
Personalized Social Image Organization, Visualization,
and Querying Tool using Low- and High-Level Features

Issa Ayoub

E.C.E Dept., School of Engineering

Lebanese American University (LAU)
36 Byblos, Lebanon
issa.ayoub@lau.edu

Karl J. Codoumi

E.C.E Dept., School of Engineering

Lebanese American University (LAU)
36 Byblos, Lebanon

karljoseph.codouni@lau.edu

Joe Tekli

E.C.E Dept., School of Engineering

Lebanese American University (LAU)
36 Byblos, Lebanon
joe.tekli@lau.edu.lb

Abstract—The purpose of this study is to create a software system to
facilitate the organization of and searching for social images acquired
from social sites on the Web (such as Facebook or Flikr), taking into
account the images’ features as well as user preferences. To achieve our
goal, we design a solution based on image clustering, grouping together
images sharing similar semantic and visual features, to simplify their
organization and querying. This requires low-level and high-level image
feature extraction and processing, where: low-level features represent
color, texture, and shape image descriptors, whereas high-level features
consist of textual descriptors extracted from image annotations and
surrounding texts. Our system consists of modular components for: i)
feature extraction and representation (low-level and high-level), ii)
partitional image clustering (initial clustering phase executed when the
user first connects to the system), iii) incremental clustering (updating
clusters produces in the previous phase by processing newly published
images), iv) fast image querying (using features of cluster
representatives), and v) personalized images/search results visualization
(using various user-chosen cluster display techniques). Preliminary
experiments highlight the efficiency and practicality of our tool.

Keywords—Social Web Images, Image Clustering, Content-based
Image Retrieval, Text-based Image Retrieval, Personalized Image
Organization.

I. INTRODUCTION
In the past two decades, the amount of images published on the Web,
especially on social sites like Facebook and Flikr, has been increasing
exponentially. This was further fueled by the increasing availability of
photo taking gadgets such as smart phones, pads, and tables, as well as
the increased user connectivity to the Web using wireless network and
mobile Internet connectivity. Yet, with the increased availability of
social Web images comes the challenge of managing these images in a
personalized manner, so that a user can efficiently organize and search
for images based on her needs (e.g., grouping together and/or
searching for similar images taken at a certain place and/or time,
tagged with a certain friend, etc.).

To address this problem, we have designed and implemented a
solution called SICOS, for Social Image Cluster-based Organization
and Search, allowing to group together images sharing similar
semantic and visual features, to simplify their organization and
querying. This requires low-level and high-level image feature
extraction and processing, where: low-level features represent color,
texture, and shape image descriptors, whereas high-level features
consist of textual descriptors extracted from image annotations and
surrounding text.

The overall architecture of SICOS is shown in Fig. 1, and
consists of 7 main components for: i) image retrieval from a social
site (e.g., Facebook, Flikr, etc.), ii) feature extraction and
representation (low-level and high-level), iii) image similarity
computation, needed to perform: iv) partitional image clustering
(initial clustering phased executed when the user first connects to the
system), v) incremental clustering (updating clusters produces in the
initial phase by processing newly published images), vi) image
visualization (following different user chosen views, e.g., grid, fish-

eye, etc.) and vii) fast image querying (using features of cluster
representatives). It accepts as input: social Web images (downloaded
from a social site like Facebook), user image organization parameters
(highlighting the kinds of image features the user is interested in, as
well as image organization parameters), and user search parameters
(text-based and/or content based user queries). The system then
performs image storage and organization following user organization
preferences, and returns search results to answer user queries.

Different from existing image search and result organization
solutions which are either: i) generic, addressing Web-based image
processing (and not specifically geared toward social image
processing), e.g., [1, 2], ii) computationally expensive, performing
automatic face or object recognition, e.g., [3, 4], and/or event
detection and identification, e.g., [4, 5], in indexing and searching for
social images, and iii) requiring specific conditions or contextual data
to work properly (cf. Section II); we provide here a computationally
efficient solution integrating legacy techniques from Web-based and
social image processing, requiring minimal contextual/input data, to
provide the following functionality:

- Efficient indexing and storage of images with the
corresponding feature information,

- Comparing images based on low-level visual features
including: color, texture, and shape descriptors

- Comparing images based on high-level textual features,
including: tags, captions, comments, and geographic location,

- Clustering images based on low-level and high-level feature
similarities,

- Simple access to images through cluster representatives,
- Allowing different user-friendly cluster visualizations,
- Searching images based on low-level visual features,
- Searching images based on high-level textual features.

Fig. 1. Overall SICOS architecture.

The remainder of the paper is organized as follows. Section II
briefly describes related works. Section III presents background

Images from
Social Site

Image Org.
parameters

Image Search
parameters

Image (Meta)-
Data Retrieval

Image Feature
Extraction

User Input

Search Results

Incremental
Clustering

Partitional
Clustering

Initial
phase

Updating
clusters

Image
clustering

Fast Image
Querying

Image Similarity

Image
Visualization

Image DB
indexing low-

level and high-
level features

information concerning the different techniques used in developing
our solution. Section IV describes our SICOS system, its components,
and functionality. Section V presents and discusses experimental
results, before concluding with current directions in Section VI.

II. RELATED WORKS

Organizing and searching among personal images published on social
sites can be extremely tedious and time consuming, since these can
be published with or without proper user (publisher) generated
descriptions. Hence, a user query (e.g., searching for pictures related
to keyword query “Byblos site”) would return image results
containing multiple topics mixed together, where the user (publisher)
cannot be expected to have the time or patience to scroll through the
huge result list. Things become even worse when one topic is
overwhelming but is not what the user desires [6]. In addition, the
user could entirely miss her search goal due to information and/or
cognitive overload.

A possible solution is to help the user reformulate the query by
suggesting alternative or more precise search criteria. For instance,
query disambiguation and relaxation techniques [7-9] could be used
to help narrow down the search result diversity (allowing more
specific queries such as “Byblos archeological site” or “ancient site
in Byblos”). Yet, such techniques do not entirely solve the problem
since even the results of refined queries could be difficult to grasp
(e.g., refined query “ancient site in Byblos” might return different
images describing different sites in Byblos, such as the Fortress, the
old market, the old house by the shore, the roman ruins, etc.).

Another possibility is to better organize the output information
(prior and/or after query refinement), providing a means to facilitate
the assimilation of the search results by the user. Hence, image
search result organization [10] has been recently investigated as a
simple and efficient solution to improving image retrieval quality on
the Web [11]. Most methods in this context exploit image clustering
(i.e., identifying groups of mutually similar images) as a
methodology capable of topic extraction and returning semantically
more meaningful image search results to the user [1, 2] (than merely
a list of images sorted by similarity to the query). The general
assumptions are that (i) mutually similar documents (e.g., images)
tend to be similar to the same query [12], and (ii) semantically
similar images (i.e., images with similar underlying topics) tend to be
grouped together in some feature space [1]. In other words,
identifying the different topics (clusters) of image search results
would aid the user in understanding and navigating the result set, in
order to efficiently identify her search request (cf. sample search
result clusters in Figures 4-6).

While most existing image search result organization techniques
have been developed for general purpose Web-based image retrieval
systems, e.g., [1, 2, 10-12], few approaches have been developed to
handle social Web images, e.g., [3, 13, 14]. One group of methods
relies on automatic pattern recognition techniques [4], such as face,
object, or clothes recognition [3] in order to identify individuals and
then tag and organize images accordingly. Methods in this category
are computationally expensive and require specific conditions to
work properly [4], including: visible faces or distinctive clothing in
images, and good lighting [14]. Another group of methods relies on
user generated meta-data, namely tag names, allowing to organize
images in tree-like structures such as Galois sub-hierarchies [13-15],
aiming to incrementally capitalize on existing information by
allowing images to inherit descriptions of other existing images.
They make use of event extraction and identification techniques
which are computationally expensive and require contextual meta-
data (e.g., predefined event categories) [16, 17] which might not be
always available.

In this study, we integrate different techniques from existing
Web-based and social image processing, aiming to design i) a
computationally efficient solution, ii) flexible and adaptable
following the user’s needs (the user is involved in every phase of the
processing), iii) requiring minimal (contextual) input data, and iv)
providing various functionality toward personalized social image
management and search (cf. Section I). Our solution can be viewed
as a flexible and open platform on top of which different application
specific functionality can be implemented (e.g., pattern recognition,
event extraction, image classification, automatic image annotation,
semantic image feature learning, among others).

III. PRELIMINARIES

A. Image Representation

1) Low Level Features: A digital image is represented by a
number of colored pixels. Different color spaces exist in the literature
such as CIE XYZ which attempts to produce a color space based on
human eye color perception. Other such color spaces include CIE
RGB, CIELAB, etc., [18, 19].

Low level features are image characteristics/descriptors that are
related to the color distribution and their combination in an image.
Those descriptors can be divided into 3 groups: color, texture, and
shape. Color descriptors are used to represent the colors present in
the image such as color histogram; texture features are used to
describe color patterns and geometric color distributions in an image;
while shape descriptors allow detecting different shapes and objects
in an image. A prominent image color descriptor is the color
histogram which represents the color distribution in the image. That
is, each cell in the histogram contains the number of pixels in the
image having a specific RGB value. For example, one can know the
number of pixels that have R = 30, G = 30 and B = 30, by checking a
specific index in the histogram. The values for each of the three
colors varies from 0 to 255 with the white color being represented by
255 for all three values and the black color being represented by 0 for
all three values [19]. A prominent image texture descriptor is the
texture color histogram which describes certain patterns and shapes
in an image based on their color distributions. The combination of the
colors forms common shapes that are used for scene understanding.
Extracting the texture color histogram is done through image
segmentation [20], dividing the image into several parts/regions
according to some criteria. A prominent shape descriptor is the edge
histogram which describes edges in the images. Therefore, images
containing cities and buildings might appear similar because of the
common edges in the images. Edge (or contour) detection can be
performed using different linear (convolution) and/or non-linear
(median and mean) local filters [21, 22]. One effective and
computationally efficient (linear) filter technique is the Haar
Transform [23] which we adopt in our study1.

Note that image features can be represented as vectors, which
can be efficiently processed using typical similarity measures such as
cosine similarity and/or the Euclidean distance, to compute the
similarity between two images. Similarity evaluation between images
is essential in a battery of applications, including image indexing and
retrieval [24] as well as image classification and clustering [25, 26].
Note that color descriptors are the most commonly used since they
are relatively easy to process (in comparison with texture and/or
shape features) while producing good enough results [18].

In developing SICOS, we utilized the open source Java Lire
library to extract low level image features [27]. The extracted features

1 Other edge detection filters can be utilized (individually or combined with

Haar Transform) such as Sobel, Roberts, Laplacien, and/or Canny [21, 22].

are defined using the MPEG 7 standard [28] as descriptors and
supporting tools, including: dominant color (DC), scalable color (SC),
and color layout (CL) as the main color features, color and edge
directivity descriptor (CEDD) and fuzzy color and texture histogram
(FCTH) as the main texture descriptors, and Gabor filter (GF) and
edge histogram (EH) as the main edge descriptors.

2) High Level Features: Another set of descriptors that can be
used to describe social Web images are the so-called high-level
features, which designate the textual content of the image including
textual descriptors such as tags, captions, comments surrounding the
image, places, and more recently, hash-tags in social media. In
contrast with low-level features which describe the visual content of
the image, high-level features attempt to describe the semantics of
the image (e.g., who, where, what, etc.) [19], given that the
surrounding text of Web and social images can be helpful in
portraying the meaning of an image.

Moreover, when performing similarity evaluation between
images, using high-level features to perform the comparison process
can prove to be faster than comparing bulkier low-level features.
Comparison using low-level features requires evaluating the
similarity between two large vectors of bytes corresponding to the
low-level description of each image, while comparison using high-
level features may entail the comparison of merely two different
strings of text. With the ever increasing demand for faster results, this
may prove to be a very important factor.

In developing our approach, we have explored and utilized the
prominent Apache Lucene library for extracting high-level features
[29], including: i) Tags: which easily describe who and how many
people are found in a given picture, ii) Place: label (name) of place
where an image was taken, which can be utilized to also allow
address comparison (using a geo-referenced ontology assigning geo-
coordinates with place names [30]), iii) Caption: i.e., title of the
image which is usually the most descriptive user-provided textual
feature, providing a direct clue to the meaning and context of the
image, and iv) Comments: allowing a much larger variety of textual
descriptions then the previous features, and which become especially
useful when captions have not been provided by the user (publisher).

B. Image Similarity Computation
After extracting features, similarity needs to be computed, to perform
more sophisticated tasks such as clustering and similarity-based
querying. Image feature similarity computation is usually done
separately for high-level and low-level features.

1) Comparing Low-Level Features Comparing low level
features can be done by applying the cosine similarity measure
(and/or any other similarity measure such as the Euclidian distance
or Dice) between the vectors associated with each descriptor. Given
two vectors Q and D, cosine similarity is evaluated as:

,

M

Q r D rr=1
M n2 2

Q r D r
r=1 r=1

(n) . w (n)
Cos(

w (n) . w (n)
)

w
0, 1Q D rr)Q D (1)

2) Comparing High-Level Features: High-level feature
comparison can be undertaken by comparing high-level feature
vectors associated with each descriptor, where weights have been
computed using legacy TF-IDF scoring developed in information
retrieval [31]. TF-IDF (which stands for Term Frequency – Inverse
Document Frequency) represents the number of times a term appears
in a certain entry of a high-level feature (TF) compared to the number

of times it appears in all entries of that high-level feature (IDF). It
can be computed as:

(2)

(3)

(4)

where t designates a term, d a document (e.g., image textual feature),
D the document (image feature) collection containing d, ft,d the raw
term frequency (number of times the term t appears in d), and N
designates the total number of documents d in D.

C. Image Clustering
Clustering is a technique used to collect similar objects (in our cases:
images) together in groups called clusters. Each image will belong to
one and only one cluster, and is more similar to the images in the
same cluster then to the images in other clusters [32]. Also, each
cluster can have a representative image, used to represent (provide a
sample of) the other images in the cluster. The choice of the
representative image depends on the clustering algorithm adopted.

One of the advantages of using clustering is the speed with
which querying can be done subsequently. Having all the images in
different clusters, the query only needs to be compared with the
representative of each cluster to find the cluster that matches the
query. Also, if the user is looking for a certain image, the query can
be compared with the images in that cluster, thus greatly decreasing
the number of comparisons that need to occur when querying.

In developing SICOS, we made use of two different clustering
algorithms: max-min clustering [33] and incremental clustering [34],
which we briefly describe below.

1) Max-Min Clustering: The main clustering algorithm used in
our approach is max-min clustering, originally designed for visual
diversification of image search results [33]. It is a partitional
clustering algorithm grouping separate images together to produce
clusters, in contrast with hierarchical (agglomerative/divisive)
clustering which takes a combined set of images and
aggregates/divides them in a bottom-up/top-down approach.

The max-min algorithm’s pseudo code is provided in Fig. 2, and
proceeds in the following manner. First of all, the first representative
is selected at random from the set of images. Second, the average
similarity of all pairs images is computed. Third, the second
representative is found by finding the image with the farthest distance
from the first representative (smallest similarity with the first image).
Fourth, the same process is repeated to find the other representatives.
That is, to find the next representative, the algorithm finds an image
that has the maximum distance from all other representatives, as long
as that maximum distance is greater than the average distance (or the
minimum similarity is less than the average similarity). Fifth and
finally, once all representative images have been selected, a nearest
neighbor approach is used to divide the rest of the images into their
corresponding clusters. The nearest neighbor approach takes each
image and places it in the cluster having the minimum distance
(maximum similarity) between the image and the cluster’s
representative image. In this way, all images are placed in their
corresponding clusters and the algorithm terminates.

2) Incremental Clustering: This is an agglomerative clustering
algorithm that considers the images one by one in an incremental
manner and directly decides what to do with (where to put) each
image [34] (cf. pseudo-code in Fig. 3). This means that the algorithm

takes the first image and places it in a cluster. Then, for the next
image, the algorithm decides based on a (user chosen or average)
similarity threshold if the new image should be placed in the same
cluster or if a new cluster should be created around that image, by
comparing the image with cluster representatives. The algorithm
continues in the same manner until all images have been clustered.

In our solution, we utilize incremental clustering to add new
images to existing clusters which are originally produced by the max-
min algorithm, rather than re-clustering all images every time a new
image is added by the user (described in Section IV).

IV. SOLUTION DESIGN AND FUNCTIONALITY

The overall architecture of our solution is shown in Fig. 1. It allows
to retrieve images from a social site (we utilize Facebook in our
study, even though any other site could have been used), extracts
their features and stores them into a database, computes their high-
and low-level feature similarities, and then clusters the images based
on their similarities w.r.t. (with respect to) user chosen parameters.
Subsequently, the system can be used to search for different images
based on high-level and/or low-level features. Finally, the results can
be displayed through multiple personalized visualization techniques
(such as the list view, cluster view, fish-eye view, etc.) which we
further describe in the following subsections.

A. Retrieving Images from the Social Site
To retrieve information from a social site such as Facebook, the user
first needs to be authenticated to get the data. For this purpose, and
given that most social sites (namely Facebook) do not support SDKs
for desktop applications, we developed a dedicated Web application
(including an imbedded Web browser) for the user to access her
social (Facebook) account. Whenever the user first launches the
SICOS software, she is required to sign in: granting the application
the necessary permission to retrieve images on her behalf.

B. Extracting and Processing Image Features
As mentioned previously, we have utilized the Java Lire library to
extract the low-level features of images, including various kinds of
color, texture, and shape histograms (cf. Section II). Similarly, high-
level image feature extraction is undertaken using the Apache Lucene
library by first retrieving the high-level features corresponding to the
image, namely place, caption, and comments, then creating vector
text fields (i.e., vector dimensions) for each one of the features: one
vector text field (dimension) containing a string description for the
place (location) information, another containing the string description
for caption, and one containing a string composed of all the image’s
comments concatenated. Consequently, the similarity between two
images Img1 and Img2 is computed as the weighted sum of the
similarities between their corresponding image features:

Sim High-Level(Img1, Img2) = wPlace SimPlace(Img1, Img2)
 wCaption SimCaption (Img1, Img2)
 wComment SimComment (Img1, Img2)

(5)

where feature weights wPlace, wPlace, wPlace 0 and wPlace + wPlace +

wPlace = 1; and feature similSimPlace, SimCaption, SimComment [0, 1].

A similar formula is utilized to evaluate low-level image
similarity where the user chooses the features and their
corresponding weights. Cosine similarity (cf. Formula 1) is used to
compute the similarity between individual image feature vectors.

Note that low-level and high-level feature extraction and
processing is undertaken for every social image in the user
repository, whereas similarity computation is undertaken for every
pair of images. This means that for n images, the system needs to
compute (n (n-1))/2 similarity scores, which is done offline (as pre-
processing), storing all similarity scores in the database (indexed
using image IDs), to be quickly retrieved later on to perform
clustering and search while minimizing on-the-fly computation time.

C. Choice of Clustering Algorithms
Among the battery of clustering algorithms available in the literature
[34], we chose max-min to perform the initial clustering phase:
executed when the user first connects to the system. The advantages
of using max-min clustering is that it is relatively fast when compared
with legacy hierarchical clustering algorithms, and does not require
the preliminary input that is required by other partitional algorithms
such as k-means clustering. In k-means clustering, the user needs to
provide (based on previous knowledge) the number of clusters that
are going to be produced. However, with the max-min algorithm, the
number of clusters is automatically produced by the algorithm based
on the average image similarity score utilized as clustering threshold
(cf. Fig. 2). This makes it easier to cluster the results dynamically,
and allows for an increased cluster variety depending on images in
the initial set [33]. Also, max-min is of average linear O(n k)
complexity, since n images are compared with k cluster
representatives (where k is significantly smaller – almost negligible –
w.r.t. n), and thus is generally more efficient than alternative
clustering algorithms which loop through all n images n times, and
thus typically require O(n2) (or at best O(n log(n)) time [34].

Input: Set of Images to be clustered: I
 Set of features chosen by user: F
Output: Set of image clusters: C

1 Initialize set or representatives R =
2 Compute average similarity between images in I
3 Select random image i I as first representative, R = R {i}
4 Remove selected image representative from I
5 for each remaining image i I
6 for each representative image r R
7 if SimF(i,r) < threshold
8 Add i to R
9 Remove i from I
10 Create new cluster c
11 Add i to c
12 Add c to C
13 endif
14 endfor
15 endfor
16 for each image i I
17 Find max(SimF(i,r, F)) where r R
18 Add i to cluster c having r
19 endfor
20 return C

Fig. 2. Pseudo-code of max-min clustering algorithm.

One of the main limitations of max-min clustering is that it
might require more processing time than k-means clustering, since it
first needs to produce the representatives and the number of clusters,
whereas k-means execution speed can be greatly reduced based on
the number of clusters and convergence threshold used. Another
limitation of max-min is that it might produce less precise and
accurate clusters in comparison with hierarchical clustering
algorithms [33]. Also, cluster representatives might not be the most
accurate representatives because they are first chosen randomly. This
could be fixed by later creating a new representative within each
cluster which would be the average image between all images in the
cluster; however, this would require additional execution time.

In addition to max-min used in the initial clustering phased, we
utilize incremental clustering to update clusters produces after the
initial phase by classifying newly published images in the already
formed clusters. We adopt incremental clustering since it is
considered as one of the fastest clustering algorithms compared with
alternative approaches (requiring average O(k) time where k
represents the number of cluster representatives). Yet, it does not
produce the best results which depend on the original order following
which images were presented to the algorithm [34] (a different
original order can produce a different clustering result all together).
Similarly to the max-min algorithm, incremental clustering also
presents a tradeoff of efficiency versus quality that should be taken
into account.

Input: Set of initial image clusters: C
 Set of initial cluster representatives: R
 Stream of newly added Images: S
 Set of features chosen by user: F
Output: Set of updated image clusters: C

1 if user wishes to set threshold
2 Set threshold following user input
3 else
4 Set threshold as average similarity of all images in C
5 endif
6 for each incoming image i S
7 find max(SimF(i,r)) where r R
7 if max(SimF(i,r)) <threshold
8 create new cluster c
9 add i to c
10 add c to C
11 endif
12 else
13 add i to cluster c having r as representative
14 endif
15 return C

Fig. 3. Pseudo-code for incremental clustering algorithm.

Note that in our current study, clusters are labeled following the
captions of their cluster representatives. Yet, more sophisticated
cluster labeling schemes could be devised later on.

D. Image Querying

Querying the results will return the pictures users are looking for in a
simplified manner. Here, SICOS allows three different querying
methods described below.

1) Tag-based Image Search: searching for images based on the
people tagged in them. This is done by storing tag names in the
image database along with the images corresponding to each tag.
When the query tag is submitted, the database selects the images
having the tag and returns them to the user. Furthermore, our solution
allows the user to enter multiple tag names and search for images
which contain any or all of them, following user preferences. For
example, query “John Smith, Jane Smith” will return all images in
which John Smith and Jane Smith appear together, or separately
(based on the query formulation).

2) High Level-based Image Search: searching for images using
high-level features such as place, caption, and/or comments. The user
selects the features against which to perform the query, as well as
corresponding feature weights (similar to feature extraction in
Section II.B). Then, the query is run against the image clusters, such
that the query feature vector is compared with the feature vectors of
the representatives of the clusters. The system then returns the
images that fit the query in order of decreasing TF-IDF scores. This
means that feature vectors which have the same word repeated
several times will get a higher score due to the higher term frequency
factor. Also, feature vectors which contain more term occurrences yet

without having any matches to the query terms will get a lower score.
The clusters corresponding to the returned documents will be
displayed to the user using special cluster display techniques
(covered in Section IV.E).

The number of results to display is based on user preferences.
The user has the choice to decide between a k nearest neighbor
approach or a range approach. The k nearest neighbor approach
displays the top k results, where k is an integer given by the user. The
range approach displays all clusters in which the distance (similarity)
between the query feature vector and the cluster representative’s
feature vector is lesser (higher) than a user-given threshold.

3) Low Level-based Image Search: using a sample image as
query, such that the image query can be either selected from the
available image repository or uploaded by the user. SICOS then
extracts the low-level features of the image, and uses them to
compare it with the cluster representatives’ low-level feature vectors.
The results are ranked based on the similarities returned by the
comparison. Similarly to high-level querying, the user can select her
preferred low-level features and features weights to be utilized in the
comparison (retrieval) process. Finally, clusters corresponding to the
most similar representatives are returned, displayed to the user using
different possible cluster visualization techniques (cf. Section IV.E).
Also, the user can select the number of clusters to display, using
either the k neighrest neighbor approach or the range selection
approach.

Moreover, when a new image is uploaded as a query, the user is
asked if she would like the image to be added to the user’s image
repository (after the query has been processed). If yes, the user is
then asked to provide the image’s high-level features (if available),
which are then processed along with low-level features, and run
through the incremental clustering component.

E. Result Presentation and Organization

Having images organized into clusters becomes even more effective
and practical in retrieval if these clusters can be visualized properly.
As a result, our solution allows different visualization techniques,
which can be used to display both: i) the cluster organization of
images in the repository, as well as ii) image query search results.

Our solution includes five different visualization techniques,
introduced to answer different user preferences, and which we
describe in the following sub-sections.

1) Representatives Display: Following this layout, the
representative image of each cluster is displayed only at first, and
then when the user clicks on one of the images, a new window opens
containing the images of the corresponding cluster. This is done by
looping through the first image in the array list for each cluster and
displaying the images in one window. Then, each image is assigned a
mouse click listener, which retrieves the corresponding cluster and
displays the images in that cluster.

The main advantage of using this view over others is that it is
quick in displaying the images since it only requires initially
displaying the representative images without having to display the
rest of the images in each cluster. In other words, there is no need to
load all cluster images unless the user chooses to do so explicitly for
a given (number of) clusters. A disadvantage of this view is that it
might not be very intuitive in displaying clustering, since the user
cannot easily visualize how the clusters are organized w.r.t. image
similarities/dissimilarities, or how close/far away clusters are from
each other (cf. Fig. 4).

2) Cluster List View Display: In this display, the main view is a

list in which each item in the list represents a cluster. For each
cluster, the representative image is displayed in large on the left, and

then the rest of the images are displayed in smaller size to the right.
To implement this view, a separate class was created to represent
each list item. The constructor of the class would take the cluster as
input and would produce a list item having the view described above.
Moreover, each image can be enlarged (upon user selection) to see
the image in its actual size, while allowing the user to change the
cluster representative (choosing another image from the cluster as its
representative). Changing cluster representatives not only affects the
visualization of clusters, but also allows replacing the old cluster
representatives in the database.

Fig. 4. Sample cluster representatives display.

The main advantage of this view is that it allows the user to
view all clusters at once in an organized manner and allows the user
to change representative images. A disadvantage is that it is time-
consuming and memory-consuming due to the fact that a new
instance of a class should be created for every cluster, and all images
in the system should be loaded into memory (cf. Fig. 5).

Fig. 5. Sample cluster list view
display.

Fig. 6. Grid view display (with 2
clusters: white & blue).

3) 2D Display: it presents images in a 2 dimensional plane,
where each cluster of images is separated from the rest (using
different color indicators), and within each cluster of images: the
representative image is placed in the middle, and the rest of the
images are placed around it according to the similarity between the
(feature vectors of) images and (those of) the representative image.
That is, in a given cluster, images that are most similar to the
cluster’s representative image are displayed closest to the center,
while those that are least similar are displayed the farthest from the
center. This is done by creating a specific display pane for each
cluster in which the images are laid out according to the above
description. Then, each display pane is added to the main grid which
separates the clusters from each other.

The main advantage of this is approach that it helps visualize
clusters while highlighting their intra-cluster image similarities, and
inter-cluster similarity-based spatial organization. A disadvantage of
this display is that it is more computationally expensive and time-
consuming, compared with the previous two displays (cf. Fig. 7).

4) Grid View Display: It places all the images in a 2 dimensional
grid in such a way that images in the same cluster are placed as close
as possible to each other. The difference between the grid view and

the 2D display is that the grid view places images in an ordered
manner as tiles next to the cluster representative, whereas 2D display
places images in a spiral shape around the representative. Different
clusters are distinguished using special background colors for each
cluster. To do this, the first image is placed in the grid, and the next
image in the cluster with the highest similarity is placed as close to
the representative as possible. For each new image, the system
identifies the next tile in the grid which can be filled taking into
account the distance/similarity w.r.t. the representative (i.e., trying to
keep the minimum average distance/max similarity).

Fig. 7. Sample 2D display.

The main advantage of grid view display is that images can be
displayed in 2D manner while requiring less computation and time
compared with the 2D display approach. A disadvantage of this
display is that it seems less expressive of the intra- and inter-
organization of clusters in comparison with 2D display (e.g., the
distances among images and among clusters cannot be easily spotted
with the grid view display, compared with 2D display where these are
clearly highlighted, cf. Fig. 6).

5) Fish-Eye View Display: This is similar to 2D display with one
major difference: the sizes of images surrounding the cluster
representative decrease as their similarities w.r.t. the representative
decrease, causing the images that are farther away from the
representative to appear smaller. It carries the already mentioned
advantages and limitations of 2D display.

V. PERFORMANCE EVALUATION

To test the performance of our tool, we evaluated execution time for
each of its constituent components while varying user parameters.
Experiments were performed on an Intel core i3-2328 2.20 GHz
CPU with 4 GB RAM. Each experiment was executed 5 times,
retaining average time values. The SICOS prototype system, along
with all experimental evaluation results, is available online2.

A. Feature Extraction Time

To start off, we first evaluated the time needed to extract the different
low-level and high-level features from the images. Tests were
undertaken on an increasing number of images: 50, 100, 130, 170,
and 195. For each of these sets, the time needed to extract each
feature was retrieved and can be seen in Fig. 8. We omit the time
results for high-level feature extraction here since they require
significantly less time (extraction is done almost instantaneously) in
comparison with their low-level counterparts.

Results show that FCTH and CEDD features are the most
expensive to extract (which was expected since they are considerably

2 http://services.soe.lau.edu.lb/SICOS/

User clicks
on a cluster

representative
image

(highlighted
in blue) to see
corresponding
cluster images

Cluster representatives

Clus. 1: Road Trip

Clus. 2: Spring Fiesta

sophisticated and detailed in their descriptions, producing relatively
large feature vectors, cf. Section II), such that all features (including
the latter) show a linear increase in time w.r.t. number of images.
Note the Gabor filter feature shows the least increase, and thus seems
to be the least variant in extraction time w.r.t. the number of images.

B. Similarity Computation Time

We also evaluated the time needed to compute the similarity between
image feature vectors, for both high-level and low-level features once
those have been extracted. Results obtained with an increasing
number of pairs of images (from 2 to 80 pairs, designating the
number of similarity computation tasks) are shown in Fig. 8.

a. Low-level feature extraction time

b. Low-level feature similarity
computation time (including

feature loading time from DB)

Fig. 8. Processing low-level image features.

Results show that similarity computation time increases linearly
w.r.t. the number of pairs of images being compared, which reflects
the linear complexity of computing the cosine similarity measure
between two image vectors. Also, one can see that the time needed to
compute similarity for CEDD, FCTH, and color layout features is
higher than the time needed for other features, which is in direct
relation with the increased sizes of the corresponding feature vectors.
Note that similar results were obtained with high-level features
(omitted to simplify presentation), since the same cosine similarity
measure is utilized to compare corresponding feature vectors.

C. Max-Min Clustering Time

As for max-min clustering, we conducted performance tests on a
random set of 200 images downloaded from the author’s Facebook
accounts. Results in Fig. 9.a show that max-min clustering time
varies in an almost linear/slightly polynomial fashion (highlighting
max-min’s average linear complexity levels (cf. Sections III.C.1 and
IV.C). This shows that max-min can be very efficient when
processing small/moderate sized image datasets, but may require
polynomial time when processing a very large number of images.

a. Max-Min clustering time

b. Incremental clustering time

Fig. 9. Clustering time.

D. Incremental Clustering Time
As for incremental clustering time, results in Fig. 9.b show that
execution time is almost perfectly linear in the number of images
(which is proportional to the number clusters/cluster representatives),
thus rendering the algorithm extremely faster than max-min (almost 3
times faster in our implementation) considering the same number of
images (clusters) processed by both algorithms.

E. Cluster Visualization Time
We have also evaluated the time performance for each of the five
cluster visualization techniques provided in SICOS. We ran multiple
tests with different parameter variations: in number of clusters
(between 2 and 5) and number of images in each cluster (between 1
and 5). Results in Fig. 10 show that all five displays requires average
linear time w.r.t. the number of clusters and the number of images
per cluster, such that the representatives display view is the fastest
(since it only displays cluster representatives, and involves less image
loading time), followed by the cluster list view and grid view displays
(which display: cluster representatives and image constituents, and
thus need more loading time), followed by 2D display (and fish-eye
view) which is (are) the most expensive (since they perform
additional processing to display images around the representatives, in
a spiral shape, following their similarities, cf. Section IV.E).

a. Representatives display b. Cluster list view display

c. Grid view display d. 2D display (fish-eye view)

Fig. 10. Time needed to produce different cluster visualizations.

F. Querying Performance
We have also evaluated the time performance of our system in
running queries, considering both low- and high-level features.

1) High Level-based Image Search Time: As for high level-
based image searching, we have studied the time it takes to return
query results when the query is run on a varying number of cluster
representatives, considering all high-level features aggregated (i.e.,
tag, place, caption, and comments)3. Recall that our queries are run
against cluster representatives (instead of running them against each
and every individual image) in order to reduce processing time (cf.
Section IV.D). Results in Fig. 11.a show that query execution time is
clearly linear in the number of representative images.

2) Low Level-based Image Search Time: We conducted similar
tests considering (all) low-level image features combined3. Similarly

3 Individual feature evaluations were discussed in Section V.B.

0

10

20

30

40

50

50 75 100 130 150 175 200

Ti
m

e
(in

 se
co

nd
s)

Number of images

0

10

20

30

40

50

60

70

2 10 20 30 40 50 60 70 80

Ti
m

e
(in

 m
s)

Number of pairs of images

CEDD ColorLayout FCTH
Gabor Scalable Color Edge Hist
Dominant Color Simple Color Dominant Colors

0

50

100

150

200

250

300

2 42 82 122 162

Ti
m

e
(in

 m
s)

Number of images (upper)
Number of clusters (lower)

0

50

100

150

200

250

300

20 40 60 80 100 120 140 160 180

Ti
m

e
(in

 m
s)

Number of images (upper)
Number of clusters (lower)

2
3

4
5

0
50

100
150
200
250
300

1 2 3 4 5

Ti
m

e
(in

 m
s)

Number of images per cluster

2
3

4
5

0
250
500
750

1000
1250
1500

1 2 3 4 5

Ti
m

e
(in

 m
s)

Number of images per cluster

2
3

4
5

0

250

500

750

1000

1250

1 2 3 4 5

Ti
m

e
(in

 m
s)

Number of images per cluster

2
3

4
5

0
500

1000
1500
2000
2500
3000

1 2 3 4 5

Ti
m

e
(in

 m
s)

Number of images per cluster

200 200

1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10

to high-level features, results in Fig. 11.b show linear dependency on
the number of representative images being processed. Low-level
feature querying is naturaly more expensive than high-level querying
due to the sheer size of low-level feature vectors (e.g., histogram
vectors) in comparsison with high-level feature vectors (e.g.,
term/frequency vectors, cf. Sections III.A and IV.B).

a. High-level feature querying

b. Low-level feature querying

Fig. 11. Query execution time4.

To sum up, both query performance experiments highlight the
efficiency of our approach in handling large image repositories,
where time is mainly dependent the number of clusters/cluster
representatives rather than the actual size of the repository (given that
image feature extraction and pair-wise similarity computations are
executed offline). Cluster visualization techniques then kick in to
display images within each and every returned result cluster.

We are currently conducting a battery of (quality) tests to study
the effectiveness of our approach in: i) clustering images (fine-tuning
the impact of low-level/high-level features to produce more coherent
clusters), ii) retrieving “relevant” results (while minimizing false
negatives), and iii) visualizing clusters/query results, compared with
alternative tree-like representations in existing social image
management solutions, e.g., [13-15].

VI. CONCLUSION
In this paper, we describe our solution called SICOS as a
personalized social Web image organization, clustering, and search
tool, allowing a battery of low-level (visual) and high-level (textual)
image features, run through efficient clustering algorithms, as well as
different result visualization displays all of which can be fine-tuned
following user preferences. We briefly described the background and
related works. From there, we described the functional requirements
of our system, leading to its design and implementation. Finally, we
conducted various tests to evaluate the time performance of the
different components and functionality of our solution.

For the future, we plan to research and add new features, such as
producing multiple representative images for each cluster (e.g.,
allowing k representatives instead of only one, following user
querying and visualization preferences), and performing automated
image annotation through image processing (e.g., automatically
annotating new images, based on high-level features of similar
images which were already annotated) [14]. Furthermore, we plan to
extend our solution, making use of advanced semantic database
indexing techniques [35] to allow semantic-aware image querying:
considering not only term occurrences, but also their semantic
meanings (e.g., term “orange” could mean the color or the fruit,
which could produce totally different results). Extending our solution
to describe semantic relations between images based on their low-
and high-level features [36] and/or using vector graphics annotations
[37], in order to facilitate knowledge-based event detection,
identification, and description [38] is also an upcoming challenge.

4 It includes: i) time to load extracted features from the database, ii) feature

vector similarity computation time, and iii) result presentation time
following the cluster list view display.

ACKNOWLEDGMENTS
The study is partly funded by the National Council for Scientific
Research (CNRS-L) Lebanon: NCSR_00695_01/09/15, LAU research
fund: SOERC1516R003, and LAU travel grant: SOERC1516T015

REFERENCES
[1] Chen Y. et al., Content-based Image Retrieval by Clustering. MIR 2003, 193-200
[2] Van Leuken R. H. et al., Visual Diversification of Image Search Restuls. Proc. of

Inter. World Wide Web Conference, 2009. pp. 341-350
[3] Suh B. and Bederson B., Semi-Automatic Photo Annotation Strategies using Event-

based Clustering and Clothing based Person Recognition. Interacting with
Computers, 2007. 19(4): 524-544

[4] Phillips P. et al., Preliminary Face Recognition Grand Challenge Results. Inter.
Conf. on Automatic Face and Gesture Recognition, 2006. pp. 15-24

[5] Kang H., Bederson B. and Suh B., Capture, Annotate, Browse, Find, Share: Novel
Interfaces for Personal Photo Management. IJHCI, 2007. 23(3): 315-337

[6] Cai D. et al., Hierarchical Clustering of WWW Image Search Results using Visual,
Textual and Link Information. Inter. ACM Multimedia Conf., 2004. pp. 952-959

[7] Weinberger K. et al., Resolving Tag Ambiguity. Proc. of the 16th International
ACM Multimedia Conference (MM'08), 2008. pp. 111-120, Vancouver, Canada

[8] Cronen-Townsend S.; Zhou Y. and Croft W.B., Predicting Query Performance.
ACM SIGIR Conf. on Research and Development in IR, 2002. pp. 299-306

[9] Carpineto C. et al., An Information-Theoretic Approach to Automatic Query
Expansion. ACM Transactions on Information Systems (TOIS), 2001. 19(1):1-27.

[10] Rodden K. et al., Does Organization by Similarity Assist Image Browsing?
SIGCHI Conf. on Human Factors in Computing Systems, 2001. pp. 190-197

[11] Wang S. et al., IGroup: Presenting Web Image Search Results in Semantic
Clusters. Computer-Human Interaction Conference, 2007. pp. 587-596

[12] Cutting D.R. et al., Scatter/Gather: A Cluster-based Approach to Browsing Large
Document Collections. ACM SIGIR Inter. Conf. on R&D in IR, 1992, 318-329

[13] Eklund P. et al., An Intelligent User Interface for Browsing and Search MPEG-7
Images using Concept Lattices. Inter. LNAI'06 Conf., Springer, 2006. pp. 1-21

[14] Crampes M. et al., Visualizing Social Photos on a Hasse Diagram for Eliciting
Relations and Indexing New Photos. IEEE TVCG, 2009. 15(6): 985-992

[15] Ferré S., CAMELIS: Organizing and Browsing a Personal Photo Collection with a
Logical Information System. In proc. of Inter. CLA Conf., 2007. pp. 112-123

[16] Ma Z. et al., Knowledge Adaptation for Ad Hoc Multimedia Event Detection with
Few Exemplars. In proc. of ACM Multimedia Conf., 2012. pp. 469-478

[17] Liu X., Troncy R. and Huet B., Using social media to identify events. In proc. of
the 3rd ACM SIGMM International Workshop on Social Media, 2011. pp. 3-8

[18] Datta R.; Joshi D.; Li J. and Wang J.Z., Image Retrieval: Ideas, Influences and
Trends of the New Age. ACM Computer Surveys, 2008. 40(2):1-60

[19] Liu Y.; Zhang D.; Lu G. and Ma W.-Y., A Survey of Content-Based Image
Retrieval with High-Level Semantics PAttern Recognition, 2006. 40(1):262-282.

[20] Felzenszwalb P. and Huttenlocher D., Efficient Graph-Based Image Segmentation.
International Journal of Computer Vision, 2004. 59(2):167-181

[21] Kaur K. and Malhotra S., A Survey on Edge Detection Using Different Techniques.
Inter. IJAIEM journal, 2013. 2:496-500

[22] Sharifi M. et al., A Classified and Comparative Study of Edge Detection
Algorithms. Inter. Conf. on Info. Tech.: Coding & Computing (ITCC), 2002. p. 4

[23] Chatzichristofis S. and Boutalis Y., CEDD: Color and Edge Directivity
Descriptor: A Compact Descriptor for Image Indexing and Retrieval. Computer
Vision Systems 2008. LNCS Vol. 5008, pp. 312-322

[24] Wang Y.H., Image Indexing and Similarity Retrieval based on Spatial
Relationship Model. Informatics and Computer Science J., 2003. 154(1-2):39-58

[25] Rodden K. et al., Evaluating a Visualization of Image Similarity as a Tool for
Image Browsing. IEEE Symposium on Information Visualization, 1999. pp. 36-43

[26] Hirota M. et al., A Robust Clustering Method for Missing Metadata in Image
Search Results. Journal of Information Processing, 2012. 20(3):537-547

[27] Lux M. and Chatzichristofis S., Lire: lucene image retrieval: an extensible java
CBIR library. 16th ACM Multimedia Conf. (MM'08), 2008. pp. 1085-1088

[28] International Organization for Standardization (ISO), MPEG-7 Overview. ISO/IEC
JTC1/SC29/WG11, Coding for Moving Pictures and Audio, 2004. Martinez J.M.

[29] Lucene, A., Apache Lucene Core. https://lucene.apache.org/core/ [April 2016]
[30] Tekli J. et al., Toward Approximate GML Retrieval Based on Structural and

Semantic Characteristics. Inter. Conf. on Web Eng. (ICWE'09), 2009. pp. 16-34.
[31] McGill M., Intro. to Modern Information Retrieval. 1983. McGraw-Hill, NY
[32] Moellic P.A. et al., Image Clustering based on a Shared Nearest Neighbors

Approach for Tagged Collections. Proc. of the Inter. CIVR Conf., 2008, 269-278
[33] Van Leuken R. H. et al., Visual Diversification of Image Search Restuls. Proc. of

the International World Wide Web Conference, 2009. pp. 341-350
[34] Jain A.K. et al., Data Clustering: A Review. ACM Computing Surveys, 1999.

31(3):264-323
[35] Chbeir R. et al., SemIndex: Semantic-Aware Inverted Index. East-European Conf.

on Advanced Databases and Information Systems (ADBIS'14), 2014. pp. 290-307.
[36] Jisha K.P., An image retrieval technique based on texture features using semantic

properties. Inter. ICSIPR Conf., 2013. pp. 248-252
[37] Salameh K. et al.., SVG-to-RDF Image Semantization. SISAP 2014. pp. 214-228.
[38] Ashagrie M. et al., A General Multimedia Representation Space Model toward

Event-based Collective Knowledge Management. Inter. CSE Conf. 2016, Paris

0
25
50
75

100
125
150
175
200

1 21 41 61 81

Ti
m

e
(in

 m
s)

Number of images

0

500

1000

1500

2000

2500

1 21 41 61 81
Ti

m
e

(in
 m

s)

Number of images
200 200

