
1

Semantic-based Merging of RSS Items

Fekade GETAHUN, Joe TEKLI, Richard CHBEIR, Marco VIVIANI, Kokou

YETONGNON

LE2I Laboratory UMR-CNRS, University of de Bourgogne

Engineer’s wing, 9 Savary St., 21078 Dijon Cedex France
{fekade-getahun.taddesse, joe.tekli, richard.chbeir, marco.viviani, kokou}@u-bourgogne.fr

Abstract. Merging XML documents can be of key importance in several applications. For

instance, merging the RSS news from same or different sources and providers can be beneficial for

end-users in various scenarios. In this paper, we address this issue and explore the relatedness

measure between RSS entities/elements. We show here how to define and compute exclusive

relations between any two elements and provide several predefined merging operators that can be

extended and adapted to human needs. We also provide a set of experiments conducted to validate

our approach.

Key words: RSS, Merging, Document Relatedness, Clustering, Merging Operators

1 INTRODUCTION
W3C's XML (eXtensible Mark-up Language) [52] is the driving force for representing,
exchanging, formatting, interchanging, storing, and filtering data in centralized as well as
distributed environments, such as the Web. It is popular because of its semi-structured and self-
describing nature which makes it suitable for describing any kind of data.

Really Simple Syndication (RSS) [1][47] is an XML-based family of web feed formats used to
publish frequently updated contents such as blog entries, news headlines and podcasts, in a
standardized format. RSS has been proposed to facilitate the aggregation of information from
multiple web sources. As a result, clients can simultaneously access content originating from
different providers (using RSS aggregator) rather than roaming a set of news providers. Clients can
subscribe to news they are interested in, using RSS aggregators. RSS aggregators download news
feeds and provide an interface to view and organize them. When Clients add more sources the
amount of news feeds becomes more difficult to manage. Often, clients have to read related (and
even identical) news more than once as the existing RSS engines do not provide facilities for
merging related items.

Merging RSS news can thus fruitful in several applications and scenarios. This comes down to (i)
identifying related elements between two news, and (ii) generating a merged document that
collapses related elements while preserving remaining source elements. With respect to (w.r.t.) the
first sub-problem, merging RSS news requires identifying the relatedness1 [4] between their
elements, i.e., element labels and contents, and consecutively element semantic overlapping,
intersection, inclusion and disjointness (considering the meaning of terms and not only their
syntactic properties).

In this work, we address these problems. We first focus on the issue of measuring relatedness and
relationship between RSS elements/items, as a necessary prerequisite to performing efficient RSS
merging. After, we propose merging operators that consider the relatedness and relationship values

1 Semantic relatedness is a more general concept than similarity; similar entities are semantically related by
virtue of their similarity, but dissimilar entities may also be semantically related by lexical relationships such
as meronymy and antonymy, or just by any kind of functional relationship or frequent association.

2

in performing the merge operation. Hence, the main objective of this study is to put forward a
specialized and human-oriented RSS relatedness measure able to:

i) Quantify RSS relatedness, necessary for identifying and grouping RSS items that are
related (similar) enough to be merged (the merging of unrelated items is obviously
useless to the user).

ii) Identify the relationship that can occur between two RSS items (i.e., disjointness,
intersection, inclusion and equality), to be exploited in the merging phase.

iii) Merging RSS items based on item relatedness (grouping) and relationship identification.
Grouping similar items, and Identifying their common/different parts would help decide
on the merging rules to be executed (e.g., if RSS item I1 is included in I2, then merging I1
and I2 simply comes down to preserving I2).

The remainder of this paper is organized as follows. Section 2 presents our motivation scenarios.
Section 3 presents an overview of our merging framework. Section 4 presents some preliminary
definitions and notions to be exploited in defining our RSS relatedness measure. Section 5 presents
our relatedness measure detailing semantic relatedness and relationship between texts, simple
elements and items. Section 6 presents relation aware clustering algorithm. In Section 7, we details
our basic merging operators and the related merging algorithm. Section 8 presents experimental
results. In Section 9, we discuss background and related work. Section 10 concludes the paper and
draws future research directions.

2 MOTIVATING SCENARIO
The number of applications using RSS is increasing everyday: AmphetaDesk2, PullRss3, Radio
UserLand4, SlashCode/Slashdo5, Weblog 2.0 [1]. In addition, RSS has been used in ELF6 and
Package tracking7 to notify customers about events or news. Most of these applications are
designed to aggregate, search, filter or display news in RSS specification. However, to the best of
our knowledge, none of these considers the issue of merging related news collected from same or
different news providers.

To motivate our work, let us consider Figure 1 and Figure 2 showing a list of news extracted from
CNN and BBC's RSS feeds. Registering these feeds in existing news readers such as Newsgator,
Google Reader, Attensa, provides the user with access to all news without considering relatedness
among them. However, identifying and merging related news would enable the user to more easily
and efficiently acquire information. The user would obviously prefer to access one piece of news
about a certain topic, encompassing all relevant and related information (after merging), instead of
searching and reading all news articles covering the same topic, which could be extremely time
consuming and often disorienting. XML news feeds (e.g., RSS items), and particularly XML
elements, can be related in different manners.

− The content of an element might be similar and totally included in another (inclusion).

Example 1. The title content of CNN1 “U.N. chief launches $613M Gaza aid appeal” includes
the title content of BBC1 “UN launches $613m appeal for Gaza” 8.

− Two news may refer to similar and related concepts (intersection).

Example 2. The description content of CNN2 “Ford Motor reported that its ongoing losses
soared in the fourth quarter, but the company reiterated it still does not need the federal bailout
already received by its two U.S. rivals.” and description content of BBC2 “US carmaker Ford
reports the biggest full-year loss in its history, but says it still does not need government loans.”
are related and very similar, they share some words/expressions (‘Ford’, ‘report’, ‘loss’, ‘US’)
and semantically related concept (‘fourth quarter’, ‘year’), (‘biggest’, ‘soar’), (‘reiterate’, ‘say’),
(‘federal bailout’, ‘government loan’).

2 AmphetaDesk is a free, cross platform, open-sourced, syndicated news aggregator

http://www.disobey.com/amphetadesk/
3 PullRSS is a template-based RSS to HTML converter, with optional redirects.
4 http://radio.userland.com/userGuide/reference/aggregator/newsAggregator
5 http://slashdot.org/
6 http://libraryelf.com/
7 http://www.simpletracking.com/
8 After a pre-process of stop word removal, stemming, ignoring non textual values and semantic analysis

3

<CNN_RSS>
<item>

CNN1

<title>U.N. chief launches $600M Gaza aid appeal</title>
<guid>http://edition.cnn.com/2008/WORLD/asiapcf/05/02/oly.hk.torch/index.html?er
ef=edition</guid>
<link>http://edition.cnn.com/2008/WORLD/asiapcf/05/02/oly.hk.torch/index.html?ere
f=edition</link>
<description> United Nations Secretary-General Ban Ki-moon on Thursday launched
a humanitarian appeal to provide emergency aid to the people of Gaza in the aftermath
of Israel's military offensive in the region.</description>
<pubDate>Fri, 02 January 2009 02:56:47 EDT</pubDate>
</item>
<item>

CNN2

<title>Ford reports $5.9 billion loss in the fourth-quarter </title>
<description>Ford Motor reported that its ongoing losses soared in the fourth quarter,
but the company reiterated it still does not need the federal bailout already received by
its two U.S. rivals.</description>
</item>
<item>

CNN3
<title>The youth forum cancels scheduled demonstration</title>
<description>The international youth forum cancels the call for stop-war
demonstration due to security reason</description>
</item>
<item>

CNN4

<title>Al-Jazeera: Cameraman home from Gitmo</title>
<guid>http://edition.cnn.com/2008/WORLD/americas/05/01/gitmo.journalist/index.ht
ml? eref=edition</guid>
<link>http://edition.cnn.com/2008/WORLD/americas/05/01/gitmo.journalist/index.ht
ml? eref=edition</link>
<description>Al-Jazeera cameraman Sami al-Hajj has been released after nearly six
years in the U.S. Navy prison at Guantanamo Bay, Cuba, a senior Pentagon official
aware of the details of the release told CNN on Thursday.</description>
<pubDate>Thu, 01 May 2008 21:51:15 EDT</pubDate>
</item>
</CNN_RSS>

Fig. 1. RSS news extracted from CNN

− News might have different or slightly different titles but refer to almost the same issues
(relatedness between different elements of the same items).

Example 3. Title content of CNN4 “Al-Jazeera: Cameraman home from Gitmo” and Title content
of BBC4 “Freed Guantanamo prisoner is home”. These titles share little commonalities (“home”
and “Guantanamo”9). However, the contents of corresponding news items are similar.

The examples demonstrate the need to consider several issues; First, one can realize that existing
XML-related (xSim[27]), flat text-related similarity (tf-idf), or correlation-based phrase matching
[38] approaches (cf. Section Background) cannot be exploited in comparing RSS items since they
do not identify the disjointness, inclusion, intersection and equality relationships (cf. examples 1, 2
and 3), which are preliminary for the merging process. Second, when comparing two RSS items,
computing relatedness between contents of elements having identical labels is not enough to
identify overall item relatedness (cf. example 3).

It is to be noted that doing this is complex as the quality of textual information is dependent on the
author’s style of writing and use of words, nouns, verbs, …. (identical topics might be described
differently, while different topics might be described using similar concepts).

In the context of RSS merging, there is a need to develop a measure for comparing RSS items,
which considers the different contents of RSS elements all together, identifying along with the
relatedness, the type of relationship between the items being compared. Detecting relationships
between items is crucial to the merging phase (as explained in the introduction) for defining the

9 “Gitmo” indicates the Guantanamo prison.

4

merging rules/operators and consequently performing the merging task. Note that in examples
given above, for the sake of simplicity, we only discuss the relationship between the <title>
elements of both items. Nonetheless, when performing merging, the system must check the
relationship between both RSS items as a whole, i.e., the relationships between all their elements
(which will be thoroughly developed in the remainder of the paper), to decide on the merging rule
to be utilized. In our examples for instance:

<BBC_RSS>
<item>

BBC1

<title> UN launches $613m appeal for Gaza </title>
<description> The UN will launch an appeal for $613m to help people affected by
Israel's military offensive in Gaza, the body's top official says </description>
<guid isPermaLink="false"> http://news.bbc.co.uk/go/rss/-/2/hi/me/723378828.stm
</guid>
<link> http://news.bbc.co.uk/go/rss/-/2/hi/americas/7378828.stm </link>
<pubDate>Fri, 02 January 2009 02:56:47 GMT</pubDate>
<category>Middle-east</category>
</item>
<item>

BBC2
<title> Ford reports record yearly loss </title>
<description> US carmaker Ford reports the biggest full-year loss in its history, but
says it still does not need government loans.</description>
</item>
<item>

BBC3
<title>Youth’s form call for demonstration</title>
<description> International youth forum call demonstration as part of stop the war
</description>
</item>
<item>

BBC4

<title>Freed Guantanamo prisoner is home</title>
<description>A cameraman from the al-Jazeera TV station freed from Guantanamo
Bay has arrived home in Sudan.</description>
<link>http://news.bbc.co.uk/go/rss/-/2/hi/americas/7378828.stm</link>
<guid isPermaLink="false">http://news.bbc.co.uk/2/hi/americas/7378828.stm</guid>
<pubDate>Fri, 02 May 2008 04:08:38 GMT</pubDate>
<category>Americas</category>
<item>
</BBC_RSS>

Fig. 2. RSS news extracted from BBC

− Merging items CNN1 and BBC1 related via the intersection relationship could be
undertaken by merging sub-elements of CNN1 and BBC1 as shown below in Figure 3.

<item>
<title>U.N. chief launches $600M Gaza aid appeal</title>

<description>United Nations launched a appeal to aid to the people of Gaza in the of Israel's military
offensive | $613m affected offensive, the body's top official says Secretary-General Ban Ki-moon aftermath
humanitarian provide emergency in the region </description>

</item>

Fig. 3. Merging of CNN1 and BBC1.

− Merging CNN2 and BBC2, CNN4 and BBC4 could be done similarly to that of CNN1 and
BBC1 (intersection). Nonetheless, this example explicitly reflects the importance of
analyzing the relationships between each of the RSS item elements independently, prior
to deciding on the merging rule.

The objective of this paper is to address relatedness between items, elements and text values and
identifying the merging operators that make use of the identified relationships.

5

3 OVERVIEW
Our framework for merging RSS items is depicted in Figure 4. It consists of four main interacting
modules: (i) Pre-processing, (ii) Relatedness, (iii) Clustering and (iv) Merging. The knowledge
component is a plug-in dedicated to handle and manage domain and application dependent
external information. It encompasses 1) a value knowledge base exploited in evaluating text
content relatedness, 2) a label knowledge base used in evaluating element label relatedness, and 3)
users profile and merging preferences. When the system starts for the first time, the user would
provide an initial profile that includes a list of tags that would be used as content descriptor. These
tag names would be utilized while measuring item/element relatedness. For example, a user may
want to use title and description elements, and another might want to use all tags in
measuring relatedness. The user-based merging rules would be defined by combining templates
containing each of the predefined actions to be undertaken with each selected relation.

Fig. 4. Overall architecture of our RSS merging framework.

3.1 Pre-processing module

The Pre-processing module accesses the knowledge base to get the URL of registered RSS
providers. Then it accesses the internet and downloads corresponding RSS feeds. The module
checks their well-formedness, returning a collection of items, to be treated by the Relatedness
module.

3.2 Relatedness module

The Relatedness module accepts a list of extracted items as input from the pre-processing module
and computes text/elements/items relatedness respectively. The module accesses the content
descriptor of RSS news articles based on the user profile. Unlike the works in [24][38][40], the
content descriptor is decided and provided by a user while building the initial profile and could be
changed later. In computing text relatedness, the vector space model is used to store the enclosure
weight of each concept (which are found after applying stop word removal and stemming as it will
be explained in the following sections) extracted from the content descriptor, and relatedness is
computed using a vector based similarity measure (e.g., cosine). Unlike the approach in [40], the
relatedness between elements takes into consideration both their labels (i.e. tag names) and text
contents. In addition, the module identifies the various relationships that exist between text values,
elements and items as detailed in Section 5.

Knowledge base

Items

Pre-processing

<item>

<title> …

</item>

Item Relatedness

Clustering

Merger

<item>
<title>

Element relatedness

Text relatedness

Vector space generator

label Value

<item>
<title>

Relatedness m
atrix

x

User’s profile

Output

Co
nt
en

t

descriptors

User’s‐merging rule

Internet
News‐

Providers

D
ow

nload

Links

6

3.3 Clustering Module

The Clustering module puts together related (similar) items based on relatedness results provided
by the Relatedness module. The aim of this module is to facilitate the merging process. It is
developed in Section 6. Existing clustering algorithms [10][25] group highly related
documents/items. Applying such algorithms in our RSS context would result in grouping highly
intersecting news in the same cluster, disregarding item relationships. In other words, those news
items related with the inclusion relationship for instance, and having lesser relatedness/similarity
scores, would be put in different clusters, which is not appropriate. Such items should be obviously
put together in the same cluster. As result, we propose a relationship-aware clustering algorithm in
order to consider the various kinds of relationships, in particular inclusion, while performing
clustering.

3.4 Merging module

The Merging module uses the result of the Clustering module in order to abridge grouped together
elements according to predefined merging rules (taking into account element relationships) and
user preferences. In Section 7, the basic merging operators are defined taking into consideration
relationships existing between items and elements. The merging of related items depends on the
merging rules provided by the user and stored in the corresponding profile. The module produces
RSS documents authored with the RSS 2.0 specification and can be read with any RSS aggregator.

4 PRELIMINARIES
In this section, we present some basic definitions and notions to be exploited in defining our RSS
relatedness measure.

4.1 RSS (XML) data model

An XML document is a hierarchically structured and self-describing piece of information
consisting of atomic or complex elements (elements with nested sub-elements). It is represented as
a rooted ordered labeled tree following DOM (Document Object Model) [52]. An RSS item
comes down to an XML document that is well-formed w.r.t. an RSS schema. Note that different
RSS schemas exist, corresponding to the different versions of RSS available on the web (RSS
0.9x10 (x=1 or 2), 1.011, and 2.0). Nonetheless, our analysis of the different versions of RSS
showed that RSS items consistently follow the same overall structure, adding or removing certain
elements depending on the version at hand (for instance element source is part of RSS 0.9x
whereas guid is in RSS 2.0).

Definition 1. [Rooted Ordered Labeled Tree]

A rooted ordered labeled tree12 T is a set of (k + 1) nodes {r, ni}, with i = 1, …, k. The children of
each node are ordered. The root of T is r and the remaining nodes n1, …, nk are partitioned into m
sets T1, …, Tm, each of which is a tree. These trees are called sub-trees of the root of T. The RSS
tree depicting item CNN1 of Figure 1 is shown in Figure 5.

Definition 2. [Element]

Each node of the rooted labeled tree T is called an element of T. Each element e is a pair ςη,=e
where η.e refers to the element name and ς.e to its content. η.e generally assumes an atomic text
value (i.e., a single word/expression) whereas ς.e may assume either an atomic text value, a
composite text value (sentence, i.e., a number of words/expressions), or other elements13.

10 RSS 0.92 is upward compatible to RSS 0.91,Userland specification http://backend.userland.com/rss09x
11RSS 1.0 is also called RDF Site summary, it is a lightweight multipurpose extensible metadata description
and syndication format conforms to the W3C's RDF Specification and is extensible via XML-namespace
and/or RDF based modularization. http://web.resource.org/rss/1.0/spec

12 In the rest of the paper, the term tree means rooted ordered labeled tree.
13 We do not consider attributes in evaluating RSS item relatedness since they do not affect the semantic
comparison process. Nonetheless, attributes will be considered in the merging phase.

7

Definition 3. [Simple/Composite Element]

An element e is simple if ς.e assumes either an atomic or composite textual value14. In XML trees,
simple elements come down to leaf nodes.

For instance, <title> U.N. chief launches $600M Gaza aid appeal </title> of RSS item CNN1 is a
simple XML element having e.η = “title” and e.ς= “U.N. chief launches $600M Gaza aid appeal”.

An element e is composite if ς.e assumes other elements. In XML trees, composite elements
correspond to inner nodes.

Element <item> <title> U.N. chief launches $600M Gaza aid appeal </title> <guide>… </item> of
CNN1 is composite.

Fig. 5. Tree representation of RSS item CNN1 in Figure 1.

Definition 4. [RSS Item Tree]

An RSS item tree is an XML tree T having one single composite element, the root node r (usually
with r.η = ‘item’), and k simple elements {n1, …, nk} describing the various RSS item components.

4.2 Knowledge Base

Knowledge Bases (KB) [46] (thesauri, taxonomies and/or ontologies) provide a framework for
organizing entities (words/expressions, generic concepts, web pages, etc.) into a semantic space. In
our study we formally define a knowledge base as KB=(C, E, R, f) where:

a) C is the set of synonymous words/terms/expressions (synonym sets as in WordNet [44]).

b) E is the set of edges connecting the concepts, where E ك ܥ ൈ .ܥ

c) R is the set of semantic relations, R = { ≡ , , , << , >>, Ω}, the synonymous
term/words/expressions being integrated in the concepts.

d) f is a function designating the nature of edges in E, f:E R .

The symbols in R underline respectively the synonym (≡), hyponym (Is-A or ≺), hypernym
Has-A or ;), meronym (Part-Of or <<), holonym (Has-Part or >>) and Antonym (Ω) relations,
as defined in [9]).

The use of application dependent knowledge bases (KB) facilitates and improves the
relatedness result. To that end, we introduce two knowledge bases: (i) value-based: to describe the
textual content of RSS elements, and (ii) label-based: to organize RSS labels. Note that one single
knowledge base could have been used. However, since RSS labels might belong to different
versions and can be defined by applications or users, following a user defined document schema,
an independent label-based knowledge base, provided by the user/administrator, seems more
appropriate than a more generic one such as WordNet [44] (adequate for treating generic textual
content).

4.2.1 Neighborhood

In our approach, the neighborhood of a concept Ci underlines the set of concepts {Cj}, in the
knowledge base, that are subsumed by Ci w.r.t. a given semantic relation. Concept neighborhood
is exploited in identifying the relationships between text (i.e., RSS element labels and/or textual
contents) and consequently RSS elements/items. In [9], the authors use the neighborhood concept
to identify implication between textual values, operators (e.g., =Any, >Some, Like, …), and

14 In this paper, we do not consider other types of data contents, e.g., numbers, dates, …

≺ ;

→

link title

Item

guide

RSS item tree CNN 1

description pubDate

U.N. chief launches
$600M Gaza aid
appeal

United Nations
Secretary-General Ban

Ki-moon ...

Fri, 02 May 2008
02:20:34 EDT

http://edition.
cnn.com/2008

http://edition.
cnn.com/2008

Leaf node
Values

Composite element
(root node)

Simple elements
(Leaf nodes)

8

consequently semantic predicates (e.g., predicate Location=“Paris” implies Location Like
“France”). In this paper, we extend this approach and adopt three types of neighborhoods.

a. Samples value knowledge base - VKB, with multiple root
concepts, extracted from WordNet. b. Sample RSS label knowledge base - LKB

Fig. 6. Sample value and label knowledge bases.

Definition 5. [Semantic Neighborhood]

The semantic neighborhood of a concept Ci with semantic relation R is defined as the set of
concepts {Cj} related with Ci via R directly or via transitivity15. R is restricted to synonymy (≡),
hyponymy (≺), or meronymy (<<). It is formally defined as:

ܰ
ோ ሺܥሻ ൌ ൛ܥหܥ ܴ ,ൟܥ ܴ א ሼؠ, ,ط ሽا

(1)

For instance, referring to the value knowledge base VKB in Figure 6.a we have:

ܰ
ؠ ሺ݁݉݁ݕܿ݊݁݃ݎሻ ൌ ሼ݁݉݁ݕܿ݊݁݃ݎ, ,݄ܿ݊݅ ሽݕܿ݊݁݃݅ݔ݁

ܰ
ط ሺ݁݉݁ݕܿ݊݁݃ݎሻ ൌ ሼ݁݉݁ݕܿ݊݁݃ݎ, ,ݏ݅ݏ݅ݎܿ ,ݕݐ݈ݑ݂݂ܿ݅݅݀ ሽ݁ݐܽݐݏ

ܰ
ا ሺ݁݉݁ݕܿ݊݁݃ݎሻ ൌ

Definition 6. [Global Semantic Neighborhood]

The global semantic neighborhood of a concept is the union of the semantic neighborhood defined
with the synonymy (≡), hyponymy (≺) and meronymy (<<) semantic relations altogether.
Formally:

ܰതതതതതሺܥሻ ൌ ራ ܰ
ோ

ோאሼا,ط,ؠሽ

ሺܥሻ (2)

For instance, referring to the value knowledge base VKB in Figure 6.a
ܰതതതതതതതሺ݁݉݁ݕܿ݊݁݃ݎሻ ൌ ܰ

ؠ ሺ݁݉݁ݕܿ݊݁݃ݎሻ ܰ
ط ሺ݁݉݁ݕܿ݊݁݃ݎሻ ܰ

ا ሺ݁݉݁ݕܿ݊݁݃ݎሻ

ܰതതതതതതതሺ݁݉݁ݕܿ݊݁݃ݎሻ ൌ ሼ݁݉݁ݕܿ݊݁݃ݎ, ,݄ܿ݊݅ ,ݕܿ݊݁݃݅ݔ݁ ,ݏ݅ݏ݅ݎܿ ,ݕݐ݈ݑ݂݂ܿ݅݅݀ ሽ݁ݐܽݐݏ

4.3 Text Representation

In this Section, we define the notion of concept sets and text model that is basic to represent a
piece of text. Later it would be exploited while computing text content relatedness.

Definition 7. [Concept Set]

Given a text T (i.e., phrase, sentence, etc.), its concept set is denoted as CS, is a set of concepts
{C1, …, Cm}, where each Ci represents a concept. Each concept Ci is assumed to be obtained after

15 The relationship between opeators including indirect transitivity has been studied in the work of getahun et
al [9].

Title

Category

PubDate Link, Guide,
Source

Description

Item Emergency,
Pinch, Exigency

Ease, relief

Organization

Ban ki-moon,
Kofi Annan

Chief, top official,
Mediator

Difficulty

State

Crisis Aid, help

Administrative unit

Concept (Synonym Set)

Meronym/Holonym relations (following direction)
Antonymy ×

×

Hyponym/Hypernym relations (following direction)

Loan

Bailout

Government

Federal Secretariat
UN

9

several textual pre-processing operations such as stop-words removal16, stemming17, and/or
mapping to the value knowledge base, and grouping.

For instance, the content of title element from RSS item CNN1 “U.N. chief launches $613M Gaza aid
appeal” can be described by the following concept set: CSCNN1={{UN}, {chief}, {launch} , {Gaza} ,
{aid}, {appeal}}. Likewise, the concept set for content of title element from RSS item CNN2“UN
launches $613m appeal for Gaza” is described as CSCNN2 ={{UN},{launch}, {appeal}, {Gaza}}.

Formally, let T1 and T2 be two textual contents, CS1 is the concept set describing T1 and CS2 that
describing T2.

Definition 8. [Deep In Membership]

Given a concept ci and concept set CSi, ci is deep in CSi, i.e., א ࢉ
ࢊ if ci exists as member of a ࡿ

concept in CSi.

For example, gaza exists deep in the concept set CSCNN1={{UN}, {chief}, {launch} , {Gaza} , {aid},
{appeal}}

Definition 9. [Text model]

Given two texts T1 and T2 described by concept set CS1 and CS2, we represent each ti as a vector Vi
in an n-dimensional space as: Vi = [〈C1, w1〉, …, 〈Cn, wn〉]. The vector space dimensions represent
distinct concepts 1 2mC CS CS∈ ∪ associated to weight wm such as 1 m n≤ ≤ where || 21 CSCSn ∪= .

The weight wm associated to a concept Cm in Vi (where i=1 or 2)) is calculated as wm = 1 if the
concept Cm is deep in the concept set of the one of the texts (i.e., CSi) that constitute the vector Vi;
otherwise, it is computed based on the highest enclosure similarity it has with another concept Cj
from the concept set of the other text. Formally, it is defined as:

ݓ ൌ ൝
 1 ݂݅ ܥ א

ௗ ܥ ܵ

max ቀEnclosure_Sim൫ܥ, ൯ቁܥ ר ܥ א
ௗ ܵܥ ݁ݏ݅ݓݎ݄݁ݐ

 (3)

,ܥ൫݉݅ܵ_݁ݎݑݏ݈ܿ݊ܧ ൯ܥ ൌ
| ܰതതതതതሺܥሻ ת ܰതതതതതሺܥሻ|

ห ܰതതതതതሺܥ൯|
 (4)

Enclosure_sim(Cm, Cj) takes into account the global semantic neighborhood of each concept. It is
asymmetric, allows the detection of the various kinds of relationships between RSS items, and
returns a value equal to 1 if Ci includes Cj, and zero if there is no concept related with Cm.

Example 4. Let us consider the description elements of RSS items CNN2 and BBC2 (Figures 1, 2).
Corresponding vector representations V1 and V2 are shown in Figure 7. For the sake of simplicity, we
consider that only these two texts make up the new items.

 Fo
rd

re
po

rt

lo
ss

…

re
ite

ra
te

Fo
ur

th
-

qu
ar

te
r

Fe
de

ra
l

Ba
ilo

ut

Bi
g

Fu
ll-

ye
ar

sa
y

go
ve

rn
m

en
t

lo
an

V1 1 1 1 … 1 1 1 1 1 1 1 1 1
V2 1 1 1 … 1 0 0.67 0.86 1 1 1 1 1

Fig. 7. Vectors obtained when comparing title texts of RSS items CNN2 and BBC2

Vector weights are evaluated in two steps. First, for each concept Ci in V1 and V2, we check the
existence of Ci in each of the concept sets corresponding to the texts being compared. Second, we
update the weight of those concepts having value of zero with maximum semantic enclosure similarity
value. Following the WordNet subset extract in Figure 6.a, the concept Government is included in the
global semantic neighborhood of Federal, i.e., ()KBgovernment N federal∈ . Hence, it has the maximum
enclosure similarity with federal, i.e., Enclosure_sim(federal, government) = 1. However, in V2,
federal is highly related with government and its Enclosure_sim(government, federal) = 0.67.

16 Stop-words identify words/expressions which are filtered out prior to, or after processing of natural
language text (e.g., a, an, so, the, …) which is done using stop list. However those words that would change
the meaning of the text such as but, not, neither, nor … are not considered as stop words.
17 Stemming is the process for reducing inflected (or sometimes derived) words to their stem, i.e., base or root
(e.g., “housing”, “housed” “house”).

10

Likewise, loan is included in the global semantic neighborhood of bailout, i.e., ()KBloan N bailout∈ .
This way Enclosure_sim(loan, bailout) = 1 and Enclosure_sim(bailout, loan) = 0.86.

Notice that the computation of enclosure similarity (enclousure_sim) is based on maximum
similarity value and takes into consideration concepts related with equality, inclusion, intersection
and disjointness relationship.

5 RSS RELATEDNESS AND RELATIONS
Quantifying the semantic relatedness and identifying the relationships between two RSS items
amounts to comparing corresponding elements. This in turn comes down to comparing
corresponding RSS (simple) element labels and contents, which simplifies to basic pieces of text
(cf. Definition 2). Hereunder, we define the two basic concepts used in our relatedness measures
before explaining text, sub-element and item relatedness.

Definition 10. [SemRel]

SemRel refers to the semantic relatedness between two texts, simple elements or items. It has
value between 0 and 1 inclusive.

Definition 11. [Relation]

Relation refers to the exclusive relationship that would exist between two texts, simple elements or
items. We identify equality, intersection, inclusion, or disjoint relations.

In the following sub-sections, we identify relatedness between texts, simple elements and/or items
having a tuple containing SemRel and Relation values and denoted as :

࢙࢙ࢋࢊࢋ࢚ࢇࢋࡾ ൌ ,ࢋࡾࢋࡿۃ (5) ۄ࢚ࢇࢋࡾ

5.1 Text Relatedness

Given two texts T1 and T2, the Text Relatedness (TR) algorithm shown in Algorithm 1 returns a
tuple, combining SemRel and Relation values between T1 and T2.

The algorithm accepts two texts T1 and T2 as input (line 1). Corresponding concept sets CS1 and
CS2 are generated using a function f (lines 9 – 10) encompassing Natural Language Processing
(NLP) and mapping (i.e. associating non-stop and stemmed words into corresponding knowledge
base concept) features. In lines 11 – 16, texts T1 and T2 are represented as a vector V (V1 and V2
respectively) with weights underlining concept existence, and enclosure in both CS1 and CS2. The
procedure weight accept concept whose weight to be computed Ci, concept set of text T1 or T2 and
concept set of T2 or T1, and returns result (following formula 3). In line 17, the semantic
relatedness SemRel between two texts is quantified using a measure of similarity between vectors
V1 and V2 implemented in Vector-Base-Similarity-Measure function. In this study, we use the
cosine measure:

SemRel = ܴ݈ܵ݁݉݁ሺ ଵܶ, ଶܶሻ ൌ ሺݏܥ ଵܸ, ଶܸሻ ൌ భ·మ
|భ|ൈ|మ|

א ሾ0,1ሿ (6)

Semantic relatedness is consequently exploited in identifying basic relations (i.e., disjointness,
intersection and equality) between texts. Our method (Relation in line 19-29) for identifying basic
relationships is based on a fuzzy logic model to overcome the often imprecise descriptions of texts.
For instance, texts (likewise RSS items) that describe the same issue are seldom exactly identical.
They might contain some different concepts, detailing certain specific aspects of the information
being described, despite having the same overall meaning and information substance (cf. Section
1, Example 1). Thus, we address the fuzzy nature of textual content in identifying relations by
providing pre-defined/pre-computed similarity thresholds TDisjointness and TEquality, as shown in
Figure 8.

11

Fig. 8. Basic text relationships and corresponding thresholds.

Thus, we suggest using the following rules to identify the basic disjointness, Intersection or
Equality relationships between two texts T1 and T2.

ሺ݊݅ݐ݈ܴܽ݁ ଵܶ, ଶܶሻ

ൌ ቐ
,ݏݏ݁݊ݐ݆݊݅ݏ݅ܦ ݅. ݁. , ଵܶ ٱٲ ଶܶ ֜ ܴ݈ܵ݁݉݁ሺ ଵܶ, ଶܶሻ ܶ௦௧௦௦

,ݕݐ݈݅ܽݑݍܧ ݅. ݁. , ଵܶ ൌ ଶܶ ֜ ܴ݈ܵ݁݉݁ሺ ଵܶ, ଶܶሻ ாܶ௨௧௬

,݊݅ݐܿ݁ݏݎ݁ݐ݊ܫ ݅. ݁. , ଵܶ ת ଶܶ ֜ ܶ௦௧௦௦ ൏ ܴ݈ܵ݁݉݁ሺ ଵܶ, ଶܶሻ ൏ ாܶ௨௧௬

 (7)

While the basic disjointness, intersection and equality relations can be defined based on semantic
relatedness (in the context of fuzzy relations), this is not the case for inclusion relation, which we
define as:

• Relation(T1, T2) is Inclusion, i.e., ଵܶ ـ ଶܶ , if the product of the weights of vector V1
(describing T1) is equal to 1, i.e.,

,ሺܶ1݊݅ݐ݈ܴܽ݁ ܶ2ሻ ൌ ,݊݅ݏݑ݈ܿ݊ܫ ݅. ݁. , ܶ1 ـ ܶ2 ֜ ෑ ሺݓሻ
ܸ1

ൌ 1 (8)

Where
1
()V pwΠ is the weight product of vector V1 (describing T1) underlines whether or not T1

encompasses all concepts in T2.

Notice that the relationship between text values is identified on the bases of best relation value
which is equality, inclusion, disjoint and intersect (line 19-29) respectively.

 Algorithm 1: TR Algorithm
1.
2.

Input: T1, T2: String // two input texts
TDisjoint, Tequality : decimal // threshold values

3.
4.
5.
6.

Variable: V1: vector // vector for t1
V2: vector // vector for t2
CS1: Set // concept set of t1
CS2: Set // concept set of t2

7.
8.

Output: SemRel: Double //relatedness value between t1,t2
Rel: string //topological relationships between t1, t2

9. Begin
10.
11.
12.

CS1 = f(T1) // f – returns the concept set of the text T1
CS2 = f(T2) // f – returns the concept set of the text T2
C = CS1 ∪ CS2

13. V2 = V1 = Vector_Space_Generator (C) // generate vector space having C as concepts
14. For each Ci in C
15. V1[Ci] = Weight(Ci,CS1, CS2) // computes the weight of concept Ci in V1

16. V2[Ci] = Weight(Ci ,CS2, CS1) // computes the weight of concept Ci in V2

17. Next
18. SemRel = Vector-Base-Similarity-Measure(V1, V2) //cosine similarity is used in our implementation
19. If semRel TEquality then
20. Rel = “Equal”
21. Else if ∏ ൫ݓ൯ ൌ 1 మ then
22. Rel = “Included in”
23. Else if ∏ ൫ݓ൯ ൌ 1 భ then
24. Rel = “Includes”
21. Else if semRel TDisjoint then
22. Rel = “Disjoint”
27. Else if TDisjoint < semRel < TEquality then
28. Rel = “Intersect”
29. End if
30. Return ݈ܴ݁݉݁ܵۃ, ۄ݈ܴ݁
31. End

TDistjointness TEquality 0 1

Distjointness Intersection Equality

SemRel =

12

Example 5. Considering Example 2, (T1 of CNN2 and T2 of BBC2), and thresholds TDisjointness=0.1 and
TEquality=0.9, SemRel(T1, T2) = 0.86 and Relation(T1, T2) = Intersection as no concept of T1 is included
in the antonymy neighborhood of concept from T2 or vise-versa. Hence, TR(T1, T2) = <0.86,
Intersection>.

5.2 RSS Item Relatedness

Computing the Item relatedness (IR) is related to the relatedness between its sub-elements. The
relatedness between two simple elements (c.f. def. 3) (ER) is computed using Algorithm 2. It
accepts two elements e1 and e2 as input (line 1) and returns a tuple quantifying SemRel and
Relation values between e1 and e2 based on corresponding label and value relatedness.

In lines 7 – 8, label and content relatedness are computed respectively using the TR algorithm. In
line 9, method ESemRel quantifies the relatedness value between elements, as the weighted sum of
label (LBSemRel) and value (VRSemRel) semantic relatedness values, such as:

ܴ݈ܵ݁݉݁ሺ݁ଵ, ݁ଶሻ ൌ ,ௌோܤܮ௦ோሺܧ ܸܴௌோሻ

ൌ ݓ ൈ ௌோܤܮ ௨ݓ ൈ ܸܴௌோ
(10)

where wLabel + wValue = 1 and (wLabel, wValue) ≥ 0. Note that several methods for combining label and
value relatedness results could have been used, among which the maximum, minimum, average
and weighted sum functions. Nonetheless, the latter provides flexibility in performing the match
operation, adapting the process w.r.t. the user’s perception of element relatedness.

In line 10, the rule-based method ERelation is used for combining label and content relationships as
follows:

,ሺ݁ଵ݊݅ݐ݈ܴܽ݁ ݁ଶሻ ൌ ,ோ௧ܤܮோ௧ሺܧ ܸܴோ௧ሻ

ൌ

ە
ۖ
۔

ۖ
ۓ

,ݏݏ݁݊ݐ݆݊݅ݏ݅݀ ݅. ݁. , ݁ଵ ٱٲ ݁ଶ ֜ ݁ଵ. ߫ ٱٲ ݁ଶ. ߫ ש ݁ଵ. ߟ ٱٲ ݁ଶ. ߟ
,݊݅ݐܿ݁ݏݎ݁ݐ݊ܫ ݅. ݁. , ݁ଵ ת ݁ଶ ֜ ݁ଵ. ߫ ת ݁ଶ. ש ߫ ݁ଵ. ߟ ת ݁ଶ. ߟ
,ݕݐ݈݅ܽݑݍܧ ݅. ݁. , ݁ଵ ൌ ݁ଶ ֜ ݁ଵ. ߫ ൌ ݁ଶ. ר ߫ ݁ଵ. ߟ ൌ ݁ଶ. ߟ
,݊݅ݏݑ݈ܿ݊ܫ ݅. ݁. , ݁ଵ ـ ݁ଶ ֜ ሺሺ݁ଵ. ߫ ـ ݁ଶ. ߫ ש ݁ଵ. ߫ ൌ ݁ଶ. ߫ሻ

ר ݁ଵ. ߟ ـ ݁ଶ. çሻ ש ሺ݁ଵ. ߫ ـ ݁ଶ. ߫ ר ݁ଵ. ߟ ൌ ݁ଶ. ሻߟ

(11)

 Algorithm 2: ER Algorithm
1. Input: e1, e2: element // two simple elements
2.
3.

Variable: LBSemRel, VRSemRel : Double // label and value semantic relatedness values
LBRelation, TRRelation : String // Label and value relationship values

4.
5.

Output: SemRel: Double // relatedness value between e1 and e2
Relation: String // relationship value between e1 and e2

6. Begin
7.
8.

,ௌோܤܮۃ ۄோ௧ܤܮ ൌ ܴܶሺ݁ଵ. ,ߟ ݁ଶ. ሻ // relatedness between labelsߟ
,ௌோܴܸۃ ܸܴோ௧ۄ ൌ ܴܶሺ݁ଵ. ߫, ݁ଶ. ߫ሻ // relatedness between values

9.
10.

SemRel = EsemRel(LBSemRel, VRSemRel) //EsemRel – combines the label and value relatedness values
Relation = ERelation(LBRelation, VRRelation) //ERelation – combines the label and value relationships values

11. Return ݈ܴ݁݉݁ܵۃ, ۄ݊݅ݐ݈ܴܽ݁
12. End

Having identified the semantic relatedness and relationships between simple elements, Algorithm
3 evaluates RSS item relatedness IR.

Given two RSS items I1 and I2, each made of collection of sub-elements {ei} and {ej} respectively,
the Item Relatedness (IR) algorithm returns a tuple quantifying SemRel as well as the Relation
between I1 and I2 based on corresponding element relatedness (lines 10 – 16).

Line 12 computes the relatedness between simple elements ei and ej and returns semantic
relatedness value eijSemRel, and relationship eijRelation. In line 13, the semantic relatedness value
eijSemRel is accumulated in order to get grand total, and, in line 14, eijRelation is stored for later use. In
line 17, the semantic relatedness value between I1 and I2 is computed as the average of the semrel
values between corresponding element sets of I1 and I2.

13

ܴ݈ܵ݁݉݁ሺܫଵ, ଶሻܫ ൌ
∑ ∑ ܴ݈ܵ݁݉݁ሺ݁, ݁ሻೕאூమאூభ

|ଵܫ| ൈ |ଵܫ| (12)

As for the relationships between two items, we develop a rule-based method IRelation (line 18) for
combining sub-element relationships stored in EijRelation_set (which is the relationship between ei
and ej) as defined below:

• I1 and I2 are disjoint, denoted 1 2I I�� if all elements {ei} and {ej} are disjoint (elements are

disjoint i.e. there is no relatedness whatsoever between them. Formally, ܴ݈݁ܽ݊݅ݐሺܫଵ, ଶሻܫ ൌ
֜ ݐ݆݊݅ݏ݅ܦ ଵ݁ א ሼ݁ሽ, ଶ݁ א ൛ ݁ൟ, ݁ଵ ٱٲ ݁ଶ

• I1 includes I2, denoted as 1 2I I⊃ if all elements in {ei} include all those in {ej}. Formally,

,ଵܫሺ݊݅ݐ݈ܴܽ݁ ଶሻܫ ൌ ֜ ݏ݁݀ݑ݈ܿ݊ܫ ݅ ר ݆ ଶ݁ א ൛ ݁ൟ, ଵ݁ א ሼ݁ሽ | ݁ଵ ـ ݁ଶ

• I1 and I2 intersect, denoted as 1 2I I∩ if at least two of their elements intersect. Formally,

,ଵܫሺ݊݅ݐ݈ܴܽ݁ ଶሻܫ ൌ ֜ ݏݐܿ݁ݏݎ݁ݐ݊ܫ ଵ݁ א ሼ݁ሽ, ଶ݁ א ൛ ݁ൟ | ݁ଵ ת ݁ଶ

• I1 and I2 are equal, denoted as I1 = I2 if all their elements in {ei} equal to all those in {ej}.
formally, ܴ݈݁ܽ݊݅ݐሺܫଵ, ଶሻܫ ൌ ֜ ݈ܽݑݍܧ ݅ ൌ ר ݆ ଶ݁ א ൛ ݁ൟ, ଵ݁ א ሼ݁ሽ | ݁ଵ ൌ ݁ଶ

 Algorithm 3: IR Algorithm
1. Input: I1, I2: element // two input items (Complex elements)
2.
3.
4.

Variable: eijSemRel: Double // semantic relatedness values ei and ej
eijRelation : String // relationship value between ei and ej

EijRelation_set : Set // would contain sub-elements relationship values

5.
6.

Output: SemRel: Double // relatedness value between I1 and I2
Relation: String // relationship value between I1 and I2

7. Begin
8.
9.

SumRel = 0
EijRelation_set = ∅

10. For each ei In I1
11. For each ej In I2
,ௌோ݆݅݁ۃ .12 ݆݁݅ோ௧ۄ ൌ ,ሺܴ݁ܧ ݁ሻ
13. SumRel = SumRel + eijSemRel
14. EijRelation_set = EijRelation_set ∪ eijRelation
15. Next
16. Next
17. SemRel = SumRel / |I1| × |I2|
18. Relation = IRelation(EijRelation_set) // 1 2[1,| |], [1, | |]i I j I∀ ∈ ∀ ∈

19. Return <SemRel, Relation>
20. End

Example 7. Let us consider RSS items CNN1 and BBC1 (Figures 1 and 2). Corresponding item
relatedness is computed as follows. Weighting factors of wlabel = 0.5 and wvalue = 0.5 are assigned to
label and text values, while evaluating simple element relatedness.Thresholds TDisjointness=0.1 and
TEquality=0.9 are used in getting the relationship value. Simple element relatedness values and
relationships are given below in Table 1.

Table 1: Element Relatedness matrix

ER titleBBC1 descriptionBBC1
titleCNN1 <0.908, Equal> <0.655, Intersection >
descriptionCNN1 <0.650, Includes> <0.832, Intersection >

Using (cf. 12) SemRel(CNN1, BBC1) = (0.908+ 0.655+ 0.650+ 0.832) / 2 × 2 = 0.761, where |I1| and |I2|
are equal to 2.

Relation(CNN1, BBC1) = Intersection since a number of their elements intersect, i.e.,
Relation(descriptionCNN1, descriptionBBC1) = Intersection.

Measurin
classifica
merge. O
semantic
of classic
to merge
Section 7

6 CL
Clusterin
a pre-pro
divided
and divi
pairs of
connecte
hierarchi
clusters
into k di

The clus
clusterin
clusters
intersect
which ar
since ne
belong to

In this w
consider
with n ve
weight o
this edge
combinin
value us
seven no
member
The mis
deleting
four clus
general,
value gre

Where: S

Our Rel
Algorith
semantic

ng the related
ation, merging
Obviously, w
c related value
cal clustering
e those within
7.

LUSTERIN
ng is a method
ocessing step
into two broa
sive) [10][25]
elements or c

ed. Single lin
ical clustering
irrespective o
fferent cluster

stering module
ng algorithms

that only
tions).Yet, suc
re connected v
ews/document
o the same clu

work, we have
r RSS item re
ertices and n(n

of an edge cor
e connects. T
ng those verti
ed to combin

odes that corre
news items).

sing edges ha
all edges wit

sters C1={1},
the resulting

eater than or e

SemRel () fun

lationship aw
hm 4. Nodes in
c relatedness

dness between
g, etc. Item re

we should me
e and related w
algorithm to

n the same clu

NG
d for grouping

p that facilitat
ad categories:
] clustering a
clusters are su
nk [57], com
g methods. N

of the route by
rs based on sim

e stated in our
. Disregardin
encompass

ch clusters w
via the inclus
ts connected
uster, so as to

a)

Fig. 9

adapted the g
elationships. G
n-1)/2 weight
rresponds to i

The single link
ices with weig
e clusters inc
esponds to sin
The weight c

ave a semanti
th weight < 0
 C2={2}, C3=
of cluster at

equal to li. For

nction returns

ware Single L
n graph G repr
and equality/o

n items is imp
elatedness is i
erge those it
with inclusion
be relationshi
ster involves m

g similar data
tes the mergin
: Hierarchical

algorithms pro
uccessively lin

mplete link [5
Non-hierarchic
y which they a
milarity).

r merging fram
g the relation
members w

would be mis
sion relationsh
via the inclu
be subsequen

. Single link cl

graph based ag
Given n RSS
ted edges. The
tem semantic
k clusters for
ghts w ≥ li fro
luding single

ngle news clus
corresponds to
c similarity o
.6 (i.e. combi

={3, 7}, C4={
level li lic co
rmally:

the semantic

Link Level ba
resent clusters
or inclusion r

portant in sev
important to d
ems closely

n/equality rela
ip aware as de
merging rules

together. In o
ng process. T
l and Non-hie
oduces nested
nked until ev

56] and group
cal methods
are obtained (e

mework (cf. S
nships betwee

with high re
sing those el
hip. Such resu
usion relation
ntly merged to

lustering at le

gglomerative
news items,

e vertices repr
relatedness/s
a clustering

om the graph G
news clusters

sters (the num
o the semantic

of 0. Figure 9b
ining those ve
6, 5, 4} repre

ontains all new

relatedness be

ased or RaSL
s encompassin
relationships.

veral applicati
determine wha
related (i.e.,

ationship). Thi
etailed in Sect
s that utilizes r

our merging fr
The different
eratical. Hiera

d sets of data
ery element i
p average lin
group a data
e.g. k-means

Section 4), ma
en RSS news
elatedness (e
lements with
ults obviously
nship, for inst
gether.

b)

evel 0.6

single-link clu
we form a fu

resent the new
similarity valu
level li (i.e. lc

G. The cluster
s. Figurer 9a r

mbers in the cir
c similarity b
b presents the
ertices with w
esenting clust
ws items I wit

etween two ite

L2 clustering
ng sets of new
Edges represe

ions such as c
at to merge an
those with

is involves the
tion 6. In add
relationship, d

rame-work, clu
clustering me
archical (aggl
(hierarchies),

in the data set
nk [55] are k
a set into a n
[16] groups th

ay use any of t
s items would
e.g., having
lower related

y affect mergin
tance, should

ustering meth
ully connected

ws items/cluste
ue between ve

li) can be ide
ring level is a
represents a g
rcle represent
etween the ne
e graph remai

weight ≥ 0.6).
tering at level
th semantic re

ems.

algorithm is
ws items with
ent average re

14

clustering,
nd how to
maximum
e adaption
ition, how
detailed in

ustering is
ethods are
lomerative
, in which
t becomes
known as

number of
he data set

the known
d produce

lots of
dness, but
ng quality

d naturally

hod [25] to
d graph G
ers and the
ertices that
entified by
a threshold
graph with
ts the id of
ews items.
ining after
There are
l 0.6. In
elatedness

(13)

shown in
maximum
elatedness

15

similarity values between pair of clusters. The semantic relatedness between clusters Ci and Cj is
computed as follows using Unweighted Pair Grouping Method (UPGM)[57]:

,ܥ൫݈ܴ݁݉݁ܵ݃ݒܣ ൯ܥ ൌ
∑ ∑ ܴ݈ܵ݁݉݁ሺܫ

, ܫ
ೕሻ|ೕ|

ୀଵ
||
ୀଵ

|ܥ| ൈ |ܥ| (14)

Where: ܫ
, ܫ

ೕand represent the kth and lth member news item of clusters Ci and Cj respectively,
and |ܥ|, | represents the size of cluster Ci and Cj respectively, SemRel returns semanticܥ|
relatedness value between the two items.

For instance, in Figure 9b. The weight of edge connecting cluster C2={2}, and C3={3, 7} is computed as

,ଷܥሺ݈ܴ݁݉݁ܵ݃ݒܣ ସሻܥ ൌ
 ܴ݈ܵ݁݉݁ሺ2, 7ሻ ܴ݈ܵ݁݉݁ሺ2, 3ሻ

1 ൈ 2 ൌ
 0 0.2

1 ൈ 2 ൌ 0.1

The same way the edge connecting all the clusters is computed.

The result of RaSL2 clustering Cli is similar to theα cut clustering result of Ian Gracia et al. [24].
In [24], an article may belong to different clusters, and a cluster contains a set of related articles.
The redundant (identical and subsume) and less-informative articles are removed with the help of a
fuzzy equivalence relation. However, our algorithm generates independent clusters (i.e. pair of
news from two different clusters are related only with disjointness relationship).

The algorithm RaSL2 generates clusters by varying the clustering level between 1 and 0, at a
constant pace Dec-value. Lines 7 and 8 show clustering at level 1, generating the initial clusters
which group individual news items and those related with equality and/or inclusion relationships.
Lines 10 to 14 show clustering on level li after computing relatedness value between clusters using
UPGM. Clusters are grouped only if the corresponding weight is greater than or equal to li.

 Algorithm 4: RaSL2 Algorithm
1.
2.
3.
4.

Input: Sem_Rel [][] // relatedness matrix
Output: Clusters: Collection // contain the result of clustering
Variable: Dec-value: double // constant clustering level decrement value (eg. -0.1)

li: double // clustering level
5. Begin
6. For li = 1 to 0 step Dec-value
7. If li = 1 then
8. group all clusters at relatedness/similarity value of 1 or those related with equality/inclusion relationship
9. Else
10. For each cluster ci and cj in clustersli-1
11. Average-Relatedness = UPGM(ci, cj) // computed using formula 17
12. If Average-Relatedness ≥li then
13. group ci and cj in same cluster
14. Next
15. End if
16. Next
17. C-Index(Clusters) // stopping rule for clustering
18 Return clusters
19 End

A stopping rule is necessary to determine the most appropriate clustering level for the single link
hierarchies. Milligan et al. present 30 of such rules [53]. Among these rules, C-index [54] exhibits
excellent performance (found in the top 3 stopping rules). Here, Line 17, we used an adaptation of
C-index, provided by Dalamagas et al. [7].

7 MERGING
In our approach, merging a list of news items collected from the same or different RSS providers
is controlled by several merging rules defined as a set of expression according to the human needs
on the basis of relationships existing between items. We assume that RSS news items are of
known size or cardinality. In the following, we consider that RSS news items are extracted and
stored in a container Φ and each item is accessed via index i as Φ[i]. Path expression is used to
access elements an item.

16

In this section, we explain first the merging operators, merging rule and action that would be
followed in order to merge two RSS news items. Later, we extend the approach to merge set of
news items. In our approach News item can be modeled with merging object hierarchy shown in
Figure 10 below. The rectangle represent object (solid border) or the property of the object (doted
border). The relationship between objects is hierarchical and it is HAS A.

For example, an object of type Element has property Name and Content and has complex object named
Attributes. Attributes is collection of attribute each having Name and Value.

7.1 Basic merging operators

In this section, we provide the list of basic merging operators that would be used in our merging
expression. The merging operators are functions having name, accept two or more parameters and
returns result to the caller. The parameters are restricted to refer to item, element or text values.
The following is the list of basic operators:

1. String getRelation(Object X, Object Y) : returns the relationship
existing between object X and Y.

For instance, getRelation(CNN1/title, BBC1/title)- returns Equal (c.f. Table 2)

2. Boolean IsXXXX(Object X, Object Y): returns true if the objects X and Y are
related with the relation XXXXX, where XXXXX in {Equal, Intersect, Disjoint, Include}

For instance, - IsEqual(CNN1/title, BBC1/title) - returns true (c.f. Table 2)

3. Element CreateElement(String TagName, String value): return an
new element named TagName having value as content.

4. Element CreateElement(Element X, Element Y, String TagName):
return an new element named TagName and having X and Y as children. Object refers to
only simple or complex elements.

For instance,
- CreateElement (CNN1/title, BBC1/title, ‘NewTitle’) – returns an

element named NewTitle having title elements of CNN1and BBC1.
- CreateElement (Φ[1], Φ[5], “m”) returns an element named m having the first

and the fifth news items as children.

5. String Concat(String X, String Y, String Z): return the result of
concatenating two strings X and Y separated by another string Z.

For instance, Concat(“U.N. chief launches $600M Gaza aid appeal”, “UN launches
$613m appeal for Gaza”, “|”) returns

U.N. chief launches $600M Gaza aid appeal | UN launches $613m appeal for Gaza
6. Object keepFirst(Object X, Object Y) – returns X

7. Object keepSecond(Object X, Object Y) – returns Y

8. Object keepBoth(Object X, Object Y): return the concatenation of both
objects separated by space.

9. Item getLatest(Item X, Item Y): returns the latest/recent news item.

Legend

Element

Elements

Object

Item

Name

Collection

Content
Attributes

Name

Value

Attribute

Complex object

Property of complex object

Has/Has A

Fig. 10. Merging Object Hierarchy

17

For instance, getLatest(CNN4, BBC4) – returns BBC4 as it is published on ‘Fri, 02 May
2008 04:08:38 GMT’ and CNN4 on ‘Thu, 01 May 2008 21:51:15 EDT’

10. String BuildText (string [] CS) – returns a human understandable
text/sentence containing all the concepts in concept set CS and there is a need to add
article, proposition, etc.18

For instance, given the concept set CS ={{UN}, {chief}, {launch} , {Gaza} , {aid}, {appeal}},
getBuildText(CS) – returns “UN chief launch gaza aid appear”

11. String[]getCommon(string X, string Y): returns set containing concepts
shared by text X and Y.

For instance, getCommon(CNN1/Title/text(), BBC1/Title/text()) returns
{UN}, {launch} , {Gaza} , {appeal}

12. String[] getDifferent(string X, string Y)- returns concepts existing
only in X or Y but not both.

For instance, getDifference(CNN1/Title. ߫, BBC1/Title. ߫)– returns the
concept {aid} which exists only in CNN1.

13. String LCA(string C1, string C2): returns a lowest common ancestor of C1
and C2 using the label knowledge base LKB (cf. LKB in Figure 6.b). We exploit this
operator to decide on the tag name of elements to be merged.

For instance: LCA(CNN1/Title/name(), BBC1/Link/name()) – returns the
Description as LCA of the name of Title element of CNN1 and Link element of BBC1.

14. String[][]GetCorrespondence(item I1, item I2, collection[][]
Elts_Rel): Given two items I1, I2 and matrix containing sub-element relatedness
between members of each item, the operator returns a matrix/list containing matching
elements and relationship in between. Notice that each member of the output has three
members ei, ej and relation (if e refers to member of collection, e.ei, e.ej and e.relation
would access the sub-elements of I1, and I2 respectively and the associate relationship
value). Correspondence between members of content descriptor (i.e. labels used to
compute relatedness) is computed on the bases of maximum element relatedness; for the
rest label similarity would be used having null value for the relationship component of the
matrix. In addition, the operator assigns null to those elements without matching.

For example, GetCorrespondence(CNN1, BBC1, Element-RelatedNess-
Matrix19(CNN1, BBC1)), returns the correspondence between sub-element of CNN1 and
BBC1. The result is shown in Table 1. The matching between Title, Description elements is
done using maximum relatedness where as for link, guid and pubdate tagname similarity has
been used. There is no matching element for BBC1/category element.

15. String[][] GetCorrespondence(item I1, item I2) – returns the
correspondence between input items I1, item I2. The operator calls GetCorrespondence
with third parameter being Element-RelatedNess-Matrix (I1, I2).

16. element Handle-Element-Conflict(Element e1, element e2): returns
an existing element only. This operator helps to handle the case in which an element
exists only in one news items.

17. Collection Handle-Attributes(element ei, element ei) return
attributes after consider the following facts

- if only one of the elements have attribute, add return it.
- if both elements have identical or semantically equivalent attribute name and value

then keep one of the attribute.
- if the elements have identical or semantically equivalent attribute name but different

values then add an attribute having an Or-valued list.
- else add return both.

18 Developing human readable sentence/phrase containing all concepts in given concept sets is outside the
scope of this work.
19 It returns ER value between sub-elements of each items. The result is similar to Table 1.

18

In addition, we have defined the two derived operators that would be used to merge intersecting
simple elements and items:

18. element IntersectingElements(element ei, element ei)- returns an
element name after the LCA of name of each element and content build using the
common and different concept the respective text. i.e.

String tagname = LCA(݁. ,ߟ ݁ . (ߟ
ൌ ݐ݊݁ݐ݊ܿ ݃݊݅ݎݐܵ .ሺ݁݊݉݉ܥݐሺ݃݁ݐݔ݈݁ܶ݀݅ݑܤሺݐܽܿ݊ܥ ߫, ݁ . ߫ሻሻ,

.ሺ݁ݐ݊݁ݎ݂݂݁݅ܦݐ݁݃ ሺݐݔ݈݁ܶ݀݅ݑܤ ߫, ݁ . ߫ሻሻ, "|"ሻ
Return CreateElement (tagName, content)

19. Item IntersectingItems(Item I1, Item I2)- returns the result of merging
corresponding sub-elements of I1 and I2 i.e.

collection Corr_Matrix=getCorrespondence(I1,I2,Element-
RelatedNess-Matrix(I1,I2)) // get elements correspondence
Ik = CreateElement(“Item”,Null) // create empty element named Item
element ek
for each e In Corr_Matrix

ek = MergeElements (e.ei, e.ej, e.relation) // merge elements
Ik.Elements.Add(ek)//add ek to the elements collection of Item (c.f. Fig. 10)

next
return Ik

7.2 Merging rules

Our merging process depends on the mapping of relationship existing between elements and
operation that would be executed which is represented as, f : ℛ → β.

Where :

- ℛ represents the set of possible relationship values existing between objects
ℛ = {Equal, Includes, Intersects, Disjoint}[58]
- β represents the merging expression – combination of one or more merging

operators

If the antecedent expression ℛ is true, then the expression inβwould be evaluated. The antecedent
in ℛ is restricted to expression that checks the relationship between items, elements or text
contents, and is formally denoted as:

getRelation(v1, v2) = c1 [∨ getRelation (v1, v2) = c2 ...]

⇒ β (15)

where:

- getRelation (V1, V2) - returns the relationship value
- V1 and V2 are path expressions returning item, element or text content)
- c1 and c2 are relationship values

Merging two items using our merging rule is similar to the propositional fusion rule of Hunter
[20]. However, our merging process is dependent on the relationship existing between elements or
items and presented as follows.

1. element MergeElements(element ei, element ej, string rel): It
accepts two simple elements , the relationship value and returns merged version i.e.

element ek
if (rel = ‘Equal’ OR rel = “Include”)

ek = KeepFirst(ei,ej)
else if (rel = “Disjoint”)

ek = CreateElement(ei, ej , “m”)
else if (rel = “Intersects”)

ek = IntersectingElements(ei,ej)

19

ek.Attributes.add(Handle-Attributes(ei, ei))

return ek

The operator returns either (a) containing element in the case of equality or inclusion
relation, (b) a new element named m (by default) and having both element as children in
the case of disjoint relation as done in the work of Ho-Lam et al [33], or (c) a new
element having the lowest common ancestor of both labels as label and the content
showing common and distinct concepts of each element’s content in the case of
intersection relation result of IntersectingElements

For instance, - MergeElements(CNN1/description, BBC1/description, “Intersect”) returns an
element having description as label and text contents separated by | as content. i.e.,

<description> United Nations Secretary-General Ban Ki-moon launch appeal aid people
Gaza Israel military offensive | $613m affected offensive, body's top official says provide
emergency humanitarian aftermath </description>.

2. Item MergeItems (Item I1, Item I2) – returns the result of merging two items
after getting the relationship

string rel = getRelation(I1 , I2)
if (rel = ‘Equal’)

return getLatest(I1 , I2)
else if (rel = “Include”)

return KeepFirst(I1 , I2)
else if (rel = “Disjoint”) // keep both items

Return KeepBoth(I1 , I2)
else if (rel = “Intersects”)

return IntersectingItems(I1 , I2)

The operator returns, either (a) the latest news in the case of equal news, (b) containing news in the
case of inclusion relation (c) keeps both items in the case of disjoint news (d) the result of merging
correspondence sub-elements of the items in the case of intersection relation.

Example 8: Let us consider RSS items CNN1 and BBC1 in Example 1. The item relatedness value
between CNN1, BBC1: IR(Φ[1], Φ[5]) = IR(CNN1, BBC1) = 0.726ۃ, Intersectsۄ

Hence, merging these items comes down to the merging of corresponding sub-elements. The
correspondence between sub-elements (i.e., the result of getCorrespondence operator) is shown
in Table 2.

MergeItems(Φ[1],Φ[5]) = <Item> MergeElements (titleCNN1, titleBBC1, “Equal”)
MergeElements(descriptionCNN1, descriptionBBC1, “Intersects”) MergeElements (LinkCNN1, LinkBBC1,
“Disjoint”) mergeElements(guidCNN1, guidBBC1, “Disjoint”) MergeElements (null, categoryBBC1, null)
</item>

The result is shown in Figure 4.

Table 2: Correspondence between Elements of CNN1 and BBC1.
getCorrespondence(CNN1,BBC1)

7.3 Actions

According to Hunter [20], an action determines the order and pattern in which an expression
would be executed. It include each of the following expressions

1. Document Initialize(String OutType) – it creates and returns an empty
document of OutType which could be RSS, XML or XHTML.

ei ej Relation

titleCNN1 titleBBC1 Equal
descriptionCNN1 descriptionBBC1 Intersect
linkCNN1 linkBBC1 Disjoint
guidCNN1 guidBBC1 Disjoint
Null CategoryBBC1 Null

20

2. Void AddElement(Element nw, Element Parent) – It adds the element nw as
child of Parent.

Notice that, in building valid document, Initialize action should be executed before
AddElement. In addition, there would be only one initialize action.

Example 9: Considering Example 8 above, the following action list generates an RSS document having
the merged items.

Document Doc = Initalize(“RSS”) // Create a document of given type OutType – default RSS

AddElement(MergeItem(CNN1, BBC1), Doc)

<?xml version="1.0" encoding="ISO-8859-1" ?>
<RSS version="2.0" >
<Channel>
<item>
<title>U.N. chief launches $600M Gaza aid appeal</title>
<description> United Nations Secretary-General Ban Ki-moon launch appeal aid people Gaza
Israel military offensive | $613m affected offensive, body's top official says provide emergency
humanitarian aftermath </description>
<m>

<link>http://edition.cnn.com/2008/WORLD/americas/05/01/gitmo.journalist/index.html?
eref=edition</link>
<link>http://edition.cnn.com/2008/WORLD/americas/05/01/gitmo.journalist/index.html?
eref=edition</link>

</m>
<m>

<guid>http://edition.cnn.com/2008/WORLD/americas/05/01/gitmo.journalist/index.html?
eref=edition</guid>
<guid isPermaLink="false">http://news.bbc.co.uk/go/rss/-/2/hi/me/723378828.stm </guid>

</m>
<category>Middle-east</category>

</item>
</Channel>

</RSS>

Fig. 11. Result of Merging two news items

7.4 Human Assisted merging operator

In our merging framework (c.f. Section 3), users are empowered to control and dictate the merging
process. As a result, every user is allowed to specify his/her notion of merging by associating
relationships between elements and merging operators. The merging operators MergeElements and
MergeItems represent default merging rules. In this work, users provide merging rules/options by
associating a template containing a list of identified relationships between elements and a template
containing a list of merging operators as shown Figure 12. Algorithm 5 represents mapping
between relations and action. The associations between relation and merging operator are stored as
user-defined merging rules. Each element of User-merging-rule has relation and action component
which would control the merging of elements.

Fig. 12. Screenshot of user based merging template

21

 Algorithm 5: Human Assisted Merging operators
1. Input : A :{Concat, KeepFirst, KeepSecond, KeepBoth, IntersectingElements, IntersectingItems, CreateElement}

// Set of Merging Operators
2. R : {Equal, Includes, Intersect, Disjoint} // Set of Relations
3. Variable: Element-Type : Simple | Item // type of element
4. User-merging-option: Merging-rule //merging rule provided by users
5. Mapped-rule : Merging-rule // mapped merging rule
6. User-merging-rule: {Merging-rule} // set of user provided and mapped merging rule
7. Output: None
8. Begin
9. User-merging-rule = ∅
10. For each relation r in R
11. User-merging-option = f(r, Element-Type, A)
12. User-merging-rule = User-merging-rule ∪User-merging-option
13. Next
14. Store User-merging-rule in user profile
15. End

In line 11, function f associates relation r (between elements) having element-type: Simple or Item
to one of the predefined operators a ∈A. The User-merging-option is accumulated (line 12) and
finally stored as profile.

Example 10: A user overrides the default merging rule for equality, and disjointness news items with
help of template (user interface) shown in Figure xxx:

- If Relation (I1, I2) = ‘equal’ then KeepBoth(I1, I2) // both news news

- If Relation(I1, I2) = ‘Disjoint’ then Concat(I1, I2, “|”)

7.5 Merging RSS news items

Merging RSS news items collected from one or more sources can be done after grouping items
using our relationship-aware clustering algorithm. Recall that merging could be done without
performing clustering. Nonetheless, clustering would provide more relevant merging candidates,
and thus would amend merging results (c.f. Section 6).

Hereunder, we start by defining an item neighborhood to be exploited in applying the default
merging rules, and performing RSS news items merging.

Definition 12. [Item neighborhood]

The neighborhood of news item Ii refers to a set of news items Ij related with relation equality or
inclusion. Formally, it is denoted as:

ܰሺܫሻ ൌ ൛ܫหܫ ൌ ܫ ש ܫ ـ ൟ (16)ܫ

Neighborhood of an item Ii returns all news items redundant to it or contained in it. As a result all
items in ()N Ii can be collapsed and represented by Ii without losing information.

For example,
ܰሺ1ܰܰܥሻ ൌ ൛ܫห݈ܽݑݍܧݏܫ൫CNN1, ൯ܫ ש ሻൟ returns all news related with equalityܫ ,ሺCNN1 ݏ݁݀ݑ݈ܿ݊ܫݏܫ
or inclusion with CNN1. Notice that CNN1would be the representative of the resulting set.

7.5.1 Merging Algorithm

Algorithm 6 handles merging of news items. The algorithm accepts a cluster of news items and the
corresponding semantic relatedness matrix i.e. sem_rel. For any pair of news items i and j,
sem_rel[i][j].value and sem_rel[i][j].rel represent respectively the relatedness and relationship
components of the item relatedness measure. In addition, the algorithm accepts User-merging-rule
extracted from the user profile.

In line 7, and empty RSS document is created with the using the initialize action. Then, in line 9,
the item neighborhood of a news item is identified, so as to produce special item Ir, that can
represent the merged result of all news belonging to same neighborhood using Merge-Items-

22

Neighborhood20. Then in line 8, the semantic relatedness matrix is updated by deleting the rows
and columns of items included in the global neighborhood of Ii and add Ir into the RSS file. Lines
15 – 22 are used to merge all the remaining news items. The merging process is conducted
incrementally.

 Algorithm 6: Merging RSS news Items
1. Input: Ci: {I1, I2, …, Im} // Ci is a cluster having Ik items 1 ≤ k ≤ m
2.
3.

sem_rel [][] // it contains items relatedness value
User-merging-rule : Collection // list of action to be done based on the relationship

4. Variable: r, s : integer
5. OutPut: Doc: Document // file containing merged news items
6. Begin
7. Doc = Initalize (“RSS”)
8.
9.
10.
11.
12.
13.

For each Ii in Ci
 Find the neighborhood of Ii and identify the representative //cf. Def. 19
 Update sem_rel matrix by deleting news included in neighborhood of Ir

 Let Ir = Merge-Items-Neighborhood (Ii, user-merging-rule)
 AddElement (Ir, Doc)

Next
14. Do
15 (r,s) = max (sem_rel[i][j].value) // Find the most similar pair of news items say r and s over all items
16
17.

Ik = merge (Ir, Is, user-merging-rule) //Merge r and s to form new item Ik.
AddElement (Ik , Doc)

18. Update sem_rel matrix
19.
20.
21

SemRel(Eik, E(s,r)j)= Avg (SemRel(Eik,Esj), SemRel(Eik,Erj))
Relation(EikE(s,r)j)= Fuzzy(SemRel(EikE(s,r)j),Thresholddisjoint, ThresholdEqual)
sem_rel [I][(r,s)] = IR (I, (r,s))

22.
23

Until all items are merged
Return RSS

24 End

In line 15, any two highly related news items (Is and Ir) over all pair of items are identified. These
news items are merged using the merging rule provided by the user (line 16). The resulting news
item is added to output RSS file (line 17). In line 18, the sem_rel matrix is updated by removing
rows and columns of Is and Ir and adding the newly merged news Ik. Item relatedness between Ik
and those related with Is and Ir is estimated after estimating the relatedness between sub-elements
of Is and Ir. The semantic relatedness between sub-elements Eik of Ii and Ik is computed as the
average SemRel(Eik,Esj), and SemRel(Eik,Erj) where Esj and Erj are sub-elements of Is and Ir
respectively. The relation between sub-elements is computed on the bases of fuzzy notion that
takes into consideration semantic relatedness value, threshold disjointness and threshold equality –
line 20. In line 21, The semantic relatedness and relationship between items is computed by
combining the semantic similarity and relationship values using the Item relatedness algorithm
(c.f. item relatedness).

8 EXPERIMENTS
To validate our approach, we have implemented a C# desktop prototype entitled RSS Merger
encompassing:

• A KB component: stores reference text value and label knowledge bases, VKB and LKB, in a
MySql DBMS. The value knowledge base VKB and LKB are modified based on the
considered application.

• RSS Input component: allows users to register existing RSS news addresses, and accepts
parameters to be used in generating synthetic news.

• Containers for generated and/or extracted news

• Container for the user profile – user information and personalized merging rule

20 Merge-Items-Neighborhood merges news items redendent news items based on the equlity and inclusion
merging rule of the user.

23

The prototype accepts, as input, RSS news items, as well as Boolean input parameter allowing the
user to chose whether to consider data semantics (i.e., exploit VKB and LKB in identifying
label/value neighborhoods) or not. It measures relatedness between news items automatically after
(i) stemming text values using Porters’ algorithm [42], (ii) generating vectors for each text, (iii)
computing relatedness and relationships at different level of granularity, i.e., text, label, simple
element, and item (complex element). It clusters the RSS items based on the relatedness value and
finally merge the news based on the users merging rule.

We have conducted a set of experiments to evaluate (a) the computational complexity and
efficiency of our method, (b) the relevance of our relatedness measure, and (c) the relevance of
topological relationships in grouping related news items, and consequently performing RSS
merging (d) user based relevance of the merging operation. Experiments were carried out on an
Intel Core Centrino Duo Processor machine (with 1.73 GHz processing speed and 1GB of RAM).

8.1 Dataset

In conducting the set of experiments, we have used both syntactic and real dataset.

• Syntactic dataset: we have developed a C# prototype that generate RSS document that
conforms to RSS 2.0 specification. The prototype accepts each of the following as parameters.

o Number of news items to be generated

o Maximum number of concepts per content

o Number of disjoint number of clusters

o Number of Equal, including and intersecting news per clusters

• Real dataset: We have used two groups of real datasets

Group 1: It contains 158 RSS news items extracted from well known news providers (CNN,
BBC, USAToday, L.A. Times and Reuters). We grouped manually into 6 predefined clusters:
US Presidential elections 08, Middle-east, Mumbai-attacks, space-technology, oil, and football.
However, we did not identify the relationships that could exist between news items.

Group 2: News collected by Antonio Gulli [59]. We have extracted 567 news published as
Top News by CNN, BBC, Newsweek, The Washington Post, Reuters, Guardian, and Time. We
group the news into 7 clusters. Table 3 shows the clusters and number of news related with
equality, inclusion and intersection relations.

Table 3: Manual Clusters and distribution of relationships

Cluster Name # Equality # Including # intersection Total

Mortgage 100 69 0 169

Afghan 17 5 10 32

Bin-Laden 13 4 1 18

Arafat 30 6 19 55

Terrorism 27 19 78 124

USA-Election 60 9 100 169

8.2 Timing Analysis and Efficiency

We experimentally tested the time complexity of our relatedness algorithm (R2) , w.r.t. the sizes of
input texts t1 and t2 i.e. number of concept sets (n and m) and value knowledge base information
(number of concepts - nc and depth - d). Note that relationship computation is not included here as
its impact is minimal on timing.

On one hand, we can quickly observe the polynomial nature of the timing result shown in
Figure 13, demonstrating the polynomial dependency on input text size (13.a) and knowledge base
information (13.b). The x axis represents the number of concepts in a concept set and the y axis
shows the consumed number of seconds needed to compute the relatedness value.

24

a. Without semantic knowledgebase

b. With fixed semantic (d=8,nc = 100)

Fig. 13. Timing analysis text concept set in t1, t2 (n, m)

In Figure 13, we also show the effect of varying number of concepts in synsets. Figure 13.a
shows the timing result without considering knowledge base information while varying the size of
the input texts. Increasing the number of concept sets increases the timing in a quadratic fashion
(i.e. the dot line shows the growth rate as trend of the algorithm). Figure 13.b represents timing
result considering a fixed knowledge base (having 100 concepts with a maximum depth of 8). The
time needed to compute the relatedness between items increases drastically (compared to the result
shown in Figure 13.a) and in a polynomial fashion.

Fig. 14. Timing result obtained using three algorithms: xSim, TF‐IDF and our algorithm

 On the other hand, we wanted to compare the efficiency of our algorithm with similar existing
ones. As alternative algorithms, we chose xSim [27] and TF-IDF[39], the former being one of the
most recent XML-dedicated similarity approaches in the literature, the latter underlining a more

0

5

10

15

20

25

100 200 300 400

Se
co
nd

s

n: Number of concepts in a concept set of T1

100

200

300

400

Trend

m: ncs in T2

0

1000

2000

3000

4000

5000

6000

100 200 300 400

Se
co
nd

s

n: Number of concepts in a concept set of T1

100

200

300

400

Trend

m: ncs in T2

0

50

100

150

200

250

100 200 300 400 500 600 700 800

Se
co
nd

s

Number of concepts in a concept set of T1 and T2 (m=n)

xSIM

Tf‐IDF

R2

Algorithm

25

generic method for computing similarity and which could be utilized to compare RSS items. In all
three algorithms (including ours), computing relatedness between randomly generated synthetic
news is performed without semantic relatedness assessment (as both xSim and TF-IDF do not
consider semantic information) using cosine similarity. Figure 14 shows that our approach yields
better timing results in comparison with xSim, but performs worse than TF-IDF. That is due to the
fact that TD-IDF does not consider the structure of RSS news items, but only their concatenated
contents.

8.3 Relevance of our Relatedness Measure

In this set of tests, we used clustering to measure the relevance of our approach by grouping
together related/similar news. Checking clustering quality involves (i) the computation of metrics
based on pre-defined knowledge of which document belongs to which clusters, (ii) and mapping
the discovered clusters to original clusters. Here, we exploit the popular information retrieval
metrics precision (PR) and recall (R) [39] to check the relevance of the discovered clusters. In
addition, an f-score value is used to compare the accuracy of different clustering results based on
the combined values of PR and R as these values are not discussed isolation while measuring the
relevance:

f-score
)RPR(
RPR2

+
××

= (17)

Using our clustering strategy (cf. Section 6), we compared (i) our semantic relatedness
algorithm, (ii) the TF-IDF measure and (iii) xSim on real datasets, with and/or without semantic
information, calculating PR, R, and f-score values. Precision and recall graphs exhibit two basic
properties independent of the similarity measure used: (i) precision around clustering level 1
(which contains news related with related value of 1 and/or with relationship of equality/inclusion)
is maximum (i.e. PR = 1 and the clusters are smaller, and disjoint) whereas recall value is very low
(it means that there are many mis-matching clusters), (ii) precision around clustering level 0
(results in all news items with relatedness value greater than or equal to 0) is very low (resulting in
bigger clusters) whereas recall value is higher as mis-clustering is lower. Hence, the actual
clustering of datasets should end before attaining clustering level zero.

Fig. 15. f‐score on group 1 real data set

We used 158 RSS news items extracted from well known news providers grouped manually into 6
predefined clusters. Figure 15 shows the corresponding f-score graph. Even-though the
relationship between news items was not identified in this dataset, our relationship aware
clustering algorithm groups all items related with inclusion and equality in the appropriate cluster
(between clustering levels 1 and 0.7). The average f-value computed over the entire clustering
level conforms that our semantic relatedness measure provides relevant clustering results (clusters
closer to the predefined ones, particularly between 1 and 0.37) compared to xSim and TF-IDF.

8.4 Relevance of Item/Element Relations

In this set of tests, we show to which extent our relatedness measure identifies the equality,

0

0.2

0.4

0.6

0.8

1

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

f‐
va
lu
e

Clustering level

R2

xSim

tf*idf

Algorithm

26

inclusion, intersection and/or disjointness relations between items. We generated 100 synthetic
news items with various different distributions.

a. Precision graph

b. Recall graph

Fig. 16. Relevance of relationships with synthetic RSS data.

Figure 16 shows the Recall and Precision graphs generated on a distribution having: 20 equal, 20
included, 40 intersecting, and 20 disjoint news, by varying the similarity threshold between 0.3
and 0.9. The graph shows that our measure accurately identifies equality and inclusion
relationships, at all time. However, the measure misclassifies disjoint news and considers them as
intersected due to element label relatedness (without threshold and/or TDisjoint less than 0.30). With
TEquality = 0.39, our method identifies all disjoint news items and hence provides optimal recall and
precision). However, recall w.r.t. the intersection relationship becomes lower as the news are
considered equal. Precision decreases with the intersection relationship (x-PR) around a threshold
of 0.6, as the news items are considered as equal, using equality thresholds between 0.61 and 0.68.
Similarly for equality thresholds between 0.68 and 0.84 where included and intersecting news are
considered as equal.

We can conclude here that a correlation can be identified between the threshold values and the
distribution of news relationships. This can be inferred using learning and mining techniques. This
issue needs to be studied further in the future.

8.5 Relevance of relation aware clustering

As stated in Section 6, our RaSL2 algorithm adds news items related with inclusion and
equality, in addition to those having maximum relatedness, in the same cluster. We evaluate this
factor experimentally using real dataset. We present f-value results when clustering real data using
our RaSL2 algorithm and the original single link level (SL2) algorithm. The result of clustering 567
real news items is shown in Figure 17. Our clustering algorithm adds the news items related with
inclusion and equality at level 1 whereas the single-link clustering algorithm contains only equal
news (which would have maximum relatedness values). Our RaSL2

 makes sure that including
news are in the same cluster independent of the similarity value.

0
0.2
0.4
0.6
0.8
1

0.
30

0.
33

0.
36

0.
39

0.
62

0.
65

0.
68

0.
72

0.
75

0.
78

0.
81

0.
84

Pr
ec
is
io
n

Threshold

Equal
Include
Intersect
Disjoint

Relations

0

0.2

0.4

0.6

0.8

1

0.
30

0.
33

0.
36

0.
39

0.
62

0.
65

0.
68

0.
72

0.
75

0.
78

0.
81

0.
84

Re
ca
ll

Threshold

Equal

Include

Intersect

Disjoint

Relations

27

Figure. 17. Group 2 real RSS items clustered with SL2 and our RaSL2 algorithms.

8.6 Relevance of merging RSS news items

We let 5 university students to use desktop prototype in order to merge news collected from same
and/or different sources. Initially, the students use the default merging rule then after they are
allowed to provide their personalized merging rule by combining the template provided in Figure
12 above. Finally, they answer rated (1(least) -5(best)) questions focusing on three requirements.

R1. Completeness of the merging operator in merging RSS documents

R2. Quality of the merged result – redundancy free RSS news result

R3. Flexibility of the merging approach in allowing users to have personalized merging rule

Table 4: Students response to three requirements

Requirement

Student

R1 R2 R3

S1 5 5 4

S2 5 5 5

S3 4 5 4

S4 4 5 3

S5 5 5 5

average 4.6 5 4.2

Table 4 shows the rating of each student to each of the three requirements. The average ratings
over each requirement confirm the relevance of the approach. In the future we have a plan to
release large scale public version of our prototype and collect users’ relevance feedback.

9 RELATED WORK
The merging of information has been studied extensively in different application scenarios
distrusted database design [31][43][2] [14][6], revision control, belief management, information
systems, etc.

Herewith, we present merging scenarios and technique related with the merging process.

9.1 Distributed database

Merging of information/data is one of the key issues in the design of federated and distributed
databases. A number of studies have been made with approaches based on schema
integration/merging (e.g. [31]), particularly the use of a global conceptual schema (e.g. [43][2]).

0

0.2

0.4

0.6

0.8

1

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

f‐
va
lu
e

Clustering level

SL2

RaSL2

Algorithm

st
op

pi
ng

 le
ve
l=
0.
2

28

Even if the approach in [31] considers the topological relations (equality, inclusion and
disjointness), it does not consider the domain knowledge information in handling semantic
conflicts or relationships between entities and its applicability is restricted to model merging. In
federated and heterogeneous database integration [14][6], transparency and merging is archived
with the use of wrappers, mediators and views that convert the user’s query to be processed against
the native database schema.

9.2 Revision control information systems

In revision control information systems, two methods have been introduced for merging. A first
method, called two-way merge, performs an analysis between two knowledge sources and
considers the differences between the two sources alone to conduct the merging. Then it makes a
“best-guess” analysis to generate the result. The second method, called three-way merge, is
performed between knowledge sources while also considering their origin, or parent (usually the
parent is the same). This type of merging is generally available through the use of supporting
revision control systems where such a parent would normally exist.

9.3 Merging XML data

Merging XML data has been studied by different researchers La Fontaine et al. [32], Lindholm et
al. [36][37]and hunter et. al [22][23] .

The approach proposed by La Fontaine in [32] merges directly data-centric XML files, using two-
and three-way merging techniques. The approach starts by performing a tree-structured
comparison walking through ‘corresponding’ nodes in the XML document trees to be merged.
XML trees are treated as ordered lists of nodes, upon which the Wu algorithm for computing the
Longest Common Subsequence (LCS) is exploited [51]. Once the two XML documents have been
compared, an intermediate file is produced, containing all the information from both original files.
Finally, based on the comparison results, the two XML documents are merged according to
predefined merging rules.

Lindholm in [36][37] proposes a three-way merge for structured data, where input documents are
modeled as XML ordered trees. The author’s focuses on data-centric XML, and thus disregards
data semantics. For the purpose of merging, a matching relation to group together the
‘corresponding’ nodes from different trees is defined. The concept of node class is introduced: the
equivalence class of a node under a matching relation. Merging rules extracted from rule cases are
later used to produce the final merged XML document.

Hunter et al. have published several papers [18][19][20][21][22][23] concerning the use of
knowledge bases and fusion rules in merging information. Authors are particularly interested in
merging semi-structured information such as structured reports: XML documents having same
structure and the text entries are restricted to individual words or simple phrases, dates, numbers
and units. The merging process is controlled by propositional fusion rules [21][22] in which
conflicts in information are solved by the user of logical reasoning, with axioms and rules
contained in a knowledge base. Hunter’s fusion rule is less applicable and couldn’t be applied to
RSS scenario as text entries are small words or phrases and merging is restricted to elements
having the same tag name. The fusion pro In general, the fusion rule has restricted merging
process: (1) to finite number of similarly structured xml document and text entry is restricted to
words and small phrases without natural language processing, and to (2) elements having same tag
name.

Unlike the work of Hunter our merging approach is based on automatic computation of
relatedness/similarity between news and it is controlled by the relationship existing between
items/elements.

9.4 Similarity/Relatedness

In both two-way and three-way merging approaches, identifying matching nodes is a pre-condition
in different XML merging scenarios [32][36][37]. A lot of research has been done to determine
similarity and can be categorized into structure-based, content based and hybrid-based
approaches.

29

It is to be noted that most of the proposed approaches in XML comparison are based on structural
similarity using tree edit distance [3]. For instance, Chawathe [5], Nireman and Jagadish [41]
consider the minimum number of edit operations: insert (tree), delete (tree) and update node to
transform one XML tree to another. However, other techniques have exploited to evaluate XML
similarity. Flesca et. al [8] use of Fast Fourier Transform to compute similarity between XML
documents. They extract the sequence of start tags and end tags from the documents, and convert
the tag sequence to a sequence of numbers to represent the structure of the documents. The number
sequence is then viewed as a time series and the Fourier transform is applied to convert the data
into a set of frequencies. The similarity between two documents is computed in the frequency
domain by taking the difference in magnitudes of the two signals.

In content based similarity of XML document, similarity is computed without assigning any
special significance to the tags or the structural information. For example, IR search engines
typically ignore markup in HTML documents when matching phrases. The similarity can be done
with/without considering semantics. In Information Retrieval (IR) [39], the content of a document
is commonly modeled with sets/bags of words where each word (and subsumed word(s)) is given
a weight computed with Term Frequency (TF), Document Frequency (DT), Inverse Document
Frequency (IDF), and the combination TF-IDF. In [11], the authors used a Vector Space having
TF-IDF as weight factor in XML retrieval.

There is a lot of research towards determining the similarity between texts using vector space and
fuzzy models. In vector model [39], similarity between texts is computed using cosine of the
keywords. In fuzzy approach (e.g. in [40] Nathaniel et al. have used pre-computed keyword
correlation factors between pair of keywords and defined fuzzy association to order to get
asymmetric similarity value. The authors have used Correlation based Phrase matching approach
in finding similar RSS articles collected from same or different sources. However, the comparison
is restricted to an RSS content descriptor that combines content of title and description elements.

The semantic similarity between concepts is estimated either by the distance between nodes [50],
or the content of the most specific common ancestor of those nodes involved in the comparison
[45][35] and is defined according to some predefined knowledge base(s). Knowledge bases
[44][46] (thesauri, taxonomies and/or ontologies) provide a framework for organizing words
(expressions) into a semantic space.

More recently, a few hybrid-based (hybrid refers to combination of structure and content or
structure and semantic based) approaches have been proposed, addressing XML comparison. In a
recent work [48], the authors combined an IR semantic similarity technique with a structural-based
algorithm based on edit distance. However, the semantic similarity is limited only to tag names. In
[27], xSim, a structure and content aware XML comparison framework is presented. xSim
computes the matching between XML documents as an average of matched list similarity values.
The similarity value is computed as average of content, tag name and path similarity values
without considering semantics.

9.5 Relationships

The relationships between objects such as equality, inclusion, intersection, disjointness, etc. have
been used in different applications such as spatial data retrieval, access control and text mining. In
[33], Ho-Lam et al. stress on the importance of considering relationships (equality, overlap,
disjointness and containment or inclusion) between data sources while merging XML documents,
without however addressing the issue.

Ian gracia et al. [24], Nathaniel et al. [40] and Pera et al. [38] have used correlation based
approach to identify relationships among RSS news articles: redundant (identical and subsume – it
is similar to our equality and inclusion relationship), non-related (disjoint) and related
(intersection). Pera [38] used the fuzzy equivalent relation in order to detect and remove less-
relevant/informative news article from clusters.

9.6 Discussion

Unlike the works in [24], [38], [40], our approach focuses on human-provided semantics in
evaluating the relatedness of XML documents, RSS items in particular. The user would provide a
list of tags to be used as content descriptors. The relatedness approach is based on vector space
model with weights of index terms/keywords reflecting semantic enclosure relationships between

30

index terms. We detect fuzzy equality, inclusion, intersection, and fuzzy disjoint relationships. The
subsume relationship in [38] is fuzzy and may classify intersecting news A1 and A2 shown in Table
3.a as A1 subsumes in A2. In addition, none of the merging approaches considers relationships as
input parameters for the merging process.

Table 3: Subsumed vs inclusion relationship

RSS news

a. (following [38]) sim(A1, A2) ~1 and
sim(A2, A1) << 1, hence A1 is subsumed
in A2. However, A1 and A2 are very
similar and intersecting news.

b. sim(A1, A2) =1 but sum(A2, A1) < 1.
Truly A1 is included in A2 or A1 is
subsumed by A2

10 CONCLUSIONS AND FURTHER RESEARCH
 In this paper, we have addressed the issue of measuring topological/semantic relatedness
between RSS items. We have studied and provided a technique for computing text and label
relatedness, taking into account different kinds of relationships among text (element content) and
elements. Our approach detects disjointness, intersection, inclusion and equality relationships
among atomic and complex RSS elements. The identified relationships are used in adapting the
level based single link clustering algorithm. We have developed a prototype validating the
complexity of our relatedness measure. The resulting f-score value computed on both real and
synthetic data shows that our measure generates relevant clusters compared to xSim and TF-IDF.
In addition, we have shown the capability of our measure in identifying relationships between
items. We have compared our relationship aware clustering algorithm against the classic single
link level based algorithm. Results confirm the advantage of detecting relationships in identifying
relevant RSS data clusters. Finally, our measure is used in defining RSS item merging operators,
and consequently performing the merging. We are currently developing a full-fledged merging
language, exploiting our merging operators, and integrating user preferences. In addition, we plan
to extend the relatedness measure in the merging of multimedia related scenarios (SVG, MPEG 7,
etc.)

References
[1] Ben Hammersley. Content Syndication with RSS, O’Reilly & Associates Publishers, San Francisco,

USA, 2003
[2] S. Bergamaschi, S. Castano, M. Vincini, and D. Beneventano. Semantic integration of heterogeneous

information sources. Data and Knowledge Engineering, 36:215–249, 2001.
[3] P. Bille. A survey on tree edit distance and related problems. Theoretical Computer Science, 337(1-

3):217-239, 2005.
[4] A. Budanitsky and G. Hirst. Evaluating wordnet-based measures of lexical semantic relatedness.

Computational Linguistics, 32(1):13-47, 2006.
[5] S. S. Chawathe. Comparing hierarchical data in external memory. In VLDB '99: Proceedings of the 25th

International Conference on Very Large Data Bases, pages 90-101, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[6] W.Cohen. A web-based information system that reasons with structured collections of text.In
Proceedings of Autonomous Agents’98, 1998.

[7] Dalamagas, T., Cheng, T., Winkel, K.-J., Sellis, T.K. A methodology for clustering XML documents by
structure. Information Systems 31(3), 187–228 (2006)

[8] S. Flesca, G. Manco, E. Masciari, and L. Pontieri. Fast detection of xml structural similarity. IEEE
Transactions on Knowledge and Data Engineering, 17(2):160-175, 2005. Student Member-Andrea
Pugliese.

[9] F. Getahun, J. Tekli, S. Atnafu, and R. Chbeir. Towards efficient horizontal multimedia database
fragmentation using semantic-based predicates implication. In XXII Simposio Brasileiro de Banco de
Dados, 15-19 de Outubro, Jo~ao Pessoa, Para ba, Brasil, Anais, Proceedings, pages 68-82, 2007.

[10] Gower J. C. and Ross G. J. S. Minimum Spanning Trees and Single Linkage Cluster Analysis, Applied
Statistics, 18, pp. 54-64. 1969.

A2

A1

31

[11] T. Grabs and H.-J. Schek. Generating Vector Spaces On-the-fly for Flexible XML Retrieval. In
Proceedings of the ACM SIGIR Workshop on XML and Information Retrieval, Tampere, Finland, pages
4–13. ACM Press, 2002.

[12] G. Grahne and A. Mendelzon. Tableau techniques for querying information sources through global
schemas. In Proceedings of the 7th International Conference on Database Theory (ICDT’99), Lecture
Notes in Computer Science. Springer, 1999.

[13] A. Y. Halevy. Answering queries using views: A survey. The VLDB Journal, The International Journal
on Very Large Data Bases, 10(4):270-294, 2001.

[14] J. Hammer, H. Garcia-Molina, S. Nestorov, and R.Yerneni. Template-based wrappers in the TSIMMIS
system. In Proceedings of ACM SIGMOD’97. ACM, 1997

[15] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. SIGMOD Rec.,
25(2):205-216, 1996.

[16] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied Statistics, 28(1):100-108,
1979.

[17] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In SIGMOD '95:
Proceedings of the 1995 ACM SIGMOD international conference on Management of data, pages 127-
138, New York, NY, USA, 1995. ACM.

[18] A. Hunter and R. Summerton. A knowledge-based approach to merging information. Knowledge Based
Systems, 19(8):647-674, 2006.

[19] A. Hunter and R. Summerton. Fusion rules for context-dependent aggregation of structured news
reports. Journal of Applied Non-Classical Logics, 14(3):329-366, 2004

[20] A. Hunter and R. Summerton. Propositional fusion rules. In Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, 7th European Conference, ECSQARU 2003, Aalborg, Denmark, July 2-5,
2003. Proceedings, Lecture Notes in Computer Science, pages 502-514. Springer, 2003.

[21] A. Hunter and R. Summerton. Propositional fusion rules. In: LNCS, vol. 2711. Springer. pp. 502-514.
[22] A. Hunter and W. Liu. Fusion rules for merging uncertain information. Information Fusion, 7(1):97-

134, 2006.
[23] A.Hunter and W. Liu. Merging uncertain information with semantic heterogeneity in XML. Knowledge

and Information Systems, 9(2):230-258, 2006.
[24] Ian Garcia, Yiu-Kai Ng Eliminating Redundant and Less-Informative RSS News Articles Based on

Word Similarity and a Fuzzy Equivalence Relation. ICTAI 2006: 465-473
[25] N. Jardine and R. Sibson. Mathematical Taxonomy. John Wiley and Sons, New York, 1971.
[26] Jonathan Koberstein, Yiu-Kai Ng Using Word Clusters to Detect Similar Web Documents. KSEM 2006:

215-228
[27] A. M. Kade and C. A. Heuser, Matching XML documents in highly dynamic applications. Proceeding

of the eighth ACM symposium on Document engineering ISBN:978-1-60558-081-4, Sao Paulo, Brazil,
Pages 191-198 (2008).

[28] H. Katsuno and A. Mendelzon. On the difference between updating a knowledgebase and revising it. In
Principles of Knowledge Representation and Reasoning: Proceedings of the Second International
Conference (KR’91), pages 387–394. Morgan Kaufmann, 1991.

[29] S. Konieczny and R. P. Pérez. On the logic of merging. In Principles of Knowledge Representation and
Reasoning (KR), pages 488-498, 1998.

[30] S. Konieczny and R. P. Pérez. Merging with integrity constraints. In ECSQARU '95: Proceedings of
the European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
pages 233-244, London, UK, 1999. Springer-Verlag.

[31] J. Krogstie, A.L. Opdahl, and G. Sindre. Generic Schema Merging , pp. 127–141, LNCS 4495 Springer-
Verlag Berlin Heidelberg 2007

[32] R. La Fontaine. Merging XML files: A new approach providing intelligent merge of XML data sets. In
Proceedings of XML Europe ‘02, 2002.

[33] H. Lau, Wilfred Ng. A Unifying Framework for Merging and Evaluating XML Information. DASFAA
'05, Proceedings, volume 3453 of Lecture Notes in Computer Science, pages 81-94, Springer, 2005.

[34] Li, X., Yan, J., Deng, Z., Ji, L., Fan, W., Zhang, B., Chen, Z. A Novel Clustering-Based RSS
Aggregator. In: Intl. Conf. on World Wide Web, pp. 1309–1310. ACM, New York (2007)

[35] Lin D. An Information-Theoretic Definition of Similarity. In Proceedings of the 15th International
Conference on Machine Learning, 296-304, Morgan Kaufmann Publishers Inc., 1998

[36] T. Lindholm. XML three-way merge as a reconciliation engine for mobile data. In MobiDe '03:
Proceedings of the 3rd ACM international workshop on Data engineering for wireless and mobile
access, pages 93-97, New York, NY, USA, 2003. ACM.

[37] T. Lindholm. A three-way merge for XML documents. In DocEng '04: Proceedings of the 2004 ACM
symposium on Document engineering, pages 1-10, New York, NY, USA, 2004. ACM.

[38] Pera M. S., Yiu-Kai Ng Finding Similar RSS News Articles Using Correlation-Based Phrase Matching.
KSEM 2007: 336-348

[39] M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, New York, 1983.

32

[40] Nathaniel Gustafson, Maria Soledad Pera, Yiu-Kai Ng Generating Fuzzy Equivalence Classes on RSS
News Articles for Retrieving Correlated Information. ICCSA, Springer-Verlag, Berlin, Heidelberg,
2008: 232-247 (2008).

[41] A. Nierman and H. V. Jagadish. Evaluating structural similarity in XML documents. In Proceedings of
the Fifth International Workshop on the Web and Databases, WebDB 2002, pages 61-66. University of
California, 2002.

[42] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130—137. 1980.
[43] A. Poulovassilis and P. McBrien. A general formal framework for schema transformation, Data and

Knowledge Engineering, 28:47–71, 1998.
[44] Princeton University Cognitive Science Laboratory. WordNet: a lexical database for the English

language. http://wordnet.princeton.edu/.
[45] P. Resnik. Semantic Similarity in a Taxonomy: An Information-based Measure and its Application to

Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence Research, 11:95–130,
1999.

[46] R. Richardson and A. F. Smeaton. Using wordnet in a knowledge-based approach to information
retrieval. Technical Report CA-0395, School of Computer Applications, Trinity College, Dublin,
Ireland, 1995.

[47] RSS Advisory Board. RSS 2.0 Specification. http://www.rssboard.org/.
[48] J. Tekli, R. Chbeir, and K. Ytongnon. A hybrid approach for xml similarity. In J. van Leeuwen, G. F.

Italiano, W. van der Hoek, C. Meinel, H. Sack, and F. Plasil, editors, SOFSEM '07, Proceedings, volume
4362 of Lecture Notes in Computer Science, pages 783-795. Springer, 2007.

[49] J. D. Ullman. Information integration using logical views. In ICDT '97: Proceedings of the 6th
International Conference on Database Theory, pages 19-40, London, UK, 1997. Springer-Verlag.

[50] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Proceedings of the 32nd annual
meeting on Association for Computational Linguistics, pages 133-138, Morristown, NJ, USA, 1994.
Association for Computational Linguistics.

[51] S. Wu, U. Manber, G. Myers, and W. Miller. An O(NP) sequence comparison algorithm. Information
Processing Letters, 35(6):317-323, 1990.

[52] WWW Consortium. The Document Object Model, http://www.w3.org/DOM.
[53] G.W. Milligan, M.C. Cooper, An examination of procedures for determining the number of clusters in a

data set, Psychometrika 50 (1985) 159–179.
[54] L.J. Hubert, J.R. Levin, A general statistical framework for accessing categorical clustering in free

recall, Psychol. Bull. 83 (1976) 1072–1082.
[55] Aldendefer, M. S. and R. K. Blashfield. Cluster Analysis, Beverly Hills, CA, Sage, 1984.
[56] King, B. Step-wise Clustering Procedures. J. Am. Stat. Assoc. 69: 86-101.
[57] Sneath, P. H. A, and Sokal, R.R., Numerical Taxonomy: The Principles and Practice of Numerical

Classification, W.H. Freeman, San Francisco, 1973
[58] Fekade Getahun, Joe Tekli, Richard Chbeir, Marco Viviani, Kokou Yétongnon: Relating RSS

News/Items. ICWE 2009: 442-452
[59] Antonio Gulli, http://www.di.unipi.it/~gulli/, 2009

