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Abstract. Partitioning techniques are traditionally used in distributed system design 

to reduce accesses to irrelevant information by grouping data frequently accessed 

together in specific fragments. Here, we address the primary horizontal 

fragmentation of textually annotated multimedia data. In this study, we discuss the 

issue of identifying semantic implications between textual-based multimedia 

predicates, as a crucial phase in the efficient partitioning of multimedia data. Our 

proposal integrates knowledge bases as a framework for assessing the semantic 

relatedness between predicate values and operators. We developed a prototype 

implementing the various aspects of multimedia semantic predicates implications.  

Experimental results show that the proposed method is polynomial in the number of 

user predicates as well as the sizes of the knowledge bases being employed. Real-

world multimedia fragmentation tests are ongoing. 

1. Introduction 

Video and audio-on-demand, video conferencing, distance e-Learning and cartography are only 

few examples of multimedia applications emerging on the web. In such a distributed 

environment, many technical problems need to be solved in order to obtain a full-fledged 

distributed multimedia database system. These problems concern all layers of the multimedia 

system, in particular the storage and retrieval layers. 

Traditionally, partitioning techniques are used in distributed system design to improve 

data storage and retrieval efficiency. Three main fragmentation techniques have been defined 

for relational databases: horizontal, vertical and hybrid. More recently, some researchers have 

extended these techniques for partitioning object oriented databases. In essence, fragmentation 

consists of dividing the database objects and/or entities into fragments, on the basis of common 

queries accesses, in order to distribute them over several distant sites. The fragmentation 

enhances system performance [Ezeife and Barker, 1995] by: 

 Reducing the amount of irrelevant data accessed by applications, (because applications 

usually access portions of entities and objects),  

 Allowing parallel execution of a single query, dividing it into a set of sub-queries that 

operate on segments of an entity/class,  

 Reducing the quantity of data transferred when migration is required,  

 Decreasing data update cost and storage space.  

Several continuing studies are aimed at building distributed MultiMedia DataBase 

Management Systems MMDBMS [Kosch 2004]. Nevertheless, most existing systems lack a 

formal framework to provide full-fledged multimedia operations. In particular, multimedia 
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fragmentation remains a relatively complicated issue owing to the complexity of the multimedia 

data itself; different multimedia data types (video, audio, image and/or text), frequently used 

with various formats, as well as the integration of metadata (consisting of semantic descriptors 

such as event, location, which person appears in a picture, etc., and/or low-level descriptors 

such as color, texture, shape, etc.) to describe the multimedia content. 

 In this paper, we address primary horizontal fragmentation (cf. Section 2) in distributed 

multimedia databases. We particularly address semantic-based predicates implication required 

in current fragmentation algorithms, such as Make_Partition and Com_Min [Oszu and 

Valduriez 1991], [Navathe et al. 1995], [Belatreche et al. 1997], in order to partition 

multimedia data efficiently. Since predicate implications are of crucial impact in traditional 

fragmentation techniques, we believe that the identification of semantic implications between 

multimedia predicates will improve the multimedia fragmentation process (as we will show in 

the motivation section). In this study, we introduce a set of algorithms for identifying semantic 

implications between predicate values, predicate operators, and consequently multimedia 

semantic-based predicates. We also present our prototype with some preliminary experiments 

to test and evaluate our approach. The remainder of this paper is organized as follows. Section 

2 reviews background in DB fragmentation. In Section 3, we present a motivation example. 

Section 4 defines the concepts to be used in our approach. In Section 5, we detail our semantic 

implication algorithms and their usage in multimedia fragmentation. Section 6 presents our 

prototype and timing analysis. Finally, Section 7 concludes. 

2. Background and Related Work 

Fragmentation techniques for distributed DB systems aim to achieve effective resource 

utilization and improved performance [Chinchwadkar and Goh 1999]. This is addressed by 

removing irrelevant data accessed by applications and by reducing data exchange among sites 

[Baiao and Mattoso 1998]. In this section, we briefly present traditional database fragmentation 

approaches, and focus on horizontal fragmentation algorithms. We also report recent 

approaches targeting XML as well as multimedia data fragmentation.  

In essence, there are three fundamental fragmentation strategies: Horizontal 

Fragmentation (HF), Vertical Fragmentation (VF) and Mixed Fragmentation (MF). HF 

underlines the partitioning of an entity/class in segments of tuples/objects verifying certain 

criteria. The generated horizontal fragments have the same structure as the original entity/class 

[Ozsu and Valduriez 1991]. VF breaks down the logical structure of an entity/class by 

distributing its attributes/methods over vertical fragments, which would contain the same 

tuples/objects with different attributes [Baiao and Mattoso 1998]. MF is a hybrid partitioning 

technique where horizontal and vertical fragmentations are simultaneously applied on an 

entity/class [Navathe et al. 1995].  

Horizontal fragmentation is generally categorized in two types: Primary HF and 

Derived HF. PHF is the partitioning of an entity based on its attributes’ values [12]. DHF 

denotes the partitioning of an entity (called member) based on links with other entities (called 

owners) [12]. In other words, it is the partitioning of an entity/class in terms of the PHF of 

another entity/class [1] taking into consideration their inner-links. In this paper, we only focus 

on PHF which is, to the best of our knowledge, has been addressed mainly by two main 

algorithms: Com_Min developed in [Oszu and Valduriez 1991] and Make_Partition Graphical 

Algorithm developed in [Navathe and Ra 1989] (used essentially for vertical fragmentation). 

The Com_Min algorithm generates, from a set of simple predicates applied to a certain entity, a 

complete and minimal set of predicates used to determine the minterm fragments corresponding 

to that entity. A minterm is a conjunction of simple predicates [Belatreche et al. 1997] 

associated to a fragment. Make_Partition generates minterm fragments by grouping predicates 

having high affinity towards one another. The number of minterm fragments generated by 

Make_Partition is relatively smaller than the number of Com_Min minterms [Navathe et al. 

68 



22 Simpósio Brazileiro de Banco de Dados – SBBD 2007  

1997] (the number of minterms generated by Com-Min being exponential to the number of 

simple predicates considered). Similarly, there are two main algorithms for the PHF of object 

oriented DBMS: one developed by in [Ezeife and Barker 1995] using Com_Min [Oszu and 

Valduriez 1991], and the other developed in [Bellatreche et al. 1997] on the basis of 

Make_Partition [Navathe and Ra 1989]. The use of Com_Min or Make_Partition is the major 

difference between them. 

Recent works have addressed XML fragmentation [Sub 2001], [Gertz and Bremer 

2004] due to the various XML-oriented formats available on the web. The usage of XPaths and 

XML predicates forms the common basis of all these studies. Yet, XML fragmentation methods 

are very specific and hardly applicable to multimedia databases.  

A recent address to address multimedia database fragmentation is provided in [Saad. et 

al. 2006]. The authors here discuss multimedia primary horizontal fragmentation and provide a 

partitioning strategy based on the low-level features of multimedia data (e.g. color, texture, 

shape, etc., represented as complex feature vectors). They particularly emphasize the 

importance of multimedia predicates implications in optimizing multimedia fragments. 

3. Motivation 

In order to fragment multimedia databases, several issues should be studied and extended. 

Multimedia queries contain new operators handling low-level and semantic features. These new 

operators should be considered when studying predicates and particularly predicate 

implications [Saad et al. 2006]. For example, let us consider the following predicates used to 

search for videos in the movie database IMDB1.  

Table 1. Semantic predicates 

Predicate Attribute Operator Value 

P1 Keywords  = “Football” 

P2 Keywords  = “Tennis” 

P3 Keywords = “Sport” 

P4 Location  = “Coliseum” 

P5 Location  Like % “Rome” 

In current fragmentation approaches, these predicates are considered different and are 

analyzed separately. Nonetheless, a multimedia query consisting of P1 and P2 would retrieve 

movies belonging to the result of P3, the value/concept Sport encompassing in its semantic 

meaning Football and Tennis. Thus, we can say that P1 and P2 imply P3 (P1, P2   P3). 

Consequently, the fragmentation algorithm should only consider P3, eliminating P1 and P2 while 

generating fragments. A similar case can also be identified with P4 and P5. The value/concept 

Rome covers in its semantic meaning Coliseum. However, the operator used in P4 is not the 

same as that utilized in P5, which raises the question of operator implication. Since the operator 

Like % covers in its results those of the operator equal (Like % returning results that are 

identical or similar to a given value, where equal returns only the results identical to a certain 

value), the results of P5 would cover those returned by P4. Hence, we can deduce that P4 

implies P5 (P4   P5). As a result, the fragmentation algorithm should only consider P5, 

disregarding P4. Note that ignoring such implications between predicates can lead, in 

multimedia applications, to higher computation costs when creating fragments, bigger 

fragments which are very restrictive for multimedia storage, migration, and retrieval, as well as 

data duplication on several sites [Saad et al. 2006]. 

In [Navathe et al. 1995], [Belatreche et al. 1997], the authors have highlighted the 

importance of implication, but have not detailed the issue. As mentioned before, the authors in 

[Saad et al. 2006] have only addressed implications between low-level multimedia predicates 

                                                 
1 Available at http://www.imdb.com/ 
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(based on complex feature vectors). In this study, we go beyond low-level features provided in 

[Saad et al. 2006] and present a complementary semantic implication approach (Figure 3).   

4. Preliminaries 

In the following, we define the major concepts used in our approach. We particularly detail the 

notions of Knowledge Base (KB) and Neighborhood (N) which will be subsequently utilized in 

identifying the implications between semantic predicates.  

4.1. Basic Definitions 

Definition 1 - Multimedia Object: is depicted as a set of attribute (ai) and value (vi) doublets: 

O {(a1, v1), (a2, v2), … , (an, vn)}. Multimedia attributes and values can be simple (numeric or 

textual fields), complex (color histogram, texture, shape, etc.) or contain raw data (BLOB files) 

of multimedia objects. Note that in horizontal multimedia fragmentation, multimedia objects 

constitute the basic reference units (similarly to ‘objects’ in object oriented DB partitioning and 

‘tuples’ in relational DB fragmentation). 
 

Definition 2 - Multimedia Type: allocates a set of attributes used to describe multimedia 

objects corresponding to that type [Saad et al. 2006]. Two objects, described by the same 

attributes, are of the same type.  
 

Definition 3 - Multimedia Query: is written as follows [Belatreche et al. 1997], [Saad et al. 

2006]: q = {(Target clause), (Range clause), (Qualification clause)} 

 Target clause: contains multimedia attributes returned by the query, 

 Range clause: gathers the entities (tables/classes) accessed by the query, to which 

belong target clause and qualification clause attributes, 

 Qualification clause: is the query restriction condition, a Boolean combination of 

predicates, linked by logical connectives ,  ,    .  
 

Definition 4 - Multimedia predicate: is defined as P = (A  V) , where: 

 A is a multimedia attribute or object, 

 V is a value (or a set of values) in the domain of A, 

 θ is a low-level multimedia operator (Range and KNN operators), a comparison 

operator θc (=, , ≤, , ≥, ≠, like) or a set operator θs (in and θcqualifier where the 

quantifiers are: any, some, all). 

4.2. Knowledge Base 

In the fields of Natural Language Processing (NLP) and Information Retrieval (IR), knowledge 

bases (thesauri, taxonomies and/or ontologies) provide a framework for organizing entities 

(words/expressions [Richardson and Smeaton 1995], [Lin 1998], generic concepts [Rodriguez 

and Egenhofer 2003] [Ehrig and Sure 2004], web pages [Maguitman 2005], etc.) into a 

semantic space. Subsequently, knowledge bases are utilized to compare/match the considered 

entities with respect to their corresponding similarity/relevance degrees with one another. In 

our approach, we employ knowledge bases as a reference for identifying semantic implications 

between predicates, which is not addressed in existing approaches. As shown in the motivating 

example, implication between semantic predicates relies on the implications between 

corresponding values and operators. Hence, two types of knowledge bases are used here: i) 

value-based: to represent the domain values commonly used in the application, and ii) operator-

based: to organize operators used with semantic-based predicates. We will also give the 

semantic relations commonly used in the literature [Richardson and Smeaton 1995], [Lin 1998], 

[WordNet 2005], to organize entities and concepts in a KB. We detail them below. 
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4.2.1. Knowledge Base 

In our study, a Value Knowledge Base (VKB) is domain-oriented and comes down to a 

hierarchical taxonomy with a set of concepts representing groups of words/expressions (which 

we identify as value concepts), and a set of links connecting the values, representing semantic 

relations1. 
 

 

 
Figure 1. Sample value knowledge base with multiple root concepts 

As in WordNet2, we consider that a VKB concept consists of a set of synonymous 

words/expressions such as {car, auto, automobile}. Value concepts are connected together via 

different semantic relations, which will be detailed subsequently. Formally, VKB=(Vc, E, R, f) 

where:  

 Vc is the set of value concepts (synonym sets as in WordNet [Miller 1990]). 

 E is the set of edges connecting the value concepts, where E  c cV ×V . 

 R is the set of semantic relations, R = {Ω, , , , } (cf. Table 2), the synonymous 

words/expressions being integrated in the value concepts. 

 f is a function designating the nature of edges in E,  f:E R  (cf. Figure 1). 

4.2.2. Operator Knowledge Base 

As stated previously, operators should also be considered when studying the implication 

between semantic predicates. Therefore, an operator knowledge base of four descriptors 

OKB=(Oc, E, R, f) is also defined where: 

 Oc is the set of operator concepts, consisting of mono-valued comparison operators θc 

(=, ≠, >, <3, and like) as well as multi-valued ones θs (in and θcqualifier where the 

quantifiers are: any, some, all). 

 E is the set of edges connecting the operators, where E  c cO ×O . 

 R is the set of semantic relations, R={Ω, , , , }. 

 f is a function designating the nature of edges in E, f:E R . 

We designed the operator knowledge base OKB as shown in Figure 2. 

In the mono-valued operator taxonomy, we can particularly observe that the pattern 

matching operators Like and Not Like (considered as antonyms) make use of the parameters ‘_’ 

and ‘%’, to represent one and zero/multiple optional characters respectively. Hence, we 

                                                 
1  However, the building process of the value knowledge base is out of the scope of this paper. 
2 WordNet is an online lexical reference system (taxonomy), where nouns, verbs, adjectives and adverbs are 

organized into synonym sets, each representing a lexical concept [Miller 1990], [WordNet 2005]. 
3  and  are considered as single operators put together using the Boolean operator OR. 

Car; auto; 

automobile 

Windshield 

Sedan 

Coupe 

Plane; Airplane; 

Aircraft 

Jet Helicopter Windscreen 

Europe 

Paris 

Eiffel Tower 

Rome 

Coliseum 

America 

New York 

Statue of Liberty 

Site 

Vehicle 

Machine 

Wheel 

Tire 

Brake System 

ABS 

Value concept (Synonym Set) 

Hyponym/Hypernym relations (depending on the direction) 

Meronym/Holonym relations (depending on the direction) 
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represent this fact by a semantic IsA  relation1 following these operators, i.e. Like_  Like% 

and Not Like_  Not Like%. On the other hand, ‘<’ and ‘>’ implicitly denote the operator ‘≠’ 

(commonly represented by < >), thus are considered as sub-operators of this later. 
 

 

 

 

 
Multi-valued operator taxonomy Mono-valued operator taxonomy 

 

Figure 2. Our proposed operator knowledge base 
 

In the multi-valued operator taxonomy, the any and some quantifiers are considered as 

synonyms, as well as the operators ≠All and Not In, and =Any (or Some) and In. The >All and 

<All operators are considered as sub-operators of ≠All (like mono-valued operators) and thus 

are linked to this later using IsA relations. In addition, the >All and >Any operators are linked 

together because if the condition is valid for all comparison values, it must be for any value 

inside the comparison set. Likewise for <All and <Any, and ≠All and ≠Any. 

4.3. Semantic Relations 
Hereunder, we develop the most popular semantic relations employed in the literature, which 

are included in the WordNet knowledge base [30, 31, 32]:  
 

 Synonym (≡): Two words/expressions (likewise for operators) are synonymous if they are 

semantically identical, that is if the substitution of one for the other does not change the 

initial semantic meaning. 

 Antonym (Ω): The antonym of an expression is its negation.  

 Hyponym ( ): It can also be identified as the subordination relation, and is generally 

known as the Is Kind of relation or simply IsA.  

 Hypernym ( ): It can also be identified as the super-ordination relation, and is generally 

known as the Has Kind of relation or simply HasA.  

 Meronym ( ): It can also be identified as the part-whole relation, and is generally 

known as PartOf (also MemberOf, SubstanceOf, ComponentOf, etc.).  

 Holonym ( ): It is basically the inverse of Meronym, and is generally identified as 

HasPart (also HasMember, HasSubstance, HasComponent, etc.).  
 

Table 2 reviews the most frequently used semantic relations along with their properties 

[Richardson and Smeaton 1995] [Lin 1998], [WordNet 2005]. Note that the transitivity 

property is not only limited to semantic relations of the same type and could also exist between 

heterogeneous relations. For example: 

 Brake system  car and car ≡ automobile transitively infer Brake system automobile. 

 ABS Brake system and Brake system  car transitively infer ABS  car (Figure 1). 
 

                                                 
1 Relations will be detailed in the next subsection. 

Like % 

Like _ 

=; Like  

Not Like % 

Not Like _ 

≠; Not Like 

> < 

≠ Any; ≠ Some 

≠ All; Not In 

>All < All 

=Any; =Some; In 

< Any; < Some >Any; >Some 

Operator concept (Synonymous operators) 

Hyponym/Hypernym relations (depending on the direction) 

Meronym/Holonym relations (depending on the direction) 

Antonym relation 
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Formally, let Ci, Cj and Ck be three concepts connected via semantic relations Rij and Rjk 

in a given KB. Table 3 details the transitivity properties for all semantic relations defined in the 

previous subsections, identifying the resulting relation Rik transitively connecting concepts Ci 

and Ck. The relevance of identifying transitivity between different semantic relations will be 

demonstrated when defining the neighborhood of a concept, subsequently recognizing the 

concept implications. 

                                  Table 2. Semantic relations                            Table 3. Transitivity between relations 

        Property 

Relation 
Symbo

l 
Reflexive Symmetric 

Transitiv

e 

           Rj k       

  Ri j 
≡ Ω    

 

Synonym 
≡    

 ≡ ≡ Ω    
 

Antonym Ω     Ω Ω ≡ Ω Ω     

Hyponym        Ω       

Hypernym 
    

   Ω      
 

Meronym 
    

  
 



 
      

Holonym 
    

  
 



   
 

  
 

4.4. Neighborhood 

In our approach, the neighborhood notion is used to compute the implication between values, 

operators, and consequently predicates. The implication neighborhood of a concept Ci is 

defined as the set of concepts {Cj}, in a given knowledge base KB, related with Ci via the 

synonym (≡), hyponym ( ) and meronym ( ) semantic relations, directly or via transitivity. It 

is formally defined as: 

   /      , ,( )
R

j i jKB i C C R C and RN C    (1) 

When applying the neighborhood concept to some value concepts in Figure 1, we 

obtain the following implication neighborhood examples: 

 , ,( ) { }
KBV car car auto automobileN


  

 ,  ( ) { }
KBV ABS ABS brake systemN   

 , , ,( ) { }
KBV tire tire wheel vehicle machineN   (transitivity between  and ) 

Moreover, we define the global implication neighborhood of a concept to be the union 

of each implication neighborhood with respect to the synonym (≡), hyponym ( ) and meronym 

( ) semantic relations:  

 , ,( ) ( ) /  
KB KB

R

i iN C N C R    (2) 

Note hereunder the corresponding global neighborhoods of the same examples: 

   , , , ,( ) ( ) ( ) ( ) = { }  
KB KB KB KBV V V V car auto automobile vehicule machineN car N car N car N car




 , , , ,( )  { , , } 
KBV ABS ABS brake system car auto automobile vehicle machineN   

Similarly, the implication neighborhood can be applied to operator concepts:  

 The global neighborhood of the Like operator: , _, %( ) { , }
KBO Like Like Like LikeN   . 

 The global neighborhood of ≠All: ,  , ,( ) { }
KBO All All Not In Any SomeN     . 
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 The global implication neighborhood of >All: 

, , ,  , ,( ) { , }
KBO All All Any Some All Not In Any SomeN        . 

5. Semantic Implication Between Predicates 

Finding implication between predicates is crucial to cutback the number of predicates involved 

in the fragmentation process [Navathe et al. 1995], [Belatreche et al. 1997] (a large number of 

unnecessary fragments would notionally achieve low system performance especially when 

using multimedia data). When a predicate Pi implies a predicate Pj (denoted by Pi   Pj), Pi can 

be removed from the minterm fragment to which it belongs and can be replaced by Pj. In the 

following, we detail the rules that can be used to determine implication between semantic 

predicates. As mentioned earlier, the semantic implication between two predicates depends on 

the implications between their corresponding values and operators. Therefore, we develop 

value and operator implications before introducing our predicate implication algorithm. Our 

Semantic Implication Algorithm (SPI) is complementary to that developed in [Saad et al. 2006] 

and thus could be coupled with its overall process (cf. Figure 3) in order to enable relevant 

multimedia fragmentation. Due to the space limitation, value and operator neighborhood 

computation will not be detailed here since the main definitions have been already covered. 
 

 

Multimedia_fragmentation_pre-processing ()      // Developed in [Saad et al. 2006] to the exception  

                                                                               // of semantic implication. 
Begin 

Multimedia_Types_Classification()                  //Classifying multimedia objects according to their types 
For each multimedia Type 

Predicates_Grouping()                          //Grouping low-level and semantic predicates together 

Multimedia_Predicates_implication()        // Low-level predicates implications 

Semantic_Predicates_Implication()      // Contribution of our study. 
End For 

End 
 

Figure 3. Multimedia fragmentation pre-processing phase introduced in [Saad et al. 2006], to be executed 
prior to applying the classic fragmentation algorithms [Ozsu and Valduriez 1991], [Navathe et al. 1995] 

5.1. Value Implication 

A value Vi implies Vj if the corresponding value concepts Vci and Vcj are such as the global 

neighborhood of Vci includes that of Vcj in the used value knowledge base: 

    ( )  ( )   
KB KBi j V j V iV V If N Vc N Vc   (3) 

Note that when Vi and Vj are synonyms, that is when Vci and Vcj designate the same 

value concept (e.g. car and automobile), implication exists in both directions: Vi   Vj and Vj 

  Vi. Known as equivalence implication, it is designated as Vi   Vj. 

  ,  i.e.  and are the same            ( ) ( )      
KB KBi j V i V j i jc c c cV V If N V N V V V   (4) 

Our Value_Implication algorithm is developed in Figure 4. The algorithm returns 

values comprised in {0, -1, 1, 2} where: 

 ‘0’ denotes the implication absence between the compared values, 

 ‘-1’ designates that value Vj implies Vi, 

 ‘1’ designates that value Vi implies Vj, 

 ‘2’ designates that values Vi and Vj are equivalent. 

A special case of value implication to be considered is when sets of values are utilized 

in multimedia predicates. This occurs when set operators come to play (e.g. Keywords = ANY 

{“Eiffel Tower”, “Coliseum”} and Keywords = ANY {“Paris”, “Rome”}). The algorithm for 

determining the implication between two sets of values is developed in Figure 6. It considers 
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each set of values in isolation and, for each value in the set, computes the neighborhood of the 

value. Subsequently, it identifies the union of all the neighborhoods of values for the current set 

(cf. Figure 6, lines 1-7), and compares the ‘unioned’ neighborhoods of the two sets being 

treated so as to determine the implication (cf. Figure 6, lines 8-17). In other words, when 

comparing sets VS1 and VS2: 

 If |VS1| < |VS2| and all values of VS2 imply (or are equivalent to) those of VS1, then the 

set VS2 implies VS1 (i.e. the neighborhood of VS2 includes that of VS1). 

 If |VS1| > |VS2| and all values of VS1 imply (or are equivalent to) those of VS2, then the 

set VS1 implies VS2 (i.e. the neighborhood of VS1 includes that of VS2). 

 Otherwise if |VS1| = |VS2|, then: 

 VS1 is equivalent to VS2 when all values of VS1 are equivalent to those of VS2 

(i.e. the neighborhoods of VS1 and VS2 are identical). 

 VS1 implies VS2 when all values of VS1 imply those of VS2, i.e. the neighborhood 

of VS1 encompasses that of VS2: )( ) (
KB KBV 2 V 1N VS N VS  

 VS2 implies VS1 when all values of VS2 imply those of VS1, i.e. 

)( ) (
KB KBV 1 V 2N VS N VS  

 Otherwise, there is no implication between VS1 and VS2. 
 

For example, applying Value Set implication to sets VS1 = {“Eiffel Tower”, 

“Coliseum”} and VS2 = {“Paris”, “Rome”} yields VS1   VS2 having: 

 |VS1| = |VS2| 

 Values of VS1 imply those of VS2: Eiffel Tower Paris and Coliseum Rome (Figure 1). 

5.2. Operator Implication 

Similarly to values, the general implication concept remains unchanged with operators. An 

operator θi implies θj (θi θj) if the corresponding operator concepts Oci and Ocj are such as the 

global neighborhood of θi includes that of θj, following the operator knowledge base defined in 

Section 4.1.2. We formally write it as: 

         ( ) ( )   
KB KBi j O j ic cIf N O N O    (5) 

Similarly to value implication, when θi and θj are synonyms (e.g. =any and =some 

following θKB), equivalence implication exists in both directions:  

i.e.  and are the same          ( ) ( ) ,     
KB KBi j O i O j i jc c c cIf N O N O O O    (6) 

The Operator_Implication algorithm is developed in Figure 5. It returns values 

comprised in {0, -1, 1, 2}: 

 ‘0’ denoting the lack of implication between the operators’ values, 

 ‘-1’ designating that operator θj implies θi, 

 ‘1’ designating that operator θi implies θj, 

 ‘2’ when operators θi and θj are equivalent 

5.3. Predicate Implication 

 

   and     

P P     and    

   and   

i j i j

i j i j i j

i j i j

θ θ V V , or

if θ θ V V , or

θ θ V V

 

  

 

 
 
 
 
 

 
(7) 
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Let Pi = Ai θi Vi and Pj = Aj θj Vj be two predicates employing comparison or set 

operators. The implication between Pi and Pj, denoted as Pi   Pi, occurs if the operator and 

value (set of values) of Pi (θi and Vi) respectively imply those of Pj (θj and Vj), or the value (set 

of values) part of Pi (Vi) implies that of Pj (Vj) when having equivalent operators.  

When both pairs of values (sets of values) and operators are equivalent, the 

corresponding predicates are equivalent as well: 

P P     and   
i j i j i j

if θ θ V V      (8) 

 

Value Implication: 
 

Input: Vi , Vj , VKB      // VKB is the reference value KB. 

Output: {0, -1, 1, 2}  // A numerical value indicating 

                                   // if Vi   Vj (0), Vj   Vi (-1) , 

                              // if Vi   Vj (1) or if Vi   Vj (2) 

Begin                                                                     1 
 

If ( ( )  ( )
V i V j

KB KB
N Nc cV V ) 

Return 2      // synonyms, Vi   Vj 
 

Else If ( )  ( )
V j V i

KB KB
N Nc cV V           

Return 1         // Vi   Vj                                  5 
 

Else If ( )  ( )
V i V j

KB KB
N Nc cV V  

Return -1        // Vj   Vi 
 

Else 
Return 0       // There is no implication                                                                                                           

 

End If       // between Vi and Vj, Vi   Vj          10 
 

End 

 

 

 

Value Set Implication: 
 

Input: VS1, VS2, VKB  // value sets to be compared w.r.t. VKB 

Output: {0, -1, 1, 2}   // A numerical value indicating  

                                    // if VS1   VS2 (0), if VS2   VS1 (-1) 

                                // if VS1   VS2 (1) or if VS1   VS2 (2) 

Begin                                                                               1 
                                               

      For each value Vi in VS1         // Neighborhood of VS1 

         ( )  = ( )  ( )
V V V

KB KB KB
N N N

1 1 i
VS VS Vc     

      End for   
 

      For each value Vj in VS2     // Neighborhood of VS2    5 

         ( )  = ( )  ( )
V V V

KB KB KB
N N N

2 2 j
VS VS Vc             

      End For 
 

If  ( )  ( )
V 1 V 2

KB KB
N NVS VS  

Return 2       // VS1   VS2 

Else If ( )  ( )
V 2 V 1

KB KB
N NVS VS                    10 

Return 1      // VS1   VS2                          

Else If ( )  ( )
V 1 V 2

KB KB
N NVS VS  

Return -1      // VS2   VS1 

Else 

Return 0   // There’s no implication                   15                                                                                            

End If               // between VS1 and VS2, VS1   VS2        

End     

 

Figure 4. Identifying semantic implications 

between textual values 
 

 
 

Operator  Implication: 
 

Input: θi , θj , OKB   // OKB is the reference operator KB 

Output: {0, -1, 1, 2}   // A numerical value indicating   

                                    // if θi   θj (0), if θj   θi (-1) 

                               // if θi   θj (1), or if θi   θj (2) 

Begin                                                                     1 
 

   If( ( )  ( )
O i O j

KB KB
cO OcN N ) 

Return 2      // synonyms, θi   θj 
 

Else If ( )  ( )
O j O i

KB KB
c cO ON N           

Return 1       //  θi   θj                                     5 
 

Else If ( )  ( )
O i O j

KB KB
c cO ON N  

Return -1             // θj   θi 
 

Else 
Return 0   // There is no implication between                                                                                                                     

 

   End If           // θi and θj, θi   θj                        10 
 

End 

Figure.6 Value sets implication algorithm 

Figure 5. Identifying implications between 

operators 
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Our Semantic Predicate Implication (SPI) algorithm, developed in Figure 7, utilizes the 

preceding rules to generate the semantic predicate Implications Set (IS) for a given multimedia 

type. The implications are designated as doublets (PiPj). Note that in SPI, the input 

parameters of Value_Implication and Value_Set_Implication between brackets, i.e. Vi and Vi+1, 

designate single values and set values respectively following the considered predicate (cf. 

Definition 4). 
 

Semantic Predicate Implication (SPI): 
 

Input: P , VKB, OKB         // P is the set of predicates utilizing semantic operators,  

                                           // applied on a given multimedia type to be fragmented. 

Output: IS                    // Set of semantic predicate implications. 

Variables: Implication Operator , ImplicationValue 
 

Begin                                                                                                                         1 

For each Pi in P 

For each Pi+1 in P 
 

ImplicationOperator = Operator_Implication(θi , θi+1, OKB) 

If (θi , θi+1 ε { θc any, θc some, θc all, In}                         // Set operators      5 

ImplicationValue = Value_Set_Implication (Vi , Vi+1, VKB)                    
Else                                                              // Mono-valued operators 

ImplicationValue = Value_Implication(Vi , Vi+1, VKB)                            
End If  

 

                 If (ImplicationOperator == 2)                              // θi   θi+1                        10                               
 

If (ImplicationValue == 2)                    // Vi   Vj 

IS = IS  (Pi  Pj) 

Else If (ImplicationValue == 1)            // Vi   Vj 

IS = IS  (Pi  Pj)                                                        

Else If (ImplicationValue == -1)           // Vj   Vi                           15 

IS = IS  (Pj   Pi) 

End If                                                                                                           
 

Else If (ImplicationOperator == 1)                       // θi   θj 
 

If(ImplicationValue == 2 or ImplicationValue == 1)       // θi   θj      

IS = IS  (Pi   Pj)                                                         20                    

End If 
 

  Else If (ImplicationOperator == -1)                      // θj   θi 
   
  If (ImplicationValue == 2 or ImplicationValue == -1)     // Vj   Vi      

IS = IS  (Pj   Pi)                                                       

EndIf                                                                                        25 
End If 

End For                                                                                                                               
End For                                                                                                                                       

End                                                                                                                        

Figure 7. Algorithm SPI for identifying the semantic implications between predicates 

5.4. Algorithm Complexity 

The computational complexity of our Semantic Predicate Implication (SPI) is estimated on the 

basis of the worst case scenario. Suppose nc represents the number of concepts in the concept 

knowledge base considered, d the maximum depth in the concept knowledge base considered, 

npv the number of user predicates with single values, npvs the number of predicates with value 

sets, and nv the maximum number of values contained in a value set. SPI algorithm is of time 

complexity O(npv
2
 nc d+ npvs

2
 nv nc d ) since: 

 

 The neighborhood of a concept is generated in O(nc   d) time, which comes down to 

the complexity of algorithm Value_Implication. 
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 The neighborhood of an operator is generated in constant time: O(1), which comes 

down to the time complexity of algorithm Operator_Implication. Therefore, identifying 

implications for predicates with simple values is of time complexity O(npv
2
 nc d). 

 The Value_Set_Implication algorithm is of complexity O(nv nc d) 

Subsequently, identifying semantic implications for predicates with value sets is of time 

complexity O(npvs
2
 nv nc d). 

6. Implementation and Experimental Tests 

6.1. Prototype 

To validate our approach, we have implemented a C# prototype entitled “Multimedia Semantic 

Implication Identifier” (MSI2) encompassing: 

 A relational database, storing multimedia objects via Oracle 9i DBMS, 

 Relational tables for storing the reference value knowledge base VKB and the operator 

knowledge base OKB. Note that OKB is constant (cf. Figure 2), 

 An interface allowing users to formulate multimedia queries. 

In Figure 8, we show how the prototype accepts a set of input multimedia queries. Automatic 

processes subsequently calculate query access frequencies, identify corresponding predicates, 

and compute for each multimedia type (cf. Definition 2) its Predicate Usage Matrix (PUM) and 

its Predicate Affinity Matrix (PAM), introduced in [Navathe et al. 1995], [Belatreche et al. 

1997] (cf. Figure 8). The PAM is used to underline the affinity between predicates, implication 

being a special kind of affinity [Navathe et al. 1995], [Belatreche et al. 1997]. The PUM and 

PAM make up the inputs to the primary horizontal partitioning algorithm: Make_Partition 

[Navathe et al. 1995] or Com_Min [Ozsu and Valduriez 1991]. 

6.2  Simulation Example 

Among the various experiments conducted, we present here a simple simulation example 

comparing predicate affinities (PAM) obtained with the inclusion of our multimedia semantic 

implication rules, and analyzing the corresponding fragments. In the following example, 

multimedia type “Video”, designating movies (i.e. audio-visual data), is selected for PUM and 

PAM calculations. In this experiment, a 100 node knowledge base, extracted from WordNet 

provided the reference for predicate value implications (part of the knowledge base is depicted 

in Figure 1). Let Q = {Qi = 0 to 5} be a set of user queries searching for video objects and P = {Pi = 

0 to 11} be the set of predicates used by Q (Figure 8). Given the PUM, the PAM attained after 

applying our semantic implication algorithms in shown in Figure 8. Note that the traditional 

PAM matrix will lack our semantic implications, identified here by implication signs, and only 

contains null affinities instead (it is omitted due to the lack of space).  

Recall that following [Navathe et al. 1995] [Belatreche et al. 1997], the PAM is a 

square and symmetric matrix where each value aff(Pi, Pj) can be numerical or non numerical. 

Numerical affinity represents the sum of the frequencies of queries which access 

simultaneously Pi and Pj. Non numerical affinity1 underlines the implication relation between 

predicates Pi and Pj. Note that “numerical” predicates, yielding traditional implications (for 

example P1: x < 2   P2: x < 4), were excluded for the sake of simplicity and clearness. Hence, 

the traditional PAM should be restricted to numerical affinities whereas the updated PAM 

should reflect both numerical and non numerical (semantic implication) affinities: 
 

 Predicates P5 (Event = "Football match") and P7 (Event = "Hokey match") imply P0 (Event = 

"Sport game"). 

                                                 
1    Non numerical affinity can also designate the “close” usage of two predicates Pi and Pj, in that both Pi and Pj are 

used jointly with a predicate Pl [15]. Nonetheless, we disregard this kind of affinity for the sake of clearness. 
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 P1 (Location = "Rome"), P10 (Location = "Paris") and P12 (Location = "Champs Elysees") imply P6 

(Location like "%Europe") having:  

 =   like % (cf. Figure 2). 

 Rome, Paris, Champs Elysees   Europe. 

 Predicate P12 (Location = "Champs Elysees") implies P10 (Location = "Paris").  

 Predicate P4 (Keywords ≠ all ("Night", "Freeway", "Speed")) implies P2 (Keywords ≠ "Night"): 

 ≠ all   ≠ (cf. Figure 2). 

 (Night, Freeway, Speed)  Night. 

 Predicate P9 (Event = "Car crash") implies P3 (Event like "_Accident") having: 

 =   like _ (cf. Figure 2). 

 Car crash   Accident 

 Predicate P11 (Keywords = Some ("Night", "Freeway", "Speed")) implies P13 (Keywords in 

("Highway", "Night")) having: 

 = Some   in (cf. Figure 2). 

 (Night, Freeway, Speed)   (Highway, Night) 

 

Figure 8. Screen shot of the MSI 

2 PUM and PAM interface. 

The primary horizontal fragmentation algorithm Make-Partition [Navathe et al. 1995], applied 

on the uPAM matrix obtained above, generates the predicate clusters shown in Figure 9. These 

clusters are further refined following a post-processing procedure developed in [Belatreche et 

al. 1997], based on the semantic implications identified in the uPAM, to yield the final 

horizontal minterm fragments shown in Figure 9. As a matter of fact, since P4 P2, P9 P3, 

P13 P10 and P11 P14, then P4, P9, P13 and P11 should be removed from the corresponding 

clusters [Belatreche et al. 1997], consequently yielding the minterms shown below. 

 

 

 

 

 

 

User queries and 

corresponding access 

frequencies 

 

Predicate Usage matrix 

 

Predicates invoked in the 

user queries 

 

Predicate Affinity Matrix 
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Figure 9. Clustering of Predicates using graph theoretic algorithm 

 

Recall that ignoring implications can lead, in multimedia applications, to higher computation 

costs when creating fragments, bigger fragments which are very restrictive for multimedia 

storage, and retrieval, as well as data duplication on several sites. For instance, in the current 

example, applying Make_Partition without considering the semantic implications between 

predicates (PAM lacking all semantic implications, which are replaced by null values) yields 

the following minterm fragments: F1(P0 ^ P1 ^ P2), F2(P1 ^ P2 ^P3), F3(P0 ^ P1 ^ P4), F4(P2 ^ 

P5 ^ P6), F5(P2 ^ P7 ^ P8),  F6(P1 ^ P2 ^ P9), F7(P0 ^ P10 ^ P11), F8(P12 ^ P13 ^ P14), 

F9(Else). On can clearly recognize the higher number of minterms, in comparison with those 

identified using the semantic implications (i.e., uPAM in Figure 8), which obviously underlines 

higher computation costs when creating the multimedia partitions. In addition, the obtained 

fragments induce data duplication among each other, e.g., between F1 and F3, as well as F2 and 

F6, which is detrimental to data fragmentation. 

6.2. Timing Analysis 
We have shown that the complexity of our approach (SPI and underlying algorithms) simplifies 

to O(npvs
2
 nv nc d). It is quadratic in the size of user predicates (npvs

2), and varies with value 

set cardinalities (nv), as well as the size of the value knowledge base VKB considered (nc d). We 

have verified those results experimentally. Timing analysis is presented in Figure 10. The 

experiments were carried out on Pentium 4 PC (with processing speed of 3.0 GHz, 504 MB of 

RAM). Note that in these experiments, a set of 1200 semantic predicates was generated in a 

random fashion, value-set cardinalities (varying between 2 and 20 per value set, cf. Figure 10) 

being under strict user control. Multiple value knowledge bases, extracted from WordNet, with 

varying depth (from 6 to 16 levels, cf. Figure 10.b) and number of concepts (from 100 to 

132000 nodes, cf. Figure 9.b) were also considered. One can see from the result that the time to 

compute semantic implications grows in a polynomial fashion with the number of predicates.  
 

 

Clusters produced: 

C1: (P0, P1, P2, P4) 

C2: (P3, P9) 

C3: (P6, P5) 

C4: (P7, P8)  

C5: (P10, P11, P14, P13, P12)  
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P4 
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P14 
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P13 

10 

5 
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10 
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5 
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5 

Primary horizontal  

minterm fragments: 
 

F1: (P0 ^ P1 ^ P2) 

F2: (P1 ^ P2 ^ P3) 

F3: (P2 ^ P5 ^ P6)  

F4: (P2 ^ P7 ^ P8) 

F5: (P10 ^ P12 ^ P14) 

F6: Else 

 

 

 

P3 
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a. Varying value set cardinalities  

b. Varying VKB size (depth and number of concepts)  

 

Figure 10. Timing results regarding the number of predicates, value set cardinalities, and VKB size 

 

Recall that the reference value knowledge base VKB and operator knowledge base OKB 

are stored in a relational database and are queried for each value and operator in the concerned 

predicates when identifying implication. Thus, querying the VKB knowledge base for each 

predicate value requires extra time (database access time) and hence contributes to increasing 

time complexity. Therefore, we believe that system performance would improve if the reference 

VKB knowledge base could fit in primary memory. 
 

7. Conclusion 

Fragmentation techniques are used in distributed system design to reduce accesses to irrelevant 

data, thus enhancing system performance [Ezeife and Barker 1995]. In this study, we address 

primary horizontal fragmentation in multimedia databases. In particular, we emphasize 

semantic-based predicates implication which are required in current fragmentation algorithms, 

in order to partition multimedia data efficiently. Our approach is complementary to that 

developed in [Saad et al. 2006], targeting implications between low-level multimedia predicates 

(applied on complex feature vectors such as dominant color, texture, etc.) as a prerequisite to 

performing multimedia fragmentation. We propose a set of algorithms for identifying 

implications between semantic predicates, based on operator and value implications. Operator 

implications are identified utilizing a specific operator knowledge base developed in our study. 

Value implications are discovered following domain-oriented or generic value concept 

knowledge bases such as WordNet [WordNet 2005]. We developed a prototype to test our 

approach. Timing results show that our method is of polynomial complexity.  

We are currently conducting fragmentation experiments on real multimedia data so as 

to analyze our approach’s efficiency with respect to traditional methods. Future directions 

include studying derived horizontal fragmentation and vertical fragmentation of multimedia 

data, taking into account semantic and low-level multimedia features. We also plan on releasing 

a public version of our prototype. 

References 

Baiao F, Mattoso M., A Mixed Fragmentation Algorithm for Distributed Object Oriented Databases. 9th Inter. 

Conf. on Computing Information, Canada, 1998 

Belatreche L, Karlapalem K, Simonet A., Horizontal class partitioning in object-oriented databases. 8th Inter. 

Conf. on Database and Expert Systems Applications (DEXA’97), 1997 

Bernhard Braunmuller, Efficiently Supporting Multiple Similarity Queries for Mining in Metric Databases, 

IEEE Trans. on Knowledge and Data Engineering, v.13, p.79-95, 2001 

Chinchwadkar G.S., Goh A., An Overview of Vertical Partitioning in Object Oriented Databases. The 

Computer Journal, Vol. 42, No. 1, 1999 

Ehrig M. and Sure Y., Ontology Mapping - an Integrated Approach. In Proceedings of the 1st European 

Semantic Web Symposium, V. 3053 of LNCS, pp. 76-91, Greece, 2004 

81 



22 Simpósio Brazileiro de Banco de Dados – SBBD 2007  

Ezeife C.I., Barker K., A Comprehensive Approach to Horizontal Class Fragmentation in a Distributed Object 

Based System. J. of Distributed and Parallel Databases, 1, 1995. 

Ezeife C.I., Barker K., Distributed Object Based Design: Vertical Fragmentation of classes. Journal of 

Distributed and Parallel DB Systems, 6(4): 327-360, 1998 

Gertz M, Bremer J.M., Distributed XML Repositories: To-Down Design and Transparent Query Processing. 

Department of CS, University of California, 2004 

Grosky W. I., Managing Multimedia Information in Database Systems,  Communications of the ACM, Vol. 40, 

No. 12, pp. 72-80, 1997 

Kosch H., Distributed Multimedia Database Technologies Supported by MPEG-7 and MPEG-21, Auerbach 

Publications, 280 p., 2004 

Lin D., An Information-Theoretic Definition of Similarity. In Proceedings of the 15th International 

Conference on Machine Learning, 296-304, 1998. 

Maguitman A. G., Menczer F., Roinestad H. and Vespignani A., Algorithmic Detection of Semantic Similarity. 

In Proc. of the 14th Inter. WWW Conference, 107-116, Japan, 2005 

Miller G., WordNet: An On-Line Lexical Database. Journal of Lexicography, 3(4), 1990. 

Navathe B, RA M., Vertical Partitioning for Database Design: a Graphical Algorithm. 1989 ACM SIGMOND 

Conference, Portland, 440-450, 1989 

Navathe S.B, Karlapalem K, Ra M., A Mixed Partitioning Methodology for Initial Distributed Database 

Design. Computer and Software Engineering J., 3(4): 395-426, 1995 

Ozsu M.T, Valduriez P., Principals of Distributed Database Systems, Prentice Hall, 1991 

Richardson R. and Smeaton A.F., Using WordNet in a Knowledge-based approach to information retrieval. In 

Proc. of the 17th Colloquium on Information Retrieval, 1995. 

Rodriguez M.A., Egenhofer M.J., Determining Semantic Similarity among Entity Classes from Different 

Ontologies. IEEE Transactions on Knowledge and Data Engineering, Vol.15, n.2, pp. 442-456, 2003 

Saad S., Tekli J., Chbeir R. and Yetongnon K., Towards Multimedia Fragmentation. In Proceedings of the 10th 

East-European Conference on Advanced Databases and Information Systems ADBIS’06, 2006 

Sub C., An approach to the model-based fragmentation and relational storage of XML-documents. Grundlagen 

von Datenbanken, 98-102, 2001 

WordNet 2.1, A Lexical Database of the English Language. http://wordnet.princeton.edu/online/, 2005. 

82 


