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Abstract—This paper briefly describes and evaluates MUSE, a 
MUsical Sentiment Expression prototype system, taking as 
input a MIDI music file and producing as output a sentiment 
vector describing the 6 primary emotions (i.e., anger, fear, joy, 
love, sadness, and surprise) expressed by the music file. 
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I. INTRODUCTION 
 

Over the past few years, text-based sentiment analysis tools have 
evolved into mature services and APIs. For instance, tools like 
LIWC (Linguistic Inquiry – Word Count) [1] and IBM’s 
ToneAnalyzer [2] can extract sentiments from texts to report and 
predict expected user feedback  However, very few comparable 
breakthroughs have been made when it comes to analyzing 
multimedia documents (e.g., images, sounds, and videos).  

Musical Sentiment Analysis (MSA) attempts to bridge this 
gap between text and music. Given an input musical piece, an 
MSA tool should accurately estimate end users’ emotional 
response when listening to the given piece. The potential 
applications of such a sentiment analysis system are broad and 
could have a serious impact in the field. For one, it could help 
music producers gauge their compositions to check whether they 
will produce the target sentiments they were attempting to portray. 
Beyond that, it could usher in a new sentiment-based music search 
functionality, in which musical pieces are retrieved based on their 
expected sentiment vectors. Most importantly, it could herald the 
start of the development of a universal retrieval system, where any 
multimedia document of any type (including images, videos, 
music, etc.) could be retrieved based on its perceived sentiment 
vector, irrespective of the media-specific features (e.g., visual, 
musical, spectral) that are part of its nature, and which are only 
dealt with at the sentiment-analysis stage. 

In this paper, we concisely describe our musical sentiment 
analysis prototype system titled MUSE (MUsic Sentiment 
Extraction), which predicts a user’s emotional response when 
listening to a given symbolic musical piece (presented in MIDI1 
format) [3]. The remainder of this short paper is organized as 
follows. Section II briefly presents related works. Section III 
highlights system constraints. Section IV describes the overall 
system architecture and main components. Section V describes 
our experimental evaluation, before concluding in Section VI.  

II. RELATED WORKS 
Music Sentiment Analysis (or MSA) is one of many open 
problems within the broader field of Music Information Retrieval 
(MIR), which deals with the representation, description, storage, 
and retrieval of information from music. Much like with standard 
IR systems, MIR systems (and MSA systems in particular), 

                                                                 
1 Musical Instrument Digital Interface: digital music format designed for 

symbolic music representation and processing by computers. 

convert music documents into feature representations. These 
range over high-level symbolic features (a.k.a.2 music-theoretic 
features, based on musical note abstractions, such as musical key 
and chord progressions) and low-level frequency-domain features 
(a.k.a. statistical features, based on frequency data used to 
describe audio formats, such as spectral components of audio 
samples and frequency histograms) [4]. Many approaches in the 
literature combine both these feature ranges into so-called 
multimodal feature vectors [5]. Some approaches in MIR have 
also built on breakthroughs in text-based sentiment analysis to 
improve musical sentiment analysis, by incorporating music lyrics 
into the repository entries to be analyzed [6].  

However, MSA research has not always gone in that 
direction. In fact, one of the earliest MSA solutions, developed in 
the late 1980s by Katayose et al. [7] firmly placed its emphasis on 
purely musical features. In this approach, the authors develop an 
artificial music expert, a system that can detect and treat music 
just like any human intuitively does: through its emotions. To do 
this, they introduced “quasi-sentiments”, a semantic/emotional 
meaning behind a given piece, so as to emulate how a human 
would react to a piece. Their extraction technique consists of 
mapping musical phenomena to these quasi-sentiments using a set 
of pre-defined rules. For example, a certain chord progression 
could correspond to a gloomy emotion, while a certain key or 
tempo could indicate a happy emotion. Through a simple rule-
based approach, the authors were able to use musical features 
extracted from the input musical piece to infer its underlying 
emotions. 

More recent efforts attempt to use as many features as 
possible, be it content-based (symbolic and/or sampled audio) or 
textual (lyrics of a song) to extract the sentiments of a given 
musical piece [6] [8] [9] [10]. For example, Panda et.al [6] 
perform sentiment-based retrieval based on a set of 253 simple 
musical features, 98 melodic features, 278 symbolic audio 
features, and 19 lyrical features. From this very large feature set, 
the authors seek to select the best combination of features to 
perform the sentiment analysis task. Results, based on optimal 
feature selection and retrieval performance testing for multiple 
machine learning and classification algorithms (SVM3, k-NN4, 
etc.) clearly showed how using multiple feature types can improve 
retrieval performance. Indeed, the optimal feature configuration 
for audio-only features yielded an optimal f-value of 44.3%, while 
a hybrid feature selection of 15 audio and 4 symbolic features 
scored an f-value of 61.1% [6]. This improvement shows the 
potential of using multimodal features, but it also shows that 
lyrical features did not help to improve system performance in this 
particular study. 

Other studies, on the other hand, have highlighted the 
positive impact that lyrical features can make in MIR/MSA. In 
[10], Hu and Downie incorporate lyrical features into their testing 

                                                                 
2 also known as 
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and report a 9.6% accuracy improvement over the best audio-
features-only system they tested. Few approaches in [9] [8] have 
suggested considering user profiles, moods, and context 
information, in addition to content-based and textual music 
features, to generate sentiment-aware and contextually meaningful 
music playlists. Therefore, we can see that the latest trend: i.e., 
performing sentiment analysis using multiple feature values; is 
receiving more interest and tends to produce better results. Yet, 
one can also realize, given the results just described and the 
relative novelty of MSA research, that this domain is still very 
much in flux as more progress is expected in the upcoming years.  

IV. SYSTEM ARCHITECTURE 
MUSE is designed and developed to allow users to predict the 
emotional response of a given musical piece. It leverages several 
cutting-edge algorithms and blends them with a music-theoretical 
knowledge base to infer the sentiment response from a 
composition’s melody. The overall architecture of our prototype 
system is shown in Fig. 1. The MUSE engine consists of three 
main components: 

 
1- Feature Parsing component: It receives an input MIDI file 

and returns a feature vector comprising of a combination of 
seven (4 symbolic and 3 frequency-domain) features, 
namely: 
 

- High-level symbolic features: 
 

1) Note density (ND): The number of notes per musical beat. 
2) Note onset density (NOD): The number of distinct note 

onsets per musical beat. This feature differs from the 
previous one in that two notes played simultaneously 
count as one onset in computations. This feature indicates 
how the notes of a particular piece are played: If ND and 
NOD are similar, then we can infer that the notes in a 
piece tend to be played sequentially rather than together.  

3) Dominant key: The key that is most common and most 
prominent in the musical piece. This feature is extracted 
using an approach similar to the one developed in [11]. 

4) Chord progression: The set of chords that best describe 
the musical melody. This feature is the most difficult to 
extract, and requires the use of a heuristic and a 
maximum-likelihood inference method to achieve 
satisfactory performance 

  

- Low-level frequency-domain features: 
 

5) Piece Tempo: The overall rhythm/speed of a musical piece 
(expressed in Beats per Minute (BPM)). 

6) Average pitch: A weighted average of every MIDI note’s 
pitch value, with the weight being the note’s duration. This 
feature provides an indication of the overall pitch at which 
the musical piece’s notes are being played in the frequency 
domain (designating high, medium, or low-pitch).  

7) Average intensity: A weighted average of every MIDI 
note’s velocity value, with the weight being the note’s 
duration. This features indicates the overall intensity of a 
piece (e.g., calm or loud). 

 

 
These seven features will be used to infer sentiments at the 
Machine Learning (ML) stage. 
 

 
 

Fig. 1. Sentiment Engine Architecture 
 

2- Music Theory Knowledge Base component: It houses all 
of the music theoretical operations, rules, and parameters 
needed throughout the system’s operation. It is mainly 
called upon to perform likelihood estimations needed for 
MIDI feature parsing. 

 

3- Machine Learning (ML) agent: this component is at the 
core of MUSE’s sentiment inference functionality. It 
consists of two sub-components and a training set: 

1) Fuzzy K-Nearest Neighbors (Fuzzy k-NN) component: It 
implements a basic supervised learning algorithm 
allowing to compute sentiment scores for new incoming 
pieces based on their similarity with pieces it already 
learned. Unlike the traditional crisp k-NN algorithm 
(which classifies data in crisp/distinct categories), this 
algorithm produces fuzzy sentiment membership scores 
(producing so-called fuzzy categories with fuzzy 
boundaries, such that an object (musical piece) can be in 
one category and the other at the same time), which is 
more in keeping with the nature and subjectivity of 
sentiments (e.g., a piece of music can express 30% 
happiness and 70% excitement simultaneously). 
While fuzzy logic can be integrated in other classifiers, 
we adopt fuzzy k-NN in this study since it is well 
established, non-parametric (usually allowing more 
flexibility and better performance, compared with 
parametric solutions), and instance-based (matching new 
pieces with existing ones using minimal training time).   

2) Music Similarity Evaluation component: It allows the 
Fuzzy k-NN component to perform its estimations. At the 
most basic level, it accepts two input MIDI files and 
returns a similarity score � [0, 1] highlighting their 
similarity or divergence (0/1 designating 
minimum/maximum similarity respectively). MIDI files 
are compared based on their symbolic and frequency-
domain feature vectors.  Individual feature vector 
similarity scores are computed using adapted similarity 
measures, such as Jaccard distance (used with most 
features) and the more sophisticated Tonal Pitch Step 
Distance (TPSD) used to compare chord progressions 
[12]. Then, the seven feature similarity scores are 
averaged to produce an overall similarity score. 
 

3) Training Set: This forms the basis through which the ML 
agent can make estimations, providing the “expertise” the 
agent uses to infer incoming pieces’ sentiment scores. 
The MUSE training set initially consists of 40 musical 
pieces which were annotated with the help of 30 human 



testers via dedicated online surveys1. The initial 40-piece 
set is also diverse in that it covers all 6 primary emotions 
addressed in the MUSE approach: anger, fear, joy, love, 
sadness, and surprise. Beyond this initial training set, 
MUSE can be further trained on additional MIDI pieces 
using the system's lifelong learning feature. This will 
allow the tool to learn from bad estimations, as well as 
increase its own knowledge and overall user confidence 
in its ratings with system usage. 

 
A diagram describing the ML agent is shown in Fig. 2. 

 

 
Fig. 2. MUSE Machine Learning Agent 

 

V. EXPERIMENTAL EVALUATION 
We have experimentally tested the different components of the 
system: from feature parsing, feature similarity evaluation, and 
primarily the ML agent, in order to assess their effectiveness and 
efficiency. We present in this paper results evaluating the ML 
agent only (and report the latter to a dedicated paper).  

To perform the required testing, a suitable training set had to 
be constructed. Initially, twenty-four pieces formed the learning 
component’s training set. These real pieces, ranging from classical 
to contemporary, were assembled into an online survey1, where 
respondents were asked to rate each piece in terms of six 
sentiments (i.e., anger, fear, joy, love, sadness, and surprise) on a 
scale of 0-to-10. The survey produced around 30 responses, the 
average of which was used to train the system. At this stage, the 
learning component scores produced a PCC2 of 0.53 using three-
fold cross validation (i.e., 16 training pieces, 8 testing pieces). 
Seeing that the result was unsatisfactory, we proceeded to increase 
the size of the training set to 100 pieces by producing 76 
“synthetic” pieces using a dedicated sentiment-based music 
composition tool3. These pieces were added to the system’s 
training set using the lifelong learning feature. Using 10-fold cross 
validation, we obtained a PCC of 0.67, which is a remarkable 
improvement over the 0.53 figure mentioned previously.  

However, after closely analyzing the data and results, we 
identified another issue with our training set: it seems biased 
toward certain emotions. Indeed, our set was overwhelmingly 
made of joyful and sad pieces, while angry, fearful and surprising 
pieces were almost nonexistent. To remedy this situation, we 
added an additional 16 real pieces to the training set, expressing 
mostly anger and fear. These pieces were selected based on 
human sentiment scores obtained by averaging the results of two 
other online surveys designed in a similar format to the first 
                                                                 
1   Available on https://goo.gl/forms/ptMy5uxrVQVmro5F3 (first part, 24-

pieces); https://goo.gl/forms/tHFqeCvGBe7Nh2um1 (second part, 8-pieces); 
and https://goo.gl/forms/sOTjPJ986MGYjtsK2 (third part, 8-pieces). 

2  Pearson Correlation Coefficient 
3 Available at: http://sigappfr.acm.org/Projects/MUSEC/ 

survey for the first 24 pieces1. We also dealt with inconsistencies 
in piece ratings by eliminating scores with the least inter-tester 
score correlations. Finally, we tackled the bias issue further by 
removing 16 sad and joyful pieces from the 76-piece synthetic set, 
whilst replacing them with 20 more evenly distributed pieces.  

The resulting set, when looked at in a crisp manner (i.e., 
assigning a piece to the crisp sentiment category corresponding to 
the maximum sentiment score), had the following distribution: 
Anger: 17, Fear: 17, Joy: 26, Love: 18, Sadness: 25, Surprise: 17. 
For this final training set, we obtained a PCC of 0.63 using 10-
fold cross validation, which proved to perform better on a wider 
range of musical pieces. Therefore, we converged on the 120-
piece training set described above and proceeded to test our 
system using this set in terms of both efficiency and effectiveness. 

A. System Effectiveness 
To assess the quality of our system, we conducted tests covering 
our ML component’s fuzzy scoring ability. We tested the ML 
agent using measures like the Pearson Correlation Coefficient 
(PCC) and Mean Square Error (MSE) compared with human 
tester scores. PCC is a correlation measure and evaluates the 
dependence between vector shapes (�[-1, 1], i.e., 1 for maximum 
correlation, 0 for no correlation, and -1 for negative correlation), 
whereas MSE is a distance measure evaluating the separation 
between vectors (as their average Euclidian distance �[0, �[). A 
high quality sentiment analysis (classifier) would naturally 
produce: i) high PCC scores: which means that system generated 
sentiment vectors are closely correlated with user (expert) vectors; 
ii) and low MSE scores: meaning that system generated vectors 
are not distant from expert vectors. Experimental evaluation was 
conducted using 2, 3, 5, and 10-fold cross validation. The average 
results of these tests can be seen in Fig. 3 and Fig. 4 
 

 
Fig. 3. PCC versus Training Set Size 

 

From these results, we can make two observations. First, we 
clearly see that system performance improves as the size of the 
training set increases, and this for both PCC (steadily increasing) 
and MSE (steadily decreasing).This shows that MUSE’s ability to 
extract sentiments from musical pieces improves as it is exposed 
to and as it learns more and more pieces. Second, we also notice 
from the figures that PCC tends to increase as k-NN (the number 
of nearest neighbors considered in the Fuzzy k-NN classification 
process) increases, while MSE drops with the increase of k-NN. 
Following our analysis and understanding of Fuzzy k-NN, as we 
increase the number of neighbors, the training vectors used for 
score computation become more diverse and less similar to the 
target piece’s vector (increasing the learner’s training set variety, 
and thus increasing its resistance to noise when performing 



classification). Hence, training vectors become more normally 
distributed, which in turn reduces and normalizes the system 
generated sentiment vectors. 

B. System Efficiency 
The Fuzzy k-NN algorithm requires no training time since it is 
non-parametric. In other words, training the system merely 
consists of adding an element to its training set, which is done in 
constant time. Though this speed in training is very advantageous, 
it comes at the expense of testing speed. Where other learning 
algorithms run in near instantaneous time following a lengthy 
training and parameter computation, the k-NN algorithm’s 
running time is linear w.r.t. (with respect to) the size of its training 
set, since it must compare the target vector with each and every 
piece in its training set. Hence, what k-NN gives in training (in 
terms of efficiency), it takes back in testing.  

 
Fig. 4. MSE vs Training Set Size 

Fig. 5. shows the system’s time performance with different 
training set sizes, by varying k (i.e., the number of k nearest 
neighbors the system takes into consideration when computing 
scores). As expected, results show that the algorithm’s running 
time is linear w.r.t. training set size as well as k, where increasing 
the k value leads to a larger overhead due to the added 
computations needed to consider the additional neighbors.  

 

 
 

Fig. 5. System Running Time for different training set sizes and k 
(nearest neighbor) values. 

VI. CONCLUSION 
This paper briefly describes MUSE: a prototype system for 
automated MUsical Sentiment Expression. It mainly consists of: i) 
a feature parsing engine used to extract high-level (symbolic) 
music features from an input MIDI file, ii) a music-theoretic 
knowledge base to help with the music feature parsing process, as 
well as iii) an ML component tasked with converting music 
feature scores into sentiment vector scores. Developing this 
prototype system required conducting a thorough review of the 

literature in Music Information Retrieval (MIR) and in Music 
Sentiment Analysis (MSA). It was through this review that the 
features to be used in our approach were selected. Then, the 
system architecture was designed, and incrementally refined. With 
the system design in mind, we proceeded to implement the system 
and find the best starting set to set it up for as general an input file 
as possible. We then conducted a battery of experimental tests to 
evaluate the quality and performance of the system.  

In the oral demonstration of MUSE, we aim to showcase the 
system’s logical design, implementation, and functionality: 
defining and then fine-tuning the different system parameters, and 
then highlighting their impact with respect to the musical pieces 
being tested. We will also present and discuss our latest 
experimental evaluation and results, highlighting the system’s 
effectiveness and efficiency, as well as its strong and weak points 
in extracting fuzzy sentiment scores and crisp sentiment 
categories, emphasizing ongoing design and technical 
improvements.  

Looking forward, we plan to extend MUSE to consider a 
wider range of high-level (symbolic) and low-level (spectral) 
music features, in addition to the seven features currently used, 
aiming to further improve sentiment expression accuracy. In the 
near future, we aim to customize the system’s behavior to 
consider a specific user’s profile and her individual perception of 
sentiments in music. In other words, while our current system 
considers average user (expert) scores in training the machine 
learning agent, in order to produce scores that simulate the 
combined perception of all users (i.e., simulating the sentiment 
perception of the “mass” of users), we aim to extend/adapt the 
current work to simulate an “individual” user’s perception of 
sentiments in music, based on her profile, preferences, and 
previous experiences. 
 

ACKNOWLEDGEMENTS 
This study is partly funded by the National Council for Scientific 
Research (CNRS-L) - Lebanon, and LAU. We would also like to 
thank the testers who volunteered to participate in the 
experimental evaluation. 
 

REFERENCES 
 

[1] Pennebacker Conglomerates, Inc., [Online]. Available: 
http://liwc.wpengine.com/. [Accessed Jan. 2018]. 

[2] IBM, [Online]. Available: https://www.ibm.com/watson/ 
developercloud/tone-analyzer.html. [Accessed Jan. 2018]. 

[3] MIDI Manufacturers Association, "The MIDI 1.0 Specification," 
[Online]. Available: https://www.midi.org/ specifications/category/midi-
1-0-detailed-specifications. [Accessed Jan. 2018]. 

[4] Demopoulos R. and Katchabaw M. J., "Music Information Retrieval: A 
Survey of Issues and Approaches". Technical Report #677, Dept. of 
Computer Science, Unviersity of Western Ontario, Canada, Jan. 2007. 

[5] Schedl M. et al., "Music Information Retrieval: Recent Developments 
and Applications," Foundations and Trends in IR, 8(2-3), 127-161, 2014. 

[6] Panda R. et al., "Multi-Modal Music Emotion Recognition: A New 
Dataset, Methodology and Comparative Analysis". 10th Inter. Symp. on 
Computer Music Multidisciplinary Research (CMMR), 2013.  

[7] Katayose H. et al., "An Approach to an Artificial Music Expert". Inter. 
Computer Music Conference (ICMC’89), pp. 139-146, 1989.  

[8] Wohlfahrt-Laymanna J. and A. Heimburgerh, "Content Aware Music 
Analysis with Multi-Dimensional Similarity Measure". Information 
Modelling and Knowledge Bases XXVIII, pp. 292-303, 2017.  

[9] Fleischman M. B. and Roy D. K., "Estimating Social Interest in time-
based media". US Patent 20110040760 A1, 2011. 

[10] Hu X., "Improving Mood Classification in Music Digital Libraries". In  
10th annual joint conf. on Digital Libraries, ACM, 2010.  

[11] Temperley D., "A Bayesian Key-Finding Model". MIREX-2005 Symbolic 
Key Finding Task, 2005.  

[12] de Haas W. B. et al., "Tonal Pitch Step Distance: A Similarity Measure 
for Chord Progressions". Intern. Conf. on Music IR (ISMIR), 51-56, 2008.  


