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Abstract. Developing efficient techniques for comparing XML-based documents 

becomes essential in the database and information retrieval communities. Various 

algorithms for comparing hierarchically structured data, e.g. XML documents, have 

been proposed in the literature. Most of them make use of techniques for finding the 

edit distance between tree structures, XML documents being modeled as ordered 

labeled trees. Nevertheless, a thorough investigation of current approaches led us to 

identify several unaddressed structural similarities, i.e. sub-tree related similarities, 

while comparing XML documents. In this paper, we provide an improved comparison 

method to deal with such resemblances. Our approach is based on the concept of tree 

edit distance, introducing the notion of commonality between sub-trees. Experiments 

demonstrate that our approach yields better similarity results with respect to 

alternative methods, while maintaining quatratic time complexity. 

1. Introduction 

W3C’s XML (eXtensible Mark-up Language) has recently gained unparalleled importance as a 

fundamental standard for efficient data management and exchange. Information destined to be 

broadcasted over the web is henceforth represented using XML, in order to guaranty its 

interoperability. Owing to the unprecedented web exploitation of XML, XML-based 

comparison, especially for heterogeneous1 documents, becomes a central issue in the 

information retrieval and database communities, its applications ranging over version control, 

change management and data warehousing [Chawathe  et al. 1996] [Chawathe 1999] [Cobéna et 

al. 2002], XML query systems [Schlieder 2001] [Zhang et al. 2003], as well as the 

classification/clustering of XML documents gathered from the web against a set of DTDs 

declared in an XML database [Nierman and Jagadish 2002] [Bertino et al. 2004] [Dalamagas et al. 

2006]. 

A range of algorithms for comparing semi-structured data, e.g. XML-based documents, 

have been proposed in the literature. Most of these approaches make use of techniques for 

finding the edit distance between tree structures, XML documents being treated as Ordered 

Labeled Trees (OLT) [WWW Consortium]. Nonetheless, a thorough investigation of the most 

recent and efficient XML structural similarity approaches [Chawathe 1999] [Nierman and 

Jagadish 2002] [Dalamagas et al. 2006] led us to pinpoint certain cases where the 

corresponding edit distance outcome is inaccurate, as we will see in the motivating examples. 

 

                                                 
1 We note by heterogeneous XML document, one that does not conform to a given grammar (DTD/XML 

Schema), which is the case of a lot of XML documents found on the web [Nierman and Jagadish 2002]. 
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1.1. Motivation 

Consider, for example, dummy XML trees A, B and C in Figure 1. One can realize that tree A is 

structurally more similar to B, than to C, the sub-tree A1, made up of nodes b, c and d, appearing 

twice in B (B1 and B2) and only once in C (C1). Nonetheless, such (sub-tree) structural 

similarities are left unaddressed by most existing approaches, e.g. Chawathe’s method 

[Chawathe 1999] considered as a reference point for the latest tree edit distance algorithms 

[Nierman and Jagadish 2002] [Dalamagas et al. 2006]. Chawathe’s edit distance process 

[Chawathe 1999] permits applying changes to only one node at a time (using node insert, delete 

and update operations, with unit costs), thus yielding the same structural similarity value while 

comparing trees A/B and A/C. 

 Dist(A, B) = Dist(A, C) = 3, which is the cost of three consecutive insert operations 

introducing nodes b, c and d (e, f and g) in tree A transforming it into B (C). 

 Therefore, Sim(A, B) = Sim(A, C) = 0.25 where  Sim = 1 / (1+Dist). 

In theory, structural resemblances such as those between trees A/B and A/C could be 

taken into consideration by applying generalizations of Chawathe’s approach [Chawathe 1999], 

developed in [Nierman and Jagadish 2002] and [Dalamagas et al. 2006] (introducing edit 

operations allowing the insertion and deletion of whole sub-trees). Yet, our examination of the 

approaches provided in [Nierman and Jagadish 2002] [Dalamagas et al. 2006] led us to identify 

certain cases where sub-tree structural similarities are disregarded: 

 Similarity between trees A/D (sub-trees A1 and D2) in comparison with A/E. 

 Similarity between trees F/G (sub-trees F1 and G2) relatively to F/H. 

 Similarity between trees F/I (sub-tree F1 and tree I) in comparison with F/J. 

In fact, the authors of [Nierman and Jagadish 2002] make use of the contained in 

relation between trees (cf. Definition 2) so as to capture sub-tree similarities. Following 

[Nierman and Jagadish 2002], a tree A may be inserted in T only if A is already contained in the 

source tree T. Similarly, a tree A may be deleted only if A is already contained in the destination 

tree T. Therefore, the approach in [Nierman and Jagadish 2002] captures the sub-tree structural 

similarities between XML trees A/B in Figure 1, transforming A to B in a single edit operation: 

(inserting sub-tree B2 in A, B2 occurring in A as A1), whereas transforming A to C would always 

need three consecutive insert operations (inserting nodes e, f and g).  

Nonetheless, when the containment relation is not fulfilled, certain structural 

similarities are ignored. Consider, for instance, trees A and D in Figure 1. Since D2 is not 

contained in A, it is inserted via four edit operations instead of one (insert tree), while 

transforming A to D, ignoring the fact that part of D2 (sub-tree of nodes b, c, d) is identical to 

A1. Therefore, equal distances are obtained when comparing trees A/D and A/E, disregarding 

A/D’s structural resemblances. 

 Dist(A, D) = CostIns(h) + CostIns(b) + CostIns(c) + CostIns(d) +  CostIns(h) = 1 + 4 = 5 

 Dist(A, E) = CostIns(h) + CostIns(e)  + CostIns(f) + CostIns(g) + CostIns(h)  = 1 + 4 = 5 

Likewise for the D to A transformation (tree D2 will not be deleted via a single delete 

tree operation since it is not contained in the destination tree A), achieving Dist(D, A) = Dist(E, 

A) = 5. Other types of sub-tree structural similarities that are missed by [Nierman and Jagadish 

2002]’s approach (and likewise missed by [Chawathe 1999] [Dalamagas et al. 2006]) can be 

identified when comparing trees F/G and F/H, as well as F/I and F/J. The F, G, H case is 

different than its predecessor (the A, D, F case) in that the sub-trees sharing structural 

similarities (F1 and G2) occur at different depths (whereas with A/D, A1 and D2 are at the same 

depth). On the other hand, the F, I, G case differs from the previous ones since single level trees 

(I and J), which only encompass leaf nodes, are implicated in the comparison process.  
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Please note that [Dalamagas et al. 2006]’s algorithm yields the same results as 

[Nierman and Jagadish 2002]’s algorithm, in the above examples, which is why it is not 

discussed in detailed (it is as a specialized version of [Nierman and Jagadish 2002] where tree 

insertion/deletion costs are computed as the sum of the costs of inserting/deleting all individual 

nodes in the considered sub-trees). 
 

   

   
 

 

  
 

 

Figure 1. Sample XML trees. 

1.2. Contribution and Organization of the Paper 

The goal of our study here is to provide an improved XML structural similarity method for 

comparing heterogeneous XML documents. In short, we aim to build on existing approaches, 

mainly [Chawathe 1999] [Nierman and Jagadish 2002], in order to take into account the various 

sub-tree structural commonalities while comparing XML trees. The contribution of the paper 

can be summarized as follows: i) introducing the notion of structural commonality between 

sub-trees, putting forward an algorithm for its discovery, ii) introducing an efficient algorithm 

for computing tree-based edit operations costs able to consider, via the sub-tree commonality 

notion, XML sub-tree structural similarities, iii) developing a prototype to evaluate and validate 

our approach. The remainder of this paper is organized as follows. Section 2 reviews 

background in XML structural similarity. Section 3 presents preliminary definitions. In Section 

4, we develop our XML structural similarity approach. Section 5 presents experimental 

evaluation results. Conclusions and ongoing work are covered in Section 6. 

2. Related Work 

Various methods, for determining structural similarities between hierarchically structured data, 

particularly XML documents, have been proposed. Most of them derive, in one way or another, 

the dynamic programming techniques for finding edit distance between strings [Levenshtein 

1966] [Wagner and Fisher 1974] [Wong and Chandra 1976]. In essence, all these approaches 

aim at finding the cheapest sequence of edit operations that can transform one tree into another. 

Nevertheless, tree edit distance algorithms can be distinguished by the set of edit operations 

that are allowed as well as overall complexity and performance levels.  

Early approaches in [Zhang and Shasha 1989][Shasha and Zhang 1995] allow insertion, 

deletion and relabeling of nodes anywhere in the tree. Yet, they are relatively complex. For 
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instance, the approach in [Shasha and Zhang 1995] has a time complexity O(|A||B| depth(A) 

depth(B)) (|A| and |B| denote tree  cardinalities while depth(A) and depth(B) are the depths of 

the trees). [Chawathe et al. 1996] [Cobéna et al. 2002] restrict insertion and deletion operations 

to leaf nodes and add a move operator that can relocate a sub-tree, as a single edit operation, 

from one parent to another. However, corresponding algorithms do not guaranty optimal 

results. Recent work in [Chawathe 1999] restricts insertion and deletion operations to leaf 

nodes, and allows the relabeling of nodes anywhere in the tree, while disregarding the move 

operation. The overall complexity of [Chawathe 1999]’s algorithm is of O(N2). [Nierman and 

Jagadish 2002] extend the approach in [Chawathe 1999] by adding two new operations: insert 

tree and delete tree to allow insertion and deletion of whole sub-trees within in an Ordered 

Labeled Tree. [Nierman and Jagadish 2002]’s overall complexity simplifies to O(N2) despite 

being conceptually more complex than its predecessor. A specialized version of [Nierman and 

Jagadish 2002]’s algorithm is provided in [Dalamagas et al. 2006]. On the other hand, an 

original structural similarity approach is presented in [Flesca 2002]. It disregards OLTs and 

utilizes the Fast Fourier Transform to compute similarity between XML documents. Yet, the 

authors did not compare their algorithm’s optimality to existing edit distance approaches. 

Another approach, disregarding edit distance computations was introduced by [Sanz et al. 

2005]. It utilizes specific indexing structures rather than tree edit distance. Experimental results 

in [Sanz et al. 2005] show that the approach is of linear complexity. Nonetheless, the authors of 

[Sanz et al. 2005] did not compare their algorithm’s optimality to existing approaches. 

3. Basic Definitions 

Def. 1 - Ordered Labeled Tree: it is a rooted tree in which the nodes are ordered and labeled. 

We note by λ(T) the label of the root node of tree T. In the rest of this paper, the term tree 

means rooted ordered labeled tree.  

Def. 2 - Tree “Contained in” relationship: a tree A is said to be contained in a tree T if all 

nodes of A occur in T, with the same parent/child edge relationship and node order. Additional 

nodes may occur in T between nodes in the embedding of A (e.g., tree J is contained in tree E). 

Def. 3 - Sub-tree: given two trees T and T’, T’ is a sub-tree of T if all nodes of T’ occur in T, 

with the same parent/child edge relationship and node order, such as no additional nodes occur 

in the embedding of T’ (e.g., tree J in Figure 1 is a sub-tree of C, whereas J does not qualify as 

a sub-tree of E since node h occur in its embedding in E).   

Def. 4 - Ld-pair representation of a node: it is defined as the pair (l, d) where: l and d are 

respectively the node’s label and depth in the tree. We use p.l and p.d to refer to the label and 

the depth of an ld-pair node p respectively.  

 
 

 A1 = ((b, 0), (c, 1), (d, 1)) 

 B1 = ((b, 0), (c, 1), (d, 1)) 

 B2 = ((b, 0), (c, 1), (d, 1)) 

 C1 = ((b, 0), (c, 1), (d, 1)) 

 C2 = ((e, 0), (f, 1), (g, 1)) 

 

D1 = ((b, 0), (c, 1), (d, 1), (h, 1)) 

D2 = ((b, 0), (c, 1), (d, 1), (h, 1)) 

E1 = ((b, 0), (c, 1), (d, 1), (h, 1)) 

E2 = ((e, 0), (f, 1), (g, 1), (h, 1))  

F1 = ((b, 0), (c, 1), (d, 1), (e, 1)) 
 

 

G1 = ((m, 0), (b, 1), (c, 2), (d, 2), (e, 2)) 

G2 = ((b, 0), (c, 1), (d, 1), (f, 1)) 

H1 = ((m, 0), (g, 1), (h, 2), (i, 2), (j, 2)) 

H2 = ((g, 0), (h, 1), (i, 1), (j, 1)) 

 

Figure 2. Ld-pair representations of all sub-trees in XML trees A, B, C, D, E, F, G, H1 in Figure 1. 
 

Def. 5 - Ld-pair representation of a tree: the ld-pair representation of a tree is the list, in 

preorder, of the ld-pairs of its nodes (cf. Figure 2). Given a tree in ld-pair representation T = 

(t1, t2, …, tn), T[i] refers to the ith node ti of T. Consequently, T[i].l and T[i].d denote, 

respectively, the label and the depth of the ith node of T, i designating the preorder traversal 

rank of node T[i] in T. 

                                                 
1  Trees I and J only encompass leaf nodes which is why they are not considered in this example. 
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Def. 6 - Structural commonality between sub-trees: given two sub-trees A = (a1, …, am) and 

B = (b1, …, bn), the structural commonality between A and B, designated by ComSubTree(A, B), 

is a set of nodes N = {n1, …, np} such that  ni  N, ni occurs in A and B with the same label, 

depth and relative node order (in preorder traversal ranking) as in A and B. For  1 ≤ i ≤  p  ;  1 ≤ 

r ≤ m  ;  1 ≤ u ≤ n : 

(1) ni.l  = ar.l = bu.l  

(2) ni.d  = ar.d = bu.d 

(3) For any nj  N / i ≤ j,   as  A and bv  B such as: 

 nj.l = as.l = bv.l 

 nj.d = as.d = bv.d 

 r ≤ s, u ≤ v 

(4) There is no set of nodes N’ that satisfies conditions 1, 2 and 3 and is of larger cardinality 

than N.    

In other words, ComSubTree(A, B)1 identifies the set of matching nodes between sub-trees A 

and B, node matching being undertaken with respect to node label, depth and relative preorder 

ranking. Please note that in the rest of the paper, the term commonality always stands for the 

structural commonality. 

 

On the other hand, our edit distance XML structural similarity approach utilizes five 

edit operations, adopted from [Chawathe 1999] [Nierman and Jagadish 2002]: node insertion, 

node deletion and node update, as well as tree insertion and tree deletion. Nonetheless, due to 

lack of space, corresponding formal definitions are disregarded. 

4. Proposal 

Our XML structural similarity approach consists of two algorithms: i) an algorithm for 

identifying the Commonality Between two Sub-trees (CBS), ii) and an algorithm for computing 

the Tree edit distance Operations Costs (TOC), making use of CBS, its results being exploited 

via [Nierman and Jagadish 2002]’s main edit distance algorithm in order to identify the 

structural similarity between two XML documents (cf. Figure 3). 

 

Figure 3. Simplified activity diagram of our XML structural similarity approach. 

4.1. Commonality Between Sub-trees (CBS) 

In order to capture the sub-tree structural similarities unaddressed by  [Nierman and Jagadish 

2002]’s approach, we identify the need to replace the tree contained in relation making up a 

necessary condition for executing tree insertion and deletion operations in  [Nierman and 

Jagadish 2002], by introducing the notion of commonality between two sub-trees. Following 

Definition 6, the problem of finding the structural commonality between two sub-trees SbTi and 

SbTj is equivalent to finding the maximum number of matching nodes in SbTi and SbTj 

(|ComSubTree(SbTi, SbTj)|). On the other hand, the problem of finding the shortest edit distance 

                                                 
1  Our sub-tree structural commonality definition can be equally applied to whole trees (a sub-tree being 

basically a tree). However, in this study, it is mostly utilized with sub-trees.  

TOC 

CBS 

Edit Distance 
Tree T2 

Tree T1 

120 



22 Simpósio Brazileiro de Banco de Dados – SBBD 2007  

between SbTi and SbTj comes down to identifying the minimal number of edit operations that 

can transform SbTi to SbTj. Those are dual problems since identifying the shortest edit distance 

between two sub-trees (trees) underscores, in a roundabout way, their maximum number of 

matching nodes. 

Therefore, we introduce in Figure 4 an algorithm (CBS), based on the edit distance 

concept, to identify the structural commonality between sub-trees (similarly to [Myers 1986] in 

which Myers develops an edit distance based approach for computing the longest common sub-

sequence between two strings). Note that in CBS, sub-trees are treated in their ld-pair 

representations (cf. Figure 2). Using the ld-pair tree representations, sub-trees are transformed 

into modified sequences (ld-pairs), making them suitable for standard edit distance 

computations.  

Afterward, the maximum number of matching nodes between SbTi and SbTj, 

|ComSubTree(SbTi, SbTj)|, is identified with respect to the computed minimum edit distance: 

 Total number of deletions - we delete all nodes of SbTi except those having matching 

nodes in SbTj:  
Deletions

 = |SbTi| - |ComSubTree(SbTi , SbTj)|  

 Total number of insertions - we insert into SbTi all nodes of SbTj except those having 

matching nodes in SbTi:  
Insertions

 = |SbTj| - |ComSubTree(SbTi , SbTj)| 

 Following CBS, using constant unit costs (=1) for node insertion and deletion operations, 

the edit distance between sub-trees SbTi and SbTj becomes as follows: Dist[|SbTi|][|SbTj|] 

=  
Deletions


 1 + 

Insertions

   1 = |SbTi| + |SbTj| - 2 |ComSubTree(SbTi , SbTj)| 

 Therefore, 
| |+| | - [| |][| |]

| ( , )| =
2

i j i j

i j

SbT SbT Dist SbT SbT
ComSubTree SbT SbT  

 

Algorithm CBS() 
 

Input: Sub-trees SbTi and SbTj (in ld-pair representations) 

Output: |ComSubTree(SbTi, SbTj)|                  
 

Begin                                                                                                            1 

Dist [][] = new [0...|SbTi|][0…|SbTj|]                                                                                                                                                                                                                       
Dist[0][0] = 0 
                                                                                                                                               

For (n = 1 ; n ≤ |SbTi| ; n++)                                                                    5 

{ Dist[n][0] = Dist[n-1][0] + CostDel(SbTi[n]) }                                                            

For (m = 1 ; m ≤ |SbTj| ; m++)  

{ Dist[0][m] = Dist[0][m-1] + CostIns(SbTj[m]) }                                           
  

For (n = 1 ; n ≤ |SbTi| ; n++)                                                                 10 
{                                                                                                                                             

For (m = 1 ; m ≤ |SbTj| ; m++)                                                                            
{ 

Dist[n][m] = min{                                                                                                
If (SbTi[n].d = SbTj[m].d & SbTi[n].l = SbTj[m].l)                   15 

{ Dist[n-1][m-1]  }, 
Dist[n-1][m] + CostDel(SbTi[n]),        // simplified node                   

Dist[n][m-1] + CostIns(SbTj[m])        // operations syntaxes.           
                 } 

}                                                                                                       20     
}                                                                                                                                       

Return 
| |+| | - [| |][| |]

i j i j
SbT SbT Dist SbT SbT

2

        // |ComSubTree(SbTi, SbTj)|         

End                                                                                                                            25                          
 

Figure 4. Algorithm CBS for identifying the structural commonality between sub-trees. 

For instance, |ComSubTree(A1,D1)|=3 (nodes b, c, d), |ComSubTree(E2,G2)|=1 (node f). 
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4.2. Tree Edit Operations Costs (TOC) 

As stated previously, TOC is an algorithm dedicated to computing the tree edit distance 

operations costs. These costs will be exploited via [Nierman and Jagadish 2002]’s main edit 

distance approach (cf. Figure 6) providing an improved and more accurate XML structural 

similarity measure. TOC, developed in Figure 5, consists of three main steps: 

 Step 1 (lines 2-13) identifies the structural commonalities between each pair of non leaf 

sub-trees in the source and destination trees respectively (T1 and T2), assigning tree 

insert/delete operation costs accordingly. 

 Step 2 (lines 14-18) identifies the structural commonalities between each non leaf node 

sub-tree in the source tree (T1) and the destination tree (T2) as a whole, updating delete 

tree operation costs correspondingly. 

 Step 3 (lines 19-24) identifies the structural commonalities between each non leaf node 

sub-tree in the destination tree (T2) and the source tree (T1) as a whole, modifying insert 

tree operation costs accordingly. 

Note that the relevance of steps 2 and 3 becomes obvious when single level trees (trees made of 

leaf nodes) are involved in the comparison process (the F, I, J case discussed in Section 3.3). 

The insert/delete tree operations costs corresponding to leaf node sub-trees are not computed in 

TOC since such sub-trees come down to single nodes. Inserting/deleting a leaf node sub-tree is 

ultimately undertaken via simple node insertion/deletion operations which are assigned constant 

unit costs (=1). Using CBS, TOC identifies the structural commonality between each and every 

pair of sub-trees (SbTi, SbTj) in the two trees A and B being compared (step 1), as well as their 

commonalities with the whole trees A and B, respectively (steps 2 and 3).  

Consequently, those values are normalized via corresponding tree/sub-tree cardinalities 

Max(|SbTi| , |SbTj|) to be comprised between 0 and 1: 
 

 
i j

i j

(SbT , SbT )

Max(|SbT | , |SbT |)

CBS

= 0 
       When there is no structural commonality 

       between SbTi and SbTj : CBS(SbTi, SbTj) = 0. 

 
i j

i j

(SbT , SbT )

Max(|SbT | , |SbT |)

CBS

= 1 
       When the sub-trees are identical: 

       CBS(SbTi, SbTj) = |SbTi| = |SbTj| 

 

For instance, 
1 1

1 1

(A , D ) 3
0.75

Max(|A | , |D |) 4

CBS
  , 

2 2

2 2

(E , G ) 1
0.25

Max(|E | , |G |) 4

CBS
   (cf. Figure 1). 

Thus, using the normalized commonality, tree operations costs would vary as follows: 
 

Maximum insert/delete tree cost for sub-tree Sbi: Minimum insert/delete tree cost for sub-tree Sbi: 

  CostInsTree/DelTree(Sbi) = Ins/Del
All  nodes  of SbTi

 Cost ( )     1
x

x   CostInsTree/DelTree(Sbi) = Ins/Del
All  nodes of SbTi

1

2

 Cost ( )   
x 

x    

 

Following TOC, the maximal insert/delete tree operation cost for a given sub-tree SbTi (attained 

when no sub-tree structural similarities with SbTi are identified in the source/destination tree 

respectively) is the sum of the costs of inserting/deleting every individual node of Sbi. The 

minimal insert/delete tree operation cost for SbTi (attained when a sub-tree structurally 

identical to SbTi is identified in the source/destination tree respectively) is equal to half its 

corresponding insert/delete tree maximum cost. The minimal tree operation cost is defined in 
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such a way in order to guaranty that the cost of inserting/deleting a tree will never be less than 

the cost of inserting/deleting a single node (single node operations having unit costs). In fact, 

TOC is based on the intuition that tree operations are more costly than node operations.   

Proof: The smallest sub-tree that can be treated via a tree operation is a sub-tree 

consisting of two nodes. For such a tree, the minimum insert/delete tree operation cost would 

be equal to 1 (its maximum cost being equal to 2), equivalent to the cost of inserting/deleting a 

single node, which is the lowest tree operation cost attainable following TOC. 

 

Algorithm TOC() 
 

Input: Trees T1 and T2 

Output: Insert tree and delete tree operations costs 
 

Begin                                                                                                                   1 
               

For each sub-tree SbTi in T1 / |SbTi| > 1         // Excluding leaf  

{                                                                      // node sub-trees in T1. 

CostDelTree(SbTi) = 

i

 

x

x
Del

All  nodes  of SbT

Cost ( )                                                            

 

For each sub-tree SbTj in T2 / |SbTj| > 1       // Excluding leaf                       5 

{                                                                   // node sub-trees in T2. 

CostInsTree(SbTj) = 

j

 

x

x
Ins

All  nodes  of SbT

Cost ( )  

                                                                                                      

CostDelTree(SbTi) = Min{ CostDelTree(SbTi),  

                    

i ji

 i  j

 
( , )

(| | , | |)

x

x 
Del

All  nodes  of SbT

1
Cost ( )   

SbT SbT  
1 + 

Max SbT SbT

CBS

 } 

 

CostInsTree(SbTj) = Min{ CostInsTree(SbTj),                                         10 

                   

i jj

 i  j

 
( , )

(| | , | |)

x 
Ins

All  nodes of SbT

1
Cost ( )   

SbT SbT  
1 + 

Max SbT SbT

x CBS

 }     

} 
}   
 

For each sub-tree SbTi in T1 / |SbTi| > 1                 // Excluding leaf    

{                                                                            // node sub-trees in T1.      15 

CostDelTree(SbTi) = Min{ CostDelTree(SbTi), 

                    

ii

 i

 
( , )

(| | , | |)

x 

x 
Del

All  nodes of SbT 2

2

1
Cost ( )   

SbT T   
1 + 

Max SbT T

CBS

} 

} 
 

For each sub-tree SbTj in T2 / |SbTj| > 1                 // Excluding leaf                              

{                                                                             // node sub-trees in T2.     20                                                 

CostInsTree(SbTj) = Min{ CostInsTree(SbTj),  

                          

jj

 j

 
( , )

(| | , | |)

x

x 
Ins

All  nodes  of SbT 1

1

1
Cost ( )   

T SbT   
1 + 

Max T SbT

CBS

} 

} 
                                                                                                                           

End                                                                                                                    25                                                                                                                                                                                                                                                                                   

Figure 5. Tree edit distance Operations Costs algorithm. 
 

Using TOC, we compute the costs of tree insertion and deletion operations based on 

their corresponding trees’ maximum normalized commonality values (a maximum commonality 

value inducing a minimum tree operation cost). Therefore, instead of utilizing the contained in 

relation introduced in [Nierman and Jagadish 2002] (cf. Definition 2) in order to permit or deny 
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tree insertion/deletion operations (thus disregarding certain sub-tree structural similarities while 

comparing two XML trees as shown in Section 3.3), we permit the insertion and deletion of 

any/all sub-trees by varying their corresponding tree insertion/deletion operation costs with 

respect to their structural similarities with the source/destination trees/sub-trees respectively. 

Note that inserting/deleting the whole destination/source trees is not allowed in our approach. 

In fact, by rejecting such operations, one cannot delete the entire source tree in one step and 

insert the entire destination tree in a second step, which completely undermine the purpose of 

the insert/delete tree operations. 
 

 

Algorithm EditDistance() 

 

Input: Trees A and B 

Output: Edit distance between A and B 
 
Begin                                                                                                                      1 

 

M = Degree(A)                        // The number of first level sub-trees in A.                   

N = Degree(B)                             // The number of first level sub-trees in B. 
 

Dist [][] = new [0...M][0…N]                                                                                                                                                                                                                            
Dist[0][0] = CostUpd(λ(A), λ(B))                                                                          5                                                                                          
 

For (i = 1 ; i ≤ M ; i++) { Dist[i][0] = Dist[i-1][0] + CostDelTree(Ai) }                                                       

For (j = 1 ; j ≤ N ; j++) { Dist[0][j] = Dist[0][j-1] + CostInsTree(Bj) }                                     
For (i = 1 ; i ≤ M ; i++) 
 {                                                                                                                                                                                                                          

For (j = 1 ; j ≤ N ; j++)                                                                                  10 
 {                                                                                                                           

Dist[i][j] = min{                                                                                               
Dist[i-1][j-1] + EditDistance(Ai, Bj),     //Dynamic                

Dist[i-1][j] + CostDelTree(Ai),                 //programming                    

Dist[i][j-1] + CostInsTree(Bj)                                                                15 
                  }                                                                                               

   }                                                                                                                              
}                                                                                                                                                                                                                                                  
Return Dist[M][N]                                                                                         

End                                                                                                                       20                                                                                                                  

Figure 6. Edit distance algorithm [Nierman and Jagadish 2002]. 

4.3. Computation Examples 

Due to space limitations, we only detail the edit distance computations when comparing XML 

documents A, D and E. For the remaining cases, results are reported in Table 1. Recall that trees 

D and E are considered similar with respect to A following current approaches, i.e. [Chawathe 

1999] [Nierman and Jagadish 2002] [Dalamagas  et al. 2006], despite the fact that A/D share 

more structural similarities than A/E (as discussed in Section 3.3). In order to compare trees 

A/D, we start by executing algorithm TOC which yields the following insertion/deletion 

operations costs. When applied to XML trees A and D, our approach yields EditDistance(A, D) 

= 3.2856 (cf. Table 1) having: 

CostDelTree(A1) =
 

Del

1 1 1

1 1

All  nodes  of A

1
3 1.7143

(A , D ) 1+0.75
1

Max(|A | , |D |)

 
1

Cost ( ) =  = 

 + 

 
x CBS

x    
  

Likewise, CostInsTree(D1) = CostInsTree(D2)= 4  1/(1+0.75) = 2.2856 

Table 1. Computing edit distance for XML trees A and D. 

 λ(D) D1 D2 

λ(A) 0 2.2856 4.5712 

A1 1.7143 1 3.2856 
 

 

 Dist[1, 1] = 1: cost of transforming A1 to D1 (inserting node h). 
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 Dist[1, 2] = 2.2856 + Dist[1, 1] = 3.2856: inserting D2 into A. 

On the other hand, when applied to XML trees A and E, our approach yields EditDistance(A, E) 

= 5 (cf. Table 2) having: 

CostDelTree(A1) =
Del

1 1 1

1 1

All  nodes  of A

1
3 1.7143

(A , E ) 1+0.75
1 

Max(|A | , |E |)

 
1

Cost ( ) =  = 

+ 

  
x CBS

x    
  

Likewise,  CostInsTree(E1)=4  1/(1+0.75)=2.2856 and CostInsTree(E2)=4  1/(1+0)=4 

Table 2. Computing edit distance for XML trees A and E. 

 0 E1 E2 

0 0 2.2856 6.2856 

A1 1.7143 1 5 
 

 Dist[1, 1] = 1: transforming A1 into E1 (inserting node h). 

 Dist[1, 2] = 4 + Dist[1, 1] = 5: cost of inserting E2 into A. 

Therefore, our approach is able to efficiently compare XML documents A, D and E 

underlining that documents A/D are more similar than A/E (pointing out structural similarities 

that are not detected via existing approaches): 

 Sim(A/D) = 1/(1+Dist(A, D)) = 1 /(1 + 3.2836) = 0.2333 

 Sim(A/E) = 1/(1+Dist(A, E)) = 1 /(1 + 5) = 0.1667 

As for XML trees A, D and E, our approach detects the structural similarities between 

A/B (with respect to A/C), F/G (with respect to F/H), as well as between F/I (with respect to 

F/J). Results are reported in Table 3. 

Table. 3. Distance/similarity values attained using our comparison approach for the various XML 

comparison examples treated throughout the paper. 

 Our Approach 
Nierman & Jagadish. Dalamagas et al. Chawathe 

 Distance Similarity 

A/B 1.5 0.4 
Detected Not detected Not detected 

A/C 3 0.25 

A/D 3.2856 0.2333 
Not detected Not detected Not detected 

A/E 5 0.1667 

F/G 5.4106 0.1560 
Not detected Not detected Not detected 

F/H 7 0.125 

F/I 5.2856 0.1591 
Not detected Not detected Not detected 

F/J 6 0.1429 

4.4. Overall Complexity 

The overall complexity of our approach simplifies to O(|T1||T2|):  

 Our CBS algorithm for the identification of the commonality between two sub-trees is of 

complexity: O(|SbTi||SbTj|) where |SbTi| and |SbTj| denote the cardinalities of the 

compared sub-trees. 

 Our TOC algorithm for computing the costs of tree insertion/deletion operations is of 

complexity O(|T1||T2|) (encompassing CBS ’s complexity): 
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where:  

 
1T

n  and 
2T

n represent the number of leafs in T1 and T2 (the compared trees) 

 SbTi and SbTj underline sub-trees of T1 and T2 respectively. 

 
11 T

|T | - n  - 1  designates the number of sub-trees in T1 that do not consist of leaf nodes 

(similarly for 
11 T

|T | - n  - 1  and the destination tree T2). 

 The edit distance algorithm (cf. Figure 6), which utilizes the results attained by TOC (tree 

operation costs), is of complexity O(|T1||T2|). 
 

5. Experimental Evaluation 

5.1. Evaluation Metrics 

In order to validate our structural similarity approach and compare its relevance with alternative 

methods, we make use of structural clustering. In our experiments, we adopt the well known 

single link hierarchical clustering techniques [Gower and Ross 1969][Halkidi et al. 2001] 

although any form of clustering could be utilized.  

In order to evaluate clustering quality, we utilize precision and recall metrics 

introduced in [Dalamagas et al. 2006]. Having an a priori knowledge of which documents 

should be members of the appropriate cluster (mapping between original DTD clusters and the 

extracted clusters), the authors in [Dalamagas et al. 2006] define precision PR and recall R as:  

1

1 1

 + 

n

i
i

n n

i i
i i

a
PR

a b



 




 

       
1

1 1

 + 

n

i
i

n n

i i
i i

a
R

a c



 




 

  

where: 

 n is the total number of clusters in the clustering set considered 

 ai is the number of XML documents in Ci that indeed correspond to DTDi (correctly 

clustered documents). 

 bi is the number of XML documents in Ci that do not correspond to DTDi (mis-clustered 

documents).  

 ci is the number of XML documents not in Ci, although they correspond to DTDi 

(documents that should have been clustered in Ci). 

 

Nonetheless, in addition to comparing one approach’s precision improvement to another’s 

recall improvement, it is a common practice to compare F-values, F-value = 

2PRR/(PR+R). Therefore, as with traditional information retrieval evaluation, high 

precision and recall, and thus high F-value (indicating in our case excellent clustering quality) 

characterize a good similarity method.  
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5.2. Clustering XML Documents 

In each of our experiments, we compute a series of PR/R doublets, varying the clustering level 

(similarity threshold) in the [0, 1] interval. In other words, we construct a dendrogram (cf. 

Figure 7) such as: 

 For the initial clustering level s1=0 (or s1= the minimum similarity value attainable 

between any pair of documents), all XML documents appear in one global cluster, the 

starting cluster. 

 For the final clustering level sn=1 (with n the total number of levels, i.e. number of 

clustering sets in the dendrogram), each XML document will appear in a distinct cluster 

(to the exception of identical documents, which will remain in the same corresponding 

cluster). 

 Intermediate clustering sets will be identified for levels si where s1<si<sn. 

Then, we compute precision and recall values for each clustering set identified in the 

dendrogram, thus constructing their corresponding graphs that describe the system’s evolution 

throughout the clustering process. Overall average precision/recall values: Ave(PR) and Ave(R) 

(consequently Ave(F-Value)) considering the whole dendrogram, are computed on the basis of 

the attained series, providing yet another indicator of clustering quality (structure-based 

comparison quality) for the comparison method being tested. A sample dendrogram with 

detailed precision and recall computations, underlining the clustering evolution of 15 XML 

documents of the ACM SIGMOD Record1 (5 sampled from each of the OrdinaryIssuePage.dtd, 

ProceedingsPage.dtd and SigmodRecord.dtd DTD definitions), is given in Figure 7. 
 

 
 

Figure 7. Dendrogram and detailed PR/R computations when clustering (using our structural 

comparison approach) 15 XML documents sampled from the SIGMOD record.    

 

                                                 
1 Available at http://www.acm.org/sigmod/xml. 
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5.3. Experimental Results 

We conducted experiments on real and synthetic XML documents. Two sets of 600 documents 

were generated from 20 real-case1 and synthetic DTDs, using an adaptation of the IBM XML 

documents generator2. We varied the MaxRepeats parameter to determine the number of times a 

node will appear as a child of its parent node. For a real dataset, we considered the online 

version of the ACM SIGMOD Record. We experimented on a set of 104 documents 

corresponding to OrdinaryIssuePage.dtd (30 documents), ProceedingsPage.dtd (47 documents) 

and SigmodRecord.dtd (27 documents)3.  

 Precision, recall and F-value graphs are presented in Figures 8, 9 and 10. 

Corresponding Ave(PR), Ave(R) and Ave(F-value) values are reported in Table 4. 
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Figure 8. PR,R, F-Value graphs for clustering real SIGMOD Record XML documents. 
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Figure 9. PR,R, F-Value graphs for clustering XML documents of synthetic set 1 (MaxRepeats = 5). 

Table 4. Average PR, R and F-values obtained by varying the clustering level between [0, 1]. 

 SIGMOD Set 1 (MaxRepeats=5) Set 2 (MaxRepeats =10) 

 PR R F-value PR R F-value PR R F-value 

Nierman & Jagadish 0.8095 0.6429 0.7165 0.3624 0.5840 0.4474 0.3349 0.3197 0.3271 

Dalamagas et al. 0.8571 0.5667 0.6823 0.3788 0.4671 0.4184 0.3312 0.2844 0.3061 

Chawathe 0.8571 0.5667 0.6823 0.3707 0.4581 0.4098 0.3320 0.2788 0.3031 

Our approach 0.9048 0.6095 0.7253 0.3644 0.5845 0.4489 0.3359 0.3624 0.3487 

 

Results, with respect to all three data sets, indicate that our approach yields improved 

global clustering quality (i.e. structural comparison quality) in comparison with current 

alternative approaches. To further validate our approach, a set of experimental tests on more 

complex structure document corpus including macromolecular tree patterns encoded in XML 

(e.g. RNA structures) is currently ongoing. It is worth noting that our experiments will not 

                                                 
1  From http://www.xmlfiles.com and  http://www.w3schools.com 
2  http://www.alphaworks.ibm.com. 
3 We were able to find only one XML file conforming to SigmodRecord.dtd: SigmodRecord.xml. However, due to its 

relatively large size (479KB) in comparison with the XML documents corresponding to the other two DTDs 

(10KB of average size per document), we carefully decomposed SigmodRecord.xml to 27 documents, creating a set 

of XML documents conforming to SigmodRecord.dtd.  

Nierman & Jagadish Dalamagas et al. Chawathe Our App. 

Nierman & Jagadish Dalamagas et al. Chawathe Our App. 
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address the current INEX (INitiative for the Evaluation of XML Retrieval) XML corpus since 

its collections present little heterogeneity in both the tags and structures (INEX focuses mainly 

on text-rich documents). 
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Figure 10. PR,R, F-value graphs for clustering XML documents of synthetic set 2 (MaxRepeats = 10). 
 

Our experimental prototype, including implementations of our XML comparison 

method and those of [Chawathe 1999], [Nierman and Jagadish 2002] and [Dalamagas et al. 

2006] is available online for research purposes1. 

5.4. Timing Analysis 

Following the complexity analysis developed in Section 4.4, our XML structural similarity 

method is linear in the number of nodes of each tree, and polynomial (quadratic) in the size of 

the two trees being compared: O(|T1||T2|) (which simplifies to O(N2), N being the maximum 

number of nodes in trees T1 and T2). This linear dependency on the size of each tree is 

experimentally verified, timing results being presented in Figure 11. Timing experiments were 

carried out on a DELL PC with a Xeon 2.66 GHz processor (1GB RAM). 
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Figure 11. Timing results obtained using our comparison method. 

Figure 11 shows that the time to identify the structural similarity between two XML OLTs 

(Ordered Labeled Trees) of various sizes grows in an almost prefect linear fashion with tree 

size. Therefore, despite appearing theoretically more complex, timing results demonstrate that 

our method’s complexity, which simplifies to O(|T1||T2|), is the same as the approaches in 

[Chawathe 1999] [Nierman and Jagadish 2002] as well as [Dalamagas et al. 2006]. 

6. Conclusion 

In this paper, we proposed a structure based similarity approach for comparing XML 

documents. Based on a tree edit distance technique, our approach takes into account previously 

unaddressed sub-tree structural similarities in XML comparison. Our theoretical study as well 

                                                 
1  http://www.u-bourgogne.fr/Dbconf/XS2 
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as our experimental evaluation showed that our approach yields improved structural similarity 

results with respect to existing alternatives, while having the same time complexity (O(N2)).  

As continuing work, we are exploring the use of our approach in order to compare, not 

only the structure of XML documents (element/attribute labels) but also their information 

content (element/attribute values). In such a framework, XML Schemas might have to be 

integrated in the comparison process, schemas underlining element/attribute data types which 

are required to compare corresponding element/attribute values. We are also working on 

extending our approach to encompass semantic similarity assessment between element/attribute 

node labels while comparing XML documents (taking into account synonyms, antonyms, 

acronyms, etc., in the edit distance process). In addition, we plan on releasing a public web 

service version of our experimental prototype. 
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