
Semantic and Structure Based XML Similarity:  
An Integrated Approach 

 
Joe Tekli 

LE2I Laboratory CNRS 
University of Bourgogne 

21078 Dijon Cedex  
France 

joe.tekli@khali.u-bourgogne.fr

Richard Chbeir 

LE2I Laboratory CNRS 
University of Bourgogne 

21078 Dijon Cedex  
France 

richard.chbeir@u-bourgogne.fr

Kokou Yetongnon 

LE2I Laboratory CNRS 
University of Bourgogne 

21078 Dijon Cedex  
France 

kokou.yetongnon@u-bourgogne.fr

 

 
Abstract 

Since the last decade, XML has gained growing 
importance as a major means for information 
management, and has become inevitable for complex data 
representation. Due to an unprecedented increasing use of 
the XML standard, developing efficient techniques for 
comparing XML-based documents becomes crucial in 
information retrieval (IR) research. A range of algorithms 
for comparing hierarchically structured data, e.g. XML 
documents, have been proposed in the literature. 
However, to our knowledge, most of them focus 
exclusively on comparing documents based on structural 
features, overlooking the semantics involved. In this 
paper, we deal with this problem and introduce a 
combined structural/semantic XML similarity approach. 
Our method integrates IR semantic similarity assessment 
in an edit distance algorithm, seeking to amend similarity 
judgments when comparing XML-based documents. 
Different from previous works, our approach comprises of 
an original edit distance operation cost model, introducing 
semantic relatedness of XML element/attribute labels, in 
traditional edit distance computations. A discussion about 
our similarity method’s properties, chiefly symmetricity 
and triangular inequality, with respect to existing 
measures in the literature is provided here. A prototype 
has been developed to evaluate the performance of our 
approach. Experimental results were noticeable. 

 
 

1. Introduction 
In recent years, W3C’s XML (eXtensible Mark-up 
Language) has been accepted as a major means for 
efficient data management and exchange. The use of 
XML ranges over information formatting and storage, 
database information interchange, data filtering, as well as 
web services interaction. Due to the ever-increasing web 
exploitation of XML, an efficient approach to compare 
XML-based documents becomes crucial in information 
retrieval (IR). 

Notionally, an XML document should conform to a 
given grammar (DTD - Document Type Definition - or 
XML Schema), the latter defining the overall structure of 
the corresponding XML document (elements, associated 
attributes, as well as the rules to which those 
elements/attributes should obey in the XML document) 
[19]. However, XML documents published on the Web 
are often found without grammars, in particular those 
created from legacy HTML [17]. Therefore, the need to 
compare heterogeneous XML documents arises. This 
study focuses on the problem of identifying similarities 
between XML documents that lack DTDs/Schemas. 

A range of algorithms for comparing semi-structured 
data, e.g. XML documents, have been proposed in the 
literature. All of these approaches focus exclusively on 
the structure of documents, ignoring the semantics 
involved. However, in the field of information retrieval 
(IR), estimating semantic similarity between web pages is 
of key importance to improving search results [15]. The 
relevance of semantic similarity in IR research, as well as 
the unprecedented abundant use of XML-based 
documents on the web, incited us to expand XML 
structural similarity so as to take into account semantic 
relatedness while comparing XML documents.  

Submitted to COMAD 2006. 
Copyright information will be provided later.  
 
Proceedings of the 13th International Conference on 
Management of Data (COMAD) 2006 
Delhi, Dec 2006 

mailto:joe.tekli@khali.u-bourgogne.fr
mailto:richard.chbeir@u-bourgogne.fr
mailto:kokou.yetongnon@u-bourgogne.fr


In order to stress the need for semantic relatedness 
assessment in XML document comparisons, consider the 
examples in Figure 1.  
 

 

 <?XML> 
 <Academy> 
   <Department> 
     <Laboratory> 
       <Professor> </Professor> 
       <Student> </Student> 
     </Laboratory> 
   </Department> 
 </Academy> 

 

 

 <?XML> 
 <College> 
   <Department> 
    <Laboratory> 
      <Lecturer> </Lecturer> 
    </Laboratory> 
   </Department> 
 </College> 
  

 

 <?XML> 
 <Factory> 
  <Department> 
     <Laboratory> 
       <Supervisor> </Supervisor> 
     </Laboratory> 
   </Department> 
 </Factory> 
  

Sample A Sample B Sample C 

Fig. 1. Examples of XML documents 
 

Using traditional edit distance computations, the same 
structural similarity value is obtained when document A is 
compared to documents B and C (structural similarity 
computations are detailed in Section 3.1.2). However, 
despite having similar structural characteristics, one can 
obviously recognize that sample document A shares more 
semantic characteristics with document B than with C. 
Pairs Academy-College and Professor-Lecturer, from 
documents A and B, are semantically similar while 
Academy-Factory and Professor-Supervisor, from 
documents A and C, are semantically different. It is such 
semantic resemblances/differences that we aim to take 
into consideration while estimating similarity between 
XML documents. In this study, we integrate semantic 
similarity assessment in a structured XML similarity 
approach, in order to provide an improved XML 
similarity measure for comparing heterogeneous XML 
documents.  

The remainder of this paper is organized as follows. 
Section 2 briefly reviews background in both XML 
structural similarity approaches and IR semantic 
similarity methods. Section 3 develops our integrated 
semantic and structure based XML similarity approach. 
Section 4 discusses our method’s properties, mainly 
symmetricity and triangular inequality. Section 5 presents 
our prototype and experimental tests. Section 6 concludes 
the paper and outlines future research directions.  

2.   Background 

2.1   XML data model 

XML documents represent hierarchically structured 
information and can be modeled as Ordered Labeled 
Trees (OLTs) [27]. Nodes in a traditional DOM 
(Document Object Model) ordered labeled tree represent 
document elements and are labeled with corresponding 
element tag names. Element attributes mark the nodes of 
their containing elements. However, to incorporate 
attributes in their similarity computations, the authors in 
[17, 29] have considered OLTs with distinct attribute 
nodes, labeled with corresponding attribute names. 

Attribute nodes appear as children of their encompassing 
element nodes, sorted by attribute name, and appearing 
before all sub-element siblings [17]. In addition, in [17] 
and [8], both authors agree on disregarding 
element/attribute values while studying the structural 
properties of XML documents. 

2.2   XML structural similarity 

Various methods, for determining structural similarities 
between hierarchically structured data, particularly XML 
documents, have been proposed in the literature. Most of 
them derive, in one way or another, the dynamic 
programming techniques for finding edit distance between 
strings [12, 25]. In essence, all these approaches aim at 
finding the cheapest sequence of edit operations that can 
transform one tree into another. Nevertheless, tree edit 
distance algorithms can be distinguished by the set of edit 
operations that are allowed as well as overall complexity 
and performance levels.  

Early approaches [28, 23] allow insertion, deletion and 
relabeling of nodes anywhere in the tree. However, they 
are relatively greedy in complexity. For instance, the 
approach in [23] has a time complexity O(|A||B| depth(A) 
depth(B)) when finding the minimum edit distance 
between two trees A and B (|A| and |B| denote tree 
cardinalities while depth(A) and depth(B) are the depths 
of the trees). In [4, 6], the authors restrict insertion and 
deletion operations to leaf nodes and add a move operator 
that can relocate a sub-tree, as a single edit operation, 
from one parent to another. However, corresponding 
algorithms do not guaranty optimal results. Recent work 
by Chawathe [5] restricts insertion and deletion operations 
to leaf nodes, and allows the relabeling of nodes 
anywhere in the tree, while disregarding the move 
operation. The overall complexity of Chawathe’s 
algorithm is of O(N2). Nierman and Jagadish [17] extend 
the approach provided by Chawathe in [5] by adding two 
new operations: insert tree and delete tree to allow 
insertion and deletion of whole sub-trees within in an 
OLT. Their approach’s overall complexity simplifies to 
O(N2). Experimental results, given by Nierman and 
Jagadish [17], show that their algorithm outperforms that 
of Chawathe [5], which in turn yields better results than 
the algorithm presented in [23]. However, the authors in 
[17] state that their algorithm is conceptually more 
complex than its predecessor and that it requires a pre-
computation phase, relative to determining the costs of 
tree insert and delete operations, which complexity is of 
O(2N+N2).  

An original structural similarity approach is presented 
in [8]. It disregards OLTs and utilizes the Fast Fourier 
Transform to compute similarity between XML 
documents. However, the authors in [8] didn’t compare 

their algorithm’s optimality to existing edit distance 
approaches. 



2.3   Semantic similarity 

Measures of semantic similarity are of key importance in 
evaluating the effectiveness of web search mechanisms in 
finding and ranking results [15]. In the fields of Natural 
Language Processing (NLP) and Information Retrieval 
(IR), knowledge bases (thesauri, taxonomies and/or 
ontologies) provide a framework for organizing words 
(expressions) into a semantic space [10]. Therefore, 
several methods have been proposed in the literature to 
determine semantic similarity between concepts in a 
knowledge base. They can be categorized as: edge-based 
approaches and node-based approaches. 

The edge-based approach is a natural and 
straightforward way to evaluate semantic similarity in a 
knowledge base. In [18, 11], the authors estimate the 
distance between nodes corresponding to the concepts 
being compared: the shorter the path from one node to 
another, the more similar they are. Nevertheless, a widely 
known problem with the edge-based approach is that it 
often relies on the notion that links in the knowledge base 
represent uniform distances [20, 10]. In real knowledge 
bases, the distance covered by a single link can vary with 
regard to network density, node depth and information 
content of corresponding nodes [21, 10]. Jiang and 
Conrath [10] add that link distances could also vary 
according to link type.  

On the other hand, node-based approaches get round 
the problem of varying link distances. In [20], Resnick 
puts forward a central node-based method, where the 
semantic similarity between two concepts is approximated 
by the information content of their most specific common 
ancestor1.  

Resnick’s experiments [20] show that his similarity 
measure is a better predictor of human word similarity 
ratings, in comparison with a variant of the edge counting 
method [18, 11]. Resnick [20] adds that his measure is not 
sensitive to the problem of varying distances, since it 
targets the information content of concepts rather than 
their distances from one another. Improving on Resnick’s 
method [20], Lin [13] presents a formal definition of the 
intuitive notion of similarity, and derives an information 
content measure from a set of predefined assumptions 
regarding commonalities and differences2. Lin’s 
experiments [13] show that the latter information content 
measure yields higher correlation with human judgment in 
                                                 

                                                

1
 Note that the information content of a concept/class is 
approximated by estimating the probability of occurrence of 
the concept/class words in a text corpus. 

2 Following Lin [13], the commonality between tow concepts is 
underlined by the information content of their lowest common 
ancestor (identified by Resnick’s measure [20]). However, the 
difference between two concepts depends on their own 
information contents (which are overlooked by Resnick’s 
measure [20]). Lin’s measure [13] is developed subsequently. 

comparison with Resnick’s measure [20]. Furthermore, 
Lin’s measure is generalized by Maguitman et al. [15] to 
deal with ontologies of hierarchical (made by IS-A links) 
and non-hierarchical components (made by cross links of 
different types), the Lin measure (as most semantic 
similarity measures) targeting hierarchical structures 
(taxonomies). 

In recent years, there have been a few attempts to 
integrate semantic and structural similarity in the XML 
comparison process. The authors in [2, 3, 22] identify the 
need to support tag similarity (synonyms and stems3) 
instead of tag syntactic equality while comparing XML 
documents. However, the approaches in [2, 3, 22] are 
based on heuristic measures which disregard the edit 
distance computations (w.r.t. structure) and only consider 
the synonymy/stem relations (w.r.t. semantic similarity). 

In this study, we aim to combine IR semantic 
similarity (taking into account the various semantic 
relations encompassed in the taxonomy/ontology 
considered in the comparison process) and an edit 
distance structural similarity algorithm, in order to define 
a semantic/structural similarity measure for comparing 
XML documents. 

3.   Proposal 
Our approach consists of an original edit distance 
operation cost model in which semantic relatedness of 
XML element/attribute labels is introduced in traditional 
edit distance computations. In Section 3.1, we present the 
edit distance process utilized in our study. Section 3.2 
develops our integrated semantic/structure based method.  

3.1   Structural similarity 

Our investigations of the various structural similarity 
methods proposed in the literature led us to adopt 
Chawathe’s approach [5], his algorithm’s performance 
being recognized and, therefore, further specialized by 
Nierman and Jagadish [17]. In addition, Chawathe’s 
approach [5] is a direct adaptation of Wagner and Fisher’s 
algorithm [25] which optimality was accredited in a broad 
variety of computational applications [1, 26]. Note that 
integrating semantic similarity assessment in Chawathe’s 
algorithm [3] denotes a straightforward integration of 
semantic similarity in [17]’s approach, the latter being a 
strict generalization of the former. On the other hand, we 
adopt [17]’s XML data model (Chawathe [5] considering 
generic hierarchical structured data), which will be 
explicitly developed in following paragraphs. In fact, we 
are in agreement with [8, 17]’s decision to disregard 
element/attribute values while focusing on the structural 

 
3 Stems designate the morphological variants of a term: an 

acronym and its expansions, a singular term and its plural, … 



properties of XML documents adding that, in order to 
compare element/attribute values, corresponding types 
should be previously known, which requires prior 
knowledge of related XML schemas (recall that this study 
focuses on comparing XML documents lacking 
DTDs/XML Schemas). 

3.1.1   Basic definitions 
 
Definition 1 - Ordered Labeled Tree (OLT): It is a 
rooted tree in which nodes are ordered and labeled. In the 
rest of this paper, the term tree means OLT (cf. Figure 2).  
 

  

Tree A Tree B Tree C 

Fig. 2. OLTs corresponding to sample documents A, B and C 
 

The number next to a node is its preorder rank and 
serves as node identifier. Please note that there is no 
correspondence between node identifiers when given two 
trees to compare. Node correspondence can only be 
achieved through node labels, taking into account their 
positions in the trees. 
 
Definition 2 – First level Sub-tree: Given an ordered 
tree T, with a root node r of degree1 k, the first-level sub-
trees, T1, T2, …, Tk of T are the sub-trees rooted at r1, r2, 
…, rk [17]. 
 

Chawathe [5] models changes to trees using three 
basic tree edit operations: 
 
Definition 3 - Insertion: Given a node x of degree 0 (leaf 
node) and a node p in tree T with first level sub-trees p1, 
…, pm, Ins(x, i, p, λ(x)) is a node insertion operation 
applied to p at position i that yields p’ with first level sub-
trees p1, … , pi, x, pi+1, … , pm+1, x bearing λ(x) as its label. 
 
Definition 4 - Deletion: Given a leaf node x, x being the 
ith child of p, Del(x, p) is a node deletion operation 
applied to node p that yields p’ with first level sub-trees 
p1, … , pi-1, pi+1, … , pm  
 
Definition 5 - Update: Given a node x in tree T, and 
given a label l, Upd(x, l) is a node update operation 
applied to x resulting in T’ which is identical to T except 

                                                 
1 The degree of a node n underscores the number of sub-trees 

encompassed by n. 

that in T’, λ(x) = l. The update operation could be also 
formulated as follows: Upd(x, y) where y.l denotes the 
new label to be assumed by λ(x). 
 

Following [5], we presume that the root of a tree 
cannot be deleted or inserted. 
 
Definition 6 - Edit Script: An edit script ES is a 
sequence of edit operations. When applied to a tree T, the 
resulting tree T’ is obtained by applying edit operations of 
ES to T, following their order of appearance in the script. 
 

By associating costs with each edit operation, 
Chawathe [5] defines the cost of an edit script to be the 
sum of the costs of its component operations. The author 
in [5] subsequently states the problem of comparing trees: 
Given two rooted, labeled, ordered trees A and B, find a 
minimum cost edit script that transforms A to a tree that is 
isomorphic to B. Note that two trees are said to be 
isomorphic if they are identical except for node identifiers. 

3.1.2   Structural similarity algorithm 

In [5], Chawathe employed edit graphs in his edit 
distance process. However, our study of the edit distance 
algorithm literature showed that the edit graph used in [5] 
is a direct application of the famous Wagner-Fisher 
algorithm [25], updated to take into account tree 
structures (the Wagner-Fisher algorithm being originally 
designed for sequence/string comparisons). Therefore, we 
propose to develop Chawathe’s algorithm [5], using the 
Wagner-Fisher algorithm [25], and introducing 
Chawathe’s tree structure updates.  

Before proceeding, let us report the ld-pair 
representation of a tree node introduced in [5]. It is 
defined as the pair (l, d) where: l and d are respectively 
the node’s label and depth in the tree. As in [5], we use p.l 
and p.d to refer to the label and the depth of an ld-pair p 
respectively. Subsequently, the ld-pair representation of a 
tree is the list, in preorder, of the ld-pairs of its nodes (cf. 
Figure 3). In [5]’s process, trees are always treated in 
their ld-pair representations. Given a tree in ld-pair 
representation A = (a1, a2, …, an), A[i] refers to the ith 
node ai of tree A. Consequently, A[i].l and A[i].d denote, 
respectively, the label and the depth of the ith node of A. 
 

 

A = ((Academy, 0), (Department, 1), (Laboratory, 2),   
        (Professor, 3), (Student, 3)) 
B = ((College, 0), (Department, 1), (Laboratory, 2),  
        (Lecturer, 3)) 
C = ((Factory, 0), (Department, 1), (Laboratory, 2),  
        (Supervisor, 3)) 
 

 
 

Fig. 3. Ld-pair representation of XML sample trees A, B and C 
 

The edit distance algorithm, employed in this study, is 
developed in Figure 4. The ld-pair representation as well 

Factory

Laboratory

Supervisor

Department

College 

Laboratory 

Lecturer 

Department 

5 Student Professo

2 

3 

1 1 Academy 1 

2 2 Department 

3 3 Laboratory 

4 4 4 



as the added conditions make up Chawathe’s updates [5] 
to the classic edit distance approach [25]. Chawathe [5] 
succeeded in transforming trees into modified sequences 
(ld-pairs), making them suitable for standard edit 
distance computations. He subsequently added specific 
conditions so that the edit distance process could take into 
account tree structures:  

 
− Condition1 limits update operations to nodes having 

identical depths 
− Condition2 intuitively implies that, in order to delete 

an internal node, all corresponding descendent nodes 
must be first deleted  

− Condition3 implies that, a node must be inserted 
before inserting any of its descendents 

 
 

Input: Trees A and B (in ld-pair representations) 
Output: Edit distance between A and B 
 

Begin     
                                                                                                               1

Dist [][] = new [0...|A|][0…|B|]                                                                
Dist[0][0] = 0 
                                                                                                                                               
For (i = 1 ; i ≤ |A| ; i++) { Dist[i][0] = Dist[i-1][0] + CostDel(ai) }                
For (j = 1 ; j ≤ |B| ; j++) { Dist[0][j] = Dist[0][j-1] + CostIns(bi) }            5
 
For (i = 1 ; i ≤ |A| ; i++)  
{                                                                                                             

For (j = 1 ; j ≤ |B| ; j++)  
{ 

Dist[i][j] = min{                                                                   10 
If (Condition1 true) { Dist[i-1][j-1] + CostUpd(ai, bj) } 
If (Condition2 true) { Dist[i-1][j] + CostDel(ai) }                      
If (Condition3 true) { Dist[i][j-1] + CostIns(bj) }        

                                        } 
}                                                                                             15 

}  
                                                                                                              
Return Dist[|A|][|B|]      // Distance (similarity) between trees A and B 

 
End                                                                                                            
 

The Chawathe conditions: 
Condition1 { (A[i].d  =  B[j].d) }  
Condition2 { ( (A[i].d  ≥  B[j].d)  or  (j = |B|) ) } 
Condition3 { ( (A[i].d  ≤  B[j].d)  or  (i = |A|) ) } 
 

Fig. 4. Structural similarity algorithm 
 

Note that the distance value between two trees A and B 
denotes, in a roundabout way, the similarity between them 
(the smaller the distance between A and B, the more 
similar they are).  

 
 

1Sim(A, B) = 
1 + Dist(A, B)

 (1) 

 
Similarity measures based on edit (or metric) distance 

are generally computed as in (1), conforming to the 
formal definition of similarity [7]: 

 
− Sim(x, y) Є [0, 1]. 

− Sim(x, y) = 1       x = y (x and y are identical)1. 
− Sim(x, y) = 0      x and y are different and have no 

common characteristics. 
− Sim(x, x) = 1      similarity is reflexive. 
− Similarity and distance are inverse to each other. 
− Sim(x, y) = Sim(y, x)      similarity is symmetric 

(Note that symmetricity is controversially discussed 
[7] and is domain and application-oriented2). 

− Sim(x, z) ≤ (Sim(x, y) + Sim(y, z))      Triangular 
inequality (as with symmetricity, triangular inequality 
is not always true3). 

 

On the other hand, a central question in most edit 
distance approaches is how to choose operation cost 
values. An intuitive and natural way would be to assign 
identical costs to insertion and deletion operations (CostIns 
= CostDel = 1), as well as to update operations only when 
the newly assigned label is different from the node’s 
current label (CostUpd(a ,b) = 1 when a.l ≠ b.l, otherwise, 
when the labels are the same, CostUpd = 0, underlining that 
no changes are to be made to the label of node a). By 
applying the preceding intuitive cost model (ICM), the 
edit distance between XML sample trees A and B, Dist(A, 
B), would be equal to 3. It is the cost of the following edit 
script:  

 
− Upd(A[1], B[1]), Upd(A[4], B[4]), Del(A[5], A[3]) 

 

The corresponding edit distance computations are 
shown in Table 1. The minimum-cost ES contribution to 
the edit distance computation process is emphasized in 
bold format. Note that an identical edit distance result is 
attained when comparing sample documents A and C 
(Dist(A, C) = 3).  
 

Tab. 1. Computing edit distance for XML trees A and B4
 

 

 0 B[1] 
(Coll., 0) 

B[2] 
(Dept., 1) 

B[3] 
(Lab., 2) 

B[4] 
(Lect., 3) 

0 0 1 2 3 4 
A[1]  (Acd., 0) 1 1 2 3 4 
A[2] (Dept., 1) 2 2 1 2 3 
A[3] (Lab., 2) 3 3 2 1 2 
A[4] (Prof., 3) 4 4 3 2 2 
A[5] (Std., 3) 5 5 4 3 3 

As previously mentioned in our motivation paragraph, 
comparing sample documents A, B and C, via strict 

                                                 
1 This property isn’t always verified in the literature [14]. It 

depends on the chosen similarity measure. However, x = y    
Sim(x, y) = 1 is true regardless of the measure employed. 

2  Several authors have proposed asymmetric measures [9, 14]. 
3  Both symmetricity and triangular inequality will be discussed      

in Section 4. 
4 In the edit distance computational tables developed throughout 

the paper, node labels are abbreviated (i.e. prof instead of 
professor) due to paper format constraints. 



structural evaluation, yields identical similarity values, the 
semantics involved being disregarded:  

 
− Sim(A,B) = Sim(A, C) = 1/(1+3) = 0.25 
 

In order to amend precision and accuracy of XML 
similarity, we propose the use of an original cost scheme, 
integrating IR semantic relatedness in the structure-based 
similarity algorithm.  

3.2   Integrated semantic & structure based similarity 

Apparently, intuitive cost schemes (like the one used 
previously) do not affect the correctness of the structural 
similarity algorithm. However, they fail to capture the 
semantics of XML documents. In this study, we propose 
to complement Chawathe’s edit distance approach [5], 
with a cost scheme integrating semantic assessment. 

3.2.1   Semantic similarity measure 

Our investigation of the IR semantic similarity literature 
led us to consider Lin’s similarity measure [13], in our 
XML comparison process. Lin’s measure was proven 
efficient in evaluating semantic similarity. Its 
performance and theoretical basis are recognized and 
generalized by [15] to deal with hierarchical and non-
hierarchical structures. Please bear in mind that our XML 
similarity process is not sensitive, in its definition, to the 
semantic similarity measure used. However, choosing a 
performing measure would yield better similarity 
judgment.  

Following Lin [13], the semantic similarity between 
two words (expressions) can be computed as: 

 
 
 
 

0
Sem 1 2 Sem 1 2

1 2

2 log p(c )Sim (w , w ) = Sim (c , c ) = 
log p(c ) + log p(c )

 (2) 

 
− c1 and c2 are concepts, in a knowledge base of 

hierarchical structure (taxonomy), subsuming words 
w1 and w2 respectively. 

− c0 is the most specific common ancestor of concepts c1 
and c2. 

− p(c) denotes the occurrence probability of words 
corresponding to concept c. It can be computed as the 
relative frequency:  p(c) = freq(c) / N. 

 

• : sum of the number of 

occurrences, of  words subsumed by c, in a corpus. 
( )

( ) count(w)
w words c

freq c
∈

= ∑

• N: total number of words in the corpus. 
 

In information theory, the information content of a 
class or concept c is measured by the negative log 
likelihood -log p(c) [20, 15]. While comparing two 
concepts c1 and c2, Lin’s measure takes into account each 
concept’s information content (-log p(c1) + -log p(c2)), as 

well as the information content of their most specific 
common ancestor (-log p(c0)), in a way to increase with 
commonality (information content of c0) and decrease 
with difference (information content of c1 and c2) [13]. 
Lin’s measure produces values limited to the [0, 1] 
interval, and conforms to the formal definition of 
similarity [7] except for triangular inequality (which will 
be discussed in Section 4). 

3.2.2   Label semantic similarity cost 

To take into account semantic similarity in XML 
comparisons, while utilizing the edit distance algorithm, 
we propose to vary operation costs according to the 
semantics of concerned nodes. While comparing XML 
sample documents A-B and A-C for example, the 
similarity evaluation process should realize that elements 
Academy-College have higher semantic similarity than 
Academy-Factory. Likewise, Professor-Lecturer have 
higher semantic similarity than Professor-Supervisor. 
Therefore, overall similarity Sim(A, B) should be of 
greater value vis-à-vis Sim(A, C). Such semantic 
relatedness would be taken into consideration by varying 
operation costs as follows: 

 

CostSem_Upd(x, y) = 1 – SimSem(x.l, y.l) (3)

 
The more the initial and the replacing node labels (x.l 

and y.l respectively) are semantically similar, the lesser 
the update operation cost, which transitively yields a 
lesser minimum cost ES (higher similarity value). When 
labels are identical, semantic similarity is of maximum 
value, SimSem(x.l, y.l) = 1, yielding CostUpd(x, y) = 0 (no 
changes to be made). When labels are completely 
different, semantic similarity is of minimum value, 
SimSem(x.l, y.l) = 0, which brings us to CostUpd(x, y) = 1. 
Following the same logic, we consider varying insertion 
and deletion costs. 
 

CostSem_Ins(x, i, p, λ(x)) = 1 – SimSem(λ(x), p.l) (4)
 

CostSem_Del(x, p) = 1 – SimSem(x.l, p.l) (5)

 
While inserting or deleting a node from an XML 

document, we evaluate semantic relatedness between the 
inserted/deleted node’s label and the label of its ancestor 
in the document tree. The more an inserted/deleted node 
label is semantically similar to its ancestor node label, the 
lesser the insertion/deletion operation cost, which 
transitively yields a lesser cost ES (higher similarity 
value). When labels are identical or completely different, 
insertion/deletion costs would be equal to 0 or 1, 



respectively1 (as with the update operation). Such 
semantic assessments would reflect semantic relatedness 
between inserted/deleted nodes and their context, in the 
XML document, affecting overall similarity accordingly. 
Furthermore, our investigations of semantic similarity, in 
XML documents, led us to consider varying operation 
costs with respect to node depth. 

3.2.3   Node depth cost 

Node depth consideration in XML document comparison 
is not original in the literature. Zhang et al. [29] have 
already addressed the issue. Following [29], editing the 
root node of an XML tree would yield significantly 
greater change than editing a leaf node. Notionally, as one 
descends in the XML tree hierarchy, information becomes 
increasingly specific, consisting of finer and finer details, 
its affect on the whole document tree decreasing 
accordingly. For example, consider the XML sample tree 
A in Figure 2. Editing node A[1] (A[1].l = Academy) by 
changing its label to Hospital, would semantically affect 
tree A a lot more than deleting node A[4] (A[4].l = 
Professor), changing A’s whole semantic context. 
Therefore, it would be relevant to vary operation costs 
following node depths, assuming that operations near the 
root node have higher impact than operations further 
down the hierarchy. The following formula, adapted from 
[29], could be used for that matter: 
 

Depth_Op
1Cost (x) =  

(1 + x.d)
 (6) 

 

 
− Op is an insert, delete or update operation 
− x.d is the depth of the node considered for insertion, 

deletion or updating 
 

The preceding formula assigns unit cost (=1, 
maximum cost) when the root node is considered and 
yields decreasing costs when moving downward in the 
hierarchy. 

3.2.4   Semantic cost model 

In order to take into account semantic meaning while 
comparing XML documents, we propose to complement 
Chawathe’s edit distance algorithm [5], with the 
following cost model: 
 
 
 

Op Sem_Op Depth_OpCost (x, y) = Cost (x, y)  Cost (x)×  (7)

 

                                                 
1 In this study, we assume that an XML node and its ancestor 

cannot have identical labels. However, such cases this will be 
addressed in future work. 

− Op denotes an insertion, deletion or update operation 
 

The results attained by applying the semantic cost 
model to compare sample XML documents A, B and C are 
shown in tables 2 and 3. Note that semantic similarity 
values between node labels were estimated using Lin’s 
measure [13] (applied on an independently constructed 
corpus and taxonomy), and are reported in Table 4. 
 

Tab. 2. Computing edit distance, via our SCM, for XML 
sample trees A and B 

 0 B[1] 
(Coll., 0) 

B[2] 
(Dept., 1) 

B[3] 
(Lab., 2)

B[4] 
(Lect., 3)

0 0 1 1.5 1.8333 2.0833 
A[1]  (Acd., 0) 1 0.1148 0.5365 0.8205 0.9824 
A[2] (Dept, 1) 1.4217 0.5365 0.1148 0.1425 0.3413 
A[3] (Lab., 2) 1.4494 0.5642 0.1425 0.1148 0.3172 
A[4] (Prof., 3) 1.651 1.7658 0.3441 0.3164 0.163 
A[5] (Std., 3) 1.8466 1.9614 0.5397 0.512 0.3586 

 
Tab. 3. Computing edit distance, via our SCM, for XML trees 

A and C 
  0 B[1] 

(Fact., 0) 
B[2] 

(Dept., 1) 
B[3] 

(Lab., 2) 
B[4] 

(Sup., 3) 
0 0 1 1.5 1.8333 2.0833 

A[1]  (Acd., 0) 1 0.8581 1.2798 1.5638 1.7813 
A[2] (Dept., 1) 1.4217 1.2798 0.8581 0.8858 1.0894 
A[3] (Lab., 2) 1.4494 1.3075 0.8858 0.8581 1.0647 
A[4] (Prof., 3) 1.651 1.5091 1.0874 1.0597 1.0673 
A[5] (Std., 3) 1.8466 1.7047 1.283 1.2553 1.2628 

 

 

 

  
By applying our SCM, the edit distances computed 

between pairs A-B and A-C are no longer identical (in 
comparison with the intuitive cost scheme): 

 

− SCM
SCM

1Sim (A, B)  =  = 0.7361
(1 + Dist (A,B))

 having 

DistSCM(A, B) = 0.3586 

− SCM
SCM

1Sim (A, C)  =  = 0.4418
(1 + Dist (A,C))

 having 

DistSCM(A, C) = 1.2628 
 

Considering semantic relatedness, in the comparison 
process, reflects the fact that sample documents A and B 
are more similar than A and C (SimSCM(A, B) > 
SimSCM(A,C)), in spite of sharing identical structural 
similarities.  

 
Our SCM, used with a structure-based (edit distance) 

similarity algorithm, seems to capture semantic meaning 
effectively, while comparing XML documents. 

4.   Discussion 
Similarity is a fundamental concept in many fields, 

e.g. information retrieval, and is commonly used in 
multidimensional data processing and viewed as a relation 
satisfying certain properties [15]. The formal definition of 
similarity, given in [7] (cf. Section 3.1.2), identifies such 



properties which can be viewed as a concrete explanation 
of the generally abstract concept of similarity. 

 

Tab. 4. Word semantic similarities, computed following Lin’s 
measure [11] 

 

Word pairs SimLin Word pairs SimLin 
Academy College 0.8851 Department Professor 0.2083 
Academy Department 0.1566 Department Student 0.2367 
Academy Factory 0.1419 Department Supervisor 0.1857 
Academy Laboratory 0.1481 Factory Laboratory 0.1963 
Academy Lecturer 0.3521 Factory Lecturer 0.1803 
Academy Professor 0.3563 Factory Professor 0.1831 
Academy Student 0.3876 Factory Student 0.2047 
Academy Supervisor 0.1297 Factory Supervisor 0.4672 
College Department 0.1566 Laboratory Lecturer 0.1903 
College Factory 0.1419 Laboratory Professor 0.1935 
College Laboratory 0.1481 Laboratory Student 0.2177 
College Lecturer 0.3521 Laboratory Supervisor 0.1738 
College Professor 0.3563 Lecturer Professor 0.807 
College Student 0.3876 Lecturer Student 0.5028 
College Supervisor 0.1297 Lecturer Supervisor 0.1611 

Department Factory 0.2117 Professor Student 0.5114 
Department Laboratory 0.9169 Professor Supervisor 0.1633 
Department Lecturer 0.2047 Student Supervisor 0.1803 

 

Therefore, a newly introduced similarity method, such 
as the one developed in this paper, should be normally 
evaluated w.r.t to the formal definition of similarity [7] in 
order to assess its consistency with the similarity concept. 
Our combined semantic and structure based XML 
similarity approach follows the formal definition of 
similarity [7] except for symmetricity and triangular 
inequality which are debated in IR research [13, 14, 15]. 
Those two properties will be detailed below, the 
remaining similarity properties being obvious (cf. Section 
3.1.2).  

4.1   Symmetricity 

Despite combining symmetric edit distance [5] and 
semantic similarity [13] measures, our approach is 
asymmetric, that is SimSCM(A,B) ≠ SimSCM(B,A). Consider 
for example XML trees D and F in Figure 5.  

 
  

 

Tree D Tree F 
 

 

Fig. 5. XML ordered labeled trees 
 
Edit distance computations, using Section 3.1.2’s 

intuitive cost model (Chawathe’s classical approach [5]), 
yield the following values: 

 
− SimICM(D, F) = SimICM(D, F) = 0.25 having DistICM(D, 

F) = DistICM(F, D) = 3 
− Edit script(D, F) : Upd(D[1], F[1]), Del(D[2], D[1]), 

Del(D[3], D[1]) 
− Edit script(F, D) : Upd(F[1], D[1]), Ins(D[2], 1, F[1], 

Professor), Ins(D[3], 2, F[1], Student) 
 

On the other hand, when using our SCM, similarity 
values become as follows: 

 
− SimSCM(D, F) = 0.4022   >   Sim SCM(F, D) = 0.3753 

 
That is due to the varying semantic costs of 

insert/delete operations. In traditional cost models (e.g. 
the ICM considered in this paper), insert/delete operations 
are treated equally (costIns = costDel). However, 
insert/delete operation costs, in our SCM, depend on the 
semantic relatedness between the node label being 
inserted/deleted and the label of its ancestor in the 
document tree. Therefore: 

 
− CostSem_Del(D[2], D[1]) = 1 – SimSem(Professor, 

Academy) = 0.6437 
− CostSem_Ins(D[2], 1, F[1], Professor) = 1 – 

SimSem(Professor, Factory) = 0.8169  
 

Likewise for remaining insert/delete operations, which 
yield different overall ES costs (hence similarity values) 
for D/F and F/D transformations respectively. In other 
words, deleting nodes D[2] (Professor) and D[3] 
(Student) form ancestor D[1] (Academy)’s sub-tree does 
not affect, semantically, tree D as much as inserting those 
nodes in tree F, under F[1] (Factory). That is because 
labels Professor and Student are relatively more similar to 
label Academy than to Factory. Therefore, D[2] and 
D[3]’s deletions do not induce a major change in tree D’s 
meaning. However, their insertions under root node F[1] 
(Factory) introduce relatively new semantic meaning to 
tree F, since their labels are relatively dissimilar to 
Factory (cf. Table 4). 

Nevertheless, as mentioned earlier in Section 3.1.2, we 
keep in mind that symmetricity is widely discussed [7] and 
might prove to be useful, depending on the nature of the 
XML-based data being compared, as well as the scenario 
at hand. Therefore, in cases where asymmetricity is 
inadequate, a symmetric score, between XML trees D and 
F for example, can be defined as the arithmetic mean of 
the two asymmetric scores (as with the average similarity 
degree measure utilized in our experimental evaluation, 
cf. Section 5.2).  

 
 
 

(Sim(D, F) + Sim(F, D)) Ave(D, F) = 
2

 (8) 
 
 

4.2   Triangular inequality 

While triangular inequality is an axiom for metric 
distance functions, and is verified for our edit distance 
approach (SimSem(A, C) ≤ SimSem(A, B) + SimSem(B, C) 
considering sample XML documents A, B and C), and 
despite appearing to be intuitive, it is not always true.  

Factory 

Academy 

Professor Student 

1

1

2 3



Lin’s similarity measure, as well as most semantic 
similarity measures proposed in the literature [13, 15, 20], 
do not satisfy triangular inequality:  

 

Sem Sem SemSim (x, z)  (Sim (x, y) + Sim (y, z))   ≤  (9)

 
Triangular inequality does not seem to be proper for 

semantic similarity measures. An example by Tversky 
[24], reported by Maguitman [15] illustrates the 
impropriety of triangular inequality with an example 
about the similarity between countries: “Jamaica is 
similar to Cuba (because of geographical proximity); 
Cuba is similar to Russia (because of their political 
affinity); but Jamaica and Russia are not similar at all”. 
Since we take into account semantic similarity (between 
XML element/attribute tags) via Lin’s measure [13], in 
our semantic cost model SCM, our integrated 
semantic/structural approach does not transitively satisfy 
triangular inequality (in agreement with existing semantic 
similarity approaches [13, 15, 20]). 

5.   Experimental evaluation 

5.1   Prototype 

To validate our approach, we have implemented (using 
C#) a prototype, entitled “XML SS Similarity” (XS3), 
encompassing a validation component, verifying the 
integrity of XML documents, and an edit distance 
component undertaking XML similarity computations 
following the algorithm adopted in our study. In addition, 
a synthetic XML data generator was also implemented in 
order to produce sets of XML documents based on given 
DTDs. The synthetic XML generator accepts as input: a 
DTD document and a MaxRepeats1 value designating the 
maximum number of times a node will appear as child of 
its parent (when * or + options are encountered in the 
DTD). Furthermore, a taxonomic analyzer was also 
introduced so as to compute semantic similarity values 
between words (expressions) in a given taxonomy. Our 
taxonomic analyzer accepts as input a hierarchical 
taxonomy and corresponding corpus-based word 
occurrences. Consequently, concept frequencies are 
computed and, thereafter, used to compute semantic 
similarity between pairs of nodes in the knowledge base. 

5.2   Experimental results 

Various experiments were conducted in order to test the 
performance of our integrated similarity model. Real and 
generated (synthetic) XML documents as well as a 

                                                 
1 A greater MaxRepeats value underlines a greater variability 

when + and * are encountered. 

number of hierarchical taxonomies where considered. In 
the following, we present the results attained using 
synthetic XML documents (cf. Figure 6) and a WordNet2 
based hierarchical taxonomy comprising of 677 nodes.  
 

 

<!DOCTYPE DTD1 [ 
<!ELEMENT Academy (Administrative unit+)> 
      <!ELEMENT Administrative unit (Branch?)> 
            <!ELEMENT Branch (Educator?, Student+)> 
                   <!ELEMENT Educator (#PCDATA)> 
                   <!ELEMENT Student (#PCDATA)>   ]> 

 
 

<!DOCTYPE DTD2 [ 
<!ELEMENT School (Administrative unit+)> 
         <!ELEMENT Administrative unit (Section?)> 
                  <!ELEMENT Section (Educator?, Scholar*)> 
                            <!ELEMENT Educator (#PCDATA)> 
     <!ELEMENT Scholar (#PCDATA)>  ]> 

 
 

<!DOCTYPE DTD3 [ 
<!ELEMENT Government (Administrative unit+)> 
        <!ELEMENT Administrative unit (Section?)> 
            <!ELEMENT Section (Professional?, Worker+)> 
                 <!ELEMENT Professional (#PCDATA)> 
                 <!ELEMENT Worker (#PCDATA)>   ]> 

 
 

<!DOCTYPE DTD4 [ 
<!ELEMENT Student (Academic degree*, Educational institution+, 
Studies, Experience*, Perspective?)> 
    <!ELEMENT Academic degree (#PCDATA)> 
    <!ELEMENT Educational institution (#PCDATA)> 
    <!ELEMENT Studies (#PCDATA)> 
    <!ELEMENT Experience (#PCDATA)> 
    <!ELEMENT Perspective (#PCDATA)>   ]> 

 
 

<!DOCTYPE DTD5 [ 
<!ELEMENT Epistemology (Science+)> 
       <!ELEMENT Science (Scientists)> 
              <!ELEMENT Scientists (Publication?)> 
                     <!ELEMENT Publication (Document*, Book*, Encyclopedia?)> 
       <!ELEMENT Document (#PCDATA)> 
       <!ELEMENT Book (#PCDATA)> 
       <!ELEMENT Encyclopedia (#PCDATA)>    ]> 

 
 

Fig. 6. DTDs inducing sets of synthesized XML documents 
 

We evaluate our model’s efficiency by assessing 
similarity results to the a priori know DTDs (inducing 
document sets). Therefore, average inter-set and intra-set3 
similarities are depicted in a matrix where element (i, j) 
underscores the average similarity value, Sim(Si, Sj), 
corresponding to every pair of distinct documents such 
that the first belongs to the set Si (DTDi) and the second to 
the set Sj (DTDj).  

 
Note that the asymmetricity of our approach is 

reflected by the intra-set similarity values: Sim(Si, Sj) ≠  
Sim(Sj, Si) using our SCM, while symmetricity is 
preserved using the ICM (Chawathe’s classical approach 
[5]) (cf. tables 5 and 6). 

 
                                                 
2 WordNet is an online lexical reference system (taxonomy), 

developed by a group of researchers at Princeton University 
NJ USA, where nouns, verbs, adjectives and adverbs are 
organized into synonym sets, each representing a lexical 
concept [16].  

3 Intra-set similarities are computed between documents of the 
same set Si, reported as (i, i) values in the similarity matrix. 
Remaining (i, j) values correspond to intra-set similarities, 
computed between documents belonging to sets Si and Sj 



Tab. 5. Inter/intra set similarities via ICM 
 
 

 S1 S2 S3 S4 S5 
S1 0.5886 0.0951 0.0982 0.0774 0.0237 
S2 0.0951 0.1515 0.0945 0.0735 0.0234 
S3 0.0982 0.0945 0.4110 0.0732 0.0234 
S4 0.0774 0.0735 0.0732 0.4164 0.0252 
S5 0.0237 0.0234 0.0234 0.0252 0.0981 

 
Tab. 6. Inter/intra set similarities via SCM 

 
 

 S1 S2 S3 S4 S5 
S1 0.8877 0.3407 0.3240 0.2331 0.1104 
S2 0.3400 0.4392 0.3303 0.2238 0.1092 
S3 0.3410 0.3423 0.6400 0.2193 0.1035 
S4 0.1953 0.1905 0.2337 0.7701 0.0987 
S5 0.1674 0.1647 0.2046 0.1644 0.4704 

 
First of all, results show that our SCM produces higher 

similarity values, in comparison with the ICM, 
underlining similarities (of semantic nature) that were 
undetected using the latter. On the other hand, a straight 
distinction between documents belonging to a set and 
others outside that set is attained with our SCM, as with 
the ICM (comparing highlighted values, in tables 5 and 6, 
remaining values).  

 
Furthermore, our SCM captures semantic affinities 

between documents corresponding to different sets, 
inducing changes in the relative ranking between values 
belonging to the ICM matrix and those corresponding to 
the SCM matrixes. In order to reflect semantic affinities 
between XML documents of different sets, we define the 
average similarity degree between two sets of documents: 
Ave(S1, S2) as the arithmetic mean of the average intra-set 
similarity values Sim(S1, S2) and Sim(S2, S1) 
corresponding to those sets, as given in (8) (thus attaining 
a symmetric measure for comparing XML document 
sets). Consequently, we identified a higher average 
similarity degree between sets S1 and S2 (AveSCM(S1, S2) = 
0.3403, DTDs 1 and 2 revealing semantic similarities), 
using our SCM, in comparison with S1 and S3 (AveSCM(S1, 
S3) = 0.3325), the average similarity degree between S1/S2 
(AveICM(S1, S2) = 0.0951) being lesser than that of S1/S3 
(AveICM(S1, S3) = 0.0982) using the ICM (cf. Table 7, 
Figure 7). 

 
Tab. 7. Average similarity degrees between S1/S2 & S1/S3 
 
 
 

 ICM SCM 
Ave(S1, S2) 0.0951 0.3403 
Ave(S1, S3) 0.0982 0.3325 
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Fig. 7. Average similarity degrees between sets S1/S2 and S1/S3 
– graphical representation. 

5.3   Timing analysis 

The combined structural/semantic XML similarity results, 
reached using our SCM, aren’t attained without affecting 
overall time complexity. 

 
First of all, recall that Chawathe’s edit distance 

process [3], which we developed in this paper, is linear in 
the number of nodes of each tree, and polynomial 
(quadratic) in the size of the two trees being compared: 
O(|A||B|) (which can be simplified to O(N2), N being the 
maximum number of nodes in trees A and B). This linear 
dependency on the size of each tree is experimentally 
verified, timing results being presented in figures 8 and 9. 
The timing experiments were carried out on a Pentium 4 
PC (2.8 GHz CPU, 798 MHz bus, 512 MB RAM).  

 
One can see that the time to compute similarity grows 

in an almost perfect linear fashion, when using the classic 
ICM (cf. Figure 8). However, when introducing our 
SCM, it incrementally shifts towards a polynomial 
(quadratic) function, following the growing number of 
taxonomic nodes involved (cf. Figure 9). Naturally, 
Figure 9 reflects, not only the time complexity of the edit 
distance process, but also that of the taxonomic analysis 
process (SCM).  
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Fig. 8. Timing results while using the ICM 
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Fig. 9. Timing results after introducing our SCM 
 

To our knowledge, time complexity for Lin’s measure 
[13] was not conducted previously. Therefore, we 
estimated its complexity via our implementation 
components: Depth(T)2 where T is the taxonomy 
considered and Depth(T) is the maximum taxonomic 
depth. Consequently, in order to reduce our model’s 
overall complexity, we computed semantic similarity for 
each pair of nodes in the taxonomy considered (which 
took more than 7 CPU hours), stored semantic similarity 
results in a dedicated indexed table (Oracle 9i DB)1, and 
accessed that table to acquire semantic values when using 
our SCM (instead of traversing the taxonomy to compute 
semantic similarity each time it is needed). An average of 
0.25 seconds per pair-wise semantic similarity assessment 
was saved, when exploiting the 677 words WordNet-
based taxonomy, owing to that procedure (cf. Figure 9). 

6.   Conclusion and futur work 
In this paper, we proposed an integrated semantic and 
structure based XML similarity approach, taking into 
account the semantic meaning of XML element/attribute 
labels in XML document comparison. To our knowledge, 
this is the first attempt to combine edit distance structural 
similarity computations with IR semantic similarity 
assessment, in an XML (structured data) context. 
Experimental results confirmed the positive impact of 
semantic meaning on XML similarity values, and 
reflected its heavy impact regarding complexity.  

Future directions include exploiting semantic 
similarity to compare, not only the structure of XML 
documents (element/attribute labels), but also their 
information content (element/attribute values). In such a 
framework, XML Schemas seem unsurpassable, 
underlining element/attribute data types, required to 
compare corresponding element/attribute values. Our 
future goals will also incorporate studying applied 
multimedia similarity computations (MPEG7, SVG 
documents, …), taking into consideration structural, 
semantic, as well as multimedia-specific criterion (if 
                                                 
1 Oracle uses the B-Tree indexing technique 

necessary) while comparing XML-based multimedia 
documents. The semantic complexity problem will also be 
tackled in upcoming studies.  

Number of nodes in 
each taxonomy 
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