

Towards Efficient Horizontal Multimedia Database

Fragmentation using Semantic-based Predicates Implication

Fekade Getahun1, Joe Tekli2, Solomon Atnafu1, Richard Chbeir3

1 Department of Computer Science, Faculty of Informatics

Addis Ababa University, 1176 Addis Ababa, Ethiopia

2 LE2I Laboratory UMR-CNRS, University of Bourgogne

21078 Dijon Cedex France

{fekadeg, satnafu}@cs.aau.edu.et,

{joe.tekli, richard.chbeir}@u-bourgogne.fr

Abstract. Partitioning techniques are traditionally used in distributed system design

to reduce accesses to irrelevant information by grouping data frequently accessed

together in specific fragments. Here, we address the primary horizontal

fragmentation of textually annotated multimedia data. In this study, we discuss the

issue of identifying semantic implications between textual-based multimedia

predicates, as a crucial phase in the efficient partitioning of multimedia data. Our

proposal integrates knowledge bases as a framework for assessing the semantic

relatedness between predicate values and operators. We developed a prototype

implementing the various aspects of multimedia semantic predicates implications.

Experimental results show that the proposed method is polynomial in the number of

user predicates as well as the sizes of the knowledge bases being employed. Real-

world multimedia fragmentation tests are ongoing.

1. Introduction

Video and audio-on-demand, video conferencing, distance e-Learning and cartography are only

few examples of multimedia applications emerging on the web. In such a distributed

environment, many technical problems need to be solved in order to obtain a full-fledged

distributed multimedia database system. These problems concern all layers of the multimedia

system, in particular the storage and retrieval layers.

Traditionally, partitioning techniques are used in distributed system design to improve

data storage and retrieval efficiency. Three main fragmentation techniques have been defined

for relational databases: horizontal, vertical and hybrid. More recently, some researchers have

extended these techniques for partitioning object oriented databases. In essence, fragmentation

consists of dividing the database objects and/or entities into fragments, on the basis of common

queries accesses, in order to distribute them over several distant sites. The fragmentation

enhances system performance [Ezeife and Barker, 1995] by:

 Reducing the amount of irrelevant data accessed by applications, (because applications

usually access portions of entities and objects),

 Allowing parallel execution of a single query, dividing it into a set of sub-queries that

operate on segments of an entity/class,

 Reducing the quantity of data transferred when migration is required,

 Decreasing data update cost and storage space.

Several continuing studies are aimed at building distributed MultiMedia DataBase

Management Systems MMDBMS [Kosch 2004]. Nevertheless, most existing systems lack a

formal framework to provide full-fledged multimedia operations. In particular, multimedia

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

fragmentation remains a relatively complicated issue owing to the complexity of the multimedia

data itself; different multimedia data types (video, audio, image and/or text), frequently used

with various formats, as well as the integration of metadata (consisting of semantic descriptors

such as event, location, which person appears in a picture, etc., and/or low-level descriptors

such as color, texture, shape, etc.) to describe the multimedia content.

 In this paper, we address primary horizontal fragmentation (cf. Section 2) in distributed

multimedia databases. We particularly address semantic-based predicates implication required

in current fragmentation algorithms, such as Make_Partition and Com_Min [Oszu and

Valduriez 1991], [Navathe et al. 1995], [Belatreche et al. 1997], in order to partition

multimedia data efficiently. Since predicate implications are of crucial impact in traditional

fragmentation techniques, we believe that the identification of semantic implications between

multimedia predicates will improve the multimedia fragmentation process (as we will show in

the motivation section). In this study, we introduce a set of algorithms for identifying semantic

implications between predicate values, predicate operators, and consequently multimedia

semantic-based predicates. We also present our prototype with some preliminary experiments

to test and evaluate our approach. The remainder of this paper is organized as follows. Section

2 reviews background in DB fragmentation. In Section 3, we present a motivation example.

Section 4 defines the concepts to be used in our approach. In Section 5, we detail our semantic

implication algorithms and their usage in multimedia fragmentation. Section 6 presents our

prototype and timing analysis. Finally, Section 7 concludes.

2. Background and Related Work

Fragmentation techniques for distributed DB systems aim to achieve effective resource

utilization and improved performance [Chinchwadkar and Goh 1999]. This is addressed by

removing irrelevant data accessed by applications and by reducing data exchange among sites

[Baiao and Mattoso 1998]. In this section, we briefly present traditional database fragmentation

approaches, and focus on horizontal fragmentation algorithms. We also report recent

approaches targeting XML as well as multimedia data fragmentation.

In essence, there are three fundamental fragmentation strategies: Horizontal

Fragmentation (HF), Vertical Fragmentation (VF) and Mixed Fragmentation (MF). HF

underlines the partitioning of an entity/class in segments of tuples/objects verifying certain

criteria. The generated horizontal fragments have the same structure as the original entity/class

[Ozsu and Valduriez 1991]. VF breaks down the logical structure of an entity/class by

distributing its attributes/methods over vertical fragments, which would contain the same

tuples/objects with different attributes [Baiao and Mattoso 1998]. MF is a hybrid partitioning

technique where horizontal and vertical fragmentations are simultaneously applied on an

entity/class [Navathe et al. 1995].

Horizontal fragmentation is generally categorized in two types: Primary HF and

Derived HF. PHF is the partitioning of an entity based on its attributes’ values [12]. DHF

denotes the partitioning of an entity (called member) based on links with other entities (called

owners) [12]. In other words, it is the partitioning of an entity/class in terms of the PHF of

another entity/class [1] taking into consideration their inner-links. In this paper, we only focus

on PHF which is, to the best of our knowledge, has been addressed mainly by two main

algorithms: Com_Min developed in [Oszu and Valduriez 1991] and Make_Partition Graphical

Algorithm developed in [Navathe and Ra 1989] (used essentially for vertical fragmentation).

The Com_Min algorithm generates, from a set of simple predicates applied to a certain entity, a

complete and minimal set of predicates used to determine the minterm fragments corresponding

to that entity. A minterm is a conjunction of simple predicates [Belatreche et al. 1997]

associated to a fragment. Make_Partition generates minterm fragments by grouping predicates

having high affinity towards one another. The number of minterm fragments generated by

Make_Partition is relatively smaller than the number of Com_Min minterms [Navathe et al.

68

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

1997] (the number of minterms generated by Com-Min being exponential to the number of

simple predicates considered). Similarly, there are two main algorithms for the PHF of object

oriented DBMS: one developed by in [Ezeife and Barker 1995] using Com_Min [Oszu and

Valduriez 1991], and the other developed in [Bellatreche et al. 1997] on the basis of

Make_Partition [Navathe and Ra 1989]. The use of Com_Min or Make_Partition is the major

difference between them.

Recent works have addressed XML fragmentation [Sub 2001], [Gertz and Bremer

2004] due to the various XML-oriented formats available on the web. The usage of XPaths and

XML predicates forms the common basis of all these studies. Yet, XML fragmentation methods

are very specific and hardly applicable to multimedia databases.

A recent address to address multimedia database fragmentation is provided in [Saad. et

al. 2006]. The authors here discuss multimedia primary horizontal fragmentation and provide a

partitioning strategy based on the low-level features of multimedia data (e.g. color, texture,

shape, etc., represented as complex feature vectors). They particularly emphasize the

importance of multimedia predicates implications in optimizing multimedia fragments.

3. Motivation

In order to fragment multimedia databases, several issues should be studied and extended.

Multimedia queries contain new operators handling low-level and semantic features. These new

operators should be considered when studying predicates and particularly predicate

implications [Saad et al. 2006]. For example, let us consider the following predicates used to

search for videos in the movie database IMDB1.

Table 1. Semantic predicates

Predicate Attribute Operator Value

P1 Keywords = “Football”

P2 Keywords = “Tennis”

P3 Keywords = “Sport”

P4 Location = “Coliseum”

P5 Location Like % “Rome”

In current fragmentation approaches, these predicates are considered different and are

analyzed separately. Nonetheless, a multimedia query consisting of P1 and P2 would retrieve

movies belonging to the result of P3, the value/concept Sport encompassing in its semantic

meaning Football and Tennis. Thus, we can say that P1 and P2 imply P3 (P1, P2  P3).

Consequently, the fragmentation algorithm should only consider P3, eliminating P1 and P2 while

generating fragments. A similar case can also be identified with P4 and P5. The value/concept

Rome covers in its semantic meaning Coliseum. However, the operator used in P4 is not the

same as that utilized in P5, which raises the question of operator implication. Since the operator

Like % covers in its results those of the operator equal (Like % returning results that are

identical or similar to a given value, where equal returns only the results identical to a certain

value), the results of P5 would cover those returned by P4. Hence, we can deduce that P4

implies P5 (P4  P5). As a result, the fragmentation algorithm should only consider P5,

disregarding P4. Note that ignoring such implications between predicates can lead, in

multimedia applications, to higher computation costs when creating fragments, bigger

fragments which are very restrictive for multimedia storage, migration, and retrieval, as well as

data duplication on several sites [Saad et al. 2006].

In [Navathe et al. 1995], [Belatreche et al. 1997], the authors have highlighted the

importance of implication, but have not detailed the issue. As mentioned before, the authors in

[Saad et al. 2006] have only addressed implications between low-level multimedia predicates

1 Available at http://www.imdb.com/

69

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

(based on complex feature vectors). In this study, we go beyond low-level features provided in

[Saad et al. 2006] and present a complementary semantic implication approach (Figure 3).

4. Preliminaries

In the following, we define the major concepts used in our approach. We particularly detail the

notions of Knowledge Base (KB) and Neighborhood (N) which will be subsequently utilized in

identifying the implications between semantic predicates.

4.1. Basic Definitions

Definition 1 - Multimedia Object: is depicted as a set of attribute (ai) and value (vi) doublets:

O {(a1, v1), (a2, v2), … , (an, vn)}. Multimedia attributes and values can be simple (numeric or

textual fields), complex (color histogram, texture, shape, etc.) or contain raw data (BLOB files)

of multimedia objects. Note that in horizontal multimedia fragmentation, multimedia objects

constitute the basic reference units (similarly to ‘objects’ in object oriented DB partitioning and

‘tuples’ in relational DB fragmentation).

Definition 2 - Multimedia Type: allocates a set of attributes used to describe multimedia

objects corresponding to that type [Saad et al. 2006]. Two objects, described by the same

attributes, are of the same type.

Definition 3 - Multimedia Query: is written as follows [Belatreche et al. 1997], [Saad et al.

2006]: q = {(Target clause), (Range clause), (Qualification clause)}

 Target clause: contains multimedia attributes returned by the query,

 Range clause: gathers the entities (tables/classes) accessed by the query, to which

belong target clause and qualification clause attributes,

 Qualification clause: is the query restriction condition, a Boolean combination of

predicates, linked by logical connectives , ,    .

Definition 4 - Multimedia predicate: is defined as P = (A V) , where:

 A is a multimedia attribute or object,

 V is a value (or a set of values) in the domain of A,

 θ is a low-level multimedia operator (Range and KNN operators), a comparison

operator θc (=, , ≤, , ≥, ≠, like) or a set operator θs (in and θcqualifier where the

quantifiers are: any, some, all).

4.2. Knowledge Base

In the fields of Natural Language Processing (NLP) and Information Retrieval (IR), knowledge

bases (thesauri, taxonomies and/or ontologies) provide a framework for organizing entities

(words/expressions [Richardson and Smeaton 1995], [Lin 1998], generic concepts [Rodriguez

and Egenhofer 2003] [Ehrig and Sure 2004], web pages [Maguitman 2005], etc.) into a

semantic space. Subsequently, knowledge bases are utilized to compare/match the considered

entities with respect to their corresponding similarity/relevance degrees with one another. In

our approach, we employ knowledge bases as a reference for identifying semantic implications

between predicates, which is not addressed in existing approaches. As shown in the motivating

example, implication between semantic predicates relies on the implications between

corresponding values and operators. Hence, two types of knowledge bases are used here: i)

value-based: to represent the domain values commonly used in the application, and ii) operator-

based: to organize operators used with semantic-based predicates. We will also give the

semantic relations commonly used in the literature [Richardson and Smeaton 1995], [Lin 1998],

[WordNet 2005], to organize entities and concepts in a KB. We detail them below.

70

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

4.2.1. Knowledge Base

In our study, a Value Knowledge Base (VKB) is domain-oriented and comes down to a

hierarchical taxonomy with a set of concepts representing groups of words/expressions (which

we identify as value concepts), and a set of links connecting the values, representing semantic

relations1.

Figure 1. Sample value knowledge base with multiple root concepts

As in WordNet2, we consider that a VKB concept consists of a set of synonymous

words/expressions such as {car, auto, automobile}. Value concepts are connected together via

different semantic relations, which will be detailed subsequently. Formally, VKB=(Vc, E, R, f)

where:

 Vc is the set of value concepts (synonym sets as in WordNet [Miller 1990]).

 E is the set of edges connecting the value concepts, where E c cV ×V .

 R is the set of semantic relations, R = {Ω, , , , } (cf. Table 2), the synonymous

words/expressions being integrated in the value concepts.

 f is a function designating the nature of edges in E, f:E R (cf. Figure 1).

4.2.2. Operator Knowledge Base

As stated previously, operators should also be considered when studying the implication

between semantic predicates. Therefore, an operator knowledge base of four descriptors

OKB=(Oc, E, R, f) is also defined where:

 Oc is the set of operator concepts, consisting of mono-valued comparison operators θc

(=, ≠, >, <3, and like) as well as multi-valued ones θs (in and θcqualifier where the

quantifiers are: any, some, all).

 E is the set of edges connecting the operators, where E c cO ×O .

 R is the set of semantic relations, R={Ω, , , , }.

 f is a function designating the nature of edges in E, f:E R .

We designed the operator knowledge base OKB as shown in Figure 2.

In the mono-valued operator taxonomy, we can particularly observe that the pattern

matching operators Like and Not Like (considered as antonyms) make use of the parameters ‘_’

and ‘%’, to represent one and zero/multiple optional characters respectively. Hence, we

1 However, the building process of the value knowledge base is out of the scope of this paper.
2 WordNet is an online lexical reference system (taxonomy), where nouns, verbs, adjectives and adverbs are

organized into synonym sets, each representing a lexical concept [Miller 1990], [WordNet 2005].
3  and  are considered as single operators put together using the Boolean operator OR.

Car; auto;

automobile

Windshield

Sedan

Coupe

Plane; Airplane;

Aircraft

Jet Helicopter Windscreen

Europe

Paris

Eiffel Tower

Rome

Coliseum

America

New York

Statue of Liberty

Site

Vehicle

Machine

Wheel

Tire

Brake System

ABS

Value concept (Synonym Set)

Hyponym/Hypernym relations (depending on the direction)

Meronym/Holonym relations (depending on the direction)

71

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

represent this fact by a semantic IsA relation1 following these operators, i.e. Like_ Like%

and Not Like_ Not Like%. On the other hand, ‘<’ and ‘>’ implicitly denote the operator ‘≠’

(commonly represented by < >), thus are considered as sub-operators of this later.

Multi-valued operator taxonomy Mono-valued operator taxonomy

Figure 2. Our proposed operator knowledge base

In the multi-valued operator taxonomy, the any and some quantifiers are considered as

synonyms, as well as the operators ≠All and Not In, and =Any (or Some) and In. The >All and

<All operators are considered as sub-operators of ≠All (like mono-valued operators) and thus

are linked to this later using IsA relations. In addition, the >All and >Any operators are linked

together because if the condition is valid for all comparison values, it must be for any value

inside the comparison set. Likewise for <All and <Any, and ≠All and ≠Any.

4.3. Semantic Relations
Hereunder, we develop the most popular semantic relations employed in the literature, which

are included in the WordNet knowledge base [30, 31, 32]:

 Synonym (≡): Two words/expressions (likewise for operators) are synonymous if they are

semantically identical, that is if the substitution of one for the other does not change the

initial semantic meaning.

 Antonym (Ω): The antonym of an expression is its negation.

 Hyponym (): It can also be identified as the subordination relation, and is generally

known as the Is Kind of relation or simply IsA.

 Hypernym (): It can also be identified as the super-ordination relation, and is generally

known as the Has Kind of relation or simply HasA.

 Meronym (): It can also be identified as the part-whole relation, and is generally

known as PartOf (also MemberOf, SubstanceOf, ComponentOf, etc.).

 Holonym (): It is basically the inverse of Meronym, and is generally identified as

HasPart (also HasMember, HasSubstance, HasComponent, etc.).

Table 2 reviews the most frequently used semantic relations along with their properties

[Richardson and Smeaton 1995] [Lin 1998], [WordNet 2005]. Note that the transitivity

property is not only limited to semantic relations of the same type and could also exist between

heterogeneous relations. For example:

 Brake system car and car ≡ automobile transitively infer Brake system automobile.

 ABS Brake system and Brake system car transitively infer ABS car (Figure 1).

1 Relations will be detailed in the next subsection.

Like %

Like _

=; Like

Not Like %

Not Like _

≠; Not Like

> <

≠ Any; ≠ Some

≠ All; Not In

>All < All

=Any; =Some; In

< Any; < Some >Any; >Some

Operator concept (Synonymous operators)

Hyponym/Hypernym relations (depending on the direction)

Meronym/Holonym relations (depending on the direction)

Antonym relation

72

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

Formally, let Ci, Cj and Ck be three concepts connected via semantic relations Rij and Rjk

in a given KB. Table 3 details the transitivity properties for all semantic relations defined in the

previous subsections, identifying the resulting relation Rik transitively connecting concepts Ci

and Ck. The relevance of identifying transitivity between different semantic relations will be

demonstrated when defining the neighborhood of a concept, subsequently recognizing the

concept implications.

 Table 2. Semantic relations Table 3. Transitivity between relations

 Property

Relation
Symbo

l
Reflexive Symmetric

Transitiv

e

 Rj k

 Ri j
≡ Ω

Synonym
≡   

 ≡ ≡ Ω

Antonym Ω    Ω Ω ≡ Ω Ω  

Hyponym    Ω  

Hypernym
   

 Ω  

Meronym
   



  

Holonym
   



 



4.4. Neighborhood

In our approach, the neighborhood notion is used to compute the implication between values,

operators, and consequently predicates. The implication neighborhood of a concept Ci is

defined as the set of concepts {Cj}, in a given knowledge base KB, related with Ci via the

synonym (≡), hyponym () and meronym () semantic relations, directly or via transitivity. It

is formally defined as:

   / , ,()
R

j i jKB i C C R C and RN C   (1)

When applying the neighborhood concept to some value concepts in Figure 1, we

obtain the following implication neighborhood examples:

 , ,() { }
KBV car car auto automobileN




 , () { }
KBV ABS ABS brake systemN 

 , , ,() { }
KBV tire tire wheel vehicle machineN  (transitivity between and)

Moreover, we define the global implication neighborhood of a concept to be the union

of each implication neighborhood with respect to the synonym (≡), hyponym () and meronym

() semantic relations:

 , ,() () /
KB KB

R

i iN C N C R   (2)

Note hereunder the corresponding global neighborhoods of the same examples:

 , , , ,() () () () = { }
KB KB KB KBV V V V car auto automobile vehicule machineN car N car N car N car




 , , , ,() { , , }
KBV ABS ABS brake system car auto automobile vehicle machineN 

Similarly, the implication neighborhood can be applied to operator concepts:

 The global neighborhood of the Like operator: , _, %() { , }
KBO Like Like Like LikeN   .

 The global neighborhood of ≠All: , , ,() { }
KBO All All Not In Any SomeN     .

73

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

 The global implication neighborhood of >All:

, , , , ,() { , }
KBO All All Any Some All Not In Any SomeN        .

5. Semantic Implication Between Predicates

Finding implication between predicates is crucial to cutback the number of predicates involved

in the fragmentation process [Navathe et al. 1995], [Belatreche et al. 1997] (a large number of

unnecessary fragments would notionally achieve low system performance especially when

using multimedia data). When a predicate Pi implies a predicate Pj (denoted by Pi  Pj), Pi can

be removed from the minterm fragment to which it belongs and can be replaced by Pj. In the

following, we detail the rules that can be used to determine implication between semantic

predicates. As mentioned earlier, the semantic implication between two predicates depends on

the implications between their corresponding values and operators. Therefore, we develop

value and operator implications before introducing our predicate implication algorithm. Our

Semantic Implication Algorithm (SPI) is complementary to that developed in [Saad et al. 2006]

and thus could be coupled with its overall process (cf. Figure 3) in order to enable relevant

multimedia fragmentation. Due to the space limitation, value and operator neighborhood

computation will not be detailed here since the main definitions have been already covered.

Multimedia_fragmentation_pre-processing () // Developed in [Saad et al. 2006] to the exception

 // of semantic implication.
Begin

Multimedia_Types_Classification() //Classifying multimedia objects according to their types
For each multimedia Type

Predicates_Grouping() //Grouping low-level and semantic predicates together

Multimedia_Predicates_implication() // Low-level predicates implications

Semantic_Predicates_Implication() // Contribution of our study.
End For

End

Figure 3. Multimedia fragmentation pre-processing phase introduced in [Saad et al. 2006], to be executed
prior to applying the classic fragmentation algorithms [Ozsu and Valduriez 1991], [Navathe et al. 1995]

5.1. Value Implication

A value Vi implies Vj if the corresponding value concepts Vci and Vcj are such as the global

neighborhood of Vci includes that of Vcj in the used value knowledge base:

 () ()
KB KBi j V j V iV V If N Vc N Vc  (3)

Note that when Vi and Vj are synonyms, that is when Vci and Vcj designate the same

value concept (e.g. car and automobile), implication exists in both directions: Vi  Vj and Vj

 Vi. Known as equivalence implication, it is designated as Vi  Vj.

 , i.e. and are the same () ()
KB KBi j V i V j i jc c c cV V If N V N V V V  (4)

Our Value_Implication algorithm is developed in Figure 4. The algorithm returns

values comprised in {0, -1, 1, 2} where:

 ‘0’ denotes the implication absence between the compared values,

 ‘-1’ designates that value Vj implies Vi,

 ‘1’ designates that value Vi implies Vj,

 ‘2’ designates that values Vi and Vj are equivalent.

A special case of value implication to be considered is when sets of values are utilized

in multimedia predicates. This occurs when set operators come to play (e.g. Keywords = ANY

{“Eiffel Tower”, “Coliseum”} and Keywords = ANY {“Paris”, “Rome”}). The algorithm for

determining the implication between two sets of values is developed in Figure 6. It considers

74

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

each set of values in isolation and, for each value in the set, computes the neighborhood of the

value. Subsequently, it identifies the union of all the neighborhoods of values for the current set

(cf. Figure 6, lines 1-7), and compares the ‘unioned’ neighborhoods of the two sets being

treated so as to determine the implication (cf. Figure 6, lines 8-17). In other words, when

comparing sets VS1 and VS2:

 If |VS1| < |VS2| and all values of VS2 imply (or are equivalent to) those of VS1, then the

set VS2 implies VS1 (i.e. the neighborhood of VS2 includes that of VS1).

 If |VS1| > |VS2| and all values of VS1 imply (or are equivalent to) those of VS2, then the

set VS1 implies VS2 (i.e. the neighborhood of VS1 includes that of VS2).

 Otherwise if |VS1| = |VS2|, then:

 VS1 is equivalent to VS2 when all values of VS1 are equivalent to those of VS2

(i.e. the neighborhoods of VS1 and VS2 are identical).

 VS1 implies VS2 when all values of VS1 imply those of VS2, i.e. the neighborhood

of VS1 encompasses that of VS2:)() (
KB KBV 2 V 1N VS N VS

 VS2 implies VS1 when all values of VS2 imply those of VS1, i.e.

)() (
KB KBV 1 V 2N VS N VS

 Otherwise, there is no implication between VS1 and VS2.

For example, applying Value Set implication to sets VS1 = {“Eiffel Tower”,

“Coliseum”} and VS2 = {“Paris”, “Rome”} yields VS1  VS2 having:

 |VS1| = |VS2|

 Values of VS1 imply those of VS2: Eiffel Tower Paris and Coliseum Rome (Figure 1).

5.2. Operator Implication

Similarly to values, the general implication concept remains unchanged with operators. An

operator θi implies θj (θi θj) if the corresponding operator concepts Oci and Ocj are such as the

global neighborhood of θi includes that of θj, following the operator knowledge base defined in

Section 4.1.2. We formally write it as:

 () ()
KB KBi j O j ic cIf N O N O   (5)

Similarly to value implication, when θi and θj are synonyms (e.g. =any and =some

following θKB), equivalence implication exists in both directions:

i.e. and are the same () () ,
KB KBi j O i O j i jc c c cIf N O N O O O   (6)

The Operator_Implication algorithm is developed in Figure 5. It returns values

comprised in {0, -1, 1, 2}:

 ‘0’ denoting the lack of implication between the operators’ values,

 ‘-1’ designating that operator θj implies θi,

 ‘1’ designating that operator θi implies θj,

 ‘2’ when operators θi and θj are equivalent

5.3. Predicate Implication

 and

P P and

 and

i j i j

i j i j i j

i j i j

θ θ V V , or

if θ θ V V , or

θ θ V V

 

  

 

 
 
 
 
 

(7)

75

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

Let Pi = Ai θi Vi and Pj = Aj θj Vj be two predicates employing comparison or set

operators. The implication between Pi and Pj, denoted as Pi  Pi, occurs if the operator and

value (set of values) of Pi (θi and Vi) respectively imply those of Pj (θj and Vj), or the value (set

of values) part of Pi (Vi) implies that of Pj (Vj) when having equivalent operators.

When both pairs of values (sets of values) and operators are equivalent, the

corresponding predicates are equivalent as well:

P P and
i j i j i j

if θ θ V V     (8)

Value Implication:

Input: Vi , Vj , VKB // VKB is the reference value KB.

Output: {0, -1, 1, 2} // A numerical value indicating

 // if Vi  Vj (0), Vj  Vi (-1) ,

 // if Vi  Vj (1) or if Vi  Vj (2)

Begin 1

If (() ()
V i V j

KB KB
N Nc cV V)

Return 2 // synonyms, Vi  Vj

Else If () ()
V j V i

KB KB
N Nc cV V

Return 1 // Vi  Vj 5

Else If () ()
V i V j

KB KB
N Nc cV V

Return -1 // Vj  Vi

Else
Return 0 // There is no implication

End If // between Vi and Vj, Vi  Vj 10

End

Value Set Implication:

Input: VS1, VS2, VKB // value sets to be compared w.r.t. VKB

Output: {0, -1, 1, 2} // A numerical value indicating

 // if VS1  VS2 (0), if VS2  VS1 (-1)

 // if VS1  VS2 (1) or if VS1  VS2 (2)

Begin 1

 For each value Vi in VS1 // Neighborhood of VS1

 () = () ()
V V V

KB KB KB
N N N

1 1 i
VS VS Vc

 End for

 For each value Vj in VS2 // Neighborhood of VS2 5

 () = () ()
V V V

KB KB KB
N N N

2 2 j
VS VS Vc

 End For

If () ()
V 1 V 2

KB KB
N NVS VS

Return 2 // VS1  VS2

Else If () ()
V 2 V 1

KB KB
N NVS VS 10

Return 1 // VS1  VS2

Else If () ()
V 1 V 2

KB KB
N NVS VS

Return -1 // VS2  VS1

Else

Return 0 // There’s no implication 15

End If // between VS1 and VS2, VS1  VS2

End

Figure 4. Identifying semantic implications

between textual values

Operator Implication:

Input: θi , θj , OKB // OKB is the reference operator KB

Output: {0, -1, 1, 2} // A numerical value indicating

 // if θi  θj (0), if θj  θi (-1)

 // if θi  θj (1), or if θi  θj (2)

Begin 1

 If(() ()
O i O j

KB KB
cO OcN N)

Return 2 // synonyms, θi  θj

Else If () ()
O j O i

KB KB
c cO ON N

Return 1 // θi  θj 5

Else If () ()
O i O j

KB KB
c cO ON N

Return -1 // θj  θi

Else
Return 0 // There is no implication between

 End If // θi and θj, θi  θj 10

End

Figure.6 Value sets implication algorithm

Figure 5. Identifying implications between

operators

76

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

Our Semantic Predicate Implication (SPI) algorithm, developed in Figure 7, utilizes the

preceding rules to generate the semantic predicate Implications Set (IS) for a given multimedia

type. The implications are designated as doublets (PiPj). Note that in SPI, the input

parameters of Value_Implication and Value_Set_Implication between brackets, i.e. Vi and Vi+1,

designate single values and set values respectively following the considered predicate (cf.

Definition 4).

Semantic Predicate Implication (SPI):

Input: P , VKB, OKB // P is the set of predicates utilizing semantic operators,

 // applied on a given multimedia type to be fragmented.

Output: IS // Set of semantic predicate implications.

Variables: Implication Operator , ImplicationValue

Begin 1

For each Pi in P

For each Pi+1 in P

ImplicationOperator = Operator_Implication(θi , θi+1, OKB)

If (θi , θi+1 ε { θc any, θc some, θc all, In} // Set operators 5

ImplicationValue = Value_Set_Implication (Vi , Vi+1, VKB)
Else // Mono-valued operators

ImplicationValue = Value_Implication(Vi , Vi+1, VKB)
End If

 If (ImplicationOperator == 2) // θi  θi+1 10

If (ImplicationValue == 2) // Vi  Vj

IS = IS (Pi  Pj)

Else If (ImplicationValue == 1) // Vi  Vj

IS = IS (Pi  Pj)

Else If (ImplicationValue == -1) // Vj  Vi 15

IS = IS (Pj  Pi)

End If

Else If (ImplicationOperator == 1) // θi  θj

If(ImplicationValue == 2 or ImplicationValue == 1) // θi  θj

IS = IS (Pi  Pj) 20

End If

 Else If (ImplicationOperator == -1) // θj  θi

 If (ImplicationValue == 2 or ImplicationValue == -1) // Vj  Vi

IS = IS (Pj  Pi)

EndIf 25
End If

End For
End For

End

Figure 7. Algorithm SPI for identifying the semantic implications between predicates

5.4. Algorithm Complexity

The computational complexity of our Semantic Predicate Implication (SPI) is estimated on the

basis of the worst case scenario. Suppose nc represents the number of concepts in the concept

knowledge base considered, d the maximum depth in the concept knowledge base considered,

npv the number of user predicates with single values, npvs the number of predicates with value

sets, and nv the maximum number of values contained in a value set. SPI algorithm is of time

complexity O(npv
2
 nc d+ npvs

2
 nv nc d) since:

 The neighborhood of a concept is generated in O(nc  d) time, which comes down to

the complexity of algorithm Value_Implication.

77

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

 The neighborhood of an operator is generated in constant time: O(1), which comes

down to the time complexity of algorithm Operator_Implication. Therefore, identifying

implications for predicates with simple values is of time complexity O(npv
2
 nc d).

 The Value_Set_Implication algorithm is of complexity O(nv nc d)

Subsequently, identifying semantic implications for predicates with value sets is of time

complexity O(npvs
2
 nv nc d).

6. Implementation and Experimental Tests

6.1. Prototype

To validate our approach, we have implemented a C# prototype entitled “Multimedia Semantic

Implication Identifier” (MSI2) encompassing:

 A relational database, storing multimedia objects via Oracle 9i DBMS,

 Relational tables for storing the reference value knowledge base VKB and the operator

knowledge base OKB. Note that OKB is constant (cf. Figure 2),

 An interface allowing users to formulate multimedia queries.

In Figure 8, we show how the prototype accepts a set of input multimedia queries. Automatic

processes subsequently calculate query access frequencies, identify corresponding predicates,

and compute for each multimedia type (cf. Definition 2) its Predicate Usage Matrix (PUM) and

its Predicate Affinity Matrix (PAM), introduced in [Navathe et al. 1995], [Belatreche et al.

1997] (cf. Figure 8). The PAM is used to underline the affinity between predicates, implication

being a special kind of affinity [Navathe et al. 1995], [Belatreche et al. 1997]. The PUM and

PAM make up the inputs to the primary horizontal partitioning algorithm: Make_Partition

[Navathe et al. 1995] or Com_Min [Ozsu and Valduriez 1991].

6.2 Simulation Example

Among the various experiments conducted, we present here a simple simulation example

comparing predicate affinities (PAM) obtained with the inclusion of our multimedia semantic

implication rules, and analyzing the corresponding fragments. In the following example,

multimedia type “Video”, designating movies (i.e. audio-visual data), is selected for PUM and

PAM calculations. In this experiment, a 100 node knowledge base, extracted from WordNet

provided the reference for predicate value implications (part of the knowledge base is depicted

in Figure 1). Let Q = {Qi = 0 to 5} be a set of user queries searching for video objects and P = {Pi =

0 to 11} be the set of predicates used by Q (Figure 8). Given the PUM, the PAM attained after

applying our semantic implication algorithms in shown in Figure 8. Note that the traditional

PAM matrix will lack our semantic implications, identified here by implication signs, and only

contains null affinities instead (it is omitted due to the lack of space).

Recall that following [Navathe et al. 1995] [Belatreche et al. 1997], the PAM is a

square and symmetric matrix where each value aff(Pi, Pj) can be numerical or non numerical.

Numerical affinity represents the sum of the frequencies of queries which access

simultaneously Pi and Pj. Non numerical affinity1 underlines the implication relation between

predicates Pi and Pj. Note that “numerical” predicates, yielding traditional implications (for

example P1: x < 2  P2: x < 4), were excluded for the sake of simplicity and clearness. Hence,

the traditional PAM should be restricted to numerical affinities whereas the updated PAM

should reflect both numerical and non numerical (semantic implication) affinities:

 Predicates P5 (Event = "Football match") and P7 (Event = "Hokey match") imply P0 (Event =

"Sport game").

1 Non numerical affinity can also designate the “close” usage of two predicates Pi and Pj, in that both Pi and Pj are

used jointly with a predicate Pl [15]. Nonetheless, we disregard this kind of affinity for the sake of clearness.

78

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

 P1 (Location = "Rome"), P10 (Location = "Paris") and P12 (Location = "Champs Elysees") imply P6

(Location like "%Europe") having:

 =  like % (cf. Figure 2).

 Rome, Paris, Champs Elysees  Europe.

 Predicate P12 (Location = "Champs Elysees") implies P10 (Location = "Paris").

 Predicate P4 (Keywords ≠ all ("Night", "Freeway", "Speed")) implies P2 (Keywords ≠ "Night"):

 ≠ all  ≠ (cf. Figure 2).

 (Night, Freeway, Speed)  Night.

 Predicate P9 (Event = "Car crash") implies P3 (Event like "_Accident") having:

 =  like _ (cf. Figure 2).

 Car crash  Accident

 Predicate P11 (Keywords = Some ("Night", "Freeway", "Speed")) implies P13 (Keywords in

("Highway", "Night")) having:

 = Some  in (cf. Figure 2).

 (Night, Freeway, Speed)  (Highway, Night)

Figure 8. Screen shot of the MSI

2 PUM and PAM interface.

The primary horizontal fragmentation algorithm Make-Partition [Navathe et al. 1995], applied

on the uPAM matrix obtained above, generates the predicate clusters shown in Figure 9. These

clusters are further refined following a post-processing procedure developed in [Belatreche et

al. 1997], based on the semantic implications identified in the uPAM, to yield the final

horizontal minterm fragments shown in Figure 9. As a matter of fact, since P4 P2, P9 P3,

P13 P10 and P11 P14, then P4, P9, P13 and P11 should be removed from the corresponding

clusters [Belatreche et al. 1997], consequently yielding the minterms shown below.

User queries and

corresponding access

frequencies

Predicate Usage matrix

Predicates invoked in the

user queries

Predicate Affinity Matrix

79

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

Figure 9. Clustering of Predicates using graph theoretic algorithm

Recall that ignoring implications can lead, in multimedia applications, to higher computation

costs when creating fragments, bigger fragments which are very restrictive for multimedia

storage, and retrieval, as well as data duplication on several sites. For instance, in the current

example, applying Make_Partition without considering the semantic implications between

predicates (PAM lacking all semantic implications, which are replaced by null values) yields

the following minterm fragments: F1(P0 ^ P1 ^ P2), F2(P1 ^ P2 ^P3), F3(P0 ^ P1 ^ P4), F4(P2 ^

P5 ^ P6), F5(P2 ^ P7 ^ P8), F6(P1 ^ P2 ^ P9), F7(P0 ^ P10 ^ P11), F8(P12 ^ P13 ^ P14),

F9(Else). On can clearly recognize the higher number of minterms, in comparison with those

identified using the semantic implications (i.e., uPAM in Figure 8), which obviously underlines

higher computation costs when creating the multimedia partitions. In addition, the obtained

fragments induce data duplication among each other, e.g., between F1 and F3, as well as F2 and

F6, which is detrimental to data fragmentation.

6.2. Timing Analysis
We have shown that the complexity of our approach (SPI and underlying algorithms) simplifies

to O(npvs
2
 nv nc d). It is quadratic in the size of user predicates (npvs

2), and varies with value

set cardinalities (nv), as well as the size of the value knowledge base VKB considered (nc d). We

have verified those results experimentally. Timing analysis is presented in Figure 10. The

experiments were carried out on Pentium 4 PC (with processing speed of 3.0 GHz, 504 MB of

RAM). Note that in these experiments, a set of 1200 semantic predicates was generated in a

random fashion, value-set cardinalities (varying between 2 and 20 per value set, cf. Figure 10)

being under strict user control. Multiple value knowledge bases, extracted from WordNet, with

varying depth (from 6 to 16 levels, cf. Figure 10.b) and number of concepts (from 100 to

132000 nodes, cf. Figure 9.b) were also considered. One can see from the result that the time to

compute semantic implications grows in a polynomial fashion with the number of predicates.

Clusters produced:

C1: (P0, P1, P2, P4)

C2: (P3, P9)

C3: (P6, P5)

C4: (P7, P8)

C5: (P10, P11, P14, P13, P12)

 P8

P7
P1

P6

P5

P4
P10

P2

P0
P9

P11

P14

P12

P13

10

5

5

5

5 <= 5

=>
10

10

=>

5

<= 5

<=
5

Primary horizontal

minterm fragments:

F1: (P0 ^ P1 ^ P2)

F2: (P1 ^ P2 ^ P3)

F3: (P2 ^ P5 ^ P6)

F4: (P2 ^ P7 ^ P8)

F5: (P10 ^ P12 ^ P14)

F6: Else

P3

80

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

a. Varying value set cardinalities

b. Varying VKB size (depth and number of concepts)

Figure 10. Timing results regarding the number of predicates, value set cardinalities, and VKB size

Recall that the reference value knowledge base VKB and operator knowledge base OKB

are stored in a relational database and are queried for each value and operator in the concerned

predicates when identifying implication. Thus, querying the VKB knowledge base for each

predicate value requires extra time (database access time) and hence contributes to increasing

time complexity. Therefore, we believe that system performance would improve if the reference

VKB knowledge base could fit in primary memory.

7. Conclusion

Fragmentation techniques are used in distributed system design to reduce accesses to irrelevant

data, thus enhancing system performance [Ezeife and Barker 1995]. In this study, we address

primary horizontal fragmentation in multimedia databases. In particular, we emphasize

semantic-based predicates implication which are required in current fragmentation algorithms,

in order to partition multimedia data efficiently. Our approach is complementary to that

developed in [Saad et al. 2006], targeting implications between low-level multimedia predicates

(applied on complex feature vectors such as dominant color, texture, etc.) as a prerequisite to

performing multimedia fragmentation. We propose a set of algorithms for identifying

implications between semantic predicates, based on operator and value implications. Operator

implications are identified utilizing a specific operator knowledge base developed in our study.

Value implications are discovered following domain-oriented or generic value concept

knowledge bases such as WordNet [WordNet 2005]. We developed a prototype to test our

approach. Timing results show that our method is of polynomial complexity.

We are currently conducting fragmentation experiments on real multimedia data so as

to analyze our approach’s efficiency with respect to traditional methods. Future directions

include studying derived horizontal fragmentation and vertical fragmentation of multimedia

data, taking into account semantic and low-level multimedia features. We also plan on releasing

a public version of our prototype.

References

Baiao F, Mattoso M., A Mixed Fragmentation Algorithm for Distributed Object Oriented Databases. 9th Inter.

Conf. on Computing Information, Canada, 1998

Belatreche L, Karlapalem K, Simonet A., Horizontal class partitioning in object-oriented databases. 8th Inter.

Conf. on Database and Expert Systems Applications (DEXA’97), 1997

Bernhard Braunmuller, Efficiently Supporting Multiple Similarity Queries for Mining in Metric Databases,

IEEE Trans. on Knowledge and Data Engineering, v.13, p.79-95, 2001

Chinchwadkar G.S., Goh A., An Overview of Vertical Partitioning in Object Oriented Databases. The

Computer Journal, Vol. 42, No. 1, 1999

Ehrig M. and Sure Y., Ontology Mapping - an Integrated Approach. In Proceedings of the 1st European

Semantic Web Symposium, V. 3053 of LNCS, pp. 76-91, Greece, 2004

81

22 Simpósio Brazileiro de Banco de Dados – SBBD 2007

Ezeife C.I., Barker K., A Comprehensive Approach to Horizontal Class Fragmentation in a Distributed Object

Based System. J. of Distributed and Parallel Databases, 1, 1995.

Ezeife C.I., Barker K., Distributed Object Based Design: Vertical Fragmentation of classes. Journal of

Distributed and Parallel DB Systems, 6(4): 327-360, 1998

Gertz M, Bremer J.M., Distributed XML Repositories: To-Down Design and Transparent Query Processing.

Department of CS, University of California, 2004

Grosky W. I., Managing Multimedia Information in Database Systems, Communications of the ACM, Vol. 40,

No. 12, pp. 72-80, 1997

Kosch H., Distributed Multimedia Database Technologies Supported by MPEG-7 and MPEG-21, Auerbach

Publications, 280 p., 2004

Lin D., An Information-Theoretic Definition of Similarity. In Proceedings of the 15th International

Conference on Machine Learning, 296-304, 1998.

Maguitman A. G., Menczer F., Roinestad H. and Vespignani A., Algorithmic Detection of Semantic Similarity.

In Proc. of the 14th Inter. WWW Conference, 107-116, Japan, 2005

Miller G., WordNet: An On-Line Lexical Database. Journal of Lexicography, 3(4), 1990.

Navathe B, RA M., Vertical Partitioning for Database Design: a Graphical Algorithm. 1989 ACM SIGMOND

Conference, Portland, 440-450, 1989

Navathe S.B, Karlapalem K, Ra M., A Mixed Partitioning Methodology for Initial Distributed Database

Design. Computer and Software Engineering J., 3(4): 395-426, 1995

Ozsu M.T, Valduriez P., Principals of Distributed Database Systems, Prentice Hall, 1991

Richardson R. and Smeaton A.F., Using WordNet in a Knowledge-based approach to information retrieval. In

Proc. of the 17th Colloquium on Information Retrieval, 1995.

Rodriguez M.A., Egenhofer M.J., Determining Semantic Similarity among Entity Classes from Different

Ontologies. IEEE Transactions on Knowledge and Data Engineering, Vol.15, n.2, pp. 442-456, 2003

Saad S., Tekli J., Chbeir R. and Yetongnon K., Towards Multimedia Fragmentation. In Proceedings of the 10th

East-European Conference on Advanced Databases and Information Systems ADBIS’06, 2006

Sub C., An approach to the model-based fragmentation and relational storage of XML-documents. Grundlagen

von Datenbanken, 98-102, 2001

WordNet 2.1, A Lexical Database of the English Language. http://wordnet.princeton.edu/online/, 2005.

82

