very important factor.  

In developing our approach, we have explored and utilized the 
prominent Apache Lucene library for extracting high-level features 
[29], including: i) Tags: which easily describe who and how many 
people are found in a given picture, ii) Place: label (name) of place 
where an image was taken, which can be utilized to also allow 
address comparison (using a geo-referenced ontology assigning geo-
coordinates with place names [30]), iii) Caption: i.e., title of the 
image which is usually the most descriptive user-provided textual 
feature, providing a direct clue to the meaning and context of the 
image, and iv) Comments: allowing a much larger variety of textual 
descriptions then the previous features, and which become especially 
useful when captions have not been provided by the user (publisher). 

B. Image Similarity Computation 
After extracting features, similarity needs to be computed, to perform 
more sophisticated tasks such as clustering and similarity-based 
querying. Image feature similarity computation is usually done 
separately for high-level and low-level features. 
 

1)  Comparing Low-Level Features Comparing low level 
features can be done by applying the cosine similarity measure 
(and/or any other similarity measure such as the Euclidian distance 
or Dice) between the vectors associated with each descriptor. Given 
two vectors Q and D, cosine similarity is evaluated as: 
 

,

M

Q r D rr=1
M n2 2

Q r D r
r=1 r=1

(n )  .  w (n )
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2) Comparing High-Level Features: High-level feature 
comparison can be undertaken by comparing high-level feature 
vectors associated with each descriptor, where weights have been 
computed using legacy TF-IDF scoring developed in information 
retrieval [31]. TF-IDF (which stands for Term Frequency – Inverse 
Document Frequency) represents the number of times a term appears 
in a certain entry of a high-level feature (TF) compared to the number 

of times it appears in all entries of that high-level feature (IDF). It 
can be computed as: 

 

                   
 

(2) 
 

                     
 

                   

(3) 
 

(4) 

 

where t designates a term, d a document (e.g., image textual feature), 
D the document (image feature) collection containing d, ft,d the raw 
term frequency (number of times the term t appears in d), and N 
designates the total number of documents d in D. 

C. Image Clustering 
Clustering is a technique used to collect similar objects (in our cases: 
images) together in groups called clusters. Each image will belong to 
one and only one cluster, and is more similar to the images in the 
same cluster then to the images in other clusters [32]. Also, each 
cluster can have a representative image, used to represent (provide a 
sample of) the other images in the cluster. The choice of the 
representative image depends on the clustering algorithm adopted.  

One of the advantages of using clustering is the speed with 
which querying can be done subsequently. Having all the images in 
different clusters, the query only needs to be compared with the 
representative of each cluster to find the cluster that matches the 
query. Also, if the user is looking for a certain image, the query can 
be compared with the images in that cluster, thus greatly decreasing 
the number of comparisons that need to occur when querying.  

In developing SICOS, we made use of two different clustering 
algorithms: max-min clustering [33] and incremental clustering  [34], 
which we briefly describe below. 

 

1) Max-Min Clustering: The main clustering algorithm used in 
our approach is max-min clustering, originally designed for visual 
diversification of image search results [33]. It is a partitional 
clustering algorithm grouping separate images together to produce 
clusters, in contrast with hierarchical (agglomerative/divisive) 
clustering which takes a combined set of images and 
aggregates/divides them in a bottom-up/top-down approach.  

The max-min algorithm’s pseudo code is provided in Fig. 2, and 
proceeds in the following manner. First of all, the first representative 
is selected at random from the set of images. Second, the average 
similarity of all pairs images is computed. Third, the second 
representative is found by finding the image with the farthest distance 
from the first representative (smallest similarity with the first image). 
Fourth, the same process is repeated to find the other representatives. 
That is, to find the next representative, the algorithm finds an image 
that has the maximum distance from all other representatives, as long 
as that maximum distance is greater than the average distance (or the 
minimum similarity is less than the average similarity). Fifth and 
finally, once all representative images have been selected, a nearest 
neighbor approach is used to divide the rest of the images into their 
corresponding clusters. The nearest neighbor approach takes each 
image and places it in the cluster having the minimum distance 
(maximum similarity) between the image and the cluster’s 
representative image. In this way, all images are placed in their 
corresponding clusters and the algorithm terminates. 

 

2) Incremental Clustering: This is an agglomerative clustering 
algorithm that considers the images one by one in an incremental 
manner and directly decides what to do with (where to put) each 
image [34] (cf. pseudo-code in Fig. 3). This means that the algorithm 



takes the first image and places it in a cluster. Then, for the next 
image, the algorithm decides based on a (user chosen or average) 
similarity threshold if the new image should be placed in the same 
cluster or if a new cluster should be created around that image, by 
comparing the image with cluster representatives. The algorithm 
continues in the same manner until all images have been clustered. 

In our solution, we utilize incremental clustering to add new 
images to existing clusters which are originally produced by the max-
min algorithm, rather than re-clustering all images every time a new 
image is added by the user (described in Section IV).  

 
IV. SOLUTION DESIGN AND FUNCTIONALITY 

 

The overall architecture of our solution is shown in Fig. 1. It allows 
to retrieve images from a social site (we utilize Facebook in our 
study, even though any other site could have been used), extracts 
their features and stores them into a database, computes their high- 
and low-level feature similarities, and then clusters the images based 
on their similarities w.r.t. (with respect to) user chosen parameters. 
Subsequently, the system can be used to search for different images 
based on high-level and/or low-level features. Finally, the results can 
be displayed through multiple personalized visualization techniques 
(such as the list view, cluster view, fish-eye view, etc.) which we 
further describe in the following subsections. 

A. Retrieving Images from the Social Site 
To retrieve information from a social site such as Facebook, the user 
first needs to be authenticated to get the data. For this purpose, and 
given that most social sites (namely Facebook) do not support SDKs 
for desktop applications, we developed a dedicated Web application 
(including an imbedded Web browser) for the user to access her 
social (Facebook) account. Whenever the user first launches the 
SICOS software, she is required to sign in: granting the application 
the necessary permission to retrieve images on her behalf.  
 

B. Extracting and Processing Image Features 
As mentioned previously, we have utilized the Java Lire library to 
extract the low-level features of images, including various kinds of 
color, texture, and shape histograms (cf. Section II). Similarly, high-
level image feature extraction is undertaken using the Apache Lucene 
library by first retrieving the high-level features corresponding to the 
image, namely place, caption, and comments, then creating vector 
text fields (i.e., vector dimensions) for each one of the features: one 
vector text field (dimension) containing a string description for the 
place (location) information, another containing the string description 
for caption, and one containing a string composed of all the image’s 
comments concatenated. Consequently, the similarity between two 
images Img1 and Img2 is computed as the weighted sum of the 
similarities between their corresponding image features: 
 
Sim High-Level(Img1, Img2) =  wPlace  SimPlace(Img1, Img2) 
                                            wCaption  SimCaption (Img1, Img2) 
                                            wComment  SimComment (Img1, Img2) 

(5) 

 
where feature weights wPlace, wPlace, wPlace  0 and  wPlace + wPlace + 

wPlace = 1; and feature similSimPlace, SimCaption, SimComment  [0, 1]. 
 

A similar formula is utilized to evaluate low-level image 
similarity where the user chooses the features and their 
corresponding weights. Cosine similarity (cf. Formula 1) is used to 
compute the similarity between individual image feature vectors. 

Note that low-level and high-level feature extraction and 
processing is undertaken for every social image in the user 
repository, whereas similarity computation is undertaken for every 
pair of images. This means that for n images, the system needs to 
compute (n (n-1))/2 similarity scores, which is done offline (as pre-
processing), storing all similarity scores in the database (indexed 
using image IDs), to be quickly retrieved later on to perform 
clustering and search while minimizing on-the-fly computation time. 

 

C. Choice of Clustering Algorithms 
Among the battery of clustering algorithms available in the literature 
[34], we chose max-min to perform the initial clustering phase: 
executed when the user first connects to the system. The advantages 
of using max-min clustering is that it is relatively fast when compared 
with legacy hierarchical clustering algorithms, and does not require 
the preliminary input that is required by other partitional algorithms 
such as k-means clustering. In k-means clustering, the user needs to 
provide (based on previous knowledge) the number of clusters that 
are going to be produced. However, with the max-min algorithm, the 
number of clusters is automatically produced by the algorithm based 
on the average image similarity score utilized as clustering threshold 
(cf. Fig. 2). This makes it easier to cluster the results dynamically, 
and allows for an increased cluster variety depending on images in 
the initial set [33]. Also, max-min is of average linear O(n k) 
complexity, since n images are compared with k cluster 
representatives (where k is significantly smaller – almost negligible – 
w.r.t. n), and thus is generally more efficient than alternative 
clustering algorithms which loop through all n images n times, and 
thus typically require O(n2) (or at best O(n log(n)) time [34].  
 

Input:    Set of Images to be clustered: I 
              Set of features chosen by user: F 
Output: Set of image clusters: C 
 
1  Initialize set or representatives R =  
2                 Compute average similarity between images in I 
3 Select random image i  I as first representative, R = R  {i} 
4  Remove selected image representative from I 
5 for each remaining image i  I  
6  for each representative image r  R 
7   if SimF(i,r) < threshold 
8    Add i to R 
9    Remove i from I 
10    Create new cluster c 
11    Add i to c 
12    Add c to C 
13   endif 
14  endfor 
15 endfor 
16 for each image i  I 
17  Find max(SimF(i,r, F)) where r  R 
18  Add i to cluster c having r  
19 endfor 
20               return C 
 

 

Fig. 2. Pseudo-code of max-min clustering algorithm. 
 

One of the main limitations of max-min clustering is that it 
might require more processing time than k-means clustering, since it 
first needs to produce the representatives and the number of clusters, 
whereas k-means execution speed can be greatly reduced based on 
the number of clusters and convergence threshold used. Another 
limitation of max-min is that it might produce less precise and 
accurate clusters in comparison with hierarchical clustering 
algorithms [33]. Also, cluster representatives might not be the most 
accurate representatives because they are first chosen randomly. This 
could be fixed by later creating a new representative within each 
cluster which would be the average image between all images in the 
cluster; however, this would require additional execution time.  



In addition to max-min used in the initial clustering phased, we 
utilize incremental clustering to update clusters produces after the 
initial phase by classifying newly published images in the already 
formed clusters. We adopt incremental clustering since it is 
considered as one of the fastest clustering algorithms compared with 
alternative approaches (requiring average O(k) time where k 
represents the number of cluster representatives). Yet, it does not 
produce the best results which depend on the original order following 
which images were presented to the algorithm [34] (a different 
original order can produce a different clustering result all together). 
Similarly to the max-min algorithm, incremental clustering also 
presents a tradeoff of efficiency versus quality that should be taken 
into account. 

 
Input:    Set of initial image clusters: C 
             Set of initial cluster representatives: R 
             Stream of newly added Images: S 
             Set of features chosen by user: F 
Output: Set of updated image clusters: C 
 
1  if user wishes to set threshold 
2  Set threshold following user input  
3 else 
4  Set threshold as average similarity of all images in C 
5 endif  
6 for each incoming image i  S  
7                     find max(SimF(i,r)) where r   R 
7     if max(SimF(i,r)) <threshold    
8  create new cluster c 
9  add i to c 
10  add c to C 
11     endif 
12     else 
13  add i to cluster c having r as representative 
14     endif 
15               return C 
 

 

Fig. 3. Pseudo-code for incremental clustering algorithm. 
 

Note that in our current study, clusters are labeled following the 
captions of their cluster representatives. Yet, more sophisticated 
cluster labeling schemes could be devised later on. 

 

D. Image Querying 
 

Querying the results will return the pictures users are looking for in a 
simplified manner. Here, SICOS allows three different querying 
methods described below. 
 

1) Tag-based Image Search: searching for images based on the 
people tagged in them. This is done by storing tag names in the 
image database along with the images corresponding to each tag. 
When the query tag is submitted, the database selects the images 
having the tag and returns them to the user. Furthermore, our solution 
allows the user to enter multiple tag names and search for images 
which contain any or all of them, following user preferences. For 
example, query “John Smith, Jane Smith” will return all images in 
which John Smith and Jane Smith appear together, or separately 
(based on the query formulation).  
 

2)  High Level-based Image Search: searching for images using 
high-level features such as place, caption, and/or comments. The user 
selects the features against which to perform the query, as well as 
corresponding feature weights (similar to feature extraction in 
Section II.B). Then, the query is run against the image clusters, such 
that the query feature vector is compared with the feature vectors of 
the representatives of the clusters. The system then returns the 
images that fit the query in order of decreasing TF-IDF scores. This 
means that feature vectors which have the same word repeated 
several times will get a higher score due to the higher term frequency 
factor. Also, feature vectors which contain more term occurrences yet 

without having any matches to the query terms will get a lower score. 
The clusters corresponding to the returned documents will be 
displayed to the user using special cluster display techniques 
(covered in Section IV.E). 

The number of results to display is based on user preferences. 
The user has the choice to decide between a k nearest neighbor 
approach or a range approach. The k nearest neighbor approach 
displays the top k results, where k is an integer given by the user. The 
range approach displays all clusters in which the distance (similarity) 
between the query feature vector and the cluster representative’s 
feature vector is lesser (higher) than a user-given threshold.   
 

3) Low Level-based Image Search: using a sample image as 
query, such that the image query can be either selected from the 
available image repository or uploaded by the user. SICOS then 
extracts the low-level features of the image, and uses them to 
compare it with the cluster representatives’ low-level feature vectors. 
The results are ranked based on the similarities returned by the 
comparison. Similarly to high-level querying, the user can select her 
preferred low-level features and features weights to be utilized in the 
comparison (retrieval) process. Finally, clusters corresponding to the 
most similar representatives are returned, displayed to the user using 
different possible cluster visualization techniques (cf. Section IV.E). 
Also, the user can select the number of clusters to display, using 
either the k neighrest neighbor approach or the range selection 
approach.  

Moreover, when a new image is uploaded as a query, the user is 
asked if she would like the image to be added to the user’s image 
repository (after the query has been processed). If yes, the user is 
then asked to provide the image’s high-level features (if available), 
which are then processed along with low-level features, and run 
through the incremental clustering component. 

 

E. Result Presentation and Organization 
 

Having images organized into clusters becomes even more effective 
and practical in retrieval if these clusters can be visualized properly. 
As a result, our solution allows different visualization techniques, 
which can be used to display both: i) the cluster organization of 
images in the repository, as well as ii) image query search results.  

Our solution includes five different visualization techniques, 
introduced to answer different user preferences, and which we 
describe in the following sub-sections. 

 

1)  Representatives Display: Following this layout, the 
representative image of each cluster is displayed only at first, and 
then when the user clicks on one of the images, a new window opens 
containing the images of the corresponding cluster. This is done by 
looping through the first image in the array list for each cluster and 
displaying the images in one window. Then, each image is assigned a 
mouse click listener, which retrieves the corresponding cluster and 
displays the images in that cluster. 

The main advantage of using this view over others is that it is 
quick in displaying the images since it only requires initially 
displaying the representative images without having to display the 
rest of the images in each cluster. In other words, there is no need to 
load all cluster images unless the user chooses to do so explicitly for 
a given (number of) clusters. A disadvantage of this view is that it 
might not be very intuitive in displaying clustering, since the user 
cannot easily visualize how the clusters are organized w.r.t. image 
similarities/dissimilarities, or how close/far away clusters are from 
each other (cf. Fig. 4). 

 
2) Cluster List View Display: In this display, the main view is a 

list in which each item in the list represents a cluster. For each 
cluster, the representative image is displayed in large on the left, and 



then the rest of the images are displayed in smaller size to the right. 
To implement this view, a separate class was created to represent 
each list item. The constructor of the class would take the cluster as 
input and would produce a list item having the view described above. 
Moreover, each image can be enlarged (upon user selection) to see 
the image in its actual size, while allowing the user to change the 
cluster representative (choosing another image from the cluster as its 
representative). Changing cluster representatives not only affects the 
visualization of clusters, but also allows replacing the old cluster 
representatives in the database. 

 
 

 

 
 

 

Fig. 4. Sample cluster representatives display. 
 

The main advantage of this view is that it allows the user to 
view all clusters at once in an organized manner and allows the user 
to change representative images. A disadvantage is that it is time-
consuming and memory-consuming due to the fact that a new 
instance of a class should be created for every cluster, and all images 
in the system should be loaded into memory (cf. Fig. 5). 

 
 

 

  

 
 

 

Fig. 5. Sample cluster list view 
display. 

  

Fig. 6. Grid view display (with 2 
clusters: white & blue). 

 

3) 2D Display: it presents images in a 2 dimensional plane, 
where each cluster of images is separated from the rest (using 
different color indicators), and within each cluster of images: the 
representative image is placed in the middle, and the rest of the 
images are placed around it according to the similarity between the 
(feature vectors of) images and (those of) the representative image. 
That is, in a given cluster, images that are most similar to the 
cluster’s representative image are displayed closest to the center, 
while those that are least similar are displayed the farthest from the 
center. This is done by creating a specific display pane for each 
cluster in which the images are laid out according to the above 
description. Then, each display pane is added to the main grid which 
separates the clusters from each other.  

The main advantage of this is approach that it helps visualize 
clusters while highlighting their intra-cluster image similarities, and 
inter-cluster similarity-based spatial organization. A disadvantage of 
this display is that it is more computationally expensive and time-
consuming, compared with the previous two displays (cf. Fig. 7). 

4) Grid View Display: It places all the images in a 2 dimensional 
grid in such a way that images in the same cluster are placed as close 
as possible to each other. The difference between the grid view and 

the 2D display is that the grid view places images in an ordered 
manner as tiles next to the cluster representative, whereas 2D display 
places images in a spiral shape around the representative. Different 
clusters are distinguished using special background colors for each 
cluster. To do this, the first image is placed in the grid, and the next 
image in the cluster with the highest similarity is placed as close to 
the representative as possible. For each new image, the system 
identifies the next tile in the grid which can be filled taking into 
account the distance/similarity w.r.t. the representative (i.e., trying to 
keep the minimum average distance/max similarity).  

 
 

 
 

Fig. 7. Sample 2D display. 

The main advantage of grid view display is that images can be 
displayed in 2D manner while requiring less computation and time 
compared with the 2D display approach. A disadvantage of this 
display is that it seems less expressive of the intra- and inter- 
organization of clusters in comparison with 2D display (e.g., the 
distances among images and among clusters cannot be easily spotted 
with the grid view display, compared with 2D display where these are 
clearly highlighted, cf. Fig. 6).  

 

5) Fish-Eye View Display: This is similar to 2D display with one 
major difference: the sizes of images surrounding the cluster 
representative decrease as their similarities w.r.t. the representative 
decrease, causing the images that are farther away from the 
representative to appear smaller. It carries the already mentioned 
advantages and limitations of 2D display. 

 

V. PERFORMANCE EVALUATION 
 

To test the performance of our tool, we evaluated execution time for 
each of its constituent components while varying user parameters. 
Experiments were performed on an Intel core i3-2328 2.20 GHz 
CPU with 4 GB RAM. Each experiment was executed 5 times, 
retaining average time values. The SICOS prototype system, along 
with all experimental evaluation results, is available online2. 

A. Feature Extraction Time 
 

To start off, we first evaluated the time needed to extract the different 
low-level and high-level features from the images. Tests were 
undertaken on an increasing number of images: 50, 100, 130, 170, 
and 195. For each of these sets, the time needed to extract each 
feature was retrieved and can be seen in Fig. 8. We omit the time 
results for high-level feature extraction here since they require 
significantly less time (extraction is done almost instantaneously) in 
comparison with their low-level counterparts. 

Results show that FCTH and CEDD features are the most 
expensive to extract (which was expected since they are considerably 

                                                           
2 http://services.soe.lau.edu.lb/SICOS/ 
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sophisticated and detailed in their descriptions, producing relatively 
large feature vectors, cf. Section II), such that all features (including 
the latter) show a linear increase in time w.r.t. number of images. 
Note the Gabor filter feature shows the least increase, and thus seems 
to be the least variant in extraction time w.r.t. the number of images. 

B. Similarity Computation Time 
 

We also evaluated the time needed to compute the similarity between 
image feature vectors, for both high-level and low-level features once 
those have been extracted. Results obtained with an increasing 
number of pairs of images (from 2 to 80 pairs, designating the 
number of similarity computation tasks) are shown in Fig. 8.  

 
 

 

 

 
 

a. Low-level feature extraction time 
 

b. Low-level feature similarity 
computation time (including  

feature loading time from DB) 
 

 
 

 

Fig. 8. Processing low-level image features. 

Results show that similarity computation time increases linearly 
w.r.t. the number of pairs of images being compared, which reflects 
the linear complexity of computing the cosine similarity measure 
between two image vectors. Also, one can see that the time needed to 
compute similarity for CEDD, FCTH, and color layout  features is 
higher than the time needed for other features, which is in direct 
relation with the increased sizes of the corresponding feature vectors. 
Note that similar results were obtained with high-level features 
(omitted to simplify presentation), since the same cosine similarity 
measure is utilized to compare corresponding feature vectors. 

 

C. Max-Min Clustering Time 
 

As for max-min clustering, we conducted performance tests on a 
random set of 200 images downloaded from the author’s Facebook 
accounts. Results in Fig. 9.a show that max-min clustering time 
varies in an almost linear/slightly polynomial fashion (highlighting 
max-min’s average linear complexity levels (cf. Sections III.C.1 and 
IV.C). This shows that max-min can be very efficient when 
processing small/moderate sized image datasets, but may require 
polynomial time when processing a very large number of images.  
 
 

 

 

 
 

a. Max-Min clustering time 
 

b. Incremental clustering time 
 

Fig. 9. Clustering time. 

D. Incremental Clustering Time 
As for incremental clustering time, results in Fig. 9.b show that 
execution time is almost perfectly linear in the number of images 
(which is proportional to the number clusters/cluster representatives), 
thus rendering the algorithm extremely faster than max-min (almost 3 
times faster in our implementation) considering the same number of 
images (clusters) processed by both algorithms. 

E. Cluster Visualization Time 
We have also evaluated the time performance for each of the five 
cluster visualization techniques provided in SICOS. We ran multiple 
tests with different parameter variations: in number of clusters 
(between 2 and 5) and number of images in each cluster (between 1 
and 5). Results in Fig. 10 show that all five displays requires average 
linear time w.r.t. the number of clusters and the number of images 
per cluster, such that the representatives display view is the fastest 
(since it only displays cluster representatives, and involves less image 
loading time), followed by the cluster list view and grid view displays 
(which display: cluster representatives and image constituents, and 
thus need more loading time), followed by 2D display (and fish-eye 
view) which is (are) the most expensive (since they perform 
additional processing to display images around the representatives, in 
a spiral shape, following their similarities, cf. Section IV.E). 

 
 

 

 

 
a. Representatives display b. Cluster list view display 

 

 

 

 
c. Grid view display d. 2D display (fish-eye view) 

 

Fig. 10. Time needed to produce different cluster visualizations. 

F. Querying Performance 
We have also evaluated the time performance of our system in 
running queries, considering both low- and high-level features. 
 

1) High Level-based Image Search Time: As for high level-
based image searching, we have studied the time it takes to return 
query results when the query is run on a varying number of cluster 
representatives, considering all high-level features aggregated (i.e., 
tag, place, caption, and comments)3. Recall that our queries are run 
against cluster representatives (instead of running them against each 
and every individual image) in order to reduce processing time (cf. 
Section IV.D). Results in Fig. 11.a show that query execution time is 
clearly linear in the number of representative images. 

 

2) Low Level-based Image Search Time: We conducted similar 
tests considering (all) low-level image features combined3. Similarly 

                                                           
3 Individual feature evaluations were discussed in Section V.B. 
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to high-level features, results in Fig. 11.b show linear dependency on 
the number of representative images being processed. Low-level 
feature querying is naturaly more expensive than high-level querying 
due to the sheer size of low-level feature vectors (e.g., histogram 
vectors) in comparsison with high-level feature vectors (e.g., 
term/frequency vectors, cf. Sections III.A and IV.B). 

 
 
 

 

 

 
 

a. High-level feature querying 
 

b. Low-level feature querying 
 

Fig. 11. Query execution time4. 

To sum up, both query performance experiments highlight the 
efficiency of our approach in handling large image repositories, 
where time is mainly dependent the number of clusters/cluster 
representatives rather than the actual size of the repository (given that 
image feature extraction and pair-wise similarity computations are 
executed offline). Cluster visualization techniques then kick in to 
display images within each and every returned result cluster.  

We are currently conducting a battery of (quality) tests to study 
the effectiveness of our approach in: i) clustering images (fine-tuning 
the impact of low-level/high-level features to produce more coherent 
clusters), ii) retrieving “relevant” results (while minimizing false 
negatives), and iii) visualizing clusters/query results, compared with 
alternative tree-like representations in existing social image 
management solutions, e.g., [13-15].  

 

VI. CONCLUSION 
In this paper, we describe our solution called SICOS as a 
personalized social Web image organization, clustering, and search 
tool, allowing a battery of low-level (visual) and high-level (textual) 
image features, run through efficient clustering algorithms, as well as 
different result visualization displays all of which can be fine-tuned 
following user preferences. We briefly described the background and 
related works. From there, we described the functional requirements 
of our system, leading to its design and implementation. Finally, we 
conducted various tests to evaluate the time performance of the 
different components and functionality of our solution. 

For the future, we plan to research and add new features, such as 
producing multiple representative images for each cluster (e.g., 
allowing k representatives instead of only one, following user 
querying and visualization preferences), and performing automated 
image annotation through image processing (e.g., automatically 
annotating new images, based on high-level features of similar 
images which were already annotated) [14]. Furthermore, we plan to 
extend our solution, making use of advanced semantic database 
indexing techniques [35] to allow semantic-aware image querying: 
considering not only term occurrences, but also their semantic 
meanings (e.g., term “orange” could mean the color or the fruit, 
which could produce totally different results). Extending our solution 
to describe semantic relations between images based on their low- 
and high-level features [36] and/or using vector graphics annotations 
[37], in order to facilitate knowledge-based event detection, 
identification, and description [38] is also an upcoming challenge.  

                                                           
4 It includes: i) time to load extracted features from the database, ii) feature 

vector similarity computation time, and iii) result presentation time 
following the cluster list view display. 
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