
A.H.F. Laender et al. (Eds.): ER 2009, LNCS 5829, pp. 294–314, 2009.
Springer-Verlag Berlin Heidelberg 2009

Extensible User-based XML Grammar Matching
Joe Tekli1, Richard Chbeir1 and Kokou Yetongnon1

1 LE2I Laboratory UMR-CNRS, University of Bourgogne - 21078 Dijon France
{joe.tekli, richard.chbeir, kokou.yetongnon}@u-bourgogne.fr

Abstract. XML grammar matching has found considerable interest recently due to the
growing number of heterogeneous XML documents on the web and the increasing need to
integrate, and consequently search and retrieve XML data originated from different data
sources. In this paper, we provide an approach for automatic XML grammar matching and
comparison aiming to minimize the amount of user effort required to perform the match
task. We propose an open framework based on the concept of tree edit distance,
integrating different matching criterions so as to capture XML grammar element semantic
and syntactic similarities, cardinality and alternativeness constraints, as well as data-type
correspondences and relative ordering. It is flexible, enabling the user to chose mapping
cardinality (1:1, 1:n, n:1, n:n), in comparison with existing static methods (constrained to
1:1), and considers user feedback to adjust matching results to the user’s perception of
correct matches. Conducted experiments demonstrate the efficiency of our approach, in
comparison with alternative methods.

Keywords: XML and Semi-structured data, XML grammar, schema matching, structural
similarity, tree edit distance, vector space model.

1 Introduction
With the growing amount of heterogeneous XML information on the Web, i.e., documents
originated from different data-sources, there is an increasing need to perform XML data
integration, data warehousing and consequently XML information extraction, search and
retrieval. All these applications require, in some way or another, XML document and grammar
similarity evaluation. In this area, most work has focused on estimating similarity between
XML documents, which is relevant in several scenarios such as change management and data
warehousing [6][7], structural querying [28][38], and document clustering [8][25]. Yet, few
efforts have been dedicated to comparing XML grammars, useful for data integration purposes,
in particular the integration of DTDs/XML schemas that contain nearly or exactly the same
information but are constructed using different structures [11][22]. XML grammar comparison
is mainly exploited in data warehousing [27] (mapping data sources to warehouse schemas),
message translation [27] as well as XML data maintenance and schema evolution [17].

In this study, we address the XML grammar comparison problem, i.e., the comparison of
DTDs [4] and/or XML Schemas [26] based on their most common characteristics. In fact, the
effectiveness of grammar matching systems is assessed w.r.t. (with respect to) the amount of
manual work required to perform the matching task [10], which depends on: i) the level of
simplification in the representation of the grammars, and ii) the combination of various
matching techniques [9]. In general, most XML-related grammar matching methods in the
literature are developed for generic schemas and are consequently adapted to XML grammars,
e.g., [9][11][19][22]. On one hand, they often induce certain simplifications to XML grammars
in order to perform the match task. In particular, constraints on the existence, repeatability and
alternativeness of XML elements (e.g., ‘?’, ‘+’ and ‘*’ in DTDs, or minoccurs and maxoccurs
in XML Schemas) are disregarded [9][14]. On the other hand, they usually exploit individual
matching criterions to identify similarities [22][31] (evaluating for instance the syntactic
similarity between element labels, disregarding semantic meaning) and thus do not capture all
element resemblances. Methods that do consider several criterions (semantic similarity, data-
type similarity…) usually utilize machine learning techniques [11] or basic mathematical
formulations (e.g., max, ave, …) [9] which are usually not adapted to XML-based data in
combining the results of different matchers.

 J. Tekli, R. Chbeir, and K. Yetongnon

Thus, our main goal is to develop an effective XML grammar matching method
minimizing the amount of manual work needed to perform the match task. This requires i)
considering the characteristics and constraints of the XML grammars being matched (in
comparison with existing ‘grammar simplifying’ approaches, e.g., [9][14]), and ii) providing a
flexible and extensible framework for combining different matching criterions (in comparison
with existing static methods, e.g., [22][31]) that is adapted to the semi-structured nature of
XML grammars (in comparison with relatively generic approaches, e.g., [11][19]).

Hence, the contributions of our paper can be summarized as follows: i) introducing a
generic tree representation model, that copes with the expressive power of common XML
grammars, without being constrained to a specific grammar language (e.g., DTD[4] or
XSD[26]) ii) providing an open framework, founded on the well known concept of tree edit
distance, for integrating different matching criterions to evaluate the similarity between XML
grammar trees, and iii) developing a prototype to evaluate and validate our approach. Note that
to our knowledge, this is the first attempt to exploit tree edit distance in an XML grammar
matching context. The remainder of the paper is organized as follows. In Section 2, we depict
our XML grammar tree representation model. Section 3 develops our tree edit distance based
XML grammar matching framework. Section 4 presents our prototype and experimental results.
Section 5 briefly reviews background in XML schema matching. Section 6 concludes the paper.

2 XML Grammar Tree Representation
We first provide definitions describing the basic notions of ordered labeled tree, first level sub-
tree, and XML grammar constraint operators, exploited in developing our grammar tree model.

Def. 1 - Ordered Labeled Tree: It is a rooted tree in which the nodes are labeled and
ordered. We denote by T[i] the ith node of T in preorder traversal, and by R(T)=T[0] its root ●

Def. 2 - First Level Sub-tree: Given a tree T with root p of degree k, the first level sub-
trees, FL-SbTreeT = {T1, …, Tk} of T are the sub-trees rooted at the children of p: p1, …, pk ●

Def. 3 - XML Grammar Constraint Operators: These are operators utilized to specify

constraints on the existence and repeatability of elements/attributes. They consist of two main
groups: cardinality constraints (cc) and alternativeness constraints (ac).

With cardinality constraint operators, it is possible to specify whether an element is
optional (‘?’ in DTD – equivalent to minoccurs=0 in XSD) or whether it may occur several
times (i.e., ‘*’ in DTD for 0 or more times – equivalent to minoccurs=0 and
maxoccurs=‘unbounded’ in XSD – and ‘+’ in DTD for 1 or more times, equivalent to
maxoccurs=‘unbounded’ in XSD). It is also possible to specify whether an attribute is optional
(Implied) or mandatory (Required). An element/attribute with no constraints is mandatory.

Alternativeness constraint operators specify whether some sub-elements are alternative
w.r.t. each other (the Or operator, represented by ‘|’ in DTD – choice in XSD) or are grouped in
a sequence (And operator, represented by ‘,’ in DTD – sequence in XSD). An additional hybrid
operator, All, is introduced in XSD [26], which allows its sub-elements to appear in any order,
such as all of them appear at once, or not at all ●

With most existing XML grammar matching methods, grammars are represented as

simplified XML-like trees or graph structures1, e.g., [16][19][31]. Here, we provide here a tree
model that i) captures the structural properties of XML grammars, ii) and accurately considers
their most common characteristics.

First, we define the notions of composite alternativeness constraint and alternativeness
constraint vector, central to preserving the structural levels of XML grammar elements/attributes.

1 Graphs are considered when recursive definitions come to play, which we do not treat in our current study

Extensible User-based XML Grammar Matching

Def. 4 - Composite alternativeness constraint: It is an alternativeness operator, i.e., And,
Or or All (cf. Definition 3), to which we associate a cardinality constraint, e.g., ?, *, … (cf.
Definition 3), in order to underline the repeatability of groups of elements. Formally, it can be
represented as a doublet cac = (sac, cc) where sac is a simple alternativeness constraint and cc
the corresponding cardinality constraint. For instance, XSD declaration <All
MinOccurs=0><element name=‘a’><element name=‘b’></All> corresponds to an (All,
MinOcc=0) composite constraint associated to both elements a and b ●

Def. 5 - Alternativeness constraint vector: It is a vector acuuuur of simple and/or composite
alternativeness constraints, underlining the disposition of a grammar element w.r.t. its siblings
and parent element in the grammar. For instance, in DTD declaration ((a | b)?, c), vector <And,
(Or, ?)> would be associated to elements a and b, while vector <And> is associated to c ●

Def. 6 – XML Grammar Tree: Formally, we model an XML Grammar as a rooted

ordered labeled tree D = (ND, ED, LD, CCD, DAC
uuuuuuuuur , TD, gD) where: ND is the set of nodes in D,

ED ⊆ ND × ND is the set of edges (element/attribute containment relation), LD is the set of labels
corresponding to the nodes of D (LD = ElD U AD such as ElD and AD designate respectively the
labels of the elements and attributes of D), CCD is the set of cardinality constraints associated to
the elements and attributes of D (i.e., ‘?’, ‘*’, ‘+’, MinOccurs, MaxOccurs, ‘Required’,
‘Implied’ and null, cf. Definition 3), DAC

uuuuuuuuur is the set of alternativeness constraint vectors
associated to the elements and attributes of D (central to preserving the structural levels of
XML grammar nodes, cf. Figures 2 and 3), TD is the set of data-types (TD= ET U AT, includes
the basic XML element data-types ET = {‘#PCDATA’, ‘ANY’, ‘String’, ‘Decimal’, …,
Composite} and attribute data-types AT = {‘CDATA’, ‘ID’, ‘IDREF’, …}), and gD is a function
gD : ND → LD, CCD, DAC

uuuuuuuuur , TD that associates a label l∈LD, a cardinality constraint cc∈CCD, an

alternative constraint vector acuuuur ∈ DAC
uuuuuuuuur and a data-type t∈TD to each node v∈VD ●

Def. 7 – XML Grammar Tree Node: A node n∈ND of XML grammar tree D = (ND, ED,
LD, CCD,

DAC
uuuuuuuuur , TD, gD) is represented by a quintuplet n = (l, cc, acuuuur , t, Ord) where l∈LD,

cc∈CCD, acuuuur ∈ DAC
uuuuuuuuur and t∈TD are respectively its label, cardinality constraint, alternativeness

constraint vector and node data-type. The additional Ord component underlines the DTD
node’s order w.r.t. its siblings. It is detailed in the following section ●

In XML documents, attributes are usually treated as unordered nodes1. In other words, the

order, left-to-right, of attribute nodes corresponding to a given element is not relevant (e.g.,
<Paper title=”…” Genre=”…”> is equivalent to <Paper Genre=”…” Title=”…”>).
Consequently, the same is true for attributes in XML grammars. In addition, grammar element
nodes connected via the Or and All operators are unordered [26] (e.g., DTD declaration Paper
(Author | Publisher) is equivalent to Paper (Publisher | Author)). Thus, the XML grammar tree
would encompass ordered parts, i.e., elements connected via the And operator, and unordered
ones, i.e., elements connected via the Or/All operators as well as attribute nodes.

However, algorithms for computing the edit distance between unordered trees are
generally NP-complete whereas those for comparing ordered trees are of polynomial
complexity [2]. Thus, transforming the XML grammar tree into a fully ordered tree would help
amend the time efficiency of the edit distance based match operation. This can be done by
representing attribute nodes as children of their encompassing element nodes appearing before
all sub-element node siblings, and consequently sorting all node siblings, left-to-right by node
label. This can be achieved using efficient sorting algorithms such as Quicksort, MergeSort,
Bucketsort [15]. An ordering score Ord, will be associated to each node, underlining the

1 The Document Object Model, http://www.w3.org/DOM

 J. Tekli, R. Chbeir, and K. Yetongnon

reordering magnitude of the node. The Ord score will be exploited in the matching framework
so as to increase/decrease the plausibility of a given match: nodes closer to their initial
positions, i.e., with lesser Ord scores, would constitute better match candidates. For n∈ ND:

 n.Ord =
((), ())

()

NbHops InitPosition n FinalPosition n
[-1,1]

Number of siblings under parent of n - 1
∈ (1)

Note that the ordering score Ord is not modified when sorting attribute nodes and/or
element nodes connected via the Or/All operators since they are initially unordered.

Consider the XML grammars in Figure 1. Corresponding tree representations are depicted

in Figures 2 and 3 (note that elements of the same structural level are represented in a stair-like
manner to fit in page margins). Now since XML grammars are represented as special ordered
labeled trees (cf. Definition 6), the problem of matching two grammars comes down to
matching the corresponding trees (similarly to [16][19]).

<!ELEMENT Paper ((Publisher | Author+), PaperLength?, url*)>
<!ATTLIST Paper Title CDATA #IMPLIED>
<!ATTLIST Paper Genre CDATA>
<!ELEMENT Publisher (#PCDATA)>
<!ELEMENT Author (FirstName, MiddleName?, LastName)>
<!ELEMENT PaperLength (#PCDATA)>
<!ELEMENT url (Homepage, Download+)?>
<!ELEMENT Homepage (#PCDATA)>
<!ELEMENT Download (#PCDATA)>
<!ELEMENT FisrtName (#PCDATA)>
<!ELEMENT MiddleName (#PCDATA)>
<!ELEMENT LastName (#PCDATA)>

<element name= “Publication”>
 <sequence>
 <element name= “Title” type="String"/>
 <element name= “Year” type= “Date”/>
 <choice>
 <element name= “Author” maxoccurs= “unbounded”>
 <sequence>
 <element name= “First” type= “String”>
 <element name= “Last” type= “String”>
 </sequence>
 </element>
 <element name= “Editor” maxoccurs= “unbounded”>
 <all>
 <element name= “Name” type= “String”>
 <element name= “Country” type= “String”>
 </all>
 </element>
 </choice>
 <element name= “Publisher” type= “String” minoccurs= “0” />
 <element name= “Length” type= “Decimal”/>
 <element name=“Link” type=“String” minoccurs= “0”/>
 </sequence>
</element>

a. Paper.dtd b. Publication.xsd
Fig. 1. Sample XML grammars.

Fig. 2. Tree representation P of grammar Paper.dtd in Figure 1.

Fig. 3. Tree representation Q of grammar Publication.xsd in Figure 1.

Title <And>

Year <And> String

Link <And>

Date

String

<And>

Editor <And, Or> String
Level 1

Level 0

-0.333 -0.5

0

0.833

0.833

Composite 0 Publication

<And, Or> Author Composite <And> Length Decimal

<And>

Publisher 0

Last 1 <All> Name

-1 <All> Country <And> First

Level 2

0

-0.333 -0.5

Composite

String

String String

String

Min=0 Max= ∞

Min=0 Max= ∞

Paper Composite

#PCDATA MiddleName ?

CDATA Genre <And> * Composite url <And>

<And> Homepage #PCDATA

#PCDATA +

<(And, ?)>

<(And, ?)>

Level 0

Level 1

Level 2

0 0

0.5

-1

1

0

#PCDATA LastName <And> -0.5

#PCDATA FirstName <And> 0

#PCDATA PaperLength <And> -0.2 ? + 0 Author <And, Or> Composite

Download

+ 0.2Publisher <And, Or> #PCDATA

CDATA Title <And> 0 IMPLIED

Extensible User-based XML Grammar Matching

3 XML Grammar Matching Framework
Tree edit distance methods have been widely utilized to compare XML documents, represented
as Ordered Labeled Trees, and have been proven optimal w.r.t. less accurate structural
comparison methods [5]. A great advantage of edit distance is that along the similarity value, a
mapping between the nodes in the compared trees is provided in terms of the edit script (i.e.,
sequence of edit operations transforming one tree into another). This is crucial for schema
matching, and would constitute the output of the match operation. Our matching framework
consists of four main components: i) the Edit Distance component for computing the distance
(similarity) between DTD trees, ii) the extensible Matchers component, encompassing several
matching algorithms, exploited via Edit Distance to capture XML grammar node resemblances,
iii) the Mapping Identification component, interacting with Edit Distance to identify the edit
script (ES_Extraction), and consequently the edit distance mappings, and iv) the UserFeed
component to consider user mappings and feedback in producing matching results.
The overall architecture of our grammar matching approach is depicted in Figure 4, and will be
detailed in the following sections.

Fig. 4. Simplified activity diagram describing our edit distance matching framework.

3.1 Edit Distance Component
Several algorithms have been developed to compute a distance, as the sum of a sequence of
basic edit operations that can transform one tree structure into another. In the context of XML,
the most recent and efficient proposals, e.g., [25][32], have stressed on the importance of
considering XML sub-tree similarities in computing edit distance, as a crucial requirement to
obtaining more accurate results. Here, we follow a similar strategy in comparing grammars. We
first develop a dedicated method, SGS, to compute the Similarity between XML Grammar Sub-
trees, based on the vector space model in information retrieval [21]. XML grammar sub-tree
similarities are consequently exploited as tree edit operations’ costs in a dynamic programming
tree edit distance algorithm (TED, cf. system architecture in Figure 4).

Note that our grammar comparison method can be viewed as an extension of [32], one of
the most recent tree edit distance based methods for comparing XML document structures.

3.1.1 Similarity between XML Grammar Sub-trees (SGS)
In evaluating XML grammar sub-tree similarity, one should consider all node characteristics
(element names, depth and relative order, cardinality constraints, alternativeness constraint
vectors, data-types, and ordering scores, cf. Definitions 6 and 7) so as to produce accurate
results. To do so, we exploit the vector space model in information retrieval [21].

When comparing two grammar sub-trees SbTi and SbTj, each would be represented as a
vector V

uur
 (

iV
uuur and

jV
uuuur) with weights underlining the similarities between each of their nodes.

Mappings

Overall
similarity

value

Input XML
grammars
(S1 and S2)

Auxiliary information

User constraints

SGS

[1:1] local mappings

Matching Framework

ES_Extraction

Matchers

User feedback

Map
[else]

TED

Edit Distance

Mapping Identification
User
Feed

Mapping
cardinality

Weighted
KB, CCT,

DTCT

Tree representation
component

Predefined
mappings

Tree Model

Ordering

 J. Tekli, R. Chbeir, and K. Yetongnon

Def. 8 – Sub-tree vector: For two sub-trees SbTi and SbTj, vectors Vi and Vj are produced
in a space which dimensions represent, each, a distinct indexing unit. An indexing unit stands
for a single node nr ∈ SbTi U SbTj, such as 1 < r < M where M is the number of distinct nodes
in both SbTi and SbTj. The coordinate of a given sub-tree vector Vi on dimension nr is noted
wVi(nr) and stands for the weight of nr in sub-tree SbTi ●

Def. 9 – Node weight: The weight of a node label nr in vector

iV
uuur (representing sub-tree

SbTi) is composed of two factors, a node/vector similarity factor Sim(nr, iV
uuur , Aux) and a depth

factor D-factor(nr) such as wVi(nr)= Sim(nr, iV
uuur , Aux) × D-factor(nr) ∈ [0, 1].

− Sim(nr, iV
uuur , Aux) quantifies the similarity between node nr and sub-tree vector

iV
uuur , Aux

underlining the auxiliary information needed to perform the comparison (cf. Definition 10).
It is computed as the maximum similarity between nr and all nodes of sub-tree SbTi
considering the various XML grammar node characteristics (Definition 7). Formally,

 = r ri
n Vi

Sim(n , V , Aux) Max(Sim(n , n, Aux))
∈
uur

ur
 ∈ [0, 1].

− D-factor(nr) considers the hierarchical depth of node vr in assessing its weight w.r.t. sub-
tree vector

iV
uuur . Note that node depth is not only a structural characteristic in XML, but is

also of semantic relevance. It follows the intuition that information placed near the root
node of an XML document is more important than information further down in the
hierarchy [1][38]. Thus, higher nodes should have a greater semantic influence.

1 - () = 1D factor n.l [0, 1] + n.d ∈ where n.d designates the depth of node n ● (2)

Def. 10 – Similarity between XML grammar nodes: It quantities the similarity between
two XML grammar nodes, considering their various characteristics. Given two nodes n and m:

 Sim(n, m, Aux) = wLabel SimLabel(n.l, m.l, KB) +
 wCConstraint SimCConstraint(n.cc, m.cc, CCT) +
 wAConstraint SimAConstraint (n, .m acuuuur ,CCT) +
 wData-Type SimData-Type(n.t, m.t, DTCT) +
 wOrdScore SimOrdScore(n.Ord, m.Ord)

(3)

where wLabel + wCConstraint + wAConstraint + wData-Type wOrdScore = 1 and (wLabel , wConstraint , wAConstraint,
wData-Type, wOrdScore) ≥ 0, having SimLabel, SimCConstraints, SimAConstraints, SimData-Types and SimOrdScore
the similarity scores between corresponding node labels, cardinality constraints, alternative
constraint vectors, data-types and ordering scores. Each of those similarity scores is to be
computed by the corresponding matcher (Section 3.2). Aux={KB, CCT, DTCT} designates the
auxiliary data sources required by the matchers to compute node similarity: KB (knowledge
base), CCT (constraint compatibility table) and DTCT (data-type compatibility table [33]) ●

Following Formula (3), different weights are assigned to the different node components,
reflecting the impact of each of the element characteristics in identifying the mappings. In fact,
several methods for combining matcher results have been investigated in [9], among which the
maximum, minimum, average and weighted sum functions. Here, we exploit the latter as it
provides more flexibility, adapting the process w.r.t. the user’s perception of similarity.

Having transformed XML grammar sub-trees into weighted vectors, the similarity between
two sub-trees is evaluated using a measure of similarity between vectors such as the inner
product, the cosine measure, the Jaccard measure, etc. Here, we adopt the cosine measure
widely exploited in information retrieval [21].

Algorithm SGS for computing XML grammar sub-tree similarity consists in building and
comparing sub-tree vectors as described above. SGS is consequently exploited to identify the
similarities between each and every pair of sub-trees (SbTi, SbTj) in the two trees T1 and T2

Extensible User-based XML Grammar Matching

being compared, as well as their similarities with the whole trees T1 and T2 respectively. Tree
operations costs would hence vary as follows [32]:

CostInsTree/DelTree(SbTi)= Ins/Del
All nodes of SbTi i j ,Max (SbT , SbT Aux))
Cost ()

n SGS
n ×∑ 1

1 + (
 (4)

3.1.2 Tree Edit Distance (TED)
The tree edit distance algorithm TED, utilized in our study, is an adaptation of Nierman and
Jagadish’s main edit distance process [25]. In addition to tree insertion/deletion operations’
costs which vary w.r.t. DTD sub-tree similarities (using SGS), TED (Figure 7) considers XML
grammar node similarities in computing update operations costs (cf. Figure 7, line 6). Using the
update operation, TED compares the roots of sub-trees considered in the recursive process (at
startup, these would correspond to the grammar tree roots). The cost of the update operation
would vary as:

 []UpdCost (, ,) 1 (, ,) n m Aux Sim n m Aux 0, 1= − ∈ (5)

where Sim(n, m, Aux) underlines the similarity between tree nodes n and m, Aux standing for
the auxiliary information required by the various matchers to assess XML grammar node
similarity (knowledge base KB, constraint table CCT and data-type compatibility table DTCT).

Hence, following Formula (5), the more initial and replacing nodes are similar, the lesser
should be the update operation cost, which would transitively yield a lesser minimum cost edit
script (higher similarity value). In short, the TED algorithm goes through all sub-trees of the
grammar trees being compared. It exploits sub-tree insertion/deletion costs (via SGS) and
update operations costs (cf. Formula (5)), which reflect the similarities between each sub-tree
in the source/destination trees being compared, to produce the overall distance value.

3.2 Element Matchers
As mentioned previously, we make use of dedicated matchers to evaluate the similarities
between XML grammar tree node labels, constraints, data-types, and ordering scores, their
results being integrated in the tree edit distance framework to produce relevant grammar
element mappings. Recall that the use of independent matchers provides flexibility in
performing the match operation since it is possible to select or disregard different matchers (i.e.,
different match criterions) following the task at hand. Table 1 presents the matchers we
included in our XML grammar matching approach so far, along with the different kinds of
auxiliary information they exploit. More details are provided in the technical report [33].

Tab. 1. XML grammar element matchers.

Matcher Type Target Auxiliary Information
Label Composite Labels Knowledge base

Syntactic Composite Labels ---
 String- ED [34] Simple Labels ---
 N-Gram [13] Simple Labels ---

Semantic Composite Labels Knowledge base

 Lin [18] Simple Element labels Knowledge base
 WuPalmer [35] Simple Element labels Knowledge base

Cardinality Constraint [33] Simple Cardinality constraints Constraint compatibility table

Data-Type [33] Simple Data-Types Data-type compatibility table
OrdScore [33] Simple Ordering scores ---

Alternativeness Constraint [33] Hybrid Alternativeness constraint vectors Constraint compatibility table

Similarly to computing XML grammar node similarity (cf. Formula (3)), we exploit the
weighted sum function in combining the results of simple matchers, since it enables the user to
choose the weight of each matcher in accordance with her notion of similarity. For each of the
composite matchers CM and its component ones Mi=1..n, similarity is evaluated as follows:

 J. Tekli, R. Chbeir, and K. Yetongnon

 SimCM =
i=1...n iMSimiw ×∑ ∈[0, 1] (6)

where
i=1...n i = 1w ∑ , (wi=1…n) ≥ 0 and (SimM i=1…n) ∈[0, 1]

3.3 Edit Script Extraction and Mapping Identification
Identifying the similarity between two XML grammars is useful in applications such as
grammar clustering [16], and can be exploited as a pre-processing schema integration phase
[27]. Yet, the grammar matching operation itself requires identifying element correspondences,
where edit distance mappings come to play. The Edit Distance component returns the edit
distance between XML grammar trees, i.e., similarity (Sim=1/(1+Dist)). Identifying mappings
requires a post-processing of the edit distance result. This amounts to edit script extraction.

3.3.1 Edit Script Extraction
In fact, edit distance computations are generally undertaken in a dynamic manner, combining
and comparing the costs of various edit operations to identify the minimum distance (maximum
similarity). Nonetheless, to identify the minimum cost edit script itself, one has to process the
intermediary edit distance computations, going throw the edit distance matrixes, (which we
identify as {Dist[][]}) tracing the edit script operations costs. Our algorithm for identifying the
minimum cost tree edit script is provided in Figure 6. It considers as input the grammar trees
being compared as well as the related edit distance matrixes computed via tree edit distance
component. It outputs the corresponding edit script (simplified tree operation syntaxes are
shown in Figure 6 for ease of algorithm presentation). As it traverses the edit distance matrixes,
the algorithm identifies corresponding tree insertion/deletion and node update operations,
gradually building the edit script. Thus, XML grammar tree mappings are deduced from the
edit script, graphically depicting which edit operations apply to nodes in the grammar trees.

3.3.2 Mapping Identification
As stated previously, the schema matching problem comes down to identifying mappings
between the elements of two schemas S1 and S2. Edit distance mappings are deduced from the
minimum cost edit script between S1 and S2, graphically depicting which edit operations apply
to which nodes in the grammar trees. In other words, they depend on the edit distance
operations that are allowed and how they are used. In our approach, we make use of five edit
operations: insert node, delete node, update node, insert tree and delete tree [32]. Hence, the
mapping between two XML grammar trees S1 and S2 is constructed:

− Simple 1:1 mapping edges are introduced to connect:
• Nodes that initially match. Two nodes of S1 and S2 initially match if they are

identical (nodes with identical labels, constraints, data-types, order and depth).
• Nodes related by the update operation.

− Simple 1:1 and complex 1:n, n:1 or n:n mapping edges connect:
• Sub-trees of S1, affected by tree deletion, to similar sub-trees in S2. Such edges are

identified when computing the similarity between sub-trees of S1 and S2. No edges
are introduced if the sub-tree being deleted from S1 has no similarities in S2.

• Sub-trees of S2 that are affected by the tree insertion operation, to similar sub-trees
in S1. No edges are introduced if the inserted sub-tree has no similarities in S1.

Node insertion/deletion operations are treated as tree insertion/deletion ones. Note that

node insertions/deletions are utilized to compute the costs of tree insertion/deletion operations
and are not directly employed in the main edit distance algorithm.

Figure 5 shows the mapping results corresponding to the edit distance computations
between two XML grammar trees D and T extracted from those in Figures 2 and 3. Note that in
this figure, we only show node labels for the sake of presentation. The edit script transforming
tree D into T, ES(D, T) = Upd(D[2], T[2]), Upd(D[3], T[3]), DelTree(D[4]), InsTree(T2).

Extensible User-based XML Grammar Matching

Fig. 5. XML grammar tree mappings.

Note that each of the nodes D[0], D[1], D[2], D[3] and T[0], B[1], B[2], B[3] in
grammar trees D and T participates in an individual 1:1 mapping. In addition, D[1], D[2],
D[3], D[4], and T[5], T[6], T[7] participate in an n:n mapping. In short, our approach produces
all kinds of mapping cardinalities, ranging from 1:1 to n:n. Nonetheless, the nature of a
mapping is often dependent on user requirements or the requirements of the module exploiting
the mapping results. In general, existing matching approaches tend to focus on 1:1 mappings
[11]. Such mappings are usually easier to comprehend, evaluate and manipulate by users and
automated processes alike. Nevertheless, complex 1:n, n:1 and n:n mappings are required in
certain application domains, mainly in automatic document transformation [2]. Thus, we
provide the user with a flexible schema matching framework able to produce either:

− 1:1 mappings (easier to assess, and especially useful for query discovery [24]),
− All kinds of mappings (no cardinality restrictions).

Restricting mapping cardinalities to 1:1 cardinality means disregarding all kinds of sub-
tree similarities and repetitions when comparing the grammar trees. In other words, we disable
algorithm SGS and only make use of the main edit distance process TED in our edit distance
component (cf. Figure 4). In this case, tree insertion/deletion mapping edges (which induce
complex 1:n, n:1 and n:n mappings) are eliminated, and we are left with 1:1 mappings.

Process Map (omitted here due to its intuitiveness) coupled with ES_Extraction (cf. Figure
4) is dedicated to producing grammar mappings, in the form (M, S1, S2) where M ⊆ NS1 × NS2. It
simply generates mappings following the rules above, and associates related mapping scores.

3.3.3 Mapping Scores
Most schema matching approaches associate scores to the identified mappings. These scores
underline values, usually in the [0, 1] interval, that reflect the plausibility of the corresponding
matches (0 for strong dissimilarity, 1 for strong similarity, and values in between). With respect
to edit distance, mapping scores denote, in a roundabout way, the costs of the edit operations
inducing the corresponding mappings:

− Mappings linking identical nodes are assigned a maximum similarity, MapScore = 1.
− Mappings underlining the update operation between two nodes are assigned scores as

follows: MapScore = 1 – CostUpd(n, m, Aux) ∈ [0, 1], 1 being the maximum update
operation cost (Formula (5)). In other words, the mapping score designates node
similarity, Sim(n, m, Aux)∈[0, 1].

− Following the same logic, mappings corresponding to tree insertion/deletion operations
are assigned scores as follows:

MapScore = All nodes of S

All nodes of S

 Ins/Del
n

Ins/Del
n

InsTree/DelTree
Cost (n)

Cost (n)

Cost (S)−∑

∑
 ∈[0, 1], having

All nodes of S
 Ins/Del

x
Cost (x)∑ the

maximum tree insertion/deletion operation cost for the sub-tree at hand. Hence, the
mapping scores will follow the similarities between inserted/delete grammar sub-trees.

Paper

MiddleName FirstName LastName

Author

Tree D

D1

Publication

Author Editor

First Last NameAffiliation

Tree T

T1 T2

Upd(D[0], T[0])

Upd(D[3], T[3])

Upd(D[2], T[2])

InsTree(T2)

DelTree(D[4])

 J. Tekli, R. Chbeir, and K. Yetongnon

Table 2 shows the mappings generated in our running example, as well as corresponding
mapping scores (computational details are omitted for simplicity). In addition to the Edit
Distance and Mapping Identification components, our matching framework encompasses a
UserFeed component, enabling users to manually match a few hard-to-match elements.

Tab. 2. Matching nodes of grammar trees D and T (Figure 5).

Match
cardinality Nodes of tree D Nodes of tree T Mapping

Scores

1:1

D[0] (l= ‘Paper’) T[0] (l =‘Publication’) 0.1667
D[1] (l= ‘Author’) T[1] (l =‘Author’) 1

D[2] (l= ‘FirstName’) T[2] (l =‘First’) 0.5556
D[3] (l= ‘LastName’) T[3] (l =‘Last’) 0.5714

D[4] (l = ‘MiddleName’) T[6] (T[6].l = ‘Name’) 0.4628
n:n D[1],D[2],D[3],D[4] (sub-tree D1) T[5],T[6],T[7] (sub-tree T2) 0.4266

3.4 User Input Constraints and User Feedback
Considering user input constraints and feedback in grammar matching could improve matching
accuracy. User mappings are particularly useful in matching ambiguous schema elements [11].

Consider for instance elements of labels ‘url’ and ‘Link’ in grammars Paper.dtd and
Publication.xsd of Figure 1 respectively. These elements have neither syntactically nor
semantically similar labels (that is if using a generic WordNet-based taxonomy as a reference
knowledge base). In addition, element ‘url’ in Paper.dtd encompasses two sub-elements, of
labels ‘Homepage’ and ‘Download’, both of them identifying links. In such situations, the
system is left with a set of confusing matching possibilities (‘url’↔‘Link’,
‘Homepage’↔‘Link’ or ‘Download’↔‘Link’, which is where user constraints come to play.

In our approach, we enable the user to explicitly specify matching elements as input to the
match operation, i.e., input user constraints. Likewise, after the execution of the match
operation, if the user is still not happy with the produced matches, she can provide new ones
i.e., user feedback, then run the edit distance process once again to output new mappings. In
essence, we consider user input constraints and feedback in our grammar matching framework
by updating input grammar trees following the constraints at hand, and consequently comparing
the updated trees. Thus, we define the UserFeed grammar transformation operation as follows:

Def. 11 – UserFeed: It is an operation that transforms an XML grammar tree A into A’,
such as in the destination tree A’, nodes corresponding to predefined matches are eliminated,
along with their corresponding sub-trees.
Formally, UserFeed(A, (preM, A, B)) = A’ where:

− A and B are the grammar trees being compared by the system.
− (preM, A, B) is the set of predefined user matches from A to B such as preM ⊆ VA –

{R(A)} × VB – {R(B)}, where VA and VB designate respectively the sets of nodes of trees
A and B, R(A) and R(B) underlining the corresponding grammar tree roots.

− A’ is the transformed tree, A’ = A – {the set of sub-trees Ai / R(Ai) ∈ (preM, A, B)}

Thus, w.r.t. user constraints, our Edit Distance component will be comparing the
transformed grammar trees, where nodes corresponding to predefined matches are eliminated,
along with their corresponding sub-trees (structural matching being sibling and ancestor
preserving [29]). Note that tree roots (R(A) and R(B)) are not included in the predefined user
matches since their inclusion would indicate that the whole grammar trees actually match, thus
eliminating the need to perform the matching task in the first place. Disregarding predefined
matches in the edit distance process would i) eliminate the possibility of automatically
modifying these matches and ii) lessen the risk of attaining confusing matches by reducing the
number of match candidates. The UserFeed process is shown in Figure 8. User mappings are
thus added to those produced by the system: (M, A, B) = (SystemM, A, B) U (preM, A, B).

Extensible User-based XML Grammar Matching

Algorithm ES_Extraction()

Input: Trees A and B, {Dist[][]} the set of distance matrixes
 computed by eTED among which the starting matrix
 Dist[][]A,B

Output: Edit script ES transforming A to B

Begin 1

i = Degree(A) // |FL-SbTreeA|
j = Degree(B) // |FL-SbTreeB|

While (i>0 and j>0)
{ 5

If (Dist[i][j]A,B = Dist[i-1][j]A,B + CostDelTree(Ai)
{

ES = ES + DelTree(Ai)
i = i-1

} 10
Else if (Dist[i][j]A,B=Dist[i][j-1]A,B + CostInsTree(Bj))
{

ES = ES + InsTree(Bj)
j = j-1

} 15
Else
{

If (Ai ≠ Bj) //Recursive formulation
{

ES_Extraction_Core(Ai, Bj, Dist[][]Ai,Bj) 20
}
i=i-1
j=j-1
}

} 25

While (i>0) // identifying remaining deletions
{

ES = ES + DelTree(Ai)
i = i-1

} 30

While (j>0) // identifying remaining insertions
{

ES = ES + InsTree(Bj)
j = j-1

} 35

If (i = 0 and j = 0 and R(Ai) ≠ R(Bj))
{

ES = ES + Upd(R(Ai), R(Bj))
}

Reorder(ES) // Reversing edit operations’ order 40
Return ES // Edit script transforming tree A to B

End

Algorithm EditDistance()

Input: Trees A and B, operations costs
 CostDelTree/CostInsTree for all sub-trees
 in A/B, Aux = {KB, CCT, DCT}
Output: Edit distance between A and B

Begin 1

M = Degree(A) // |FL-SbTreeA|
N = Degree(B) // |FL-SbTreeB|

Dist [][] = new [0...M][0…N] 5
Dist[0][0] = CostUpd(R(A), R(B), Aux)

For (i = 1 ; i ≤ M ; i++)
{ Dist[i][0] = Dist[i-1][0] + CostDelTree(Ai) }

For (j = 1 ; j ≤ N ; j++)
{ Dist[0][j] = Dist[0][j-1] + CostInsTree(Bj) } 10

For (i = 1 ; i ≤ M ; i++)
{

For (j = 1 ; j ≤ N ; j++)
 {

Dist[i][j] = min{ 15
Dist[i-1][j-1] + EditDistance(Ai, Bj),
Dist[i-1][j] + CostDelTree(Ai),
Dist[i][j-1] + CostInsTree(Bj) }

}
} 20

Return Dist[M][N]

End

Fig. 7. Tree edit distance algorithm.

Algorithm UserFeed()

Input: Grammar tree A, user matches (preM, A, B)
Output: Transformed grammar tree A’

Begin 1

A’ = A
M = Degree(A’) // |FL-SbTreeA|

For (i = 1 ; i ≤ M ; i++) 5

{
If(R(Ai) ∈ (preM, A, B))
{ A’ = A’ - Ai’ }
Else
{ Ai’ = UserFeed(Ai , (preM, A, B)) } 10

}

End
Fig. 6. Edit script extraction algorithm. Fig. 8. User feed transformation algorithm.

4 Experimental Evaluation
We have implemented our XML grammar matching framework in the experimental XS3
prototype (XML Structural and Semantic Similarity)1.

4.1 Matching Experiments
To our knowledge, a common benchmark with gold standard matchings for evaluating the
quality of XML grammar matching methods does not exist to date. Hence, we conducted our
experiments using a select collection of real and synthetic XML grammars (including those
exploited in our running example). Real DTDs and XML Schemas were acquired from various
online sources2. Consequently, we ran our matching approach and compared the generated

1 Available at http://www.u-bourgogne.fr/Dbconf/XS3
2 http://www.acm.org/sigmod/xml, http://www.cs.wisc.edu/niagara/, http://www.BizTalk.org, …

 J. Tekli, R. Chbeir, and K. Yetongnon

matches to the manually defined ones. Precision (PR), Recall (R), F-value and Overall results
are shown in Figure 9. Note that the Overall metric, introduced in [22], quantifies the amount of
user effort needed to perform the match task, i.e., effort needed to transform the match result
produced by the system to the user intended one:

1
2()Overall R

PR
× −= having PR ≠ 0 (7)

In all tests, all basic matchers were considered with equal weights (wLabel = wCardinality = w Data-

Type = wAlternativeness = wOrd = 0.2 whereas wString-ED = wN-Gram = wLin = wWuPalmer = 0.5). Note that
in this study, we do not address the issue of tuning matcher weights. This would require a
thorough analysis of the relative effect of each individual matcher and criterion on matching
quality (similarly to [9]), which we report to a dedicated study. Extracts of WordNet were
adopted as reference knowledge bases, and default DTCT and CCT tables were exploited.
Details concerning all experiments are provided in the technical report [33].

4.1.1 Evaluation of our Running Example
When matching grammars Paper.dtd and Publication.xsd (cf. Figures 3, 4), the system
identified 6 correct mappings, disregarded 2, and generated 2 incorrect ones (Table 3). The
mappings which are missed by the system (‘PaperLenght’-‘Length’ and ‘Download-Link’) are
in fact replaced by others (e.g., ‘Genre’-Length’ and ‘PaperLength’-‘Link’) which seem more
structurally plausible. Recall that the topological structure of grammar nodes (i.e., sibling
ordering and ancestor/descendent relations) is crucial in determining the mappings, following
our approach, since we focus on semi-structured and structured data (which is not necessarily
verified with user mappings). Despite some inconsistencies in the matching results, PR, R, F-
Value and particularly Overall show that more than half of the mappings generated by the
system are correct, which is obviously easier than manually performing the match task.

Tab. 3. Matching Paper.dtd and Publication.xsd of Figure 5.

Manual Mappings System Mappings
paper.dtd publication.dtd paper.dtd publication.dtd Scores

Paper Publication Paper Publication 0.8849
Author Author Author Author 0.9667

FirstName First FirstName First 0.8378
LastName Last LastName Last 0.7886

PaperLength Length
Publisher Publisher Publisher Publisher 0.84

Title Title Title Title 0.8367
Download Link

 PaperLength Link 0.7841
 Genre Length 0.7414

PR= 0.75 R = 0.75 F-Value=0.75 Overall = 0.5

4.1.2 Evaluation on Real World and Synthetic Grammars
Hereunder, we present the results of 18 match tasks, each matching two different grammars
(including those of our running example). In 12 of the 18 match tasks, the system effectively
identified most user mappings, while disregarding some, and generating a few false ones. In
task #2, the system achieved PR=R=Overall=1 due to the high resemblance between the
grammars being matched (bib.dtd and bookstore.dtd 1). Negative Overall was obtained in 6 of
the 18 matching operations. This is due to the structural heterogeneity between the grammars
being matched, the system generating mappings which are structurally coherent (respecting
sibling order and ancestor/descendent relations) but which do not correspond to actual user
mappings (user mappings do not necessarily verifying structural integrity). Note that in cases
where Overall is negative, PR is lesser than 0.5, indicating that it would be easier for the user to
carry out the matching by hand, instead of correcting the system generated ones. In short, our

1 Available at http://www.cs.wisc.edu/niagara/ and http://www.xmlfiles.com respectively.

Extensible User-based XML Grammar Matching

system seems efficient in identifying XML grammar mappings since it yielded positive Overall
results for more than ⅔ of the experiments, while maintaining relatively high PR and R values.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 9. PR, R and Overall results

4.1.3 Improvements via User Feedback

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

PR R F-Value Overall

 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

PR R F-Value Overall

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

PR R F-Value Overall

a. Task n# 6 b. Task n# 7 c. Task n# 11

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

PR R F-Value Overall

 -0.4

-0.2

0

0.2

0.4

0.6

0.8

1

PR R F-Value Overall

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PR R F-Value Overall

d. Task n# 12 e. Task n# 15 f. Task n# 17

Fig. 10. Comparing PR, R, F-value and Overall results for matching tasks n# 6, 7, 11, 12, 15 and 17 to
evaluate the effectiveness of our approach in incorporating user feedback.

In addition to testing the raw capabilities of the system, we conducted experiments to

evaluate the effect of user feedback on matching quality. We considered the six matching tasks
where negative Overall was achieved in the initial matching phase (tasks n# 6, 7, 11, 12, 15 and
17). For each task, we carried out three runs, providing an extra user input mapping at each run.
Results in Figure 10 show that user feedback amends Precision, Recall, F-Value and Overall
levels w.r.t. the number of user input mappings: the more input mappings are provided, the
lesser the mapping ambiguities, the better the mapping quality. With respect to Overall in
particular, the system obtained positive values with three out of six tasks (tasks n# 7, 12 and
15), right after the first run. In these tasks, manually resolving one mapping has eliminated
enough ambiguity for the system to produce more than half of the correct mappings. The
Overall levels of task n# 6 were gradually amended by feedback, but obviously require more
user mappings to cross the zero barrier (i.e., PR > 0.5).

First run
1 input mapping

Initial mapping phase
Without user feedback

Second run
2 input mappings

Third run
3 input mappings

Recall Overall Precision F-Value

Match Tasks

 J. Tekli, R. Chbeir, and K. Yetongnon

4.2 Comparative Study
In order to further evaluate our method, we conducted a comparative study to assess its
effectiveness w.r.t. existing XML grammar matching methods. In short, our method is i)
dedicated to XML grammars, ii) considers all basic XML grammars characteristics, iii) while
being extensible to different matchers (which are crucial to minimizing user effort in
undertaking the match task). However, existing methods are either i) too generic (not adapted to
the structured nature of XML, e.g., [9][11]), ii) too restrictive (simplifying grammar constraints,
e.g., [19][31]) or ii) too specific (not flexible nor extensible to additional matching criterions,
[16][36]). Table 4 sums up the differences between our method and its alternatives.

Tab 4. Comparing our method to alternative solutions.

Approach
Considers
cardinality
constraints

Considers
alternativeness

constraints

Considers data-
types

Extensible to
several

Matchers

Flexible w.r.t.
mapping

cardinalities

Dedicated to
XML

grammars
Madhavan, 01 [19] (1:1, 1:n)

Melnik et al. 02 [22] (1:1)
Doan et al., 01 [11] (1:1) (DTD)
Jeong et al, 07 [14] (undefined) (XSD)

Su et al. 01 [31] (1:1) (DTD)
Do and Rahm,02 [9] (1:1)

Lee et al., 02 [16] (1:1) (DTD)
Yi et al., 04 [36] (restrictive) (restrictive) (1:1) (XSD)
Our Approach

Tab. 5. Average PR, R, F-Value and Overall values.

 PR R F-Value N# of negative Overalls

O
ur

A

pp
ro

ac
h

Without user feedback 0.6096 0.7488 0.6667 6
User feedback:

1 input mapping 0.6517 0.7703 0.7027 2

User feedback:
2 input mappings 0.6700 0.7909 0.7221 2

User feedback:
3 input mappings 0.6842 0.8048 0.7367 1

COMA 0.7205 0.5101 0.5790 2
XClust 0.5047 0.554 0.5251 7

Relaxation Labelling 0.4629 0.3030 0.3224 11

Results, in Table 5, show that our method yields average Precision levels higher than
those achieved by its predecessors, to the exception of COMA. That is due to the generic nature
of COMA (which was not originally designed for XML) considering mappings which are not
necessarily structurally coherent (i.e., they do not verify sibling order nor ancestor/descendent
relations), and which happen to correspond to user mappings. Such mappings are replaced by
structurally valid ones using our approach, but which might not be correct w.r.t. the user
(similarly to the falsely detected mappings in Table 3, which our system replaced by
structurally correct ones). On the other hand, our method consistently maintains Recall levels
higher than those of all its alternatives. In cases where higher/lower Precision/Recall levels are
obtained simultaneously, the F-Value measure is used to evaluate overall result quality. With
respect to all 18 matching tests, our method yields higher average F-Values in comparison with
COMA, XClust and Relaxation Labelling. Note that the Overall measure is non-linear in terms
of Precision and Recall. Thus, its averaging is meaningless here. Hence, we exploit Overall by
assessing the number of matching tasks with negative Overall values (i.e., where more than half
the produced mappings are incorrect). Results show that our method, in its initial (pre-
feedback) matching phase, produces 6 negatives (negative Overall with 6 matching tasks), 2
negatives after the first feedback run (with 1 user mapping for each of the 6 tasks), and only 1
negative after the third run. In comparison, COMA produced negative Overall values with 2
matching tasks, XClust produced 7, and RL produced 11 negatives respectively.

In addition, we conducted experiments to evaluate the time complexity of our method.

Results show that our approach is polynomial (quadratic) in grammar tree size, and grows
linearly w.r.t. knowledge base size (i.e., number of concepts in the reference KB) when running
the Semantic label matcher. Timing graphs and detailed results are omitted due to lack of space.

Extensible User-based XML Grammar Matching

5 Background and Related Works
The effectiveness of schema matching systems is assessed w.r.t. the amount of manual work
required to perform the matching task [10], which depends: i) the level of simplification in the
representation of the schema, and ii) the combination of various matching techniques [9].

On one hand, most approaches in the literature, [2][16][19][22][30][31][36] require
various simplifications in the grammars being matched, thus inducing adapted schema
representations upon which the matching processes are executed. In this context, XClust [16]
and Relaxation Labeling [36] seem more sophisticated than previous matching systems in
comparing XML grammars. They induce the least simplifications to the grammars being
compared. XClust only disregarding the Or operator, whereas Relaxation Relabeling considers
most XML Schema-related repeatability and alternativeness constraints but with restrictive
declarations (operator concatenations such as in root(a, b, (c|d)) are not allowed, only single
declarations such as root(a, b, c) or root(a | b | c)).

On the other hand, most methods in the literature are hybrid, [16][19][22][31][36], in that
various matching criterions (e.g., the linguistic and structural aspects of XML grammars) are
simultaneously assessed in a specific manner within a single algorithm. In contrast, few
approaches follow the alternative composite matching logic, i.e., combining the results of
several independently executed matching algorithms, thus providing more flexibility in
performing the matching as is it possible to select, add or remove different matching algorithms
following the match task at hand. LSD [11] and NNPLS [14] and based on supervised learning
techniques, and encompass each a training phase which could require substantial manual effort
prior to launching the matching process. However, Coma [9] underlines a more generic
framework for schema matching, providing various mathematical formulations (max, min, ave,
…) to combine matching results, and thus is not specifically adapted to XML grammars.

6 Conclusion
In this paper, we proposed a framework for XML grammar matching and comparison, based on
the concept of tree edit distance. To our knowledge, this is the first attempt to exploit tree edit
distance in an XML grammar matching context. Our approach aims at minimizing the amount
of manual work needed to perform the match task by i) considering all basic XML grammar
characteristics via a dedicated tree model, and ii) combining different matching criterions in a
flexible and adapted way to deal with XML. In addition, our method is flexible in producing
either 1:1 or all kinds of mapping cardinalities (1:1, 1:n, n:1 and n:n), following user
preferences and the application at hand. It also considers user input constraints and user
feedback in adjusting mapping results. We have implemented the approach and conducted
various tests to validate its efficiency, in comparison with alternative methods, and have
evaluated its time complexity.

As continuing work, we are currently investigating the extension of our method to deal
with user derived data-types. These are allowed in the XSD language [26] via dedicated data-
type restriction and extension operators (which do not exist in DTDs). In this context, dedicated
knowledge bases and user defined semantics would have to be considered to assess the
relatedness between the various data-types [12]. We also plan to investigate XML grammars
with recursive declarations. Here, it would be interesting to extend our XML grammar tree
model to a more general graph model (e.g. topic maps), and try to adapt our tree edit distance
framework accordingly. We also plan to study the effect of different matchers and criterions on
matching quality, proposing (if possible) weighting schemes that could help the user tune her
input parameters to obtain optimal results.

Acknowledgements

We are grateful to Phil Bernstein and Sabine Maßmann for providing us with their test schemas
in order to conduct our matching experiments.

 J. Tekli, R. Chbeir, and K. Yetongnon

References

[1] Bertino E., Guerrini G., Mesiti M., A Matching Algorithm for Measuring the Structural Similarity between an XML

Document and a DTD and its Applications, Elsevier Computer Science, 29 (23-46), 2004.
[2] Bille P., A Survey on Tree Edit Distance and Related Problems. Theoretical Computer Science, 337(1-3):217-239,

2005
[3] Boukottaya A. and Vanoirbeek C., Schema Matching for Transforming Structured Documents. The Int.ACM

Symposium on Document Engineering, pp. 101 - 110, 2005.
[4] Bray T., Paoli J., Sperberg-McQueen C.M., Mailer Y., Yergeau F., Extensible Markup Language (XML) 1.0 5th

Edition, W3C recommendation, November 2008, http://www.w3.org/TR/REC-xml/.
[5] Buttler D. A Short Survey of Document Structure Similarity Algorithms. In Proc. of ICOMP, pp. 3-9, 2004.
[6] Chawathe S., Rajaraman A., Garcia-Molina H., and Widom J., Change Detection in Hierarchically Structured

Information. In ACM SIGMOD Record, pp. 493-504, 1996.
[7] Cobéna G., Abiteboul S. and Marian A., Detecting Changes in XML Documents. In ICDE, pp. 41-52, 2002.
[8] Dalamagas, T., Cheng, T., Winkel, K., and Sellis, T. 2006. A methodology for clustering XML documents by

structure. Inormation Systems. 31 (3),187-228, 2006.
[9] Do H.H. and Rahm E, COMA: A System for Flexible Combination of Schema Matching Approaches. In VLDB

Conference, 610-621, 2002.
[10] Do H.H., Melnik S. and Rahm E., Comparison of Schema Matching Evaluations, In Proc. of GI-Workshop on the

Web and Databases, pp. 221-237, 2002.
[11] Doan A., Domingos P. and Halevy A.Y., Reconciling Schemas of Disparate Data Sources: A Machine Learning

Approach. In Proc. of the SIGMOD Conference, 2001.
[12] Formica A., 2008. Similarity of XML-Schema Elements: A Structural and Information content Approach. The

Computer Journal, 51(2):240-254.
[13] Hall P. and Dowling G., Approximate String Matching. Computing Surveys 12:4, pp.381-402, 1980.
[14] Jeong B., Lee D., Cho H. and Lee J., A Novel Method for Measuring Semantic Similarity for XML Schema

Matching. Expert Systems with Applications: An International Journal, 34 (3):1651-1658, 2008.
[15] Knuth, Donald, Sorting by Merging, The Art of Computer Programming. Addison-Wesley, 158-168, 1998.
[16] Lee M., Yang L., Hsu W. and Yang X., XClust: Clustering XML Schemas for Effective Integration. In Proc. of

CIKM, pp. 292-299, 2002.
[17] Leonardi E. et al., DTD-Diff: A Change Detection Algorithm for DTDs. DKE, 61 (2) 384-402, 2007.
[18] Lin D., An Information-Theoretic Definition of Similarity. In Proc. of the Int. Conf. on ML, 296-304, 1998.
[19] Madhavan J., Bernstein P. and Rahm E., Generic Schema Matching With Cupid. In VLDB, pp. 49-58, 2001.
[20] Maguitman A. G., Menczer F., Roinestad H. and Vespignani A., Algorithmic Detection of Semantic Similarity. In

Proc. of WWW, pp. 107-116, 2005.
[21] McGill M. J. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.
[22] Melnik S., Garcia-Molina H. and Rahm E., Similarity Flooding: A Versatile Graph Matching Algorithm and its

Application to Schema Matching. In Proceedings of ICDE, 2002.
[23] Miller G. WordNet: An On-Line Lexical Database. Journal of Lexicography, 1990.
[24] Miller R., Hass L. and Hermandez M.A., Schema Mapping as Query Discovery. In VLDB, pp. 77-88, 2000.
[25] Nierman A. and Jagadish H. V., Evaluating structural similarity in XML documents. In WebDB, pp. 61-66, 2002.
[26] Peterson D., Gao S., Malhotra A., Sperberg-McQueen C.M. and Thompson H.S., W3C XML Schema Definition

Language (XSD) 1.1 Part 2: Datatypes, January 2009, http://www.w3.org/TR/xmlschema11-2/.
[27] Rahm E. and Bernstein P.A., A Survey of Approaches to Automatic Schema Matching. The VLDB Journal, 10:334-

350, 2001.
[28] Schlieder T., Similarity Search in XML Data Using Cost-based Query Transformations. In Proc. of SIGMOD

WebDB, pp. 10-24, 2001.
[29] Shasha D. and Zhang K., Approximate Tree Pattern Matching. In Pattern Matching in Strings, Trees and Arrays,

Oxford Press, 1995.
[30] Su H., Kuno H. and Rundensteiner E.A., Automating the Transformation of XML Documents. In Proc. of ACM

Workshop on Web Information and Data Management, pp. 68-75, 2001.
[31] Su H., Padmanabhan S. and Lo M.L., Identification of Syntactically Similar DTD Elements for Schema Matching.

Advances in Web-Age Information Management Conf., pp. 145-159, 2001.
[32] Tekli J., Chbeir R. and Yetongnon K., A Fine-Grained XML Structural Comparison Approach. In Proc. of the ER

Conference, pp. 582–598, 2007.
[33] Tekli J., Chbeir R. and Yetongnon K., An XML Grammar Comparison Framework – Technical Report, 2008,

http://www.u-bourgogne.fr/DbConf/XMG/.
[34] Wagner J. and Fisher M., The String-to-String correction problem. Journal of ACM, 21(1):168-173, 1974.
[35] Wu Z. and Palmer M., Verb Semantics and Lexical Selection. In Proc. of the 32nd Annual Meeting of the

Associations for Computational Linguistics, pages 133–138, 1994.
[36] Yi S., Huang B. and Chan W.T., XML Application Schema Matching Using Similarity Measure and Relaxation

Labeling. Information Sciences, 169 (1-2):27-46, 2005.
[37] Zhang K. and Shasha D., Simple Fast Algorithms for the Editing Distance between Trees and Related Problems.

SIAM Journal, 18(6):1245-1262, 1989.
[38] Zhang Z., Li R., Cao S. and Zhu Y., Similarity Metric in XML Documents. Knowledge and Experience Management

Workshop, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

