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Abstract. Merging XML documents can be of key importance in several applications. For 

instance, merging the RSS news from same or different sources and providers can be beneficial for 

end-users in various scenarios. In this paper, we address this issue and explore the relatedness 

measure between RSS entities/elements. We show here how to define and compute exclusive 

relations between any two elements and provide several predefined merging operators that can be 

extended and adapted to human needs. We also provide a set of experiments conducted to validate 

our approach. 
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1 INTRODUCTION 
W3C's XML (eXtensible Mark-up Language) [52] is the driving force for representing, 
exchanging, formatting, interchanging, storing, and filtering data in centralized as well as 
distributed environments, such as the Web. It is popular because of its semi-structured and self-
describing nature which makes it suitable for describing any kind of data. 

Really Simple Syndication (RSS) [1][47] is an XML-based family of web feed formats used to 
publish frequently updated contents such as blog entries, news headlines and podcasts, in a 
standardized format. RSS has been proposed to facilitate the aggregation of information from 
multiple web sources. As a result, clients can simultaneously access content originating from 
different providers (using RSS aggregator) rather than roaming a set of news providers. Clients can 
subscribe to news they are interested in, using RSS aggregators. RSS aggregators download news 
feeds and provide an interface to view and organize them. When Clients add more sources the 
amount of news feeds becomes more difficult to manage. Often, clients have to read related (and 
even identical) news more than once as the existing RSS engines do not provide facilities for 
merging related items.  

Merging RSS news can thus fruitful in several applications and scenarios. This comes down to (i) 
identifying related elements between two news, and (ii) generating a merged document that 
collapses related elements while preserving remaining source elements. With respect to (w.r.t.) the 
first sub-problem, merging RSS news requires identifying the relatedness1 [4] between their 
elements, i.e., element labels and contents, and consecutively element semantic overlapping, 
intersection, inclusion and disjointness  (considering the meaning of terms and not only their 
syntactic properties). 

In this work, we address these problems. We first focus on the issue of measuring relatedness and 
relationship between RSS elements/items, as a necessary prerequisite to performing efficient RSS 
merging. After, we propose merging operators that consider the relatedness and relationship values 

                                                 
1 Semantic relatedness is a more general concept than similarity; similar entities are semantically related by 
virtue of their similarity, but dissimilar entities may also be semantically related by lexical relationships such 
as meronymy and antonymy, or just by any kind of functional relationship or frequent association. 
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in performing the merge operation. Hence, the main objective of this study is to put forward a 
specialized and human-oriented RSS relatedness measure able to: 

i) Quantify RSS relatedness, necessary for identifying and grouping RSS items that are 
related (similar) enough to be merged (the merging of unrelated items is obviously 
useless to the user). 

ii) Identify the relationship that can occur between two RSS items (i.e., disjointness, 
intersection, inclusion and  equality), to be exploited in the merging phase.  

iii) Merging RSS items based on item relatedness (grouping) and relationship identification. 
Grouping similar items, and Identifying their common/different parts would help decide 
on the merging rules to be executed (e.g., if RSS item I1 is included in I2, then merging I1 
and I2 simply comes down to preserving I2). 

The remainder of this paper is organized as follows. Section 2 presents our motivation scenarios. 
Section 3 presents an overview of our merging framework. Section 4 presents some preliminary 
definitions and notions to be exploited in defining our RSS relatedness measure. Section 5 presents 
our relatedness measure detailing semantic relatedness and relationship between texts, simple 
elements and items. Section 6 presents relation aware clustering algorithm. In Section 7, we details 
our basic merging operators and the related merging algorithm. Section 8 presents experimental 
results. In Section 9, we discuss background and related work. Section 10 concludes the paper and 
draws future research directions.  

2 MOTIVATING SCENARIO 
The number of applications using RSS is increasing everyday: AmphetaDesk2, PullRss3, Radio 
UserLand4, SlashCode/Slashdo5, Weblog 2.0 [1]. In addition, RSS has been used in ELF6 and 
Package tracking7 to notify customers about events or news. Most of these applications are 
designed to aggregate, search, filter or display news in RSS specification. However, to the best of 
our knowledge, none of these considers the issue of merging related news collected from same or 
different news providers.  

To motivate our work, let us consider Figure 1 and Figure 2 showing a list of news extracted from 
CNN and BBC's RSS feeds. Registering these feeds in existing news readers such as Newsgator, 
Google Reader, Attensa, provides the user with access to all news without considering relatedness 
among them. However, identifying and merging related news would enable the user to more easily 
and efficiently acquire information. The user would obviously prefer to access one piece of news 
about a certain topic, encompassing all relevant and related information (after merging), instead of 
searching and reading all news articles covering the same topic, which could be extremely time 
consuming and often disorienting. XML news feeds (e.g., RSS items), and particularly XML 
elements, can be related in different manners. 

− The content of an element might be similar and totally included in another (inclusion). 

Example 1. The title content of CNN1 “U.N. chief launches $613M Gaza aid appeal” includes 
the title content of BBC1 “UN launches $613m appeal for Gaza” 8. 

− Two news may refer to similar and related concepts (intersection). 

Example 2. The description content of CNN2 “Ford Motor reported that its ongoing losses 
soared in the fourth quarter, but the company reiterated it still does not need the federal bailout 
already received by its two U.S. rivals.” and description content of BBC2 “US carmaker Ford 
reports the biggest full-year loss in its history, but says it still does not need government loans.” 
are related and very similar, they share some words/expressions (‘Ford’, ‘report’, ‘loss’, ‘US’) 
and semantically related concept (‘fourth quarter’, ‘year’), (‘biggest’, ‘soar’), (‘reiterate’, ‘say’), 
(‘federal bailout’, ‘government loan’).  

                                                 
2 AmphetaDesk is a free, cross platform, open-sourced, syndicated news aggregator 

http://www.disobey.com/amphetadesk/ 
3 PullRSS is a template-based RSS to HTML converter, with optional redirects. 
4 http://radio.userland.com/userGuide/reference/aggregator/newsAggregator 
5 http://slashdot.org/ 
6 http://libraryelf.com/ 
7 http://www.simpletracking.com/ 
8 After a pre-process of stop word removal, stemming, ignoring non textual values and semantic analysis   
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<CNN_RSS>  
<item> 

CNN1 

<title>U.N. chief launches $600M Gaza aid appeal</title> 
<guid>http://edition.cnn.com/2008/WORLD/asiapcf/05/02/oly.hk.torch/index.html?er
ef=edition</guid> 
<link>http://edition.cnn.com/2008/WORLD/asiapcf/05/02/oly.hk.torch/index.html?ere
f=edition</link> 
<description> United Nations Secretary-General Ban Ki-moon on Thursday launched 
a humanitarian appeal to provide emergency aid to the people of Gaza in the aftermath 
of Israel's military offensive in the region.</description> 
<pubDate>Fri, 02 January 2009 02:56:47 EDT</pubDate> 
</item> 
<item> 

CNN2 

<title>Ford reports $5.9 billion loss in the fourth-quarter </title> 
<description>Ford Motor reported that its ongoing losses soared in the fourth quarter, 
but the company reiterated it still does not need the federal bailout already received by 
its two U.S. rivals.</description> 
</item> 
<item> 

CNN3 
<title>The youth forum cancels scheduled demonstration</title> 
<description>The international youth forum cancels the call for stop-war 
demonstration due to security reason</description> 
</item> 
<item> 

CNN4 

<title>Al-Jazeera: Cameraman home from Gitmo</title> 
<guid>http://edition.cnn.com/2008/WORLD/americas/05/01/gitmo.journalist/index.ht
ml? eref=edition</guid> 
<link>http://edition.cnn.com/2008/WORLD/americas/05/01/gitmo.journalist/index.ht
ml? eref=edition</link> 
<description>Al-Jazeera cameraman Sami al-Hajj has been released after nearly six 
years in the U.S. Navy prison at Guantanamo Bay, Cuba, a senior Pentagon official 
aware of the details of the release told CNN on Thursday.</description> 
<pubDate>Thu, 01 May 2008 21:51:15 EDT</pubDate> 
</item>  
</CNN_RSS>  

Fig. 1. RSS news extracted from CNN 

− News might have different or slightly different titles but refer to almost the same issues 
(relatedness between different elements of the same items).   

Example 3. Title content of CNN4  “Al-Jazeera: Cameraman home from Gitmo”  and Title content 
of BBC4 “Freed Guantanamo prisoner is home”. These titles share little commonalities (“home” 
and “Guantanamo”9). However, the contents of corresponding news items are similar.  

The examples demonstrate the need to consider several issues; First, one can realize that existing 
XML-related (xSim[27]), flat text-related similarity (tf-idf), or correlation-based phrase matching 
[38] approaches (cf. Section Background) cannot be exploited in comparing RSS items since they 
do not identify the disjointness, inclusion, intersection and equality relationships (cf. examples 1, 2 
and 3), which are preliminary for the merging process. Second, when comparing two RSS items, 
computing relatedness between contents of elements having identical labels is not enough to 
identify overall item relatedness (cf. example 3). 

It is to be noted that doing this is complex as the quality of textual information is dependent on the 
author’s style of writing and use of words, nouns, verbs, …. (identical topics might be described 
differently, while different topics might be described using similar concepts).  

In the context of RSS merging, there is a need to develop a measure for comparing RSS items, 
which considers the different contents of RSS elements all together, identifying along with the 
relatedness, the type of relationship between the items being compared. Detecting relationships 
between items is crucial to the merging phase (as explained in the introduction) for defining the 

                                                 
9  “Gitmo” indicates the Guantanamo prison. 
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merging rules/operators and consequently performing the merging task. Note that in examples 
given above, for the sake of simplicity, we only discuss the relationship between the <title> 
elements of both items. Nonetheless, when performing merging, the system must check the 
relationship between both RSS items as a whole, i.e., the relationships between all their elements 
(which will be thoroughly developed in the remainder of the paper), to decide on the merging rule 
to be utilized. In our examples for instance: 

<BBC_RSS>  
<item> 

BBC1 

<title> UN launches $613m appeal for Gaza </title> 
<description> The UN will launch an appeal for $613m to help people affected by 
Israel's military offensive in Gaza, the body's top official says </description> 
<guid isPermaLink="false">  http://news.bbc.co.uk/go/rss/-/2/hi/me/723378828.stm 
</guid>  
<link> http://news.bbc.co.uk/go/rss/-/2/hi/americas/7378828.stm </link> 
<pubDate>Fri, 02 January 2009 02:56:47 GMT</pubDate> 
<category>Middle-east</category> 
</item> 
<item> 

BBC2 
<title> Ford reports record yearly loss </title> 
<description> US carmaker Ford reports the biggest full-year loss in its history, but 
says it still does not need government loans.</description> 
</item> 
<item> 

BBC3 
<title>Youth’s form call for demonstration</title> 
<description> International youth forum call demonstration as part of stop the war 
</description> 
</item> 
<item> 

BBC4 

<title>Freed Guantanamo prisoner is home</title> 
<description>A cameraman from the al-Jazeera TV station freed from Guantanamo 
Bay has arrived home in Sudan.</description> 
<link>http://news.bbc.co.uk/go/rss/-/2/hi/americas/7378828.stm</link> 
<guid isPermaLink="false">http://news.bbc.co.uk/2/hi/americas/7378828.stm</guid> 
<pubDate>Fri, 02 May 2008 04:08:38 GMT</pubDate> 
<category>Americas</category> 
<item> 
</BBC_RSS>  

Fig. 2. RSS news extracted from BBC 

− Merging items CNN1 and BBC1 related via the intersection relationship could be 
undertaken by merging sub-elements of CNN1 and BBC1 as shown below in Figure 3. 

<item> 
<title>U.N. chief launches $600M Gaza aid appeal</title>

<description>United Nations launched a appeal to aid to the people of Gaza in the of Israel's military 
offensive | $613m affected offensive, the body's top official says Secretary-General Ban Ki-moon aftermath 
humanitarian provide emergency in the region </description> 

</item> 

Fig. 3. Merging of CNN1 and BBC1. 

− Merging CNN2 and BBC2, CNN4 and BBC4 could be done similarly to that of CNN1 and 
BBC1 (intersection). Nonetheless, this example explicitly reflects the importance of 
analyzing the relationships between each of the RSS item elements independently, prior 
to deciding on the merging rule. 

The objective of this paper is to address relatedness between items, elements and text values and 
identifying the merging operators that make use of the identified relationships.  
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3 OVERVIEW  
Our framework for merging RSS items is depicted in Figure 4. It consists of four main interacting 
modules: (i) Pre-processing, (ii) Relatedness, (iii) Clustering and (iv) Merging. The knowledge 
component is a plug-in dedicated to handle and manage domain and application dependent 
external information. It encompasses 1) a value knowledge base exploited in evaluating text 
content relatedness, 2) a label knowledge base used in evaluating element label relatedness, and 3) 
users profile and merging preferences. When the system starts for the first time, the user would 
provide an initial profile that includes a list of tags that would be used as content descriptor. These 
tag names would be utilized while measuring item/element relatedness. For example, a user may 
want to use title and description elements, and another might want to use all tags in 
measuring relatedness. The user-based merging rules would be defined by combining templates 
containing each of the predefined actions to be undertaken with each selected relation. 

 

 
Fig. 4. Overall architecture of our RSS merging framework. 

3.1 Pre-processing module 

The Pre-processing module accesses the knowledge base to get the URL of registered RSS 
providers. Then it accesses the internet and downloads corresponding RSS feeds. The module 
checks their well-formedness, returning a collection of items, to be treated by the Relatedness 
module.  

3.2 Relatedness module 

The Relatedness module accepts a list of extracted items as input from the pre-processing module 
and computes text/elements/items relatedness respectively. The module accesses the content 
descriptor of RSS news articles based on the user profile. Unlike the works in [24][38][40], the 
content descriptor is decided and provided by a user while building the initial profile and could be 
changed later. In computing text relatedness, the vector space model is used to store the enclosure 
weight of each concept (which are found after applying stop word removal and stemming as it will 
be  explained in the following sections) extracted from the content descriptor, and relatedness is 
computed using a vector based similarity measure (e.g., cosine). Unlike the approach in [40], the 
relatedness between elements takes into consideration both their labels (i.e. tag names) and text 
contents. In addition, the module identifies the various relationships that exist between text values, 
elements and items as detailed in Section 5. 
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3.3 Clustering Module  

The Clustering module puts together related (similar) items based on relatedness results provided 
by the Relatedness module. The aim of this module is to facilitate the merging process. It is 
developed in Section 6. Existing clustering algorithms [10][25] group highly related 
documents/items. Applying such algorithms in our RSS context would result in grouping highly 
intersecting news in the same cluster, disregarding item relationships. In other words, those news 
items related with the inclusion relationship for instance, and having lesser relatedness/similarity 
scores, would be put in different clusters, which is not appropriate. Such items should be obviously 
put together in the same cluster. As result, we propose a relationship-aware clustering algorithm in 
order to consider the various kinds of relationships, in particular inclusion, while performing 
clustering.  

3.4 Merging module  

The Merging module uses the result of the Clustering module in order to abridge grouped together 
elements according to predefined merging rules (taking into account element relationships) and 
user preferences. In Section 7, the basic merging operators are defined taking into consideration 
relationships existing between items and elements. The merging of related items depends on the 
merging rules provided by the user and stored in the corresponding profile. The module produces 
RSS documents authored with the RSS 2.0 specification and can be read with any RSS aggregator. 

4 PRELIMINARIES 
In this section, we present some basic definitions and notions to be exploited in defining our RSS 
relatedness measure. 

4.1 RSS (XML) data model 

An XML document is a hierarchically structured and self-describing piece of information 
consisting of atomic or complex elements (elements with nested sub-elements). It is represented as 
a rooted ordered labeled tree following DOM (Document Object Model) [52]. An RSS item 
comes down to an XML document that is well-formed w.r.t. an RSS schema. Note that different 
RSS schemas exist, corresponding to the different versions of RSS available on the web (RSS 
0.9x10 (x=1 or 2), 1.011, and 2.0). Nonetheless, our analysis of the different versions of RSS 
showed that RSS items consistently follow the same overall structure, adding or removing certain 
elements depending on the version at hand (for instance element source is part of RSS 0.9x 
whereas guid is in RSS 2.0). 

Definition 1. [Rooted Ordered Labeled Tree] 

A rooted ordered labeled tree12 T is a set of (k + 1) nodes {r, ni}, with i = 1, …, k. The children of 
each node are ordered. The root of T is r and the remaining nodes n1, …, nk are partitioned into m 
sets T1, …, Tm, each of which is a tree. These trees are called sub-trees of the root of T. The RSS 
tree depicting item CNN1 of Figure 1 is shown in Figure 5. 

Definition 2. [Element] 

Each node of the rooted labeled tree T is called an element of T. Each element e is a pair ςη,=e  
where η.e  refers to the element name and ς.e  to its content. η.e  generally assumes an atomic text 
value (i.e., a single word/expression) whereas ς.e  may assume either an atomic text value, a 
composite text value (sentence, i.e., a number of words/expressions), or other elements13. 
 

                                                 
10 RSS 0.92 is upward compatible to RSS 0.91,Userland specification http://backend.userland.com/rss09x  
11RSS 1.0 is also called RDF Site summary, it is a lightweight multipurpose extensible metadata description 
and syndication format conforms to the W3C's RDF Specification and is extensible via XML-namespace 
and/or RDF based modularization. http://web.resource.org/rss/1.0/spec 

12 In the rest of the paper, the term tree means rooted ordered labeled tree. 
13 We do not consider attributes in evaluating RSS item relatedness since they do not affect the semantic 
comparison process. Nonetheless, attributes will be considered in the merging phase. 
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Definition 3. [Simple/Composite Element] 

An element e is simple if ς.e  assumes either an atomic or composite textual value14. In XML trees, 
simple elements come down to leaf nodes.   

For instance, <title> U.N. chief launches $600M Gaza aid appeal </title> of RSS item CNN1 is a 
simple XML element having e.η = “title” and e.ς= “U.N. chief launches $600M Gaza aid appeal”. 

An element e is composite if ς.e  assumes other elements. In XML trees, composite elements 
correspond to inner nodes. 

Element <item> <title> U.N. chief launches $600M Gaza aid appeal </title> <guide>… </item> of 
CNN1 is composite. 

 

Fig. 5. Tree representation of RSS item CNN1 in Figure 1. 

Definition 4. [RSS Item Tree] 

An RSS item tree is an XML tree T having one single composite element, the root node r (usually 
with r.η = ‘item’), and k simple elements {n1, …, nk} describing the various RSS item components. 

4.2 Knowledge Base 

Knowledge Bases (KB) [46] (thesauri, taxonomies and/or ontologies) provide a framework for 
organizing entities (words/expressions, generic concepts, web pages, etc.) into a semantic space. In 
our study we formally define a knowledge base as KB=(C, E, R, f) where:  

a) C is the set of synonymous words/terms/expressions (synonym sets as in WordNet [44]). 

b) E is the set of edges connecting the concepts, where E ك ܥ ൈ  .ܥ

c) R is the set of semantic relations, R = { ≡ , , , << , >>, Ω}, the synonymous 
term/words/expressions being integrated in the concepts. 

d) f is a function designating the nature of edges in E,  f:E R . 

The symbols in R underline respectively the synonym ( ≡  ), hyponym (Is-A or ≺ ), hypernym  
Has-A or ; ), meronym (Part-Of or << ), holonym (Has-Part or >>) and Antonym ( Ω ) relations, 
as defined in [9]).  

The use of application dependent knowledge bases (KB) facilitates and improves the 
relatedness result. To that end, we introduce two knowledge bases: (i) value-based: to describe the 
textual content of RSS elements, and (ii) label-based: to organize RSS labels. Note that one single 
knowledge base could have been used. However, since RSS labels might belong to different 
versions and can be defined by applications or users, following a user defined document schema, 
an independent label-based knowledge base, provided by the user/administrator, seems more 
appropriate than a more generic one such as WordNet [44] (adequate for treating generic textual 
content). 

4.2.1 Neighborhood 

In our approach, the neighborhood of a concept Ci underlines the set of concepts {Cj}, in the 
knowledge base, that are subsumed by Ci w.r.t. a given semantic relation. Concept neighborhood 
is exploited in identifying the relationships between text (i.e., RSS element labels and/or textual 
contents) and consequently RSS elements/items. In [9], the authors use the neighborhood concept 
to identify implication between textual values, operators (e.g., =Any, >Some, Like, …), and 

                                                 
14 In this paper, we do not consider other types of data contents, e.g., numbers, dates, … 
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consequently semantic predicates (e.g., predicate Location=“Paris” implies Location Like 
“France”). In this paper, we extend this approach and adopt three types of neighborhoods. 

 

 
 

 

 

 

a. Samples value knowledge base - VKB, with multiple root 
concepts, extracted from WordNet. b. Sample RSS label knowledge base - LKB 

Fig. 6. Sample value and label knowledge bases. 

Definition 5. [Semantic Neighborhood] 

The semantic neighborhood of a concept Ci with semantic relation R is defined as the set of 
concepts {Cj} related with Ci via R   directly or via transitivity15. R is restricted to synonymy (≡), 
hyponymy ( ≺ ), or meronymy ( << ). It is formally defined as: 
  

ܰ
ோ ሺܥሻ ൌ ൛ܥหܥ ܴ ,ൟܥ ܴ א ሼؠ, ,ط ሽا

 
(1) 

  

For instance, referring to the value knowledge base VKB in Figure 6.a we have: 

ܰ
ؠ ሺ݁݉݁ݕܿ݊݁݃ݎሻ ൌ ሼ݁݉݁ݕܿ݊݁݃ݎ, ,݄ܿ݊݅  ሽݕܿ݊݁݃݅ݔ݁

ܰ
ط ሺ݁݉݁ݕܿ݊݁݃ݎሻ ൌ ሼ݁݉݁ݕܿ݊݁݃ݎ, ,ݏ݅ݏ݅ݎܿ ,ݕݐ݈ݑ݂݂ܿ݅݅݀  ሽ݁ݐܽݐݏ

ܰ
ا ሺ݁݉݁ݕܿ݊݁݃ݎሻ ൌ  

Definition 6. [Global Semantic Neighborhood] 

The global semantic neighborhood of a concept is the union of the semantic neighborhood defined 
with the synonymy ( ≡ ), hyponymy ( ≺ ) and meronymy ( << ) semantic relations altogether. 
Formally:  

ܰതതതതതሺܥሻ ൌ ራ ܰ
ோ

ோאሼا,ط,ؠሽ

ሺܥሻ (2) 

For instance, referring to the value knowledge base VKB in Figure 6.a 
ܰതതതതതതതሺ݁݉݁ݕܿ݊݁݃ݎሻ ൌ ܰ

ؠ ሺ݁݉݁ݕܿ݊݁݃ݎሻ  ܰ
ط ሺ݁݉݁ݕܿ݊݁݃ݎሻ  ܰ

ا ሺ݁݉݁ݕܿ݊݁݃ݎሻ 

ܰതതതതതതതሺ݁݉݁ݕܿ݊݁݃ݎሻ ൌ ሼ݁݉݁ݕܿ݊݁݃ݎ, ,݄ܿ݊݅ ,ݕܿ݊݁݃݅ݔ݁ ,ݏ݅ݏ݅ݎܿ ,ݕݐ݈ݑ݂݂ܿ݅݅݀  ሽ݁ݐܽݐݏ

4.3 Text Representation    

In this Section, we define the notion of concept sets and text model that is basic to represent a 
piece of text. Later it would be exploited while computing text content relatedness. 

Definition 7. [Concept Set] 

Given a text T (i.e., phrase, sentence, etc.), its concept set is denoted as CS, is a set of concepts 
{C1, …, Cm}, where each Ci represents a concept. Each concept Ci is assumed to be obtained after 

                                                 
15 The relationship between opeators including indirect transitivity has been studied in the work of getahun et 
al [9]. 
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several textual pre-processing operations such as stop-words removal16, stemming17, and/or 
mapping to the value knowledge base, and grouping. 

For instance, the content of title element from RSS item CNN1 “U.N. chief launches $613M Gaza aid 
appeal” can be described by the following concept set: CSCNN1={{UN}, {chief}, {launch} , {Gaza} , 
{aid}, {appeal}}. Likewise, the concept set for content of title element from RSS item CNN2“UN 
launches $613m appeal for Gaza”  is described as CSCNN2 ={{UN},{launch}, {appeal}, {Gaza}}. 

Formally, let T1 and T2 be two textual contents, CS1 is the concept set describing T1 and CS2 that 
describing T2. 

Definition 8. [Deep In Membership] 

Given a concept ci and concept set CSi, ci is deep in CSi, i.e.,  א ࢉ
ࢊ  if ci exists as member of a ࡿ

concept in CSi. 

For example, gaza exists deep in the concept set CSCNN1={{UN}, {chief}, {launch} , {Gaza} , {aid}, 
{appeal}}  

Definition 9. [Text model] 

Given two texts T1 and T2 described by concept set CS1 and CS2, we represent each ti as a vector Vi 
in an n-dimensional space as: Vi = [〈C1, w1〉, …, 〈Cn, wn〉]. The vector space dimensions represent 
distinct concepts 1 2mC CS CS∈ ∪ associated to weight wm such as 1 m n≤ ≤ where || 21 CSCSn ∪= .   

The weight wm associated to a concept Cm in Vi (where i=1 or 2)) is calculated as wm = 1 if the 
concept Cm is deep in the concept set of the one of the texts (i.e., CSi) that constitute the vector Vi; 
otherwise, it is computed based on the highest enclosure similarity it has with another concept Cj 
from the concept set of the other text.  Formally, it is defined as: 

 

ݓ   ൌ ൝
                      1                                                               ݂݅ ܥ א

ௗ ܥ ܵ 

max ቀEnclosure_Sim൫ܥ, ൯ቁܥ ר ܥ א
ௗ ܵܥ   ݁ݏ݅ݓݎ݄݁ݐ

 (3) 

,ܥ൫݉݅ܵ_݁ݎݑݏ݈ܿ݊ܧ ൯ܥ ൌ
| ܰതതതതതሺܥሻ ת ܰതതതതതሺܥሻ|

ห ܰതതതതതሺܥ൯|
 (4) 

Enclosure_sim(Cm, Cj) takes into account the global semantic neighborhood of each concept. It is 
asymmetric, allows the detection of the various kinds of relationships between RSS items, and 
returns a value equal to 1 if Ci includes Cj, and zero if there is no concept related with Cm. 

Example 4. Let us consider the description elements of RSS items CNN2 and BBC2 (Figures 1, 2). 
Corresponding vector representations V1 and V2 are shown in Figure 7. For the sake of simplicity, we 
consider that only these two texts make up the new items. 
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V1 1 1 1 … 1 1 1 1 1 1 1 1 1 
V2 1 1 1 … 1 0 0.67 0.86 1 1 1 1 1 

Fig. 7. Vectors obtained when comparing title texts of RSS items CNN2 and BBC2 

Vector weights are evaluated in two steps. First, for each concept Ci in V1 and V2, we check the 
existence of Ci in each of the concept sets corresponding to the texts being compared. Second, we 
update the weight of those concepts having value of zero with maximum semantic enclosure similarity 
value. Following the WordNet subset extract in Figure 6.a, the concept Government is included in the 
global semantic neighborhood of Federal, i.e., ( )KBgovernment N federal∈ . Hence, it has the maximum 
enclosure similarity with federal, i.e., Enclosure_sim(federal, government) = 1. However, in V2, 
federal is highly related with government and its Enclosure_sim(government, federal) = 0.67. 

                                                 
16 Stop-words identify words/expressions which are filtered out prior to, or after processing of natural 
language text (e.g., a, an, so, the, …) which is done using stop list. However those words that would change 
the meaning of the text such as but, not, neither, nor … are not considered as stop words.  
17 Stemming is the process for reducing inflected (or sometimes derived) words to their stem, i.e., base or root 
(e.g., “housing”, “housed”  “house”). 
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Likewise, loan is included in the global semantic neighborhood of bailout, i.e., ( )KBloan N bailout∈ . 
This way Enclosure_sim(loan, bailout) = 1 and Enclosure_sim(bailout, loan) = 0.86. 

Notice that the computation of enclosure similarity (enclousure_sim) is based on maximum 
similarity value and takes into consideration concepts related with equality, inclusion, intersection 
and disjointness relationship.  

5 RSS RELATEDNESS AND RELATIONS 
Quantifying the semantic relatedness and identifying the relationships between two RSS items 
amounts to comparing corresponding elements. This in turn comes down to comparing 
corresponding RSS (simple) element labels and contents, which simplifies to basic pieces of text 
(cf. Definition 2). Hereunder, we define the two basic concepts used in our relatedness measures 
before explaining text, sub-element and item relatedness. 

Definition 10. [SemRel] 

SemRel refers to the semantic relatedness between two texts, simple elements or items. It has 
value between 0 and 1 inclusive.  

Definition 11. [Relation] 

Relation refers to the exclusive relationship that would exist between two texts, simple elements or 
items. We identify equality, intersection, inclusion, or disjoint relations. 

In the following sub-sections, we identify relatedness between texts, simple elements and/or items 
having a tuple containing SemRel and Relation values and denoted as :  

࢙࢙ࢋࢊࢋ࢚ࢇࢋࡾ ൌ ,ࢋࡾࢋࡿۃ  (5) ۄ࢚ࢇࢋࡾ

5.1 Text Relatedness   

Given two texts T1 and T2, the Text Relatedness (TR) algorithm shown in Algorithm 1 returns a 
tuple, combining SemRel and Relation values between T1 and T2.   

The algorithm accepts two texts T1 and T2 as input (line 1). Corresponding concept sets CS1 and 
CS2 are generated using a function f (lines 9 – 10) encompassing Natural Language Processing 
(NLP) and mapping (i.e. associating non-stop and stemmed words into corresponding knowledge 
base concept) features. In lines 11 – 16, texts T1 and T2 are represented as a vector V (V1 and V2 
respectively) with weights underlining concept existence, and enclosure in both CS1 and CS2. The 
procedure weight accept concept whose weight to be computed Ci, concept set of text T1 or T2 and 
concept set of T2 or T1, and returns result (following formula 3). In line 17, the semantic 
relatedness SemRel between two texts is quantified using a measure of similarity between vectors 
V1 and V2 implemented in Vector-Base-Similarity-Measure function. In this study, we use the 
cosine measure:  

SemRel = ܴ݈ܵ݁݉݁ሺ ଵܶ, ଶܶሻ ൌ ሺݏܥ ଵܸ, ଶܸሻ ൌ భ·మ
|భ|ൈ|మ|

א ሾ0,1ሿ (6) 

Semantic relatedness is consequently exploited in identifying basic relations (i.e., disjointness, 
intersection and equality) between texts. Our method (Relation in line 19-29) for identifying basic 
relationships is based on a fuzzy logic model to overcome the often imprecise descriptions of texts. 
For instance, texts (likewise RSS items) that describe the same issue are seldom exactly identical. 
They might contain some different concepts, detailing certain specific aspects of the information 
being described, despite having the same overall meaning and information substance (cf. Section 
1, Example 1). Thus, we address the fuzzy nature of textual content in identifying relations by 
providing pre-defined/pre-computed similarity thresholds TDisjointness and TEquality, as shown in 
Figure 8. 
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Fig. 8. Basic text relationships and corresponding thresholds. 

Thus, we suggest using the following rules to identify the basic disjointness, Intersection or 
Equality relationships between two texts T1 and T2. 

ሺ݊݅ݐ݈ܴܽ݁ ଵܶ, ଶܶሻ

ൌ ቐ
,ݏݏ݁݊ݐ݆݊݅ݏ݅ܦ ݅. ݁. , ଵܶ ٱٲ ଶܶ ֜ ܴ݈ܵ݁݉݁ሺ ଵܶ, ଶܶሻ  ܶ௦௧௦௦

,ݕݐ݈݅ܽݑݍܧ  ݅. ݁. , ଵܶ ൌ ଶܶ       ֜                   ܴ݈ܵ݁݉݁ሺ ଵܶ, ଶܶሻ   ாܶ௨௧௬

,݊݅ݐܿ݁ݏݎ݁ݐ݊ܫ ݅. ݁. ,  ଵܶ ת ଶܶ ֜ ܶ௦௧௦௦ ൏ ܴ݈ܵ݁݉݁ሺ ଵܶ, ଶܶሻ ൏  ாܶ௨௧௬

 (7) 

While the basic disjointness, intersection and equality relations can be defined based on semantic 
relatedness (in the context of fuzzy relations), this is not the case for inclusion  relation, which we 
define as: 

• Relation(T1, T2) is Inclusion, i.e., ଵܶ ـ ଶܶ , if the product of the weights of vector V1 
(describing T1) is equal to 1, i.e.,   

,ሺܶ1݊݅ݐ݈ܴܽ݁  ܶ2ሻ ൌ ,݊݅ݏݑ݈ܿ݊ܫ ݅. ݁. , ܶ1 ـ ܶ2 ֜ ෑ ሺݓሻ
ܸ1

ൌ 1 (8) 

Where 
1
( )V pwΠ is the weight product of vector V1 (describing T1) underlines whether or not T1 

encompasses all concepts in T2. 

Notice that the relationship between text values is identified on the bases of best relation value 
which is equality, inclusion, disjoint and intersect (line 19-29) respectively.  

 Algorithm 1: TR Algorithm  
1. 
2. 

Input:  T1, T2: String                                            // two input texts 
TDisjoint, Tequality : decimal                         // threshold values  

3. 
4. 
5. 
6. 

Variable: V1: vector                                           // vector for t1  
V2: vector                                                         // vector for t2 
CS1: Set                                                           // concept set of t1 
CS2: Set                                                           // concept set of t2 

7. 
8. 

Output: SemRel: Double                                   //relatedness value between t1,t2 
Rel: string                                                        //topological relationships between t1, t2 

9. Begin 
10. 
11. 
12. 

CS1 =  f(T1)                                                 // f – returns the concept set of the text T1 
CS2 =  f(T2)                                                 // f – returns the concept set of the text T2 
C =  CS1 ∪ CS2 

13. V2 = V1 = Vector_Space_Generator (C)         // generate vector space having C as concepts  
14. For each Ci in C 
15. V1[Ci] = Weight(Ci,CS1, CS2)         // computes the weight of concept Ci in V1 

16. V2[Ci] = Weight(Ci ,CS2, CS1)        // computes the weight of concept Ci in V2 

17. Next 
18. SemRel = Vector-Base-Similarity-Measure(V1, V2)  //cosine similarity is used in our implementation  
19. If semRel  TEquality then 
20. Rel = “Equal” 
21. Else if  ∏ ൫ݓ൯ ൌ 1 మ then 
22. Rel = “Included in” 
23. Else if  ∏ ൫ݓ൯ ൌ 1 భ then  
24. Rel = “Includes” 
21. Else if semRel  TDisjoint then 
22. Rel = “Disjoint” 
27. Else if  TDisjoint < semRel < TEquality then 
28. Rel = “Intersect” 
29. End if 
30. Return  ݈ܴ݁݉݁ܵۃ,  ۄ݈ܴ݁
31. End 

 

TDistjointness TEquality 0 1

Distjointness Intersection Equality

SemRel = 
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Example 5. Considering Example 2, (T1 of CNN2 and T2 of BBC2), and thresholds TDisjointness=0.1 and 
TEquality=0.9, SemRel(T1, T2) = 0.86 and Relation(T1, T2) = Intersection as no concept of T1 is included 
in the antonymy neighborhood of concept from T2 or vise-versa. Hence, TR(T1, T2) = <0.86, 
Intersection>. 

5.2 RSS Item Relatedness  

Computing the Item relatedness (IR) is related to the relatedness between its sub-elements. The 
relatedness between two simple elements (c.f. def. 3) (ER) is computed using Algorithm 2. It 
accepts two elements e1 and e2 as input (line 1) and returns a tuple quantifying SemRel and 
Relation values between e1 and e2 based on corresponding label and value relatedness.  

In lines 7 – 8, label and content relatedness are computed respectively using the TR algorithm. In 
line 9, method ESemRel quantifies the relatedness value between elements, as the weighted sum of 
label (LBSemRel) and value (VRSemRel) semantic relatedness values, such as: 

ܴ݈ܵ݁݉݁ሺ݁ଵ, ݁ଶሻ ൌ ,ௌோܤܮ௦ோሺܧ ܸܴௌோሻ

ൌ ݓ ൈ ௌோܤܮ  ௨ݓ ൈ ܸܴௌோ 
(10) 

 

where wLabel + wValue = 1 and (wLabel, wValue) ≥ 0. Note that several methods for combining label and 
value relatedness results could have been used, among which the maximum, minimum, average 
and weighted sum functions. Nonetheless, the latter provides flexibility in performing the match 
operation, adapting the process w.r.t. the user’s perception of element relatedness.  

In line 10, the rule-based method ERelation is used for combining label and content relationships as 
follows:  

,ሺ݁ଵ݊݅ݐ݈ܴܽ݁ ݁ଶሻ ൌ ,ோ௧ܤܮோ௧ሺܧ ܸܴோ௧ሻ

ൌ

ە
ۖ
۔

ۖ
ۓ

,ݏݏ݁݊ݐ݆݊݅ݏ݅݀ ݅. ݁. , ݁ଵ ٱٲ ݁ଶ ֜ ݁ଵ. ߫ ٱٲ ݁ଶ. ߫ ש ݁ଵ. ߟ ٱٲ ݁ଶ. ߟ
,݊݅ݐܿ݁ݏݎ݁ݐ݊ܫ ݅. ݁. , ݁ଵ ת ݁ଶ    ֜   ݁ଵ. ߫ ת ݁ଶ. ש   ߫  ݁ଵ. ߟ ת ݁ଶ.  ߟ
,ݕݐ݈݅ܽݑݍܧ ݅. ݁. , ݁ଵ ൌ ݁ଶ            ֜    ݁ଵ. ߫ ൌ ݁ଶ. ר  ߫  ݁ଵ. ߟ ൌ ݁ଶ. ߟ
,݊݅ݏݑ݈ܿ݊ܫ ݅. ݁. , ݁ଵ ـ ݁ଶ ֜ ሺሺ݁ଵ. ߫ ـ ݁ଶ. ߫ ש ݁ଵ. ߫ ൌ ݁ଶ. ߫ሻ

ר    ݁ଵ. ߟ ـ ݁ଶ. çሻ ש ሺ݁ଵ. ߫ ـ ݁ଶ. ߫ ר ݁ଵ. ߟ ൌ ݁ଶ. ሻߟ

 
(11) 

  

 Algorithm 2: ER Algorithm  
1. Input: e1, e2: element                                // two simple elements 
2. 
3. 

Variable: LBSemRel, VRSemRel : Double          // label and value semantic relatedness values  
LBRelation, TRRelation : String                       // Label and value relationship values 

4. 
5. 

Output: SemRel:  Double                           // relatedness value between e1 and e2 
Relation: String                           // relationship value between e1 and e2 

6. Begin 
7. 
8. 

,ௌோܤܮۃ ۄோ௧ܤܮ ൌ ܴܶሺ݁ଵ. ,ߟ ݁ଶ.  ሻ    // relatedness between labelsߟ
,ௌோܴܸۃ ܸܴோ௧ۄ ൌ ܴܶሺ݁ଵ. ߫, ݁ଶ. ߫ሻ  // relatedness between values  

9. 
10. 

SemRel = EsemRel(LBSemRel, VRSemRel)      //EsemRel – combines the label and value relatedness values  
Relation = ERelation(LBRelation, VRRelation) //ERelation – combines the label and value relationships values 

11. Return ݈ܴ݁݉݁ܵۃ,   ۄ݊݅ݐ݈ܴܽ݁
12. End 

Having identified the semantic relatedness and relationships between simple elements, Algorithm 
3 evaluates RSS item relatedness IR. 

Given two RSS items I1 and I2, each made of collection of sub-elements {ei} and {ej} respectively, 
the Item Relatedness (IR) algorithm returns a tuple quantifying SemRel as well as the Relation 
between I1 and I2 based on corresponding element relatedness (lines 10 – 16).  

Line 12 computes the relatedness between simple elements ei and ej and returns semantic 
relatedness value eijSemRel, and relationship eijRelation. In line 13, the semantic relatedness value 
eijSemRel is accumulated in order to get grand total, and, in line 14, eijRelation is stored for later use. In 
line 17, the semantic relatedness value between I1 and I2 is computed as the average of the semrel 
values between corresponding element sets of I1 and I2. 
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ܴ݈ܵ݁݉݁ሺܫଵ, ଶሻܫ ൌ
∑ ∑ ܴ݈ܵ݁݉݁ሺ݁, ݁ሻೕאூమאூభ

|ଵܫ| ൈ |ଵܫ|  (12) 

As for the relationships between two items, we develop a rule-based method IRelation (line 18) for 
combining sub-element relationships stored in EijRelation_set (which is the relationship between ei 
and ej) as defined below:  

• I1 and I2 are disjoint, denoted 1 2I I��  if all elements {ei} and {ej} are disjoint (elements are 

disjoint i.e. there is no relatedness whatsoever between them. Formally, ܴ݈݁ܽ݊݅ݐሺܫଵ, ଶሻܫ ൌ
֜ ݐ݆݊݅ݏ݅ܦ ଵ݁ א ሼ݁ሽ, ଶ݁ א ൛ ݁ൟ, ݁ଵ ٱٲ ݁ଶ 

• I1 includes I2, denoted as 1 2I I⊃ if all elements in {ei} include all those in {ej}. Formally, 

,ଵܫሺ݊݅ݐ݈ܴܽ݁ ଶሻܫ ൌ ֜ ݏ݁݀ݑ݈ܿ݊ܫ ݅  ר ݆ ଶ݁ א ൛ ݁ൟ, ଵ݁ א ሼ݁ሽ | ݁ଵ ـ ݁ଶ 

• I1 and I2 intersect, denoted as 1 2I I∩  if at least two of their elements intersect. Formally, 

,ଵܫሺ݊݅ݐ݈ܴܽ݁ ଶሻܫ ൌ ֜ ݏݐܿ݁ݏݎ݁ݐ݊ܫ ଵ݁ א ሼ݁ሽ, ଶ݁ א ൛ ݁ൟ | ݁ଵ ת ݁ଶ 

• I1 and I2 are equal, denoted as I1 = I2 if all their elements in {ei} equal to all those in {ej}. 
formally, ܴ݈݁ܽ݊݅ݐሺܫଵ, ଶሻܫ ൌ ֜ ݈ܽݑݍܧ ݅ ൌ ר ݆ ଶ݁ א ൛ ݁ൟ, ଵ݁ א ሼ݁ሽ | ݁ଵ ൌ ݁ଶ 

 Algorithm 3: IR Algorithm  
1. Input: I1, I2: element                   // two input items (Complex elements) 
2. 
3. 
4. 

Variable: eijSemRel: Double          // semantic relatedness values ei and ej 
eijRelation : String                        // relationship value between ei  and ej 

EijRelation_set : Set                                              // would contain sub-elements relationship values 

5. 
6. 

Output: SemRel: Double            // relatedness value between I1 and I2 
Relation: String                        // relationship value between I1 and I2 

7. Begin 
8. 
9. 

SumRel = 0 
EijRelation_set  = ∅  

10. For each ei In I1 
11. For each ej In I2  
,ௌோ݆݅݁ۃ .12 ݆݁݅ோ௧ۄ ൌ ,ሺܴ݁ܧ ݁ሻ 
13. SumRel = SumRel + eijSemRel 
14. EijRelation_set = EijRelation_set ∪ eijRelation 
15. Next 
16. Next 
17. SemRel = SumRel / |I1| × |I2|    
18. Relation = IRelation(EijRelation_set )            // 1 2[1,| |],   [1, | |]i I j I∀ ∈ ∀ ∈   

19. Return <SemRel, Relation>  
20. End 

Example 7. Let us consider RSS items CNN1 and BBC1 (Figures 1 and 2). Corresponding item 
relatedness is computed as follows.  Weighting factors of wlabel = 0.5 and wvalue = 0.5  are assigned to 
label and text values, while evaluating simple element relatedness.Thresholds TDisjointness=0.1 and 
TEquality=0.9 are used in getting the relationship value. Simple element relatedness values and 
relationships are given below in Table 1.  

Table 1: Element Relatedness matrix 

ER titleBBC1 descriptionBBC1 
titleCNN1 <0.908, Equal> <0.655, Intersection > 
descriptionCNN1 <0.650, Includes> <0.832, Intersection > 

 

Using (cf. 12) SemRel(CNN1, BBC1) = (0.908+ 0.655+ 0.650+ 0.832) / 2 × 2 = 0.761, where |I1| and |I2| 
are equal to 2. 

Relation(CNN1, BBC1) = Intersection since a number of their elements intersect, i.e., 
Relation(descriptionCNN1, descriptionBBC1) = Intersection. 
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similarity values between pair of clusters. The semantic relatedness between clusters Ci and Cj is 
computed as follows using Unweighted Pair Grouping Method (UPGM)[57]:   

,ܥ൫݈ܴ݁݉݁ܵ݃ݒܣ ൯ܥ ൌ
∑ ∑ ܴ݈ܵ݁݉݁ሺܫ

, ܫ
ೕሻ|ೕ|

ୀଵ
||
ୀଵ

|ܥ| ൈ |ܥ|  (14) 

Where: ܫ
, ܫ

ೕand represent the kth and lth member news item of clusters Ci and Cj respectively, 
and |ܥ|,  | represents the size of cluster Ci and Cj respectively, SemRel returns semanticܥ|
relatedness value between the two items.  

For instance, in Figure 9b. The weight of edge connecting cluster C2={2}, and C3={3, 7}  is computed as 

,ଷܥሺ݈ܴ݁݉݁ܵ݃ݒܣ ସሻܥ ൌ  
 ܴ݈ܵ݁݉݁ሺ2, 7ሻ  ܴ݈ܵ݁݉݁ሺ2, 3ሻ

1 ൈ 2 ൌ
 0  0.2

1 ൈ 2 ൌ 0.1 

The same way the edge connecting all the clusters is computed.  

The result of RaSL2 clustering Cli is similar to theα cut clustering result of Ian Gracia et al. [24]. 
In [24], an article may belong to different clusters, and a cluster contains a set of related articles. 
The redundant (identical and subsume) and less-informative articles are removed with the help of a 
fuzzy equivalence relation. However, our algorithm generates independent clusters (i.e. pair of 
news from two different clusters are related only with disjointness relationship). 

The algorithm RaSL2 generates clusters by varying the clustering level between 1 and 0, at a 
constant pace Dec-value. Lines 7 and 8 show clustering at level 1, generating the initial clusters 
which group individual news items and those related with equality and/or inclusion relationships. 
Lines 10 to 14 show clustering on level li after computing relatedness value between clusters using 
UPGM. Clusters are grouped only if the corresponding weight is greater than or equal to li. 

 Algorithm 4: RaSL2 Algorithm 
1. 
2. 
3. 
4. 

Input: Sem_Rel [ ][ ]                    // relatedness matrix  
Output: Clusters: Collection       // contain the result of clustering   
Variable:  Dec-value: double                // constant clustering level decrement value (eg. -0.1) 

li: double                               // clustering level 
5. Begin  
6. For li = 1 to 0 step Dec-value 
7. If li = 1 then  
8. group all clusters at relatedness/similarity value of 1 or those related with equality/inclusion relationship 
9. Else  
10.  For each cluster ci and cj in clustersli-1  
11. Average-Relatedness = UPGM(ci, cj)  //  computed using formula 17 
12. If Average-Relatedness ≥li  then 
13. group ci and cj in same cluster  
14. Next 
15. End if  
16. Next  
17. C-Index(Clusters)   // stopping rule for clustering   
18 Return clusters 
19 End 

 

A stopping rule is necessary to determine the most appropriate clustering level for the single link 
hierarchies. Milligan et al. present 30 of such rules [53]. Among these rules, C-index [54] exhibits 
excellent performance (found in the top 3 stopping rules). Here, Line 17, we used an adaptation of 
C-index, provided by Dalamagas et al. [7].   

7 MERGING 
In our approach, merging a list of news items collected from the same or different RSS providers 
is controlled by several merging rules defined as a set of expression according to the human needs 
on the basis of relationships existing between items. We assume that RSS news items are of 
known size or cardinality. In the following, we consider that RSS news items are extracted and 
stored in a container Φ and each item is accessed via index i as Φ[i]. Path expression is used to 
access elements an item.  
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In this section, we explain first the merging operators, merging rule and action that would be 
followed in order to merge two RSS news items. Later, we extend the approach to merge set of 
news items. In our approach News item can be modeled with merging object hierarchy shown in 
Figure 10 below. The rectangle represent object (solid border) or the property of the object (doted 
border). The relationship between objects is hierarchical and it is HAS A.  

For example, an object of type Element has property Name and Content and has complex object named 
Attributes. Attributes is collection of attribute each having Name and Value.  

 
 

7.1 Basic merging operators 

In this section, we provide the list of basic merging operators that would be used in our merging 
expression. The merging operators are functions having name, accept two or more parameters and 
returns result to the caller. The parameters are restricted to refer to item, element or text values. 
The following is the list of basic operators:  

1. String getRelation(Object X, Object Y) : returns the relationship 
existing between object X and Y. 

For instance, getRelation(CNN1/title, BBC1/title)- returns Equal (c.f. Table 2) 

2. Boolean IsXXXX(Object X, Object Y): returns true if the objects X and Y are 
related with the relation XXXXX, where XXXXX in {Equal, Intersect, Disjoint, Include} 

For instance, - IsEqual(CNN1/title, BBC1/title) - returns true (c.f. Table 2) 

3. Element CreateElement(String  TagName, String value): return an 
new element named TagName having value as content.    

4. Element CreateElement(Element X, Element Y, String TagName): 
return an new element named TagName and having X and Y as children. Object refers to 
only simple or complex elements.   

For instance,  
- CreateElement (CNN1/title, BBC1/title, ‘NewTitle’) – returns an 

element named NewTitle having title elements of CNN1and BBC1.  
- CreateElement (Φ[1], Φ[5], “m”) returns an element named m having the first 

and the fifth news items as children. 

5. String Concat(String X, String Y, String Z): return the result of 
concatenating two strings X and Y separated by another string Z.      

For instance, Concat(“U.N. chief launches $600M Gaza aid appeal”, “UN launches 
$613m appeal for Gaza”, “|”) returns  

U.N. chief launches $600M Gaza aid appeal | UN launches $613m appeal for Gaza 
6. Object keepFirst(Object X, Object Y) – returns X     

7. Object keepSecond(Object X, Object Y) – returns Y 

8. Object keepBoth(Object X, Object Y): return the concatenation of both 
objects separated by space.  

9. Item getLatest(Item X, Item Y): returns the latest/recent news item.  

Legend 

Element 

Elements 

Object 

Item 

Name 

Collection 

Content 
Attributes 

Name 

Value 

Attribute 

Complex object 

Property of complex object 

Has/Has A   

Fig. 10. Merging Object Hierarchy 
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For instance, getLatest(CNN4, BBC4) – returns BBC4 as it is published on ‘Fri, 02 May 
2008 04:08:38 GMT’ and CNN4 on ‘Thu, 01 May 2008 21:51:15 EDT’  

10. String BuildText (string [] CS) – returns a human understandable 
text/sentence containing all the concepts in concept set CS and there is a need to add 
article, proposition, etc.18   

For instance, given the concept set CS ={{UN}, {chief}, {launch} , {Gaza} , {aid}, {appeal}}, 
getBuildText(CS) – returns “UN chief launch gaza aid appear”  

11. String[]getCommon(string X, string Y): returns set containing concepts 
shared by text X and Y. 

For instance, getCommon(CNN1/Title/text(), BBC1/Title/text()) returns 
{UN}, {launch} , {Gaza} , {appeal} 

12. String[] getDifferent(string X, string Y)- returns concepts existing 
only in X or Y but not both.  

For instance, getDifference(CNN1/Title. ߫, BBC1/Title. ߫)– returns the 
concept {aid} which exists only in CNN1. 

13. String LCA(string C1, string C2): returns a lowest common ancestor of C1 
and C2 using the label knowledge base LKB (cf. LKB in Figure 6.b). We exploit this 
operator to decide on the tag name of elements to be merged.   

For instance: LCA(CNN1/Title/name(), BBC1/Link/name()) – returns the 
Description as LCA of the name of Title element of CNN1 and Link element of BBC1. 

14. String[][]GetCorrespondence(item I1, item I2, collection[][] 
Elts_Rel): Given two items I1, I2 and matrix containing sub-element relatedness 
between members of each item, the operator returns a matrix/list containing matching 
elements and relationship in between. Notice that each member of the output has three 
members ei, ej and relation (if e refers to member of collection, e.ei, e.ej and e.relation 
would access the sub-elements of I1, and I2 respectively and the associate relationship 
value). Correspondence between members of content descriptor (i.e. labels used to 
compute relatedness) is computed on the bases of maximum element relatedness; for the 
rest label similarity would be used having null value for the relationship component of the 
matrix. In addition, the operator assigns null to those elements without matching.  

For example, GetCorrespondence(CNN1, BBC1, Element-RelatedNess-
Matrix19(CNN1, BBC1)), returns the correspondence between sub-element of CNN1 and 
BBC1. The result is shown in Table 1. The matching between Title, Description elements is 
done using maximum relatedness where as for link, guid and pubdate tagname similarity has 
been used. There is no matching element for BBC1/category element.   

15. String[][] GetCorrespondence(item I1, item I2) – returns the 
correspondence between input items I1, item I2. The operator calls GetCorrespondence 
with third parameter being Element-RelatedNess-Matrix (I1, I2).   

16. element Handle-Element-Conflict(Element e1, element e2): returns 
an existing element only. This operator helps to handle the case in which an element 
exists only in one news items.   

17. Collection Handle-Attributes(element ei, element ei) return 
attributes after consider the following facts  

- if only one of the elements have attribute, add return it.   
- if both elements have identical or semantically equivalent attribute name and value  

then keep one of the attribute.  
- if the elements have identical or semantically equivalent attribute name but different 

values then add an attribute having an Or-valued list.  
- else add return both.  

                                                 
18 Developing human readable sentence/phrase containing all concepts in given concept sets is outside the 
scope of this work.  
19 It returns ER value between sub-elements of each items. The result is similar to Table 1.  
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In addition, we have defined the two derived operators that would be used to merge intersecting 
simple elements and items:  

18. element IntersectingElements(element ei, element ei)- returns an 
element name after the LCA of name of each element and content build using the 
common and different concept the respective text. i.e. 

String tagname = LCA(݁. ,ߟ ݁ .  (ߟ
ൌ ݐ݊݁ݐ݊ܿ ݃݊݅ݎݐܵ .ሺ݁݊݉݉ܥݐሺ݃݁ݐݔ݈݁ܶ݀݅ݑܤሺݐܽܿ݊ܥ ߫, ݁ . ߫ሻሻ,

.ሺ݁ݐ݊݁ݎ݂݂݁݅ܦݐ݁݃ ሺݐݔ݈݁ܶ݀݅ݑܤ ߫, ݁ . ߫ሻሻ, "|"ሻ 
Return CreateElement (tagName, content) 

19. Item IntersectingItems(Item I1, Item I2)- returns the result of merging 
corresponding sub-elements of I1 and I2 i.e. 

collection Corr_Matrix=getCorrespondence(I1,I2,Element-
RelatedNess-Matrix(I1,I2)) // get elements correspondence  
Ik = CreateElement(“Item”,Null) // create empty element named Item 
element ek 
for each e  In Corr_Matrix  

ek = MergeElements (e.ei, e.ej, e.relation) // merge elements 
Ik.Elements.Add(ek)//add ek to the elements collection of Item (c.f. Fig. 10) 

next   
return Ik 

7.2 Merging rules 

Our merging process depends on the mapping of relationship existing between elements and 
operation that would be executed which is represented as,   f : ℛ → β.  
 
Where :  

- ℛ  represents the set of possible relationship values existing between objects  
ℛ  = {Equal, Includes, Intersects, Disjoint}[58] 
- β represents the merging expression – combination of one or more merging 

operators  
 

If the antecedent expression ℛ is true, then the expression inβwould be evaluated. The antecedent 
in ℛ is restricted to expression that checks the relationship between items, elements or text 
contents, and is formally denoted as: 
 
getRelation(v1, v2) = c1 [ ∨ getRelation (v1, v2) = c2 ...] 

⇒ β (15) 

where:  

- getRelation (V1, V2) - returns the relationship value 
- V1 and V2 are  path expressions returning item, element or text content) 
- c1 and c2 are relationship values 

 

Merging two items using our merging rule is similar to the propositional fusion rule of Hunter 
[20]. However, our merging process is dependent on the relationship existing between elements or 
items and presented as follows. 

1. element MergeElements(element ei, element ej, string rel): It 
accepts two simple elements , the relationship value and returns merged version  i.e. 

element ek 
if (rel = ‘Equal’ OR rel = “Include”)  

ek = KeepFirst(ei,ej) 
else if (rel = “Disjoint”) 

ek = CreateElement(ei, ej , “m”) 
else if (rel = “Intersects” ) 

ek = IntersectingElements(ei,ej) 
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ek.Attributes.add(Handle-Attributes(ei, ei)) 

return ek 
 
The operator returns either (a) containing element in the case of equality or inclusion 
relation, (b) a new element named m (by default) and having both element as children in 
the case of disjoint relation as done in the work of Ho-Lam et al [33], or (c) a new 
element having the lowest common ancestor of both labels as label and the content 
showing common and distinct concepts of each element’s content in the case of 
intersection relation result of IntersectingElements 

For instance, - MergeElements(CNN1/description, BBC1/description, “Intersect”) returns an 
element having description as label and  text contents separated by | as content. i.e.,    

<description> United Nations Secretary-General Ban Ki-moon launch appeal aid people 
Gaza Israel military offensive | $613m affected offensive, body's top official says provide 
emergency humanitarian aftermath </description>. 

2.  Item MergeItems (Item I1, Item I2) – returns the result of merging two items 
after getting the relationship  

string rel = getRelation(I1 , I2) 
if (rel = ‘Equal’)  

return getLatest(I1 , I2) 
else if (rel = “Include”)  

return KeepFirst(I1 , I2) 
else if (rel = “Disjoint”) // keep both items 

Return KeepBoth(I1 , I2) 
else if (rel = “Intersects” ) 

return IntersectingItems(I1 , I2) 

The operator returns, either (a) the latest news in the case of equal news, (b) containing news in the 
case of inclusion relation (c) keeps both items in the case of disjoint news (d) the result of merging 
correspondence sub-elements of the items in the case of intersection relation.   

 

Example 8: Let us consider RSS items CNN1 and BBC1 in Example 1. The item relatedness value 
between CNN1, BBC1: IR(Φ[1], Φ[5]) = IR(CNN1, BBC1)  =  0.726ۃ, Intersectsۄ  

Hence, merging these items comes down to the merging of corresponding sub-elements. The 
correspondence between sub-elements (i.e., the result of getCorrespondence operator) is shown 
in Table 2.  

MergeItems(Φ[1],Φ[5]) = <Item> MergeElements (titleCNN1, titleBBC1, “Equal”) 
MergeElements(descriptionCNN1, descriptionBBC1, “Intersects”) MergeElements (LinkCNN1, LinkBBC1, 
“Disjoint”) mergeElements(guidCNN1, guidBBC1, “Disjoint”) MergeElements (null, categoryBBC1, null)    
</item>  

The result is shown in Figure 4. 

  

Table 2: Correspondence between Elements of CNN1 and BBC1. 
getCorrespondence(CNN1,BBC1) 

7.3 Actions  

According to Hunter [20], an action determines the order and pattern in which an expression 
would be executed. It include each of the following expressions 

1. Document Initialize(String OutType) – it creates and returns an empty 
document of OutType which could be RSS, XML or XHTML. 

ei ej Relation 

titleCNN1 titleBBC1 Equal 
descriptionCNN1 descriptionBBC1 Intersect 
linkCNN1 linkBBC1 Disjoint 
guidCNN1 guidBBC1 Disjoint 
Null CategoryBBC1 Null 
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2. Void AddElement(Element nw, Element Parent) – It adds the element nw as 
child of Parent. 

Notice that, in building valid document, Initialize action should be executed before 
AddElement. In addition, there would be only one initialize action.  

Example 9: Considering Example 8 above, the following action list generates an RSS document having 
the merged items. 

Document  Doc = Initalize(“RSS”) // Create a document of given type OutType – default RSS 

AddElement(MergeItem(CNN1, BBC1), Doc) 

<?xml version="1.0" encoding="ISO-8859-1" ?> 
<RSS version="2.0" > 
<Channel> 
<item> 
<title>U.N. chief launches $600M Gaza aid appeal</title> 
<description> United Nations Secretary-General Ban Ki-moon launch appeal aid people Gaza 
Israel military offensive | $613m affected offensive, body's top official says provide emergency 
humanitarian aftermath </description> 
<m> 

<link>http://edition.cnn.com/2008/WORLD/americas/05/01/gitmo.journalist/index.html? 
eref=edition</link> 
<link>http://edition.cnn.com/2008/WORLD/americas/05/01/gitmo.journalist/index.html? 
eref=edition</link> 

</m> 
<m> 

<guid>http://edition.cnn.com/2008/WORLD/americas/05/01/gitmo.journalist/index.html? 
eref=edition</guid> 
<guid isPermaLink="false">http://news.bbc.co.uk/go/rss/-/2/hi/me/723378828.stm </guid>  

</m> 
<category>Middle-east</category> 

</item> 
</Channel> 

</RSS> 

Fig. 11. Result of Merging two news items 

7.4 Human Assisted merging operator  

In our merging framework (c.f. Section 3), users are empowered to control and dictate the merging 
process. As a result, every user is allowed to specify his/her notion of merging by associating 
relationships between elements and merging operators. The merging operators MergeElements and 
MergeItems represent default merging rules. In this work, users provide merging rules/options by 
associating a template containing a list of identified relationships between elements and a template 
containing a list of merging operators as shown Figure 12. Algorithm 5 represents mapping 
between relations and action. The associations between relation and merging operator are stored as 
user-defined merging rules. Each element of User-merging-rule has relation and action component 
which would control the merging of elements.  

 
Fig. 12. Screenshot of user based merging template 
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 Algorithm 5: Human Assisted Merging operators 
1. Input : A :{Concat, KeepFirst, KeepSecond, KeepBoth, IntersectingElements, IntersectingItems, CreateElement} 

// Set of Merging Operators 
2.  R : {Equal, Includes, Intersect, Disjoint}       // Set of Relations 
3. Variable:  Element-Type : Simple | Item                                    // type of element   
4. User-merging-option: Merging-rule                         //merging rule provided by users 
5. Mapped-rule : Merging-rule                                      // mapped merging rule 
6. User-merging-rule:  {Merging-rule}                        // set of user provided and mapped merging rule 
7. Output: None                                                                                         
8. Begin 
9. User-merging-rule = ∅ 
10. For each relation r in R   
11. User-merging-option = f(r, Element-Type, A)  
12. User-merging-rule = User-merging-rule ∪User-merging-option    
13. Next 
14. Store User-merging-rule in user profile   
15. End  
 

In line 11, function f associates relation r (between elements) having element-type: Simple or Item 
to one of the predefined operators a ∈A.  The User-merging-option is accumulated (line 12) and 
finally stored as profile.   

Example 10:   A user overrides the default merging rule for equality, and disjointness news items with 
help of template (user interface) shown in Figure xxx: 

- If Relation (I1, I2) = ‘equal’ then KeepBoth(I1, I2)  // both news news 

- If Relation(I1, I2) = ‘Disjoint’ then Concat(I1, I2, “|”)   

7.5 Merging RSS news items  

Merging RSS news items collected from one or more sources can be done after grouping items 
using our relationship-aware clustering algorithm. Recall that merging could be done without 
performing clustering. Nonetheless, clustering would provide more relevant merging candidates, 
and thus would amend merging results (c.f. Section 6).  

Hereunder, we start by defining an item neighborhood to be exploited in applying the default 
merging rules, and performing RSS news items merging.  

Definition 12. [Item neighborhood] 

The neighborhood of news item Ii refers to a set of news items Ij related with relation equality or 
inclusion. Formally, it is denoted as: 

ܰሺܫሻ ൌ ൛ܫหܫ ൌ ܫ ש ܫ ـ  ൟ (16)ܫ

Neighborhood of an item Ii returns all news items redundant to it or contained in it. As a result all 
items in ( )N Ii  can be collapsed and represented by Ii without losing information. 

For example,  
ܰሺ1ܰܰܥሻ ൌ ൛ܫห݈ܽݑݍܧݏܫ൫CNN1, ൯ܫ ש   ሻൟ returns all news related with equalityܫ ,ሺCNN1 ݏ݁݀ݑ݈ܿ݊ܫݏܫ
or inclusion with CNN1. Notice that CNN1would be the representative of the resulting set.  

7.5.1 Merging Algorithm  

Algorithm 6 handles merging of news items. The algorithm accepts a cluster of news items and the 
corresponding semantic relatedness matrix i.e. sem_rel. For any pair of news items i and j, 
sem_rel[i][j].value and sem_rel[i][j].rel represent respectively the relatedness and relationship 
components of the item relatedness measure. In addition, the algorithm accepts User-merging-rule 
extracted from the user profile.  

In line 7, and empty RSS document is created with the using the initialize action. Then, in line 9, 
the item neighborhood of a news item is identified, so as to produce special item Ir, that can 
represent the merged result of all news belonging to same neighborhood using Merge-Items-
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Neighborhood20. Then in line 8, the semantic relatedness matrix is updated by deleting the rows 
and columns of items included in the global neighborhood of Ii and add Ir into the RSS file. Lines 
15 – 22 are used to merge all the remaining news items. The merging process is conducted 
incrementally.  

 Algorithm 6: Merging RSS news Items  
1. Input: Ci: {I1, I2, …, Im}                                       // Ci is a cluster having Ik items  1 ≤ k  ≤ m 
2. 
3. 

sem_rel [][]                                            // it contains items relatedness value 
User-merging-rule : Collection            // list of action to be done based on the relationship 

4. Variable: r, s : integer  
5. OutPut: Doc: Document                                                 // file containing merged news items 
6. Begin  
7. Doc = Initalize (“RSS”) 
8. 
9. 
10. 
11. 
12. 
13. 

For each Ii in Ci    
     Find the neighborhood of Ii and  identify the representative       //cf. Def. 19 
     Update sem_rel matrix by deleting news included in neighborhood of Ir 

   Let Ir = Merge-Items-Neighborhood (Ii, user-merging-rule) 
   AddElement (Ir, Doc)   

Next  
14. Do 
15 (r,s) = max (sem_rel[i][j].value)       // Find the most similar pair of news items say r and s over all items 
16 
17. 

Ik = merge (Ir, Is, user-merging-rule)                //Merge r and s to form new item Ik.   
AddElement (Ik , Doc) 

18. Update sem_rel matrix    
19. 
20. 
21 

SemRel(Eik, E(s,r)j)= Avg (SemRel(Eik,Esj), SemRel(Eik,Erj)) 
Relation(EikE(s,r)j)= Fuzzy(SemRel(EikE(s,r)j),Thresholddisjoint, ThresholdEqual) 
sem_rel [I][(r,s)] = IR (I, (r,s)) 

22. 
23 

Until all items are merged 
Return RSS 

24 End  

 

In line 15, any two highly related news items (Is and Ir) over all pair of items are identified. These 
news items are merged using the merging rule provided by the user (line 16). The resulting news 
item is added to output RSS file (line 17). In line 18, the sem_rel matrix is updated by removing 
rows and columns of Is and Ir and adding the newly merged news Ik. Item relatedness between Ik 
and those related with Is and Ir is estimated after estimating the relatedness between sub-elements 
of Is and Ir. The semantic relatedness between sub-elements Eik of Ii and Ik is computed as the 
average SemRel(Eik,Esj), and SemRel(Eik,Erj) where Esj and Erj are sub-elements of Is and Ir 
respectively.  The relation between sub-elements is computed on the bases of fuzzy notion that 
takes into consideration semantic relatedness value, threshold disjointness and threshold equality – 
line 20. In line 21, The semantic relatedness and relationship between items is computed by 
combining the semantic similarity and relationship values using the Item relatedness algorithm 
(c.f. item relatedness).   

8 EXPERIMENTS 
To validate our approach, we have implemented a C# desktop prototype entitled RSS Merger 
encompassing: 

• A KB component: stores reference text value and label knowledge bases, VKB and LKB, in a 
MySql DBMS. The value knowledge base VKB and LKB are modified based on the 
considered application. 

• RSS Input component: allows users to register existing RSS news addresses, and accepts 
parameters to be used in generating synthetic news. 

• Containers for generated and/or extracted news 

• Container for the user profile – user information and personalized merging rule 

                                                 
20 Merge-Items-Neighborhood merges news items redendent news items based on the equlity and inclusion 
merging rule of the user.   
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The prototype accepts, as input, RSS news items, as well as Boolean input parameter allowing the 
user to chose whether to consider data semantics (i.e., exploit VKB and LKB in identifying 
label/value neighborhoods) or not. It measures relatedness between news items automatically after 
(i) stemming text values using Porters’ algorithm [42], (ii) generating vectors for each text, (iii) 
computing relatedness and relationships at different level of granularity, i.e., text, label, simple 
element, and item (complex element). It clusters the RSS items based on the relatedness value and 
finally merge the news based on the users merging rule.  

We have conducted a set of experiments to evaluate (a) the computational complexity and 
efficiency of our method, (b) the relevance of our relatedness measure, and (c) the relevance of 
topological relationships in grouping related news items, and consequently performing RSS 
merging (d) user based relevance of the merging operation. Experiments were carried out on an 
Intel Core Centrino Duo Processor machine (with 1.73 GHz processing speed and 1GB of RAM). 

8.1 Dataset  

In conducting the set of experiments, we have used both syntactic and real dataset.  

• Syntactic dataset:  we have developed a C# prototype that generate RSS document that 
conforms to RSS 2.0 specification.  The prototype accepts each of the following as parameters. 

o Number of news items to be generated  

o Maximum number of concepts per content  

o Number of disjoint number of clusters  

o Number of Equal, including and intersecting news per clusters  

• Real dataset: We have used two groups of  real datasets  

Group 1: It contains 158 RSS news items extracted from well known news providers (CNN, 
BBC, USAToday, L.A. Times and Reuters). We grouped manually into 6 predefined clusters: 
US Presidential elections 08, Middle-east, Mumbai-attacks, space-technology, oil, and football.  
However, we did not identify the relationships that could exist between news items. 

Group 2: News collected by Antonio Gulli [59].  We have extracted 567 news published as 
Top News by CNN, BBC, Newsweek, The Washington Post, Reuters, Guardian, and Time. We 
group the news into 7 clusters. Table 3 shows the clusters and number of news related with 
equality, inclusion and intersection relations.  

Table 3: Manual Clusters and distribution of relationships 

Cluster Name # Equality # Including # intersection Total 

Mortgage 100 69 0 169 

Afghan 17 5 10 32 

Bin-Laden 13 4 1 18 

Arafat 30 6 19 55 

Terrorism 27 19 78 124 

USA-Election 60 9 100 169 

8.2 Timing Analysis and Efficiency 

We experimentally tested the time complexity of our relatedness algorithm (R2) , w.r.t. the sizes of 
input texts t1 and t2 i.e. number of concept sets (n and m) and value knowledge base information 
(number of concepts - nc and depth - d). Note that relationship computation is not included here as 
its impact is minimal on timing. 

On one hand, we can quickly observe the polynomial nature of the timing result shown in 
Figure 13, demonstrating the polynomial dependency on input text size (13.a) and knowledge base 
information (13.b). The x axis represents the number of concepts in a concept set and the y axis 
shows the consumed number of seconds needed to compute the relatedness value.  
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a. Without semantic knowledgebase 

 

b. With fixed semantic (d=8,nc = 100)  

Fig. 13. Timing analysis text concept set in t1, t2 (n, m) 

In Figure 13, we also show the effect of varying number of concepts in synsets. Figure 13.a 
shows the timing result without considering knowledge base information while varying the size of 
the input texts. Increasing the number of concept sets increases the timing in a quadratic fashion 
(i.e. the dot line shows the growth rate as trend of the algorithm). Figure 13.b represents timing 
result considering a fixed knowledge base (having 100 concepts with a maximum depth of 8). The 
time needed to compute the relatedness between items increases drastically (compared to the result 
shown in Figure 13.a) and in a polynomial fashion. 

 
Fig. 14. Timing result obtained using three algorithms: xSim, TF‐IDF and our algorithm 

 On the other hand, we wanted to compare the efficiency of our algorithm with similar existing 
ones. As alternative algorithms, we chose xSim [27] and TF-IDF[39], the former being one of the 
most recent XML-dedicated similarity approaches in the literature, the latter underlining a more 

0

5

10

15

20

25

100 200 300 400

Se
co
nd

s

n: Number of concepts in a concept set of T1 

100

200

300

400

Trend

m: ncs in T2

0

1000

2000

3000

4000

5000

6000

100 200 300 400

Se
co
nd

s

n: Number of concepts in a concept set of T1

100

200

300

400

Trend 

m: ncs in T2

0

50

100

150

200

250

100 200 300 400 500 600 700 800

Se
co
nd

s

Number of concepts in a concept set of T1 and T2 (m=n)

xSIM

Tf‐IDF

R2

Algorithm



25 

generic method for computing similarity and which could be utilized to compare RSS items. In all 
three algorithms (including ours), computing relatedness between randomly generated synthetic 
news is performed without semantic relatedness assessment (as both xSim and TF-IDF do not 
consider semantic information) using cosine similarity. Figure 14 shows that our approach yields 
better timing results in comparison with xSim, but performs worse than TF-IDF. That is due to the 
fact that TD-IDF does not consider the structure of RSS news items, but only their concatenated 
contents.  

8.3 Relevance of our Relatedness Measure  

In this set of tests, we used clustering to measure the relevance of our approach by grouping 
together related/similar news. Checking clustering quality involves (i) the computation of metrics 
based on pre-defined knowledge of which document belongs to which clusters, (ii) and mapping 
the discovered clusters to original clusters. Here, we exploit the popular information retrieval 
metrics precision (PR) and recall (R) [39] to check the relevance of the discovered clusters. In 
addition, an f-score value is used to compare the accuracy of different clustering results based on 
the combined values of PR and R as these values are not discussed isolation while measuring the 
relevance: 

f-score 
)RPR(
RPR2

+
××

=  (17) 

 

Using our clustering strategy (cf. Section 6), we compared (i) our semantic relatedness 
algorithm, (ii) the TF-IDF measure and (iii) xSim on real datasets, with and/or without semantic 
information, calculating PR, R, and f-score values. Precision and recall graphs exhibit two basic 
properties independent of the similarity measure used: (i) precision around clustering level 1 
(which contains news related with related value of 1 and/or with relationship of equality/inclusion) 
is maximum (i.e. PR = 1 and the clusters are smaller, and disjoint) whereas recall value is very low 
(it means that there are many mis-matching clusters), (ii) precision around clustering level 0  
(results in all news items with relatedness value greater than or equal to 0) is very low (resulting in 
bigger clusters) whereas recall value is higher as mis-clustering is lower. Hence, the actual 
clustering of datasets should end before attaining clustering level zero. 

 
Fig. 15. f‐score on group 1 real data set 

We used 158 RSS news items extracted from well known news providers grouped manually into 6 
predefined clusters. Figure 15 shows the corresponding f-score graph. Even-though the 
relationship between news items was not identified in this dataset, our relationship aware 
clustering algorithm groups all items related with inclusion and equality in the appropriate cluster 
(between clustering levels 1 and 0.7). The average f-value computed over the entire clustering 
level conforms that our semantic relatedness measure provides relevant clustering results (clusters 
closer to the predefined ones, particularly between 1 and 0.37) compared to xSim and TF-IDF.    

8.4 Relevance of Item/Element Relations 

In this set of tests, we show to which extent our relatedness measure identifies the equality, 
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inclusion, intersection and/or disjointness relations between items. We generated 100 synthetic 
news items with various different distributions.    

 
a. Precision graph 

 
b. Recall graph 

Fig. 16. Relevance of relationships with synthetic RSS data. 

Figure 16 shows the Recall and Precision graphs generated on a distribution having: 20 equal, 20 
included, 40 intersecting, and 20 disjoint news, by varying the similarity threshold between 0.3 
and 0.9. The graph shows that our measure accurately identifies equality and inclusion 
relationships, at all time. However, the measure misclassifies disjoint news and considers them as 
intersected due to element label relatedness (without threshold and/or TDisjoint less than 0.30). With 
TEquality = 0.39, our method identifies all disjoint news items and hence provides optimal recall and 
precision). However, recall w.r.t. the intersection relationship becomes lower as the news are 
considered equal. Precision decreases with the intersection relationship (x-PR) around a threshold 
of 0.6, as the news items are considered as equal, using equality thresholds between 0.61 and 0.68. 
Similarly for equality thresholds between 0.68 and 0.84 where included and intersecting news are 
considered as equal.  

We can conclude here that a correlation can be identified between the threshold values and the 
distribution of news relationships. This can be inferred using learning and mining techniques. This 
issue needs to be studied further in the future. 

8.5 Relevance of relation aware clustering   

As stated in Section 6, our RaSL2 algorithm adds news items related with inclusion and 
equality, in addition to those having maximum relatedness, in the same cluster. We evaluate this 
factor experimentally using real dataset. We present f-value results when clustering real data using 
our RaSL2 algorithm and the original single link level (SL2) algorithm. The result of clustering 567 
real news items is shown in Figure 17. Our clustering algorithm adds the news items related with 
inclusion and equality at level 1 whereas the single-link clustering algorithm contains only equal 
news (which would have maximum relatedness values).   Our RaSL2

 makes sure that including 
news are in the same cluster independent of the similarity value.  
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Figure. 17. Group 2 real RSS items clustered with SL2 and our RaSL2 algorithms. 

8.6 Relevance of merging RSS news items   

We let 5 university students to use desktop prototype in order to merge news collected from same 
and/or different sources.  Initially, the students use the default merging rule then after they are 
allowed to provide their personalized merging rule by combining the template provided in Figure 
12 above. Finally, they answer rated (1(least) -5(best)) questions focusing on three requirements. 

R1. Completeness of the merging operator in merging RSS documents 

R2. Quality of the merged result – redundancy free RSS news result 

R3. Flexibility of the merging approach in allowing users to have personalized merging rule 

Table 4: Students response to three requirements 

Requirement 

Student 

R1 R2 R3 

S1 5 5 4 

S2 5 5 5 

S3 4 5 4 

S4 4 5 3 

S5 5 5 5 

average 4.6 5 4.2 

 

Table 4 shows the rating of each student to each of the three requirements. The average ratings 
over each requirement confirm the relevance of the approach.   In the future we have a plan to 
release large scale public version of our prototype and collect users’ relevance feedback. 

 

9 RELATED WORK 
The merging of information has been studied extensively in different application scenarios 
distrusted database design [31][43][2] [14][6], revision control, belief management, information 
systems, etc.  

Herewith, we present merging scenarios and technique related with the merging process.  

9.1 Distributed database  

Merging of information/data is one of the key issues in the design of federated and distributed 
databases. A number of studies have been made with approaches based on schema 
integration/merging (e.g. [31]), particularly the use of a global conceptual schema (e.g. [43][2]). 
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Even if the approach in [31] considers the topological relations (equality, inclusion and 
disjointness), it does not consider the domain knowledge information in handling semantic 
conflicts or relationships between entities and its applicability is restricted to model merging. In 
federated and heterogeneous database integration [14][6], transparency and merging is archived 
with the use of wrappers, mediators and views that convert the user’s query to be processed against 
the native database schema.    

9.2 Revision control information systems  

In revision control information systems, two methods have been introduced for merging. A first 
method, called two-way merge, performs an analysis between two knowledge sources and 
considers the differences between the two sources alone to conduct the merging. Then it makes a 
“best-guess” analysis to generate the result. The second method, called three-way merge, is 
performed between knowledge sources while also considering their origin, or parent (usually the 
parent is the same). This type of merging is generally available through the use of supporting 
revision control systems where such a parent would normally exist. 

9.3 Merging XML data  

Merging XML data has been studied by different researchers La Fontaine et al. [32], Lindholm et 
al. [36][37]and hunter et. al [22][23] .  

The approach proposed by La Fontaine in [32] merges directly data-centric XML files, using two- 
and three-way merging techniques. The approach starts by performing a tree-structured 
comparison walking through ‘corresponding’ nodes in the XML document trees to be merged. 
XML trees are treated as ordered lists of nodes, upon which the Wu algorithm for computing the 
Longest Common Subsequence (LCS) is exploited [51]. Once the two XML documents have been 
compared, an intermediate file is produced, containing all the information from both original files. 
Finally, based on the comparison results, the two XML documents are merged according to 
predefined merging rules. 

Lindholm in [36][37] proposes a three-way merge for structured data, where input documents are 
modeled as XML ordered trees. The author’s focuses on data-centric XML, and thus disregards 
data semantics. For the purpose of merging, a matching relation to group together the 
‘corresponding’ nodes from different trees is defined. The concept of node class is introduced: the 
equivalence class of a node under a matching relation. Merging rules extracted from rule cases are 
later used to produce the final merged XML document. 

Hunter et al. have published several papers [18][19][20][21][22][23] concerning the use of 
knowledge bases and fusion rules in merging information. Authors are particularly interested in 
merging semi-structured information such as structured reports: XML documents having same 
structure and the text entries are restricted to individual words or simple phrases, dates, numbers 
and units. The merging process is controlled by propositional fusion rules [21][22] in which 
conflicts in information are solved by the user of logical reasoning, with axioms and rules 
contained in a knowledge base. Hunter’s fusion rule is less applicable and couldn’t be applied to 
RSS scenario as text entries are small words or phrases and merging is restricted to elements 
having the same tag name. The fusion pro In general, the fusion rule has restricted merging 
process: (1) to finite number of similarly structured xml document and text entry is restricted to 
words and small phrases without natural language processing, and to (2) elements having same tag 
name.  

Unlike the work of Hunter our merging approach is based on automatic computation of 
relatedness/similarity between news and it is controlled by the relationship existing between 
items/elements.  

9.4 Similarity/Relatedness  

In both two-way and three-way merging approaches, identifying matching nodes is a pre-condition 
in different XML merging scenarios [32][36][37]. A lot of research has been done to determine 
similarity and can be categorized into structure-based, content based and hybrid-based 
approaches.  
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It is to be noted that most of the proposed approaches in XML comparison are based on structural 
similarity using tree edit distance [3]. For instance, Chawathe [5], Nireman and Jagadish [41] 
consider the minimum number of edit operations: insert (tree), delete (tree) and update node to 
transform one XML tree to another. However, other techniques have exploited to evaluate XML 
similarity. Flesca et. al [8] use of Fast Fourier Transform to compute similarity between XML 
documents. They extract the sequence of start tags and end tags from the documents, and convert 
the tag sequence to a sequence of numbers to represent the structure of the documents. The number 
sequence is then viewed as a time series and the Fourier transform is applied to convert the data 
into a set of frequencies. The similarity between two documents is computed in the frequency 
domain by taking the difference in magnitudes of the two signals. 

In content based similarity of XML document, similarity is computed without assigning any 
special significance to the tags or the structural information. For example, IR search engines 
typically ignore markup in HTML documents when matching phrases. The similarity can be done 
with/without considering semantics.  In Information Retrieval (IR) [39], the content of a document 
is commonly modeled with sets/bags of words where each word (and subsumed word(s)) is given 
a weight computed with Term Frequency (TF), Document Frequency (DT), Inverse Document 
Frequency (IDF), and the combination TF-IDF. In [11], the authors used a Vector Space having 
TF-IDF as weight factor in XML retrieval. 

There is a lot of research towards determining the similarity between texts using vector space and 
fuzzy models. In vector model [39], similarity between texts is computed using cosine of the 
keywords. In fuzzy approach (e.g. in [40] Nathaniel et al. have used pre-computed keyword 
correlation factors between pair of keywords and defined fuzzy association to order to get 
asymmetric similarity value. The authors have used Correlation based Phrase matching approach 
in finding similar RSS articles collected from same or different sources. However, the comparison 
is restricted to an RSS content descriptor that combines content of title and description elements.  

The semantic similarity between concepts is estimated either by the distance between nodes [50], 
or the content of the most specific common ancestor of those nodes involved in the comparison 
[45][35] and is defined according to some predefined knowledge base(s). Knowledge bases 
[44][46] (thesauri, taxonomies and/or ontologies) provide a framework for organizing words 
(expressions) into a semantic space. 

More recently, a few hybrid-based (hybrid refers to combination of structure and content or 
structure and semantic based) approaches have been proposed, addressing XML comparison. In a 
recent work [48], the authors combined an IR semantic similarity technique with a structural-based 
algorithm based on edit distance. However, the semantic similarity is limited only to tag names. In 
[27], xSim, a structure and content aware XML comparison framework is presented. xSim 
computes the matching between XML documents as an average of matched list similarity values. 
The similarity value is computed as average of content, tag name and path similarity values 
without considering semantics. 

9.5 Relationships 

The relationships between objects such as equality, inclusion, intersection, disjointness, etc. have 
been used in different applications such as spatial data retrieval, access control and text mining. In 
[33], Ho-Lam et al. stress on the importance of considering relationships (equality, overlap, 
disjointness and containment or inclusion) between data sources while merging XML documents, 
without however addressing the issue.  

Ian gracia et al. [24], Nathaniel et al. [40] and Pera et al. [38] have used correlation based 
approach to identify relationships among RSS news articles: redundant (identical and subsume – it 
is similar to our equality and inclusion relationship), non-related (disjoint) and related 
(intersection). Pera [38] used the fuzzy equivalent relation in order to detect and remove less-
relevant/informative news article from clusters.  

9.6 Discussion 

Unlike the works in [24], [38], [40], our approach focuses on human-provided semantics in 
evaluating the relatedness of XML documents, RSS items in particular. The user would provide a 
list of tags to be used as content descriptors. The relatedness approach is based on vector space 
model with weights of index terms/keywords reflecting semantic enclosure relationships between 
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index terms. We detect fuzzy equality, inclusion, intersection, and fuzzy disjoint relationships. The 
subsume relationship in [38] is fuzzy and may classify intersecting news A1 and A2 shown in Table 
3.a as A1 subsumes in A2. In addition, none of the merging approaches considers relationships as 
input parameters for the merging process.   

Table 3: Subsumed vs inclusion relationship

 

RSS news 

 

 

a. (following [38]) sim(A1, A2) ~1 and 
sim(A2, A1) << 1, hence A1 is subsumed 
in A2. However, A1 and A2 are very 
similar and intersecting news. 

b. sim(A1, A2) =1 but sum(A2, A1) < 1. 
Truly A1 is included in A2 or A1 is 
subsumed by A2 

 

10 CONCLUSIONS AND FURTHER RESEARCH 
 In this paper, we have addressed the issue of measuring topological/semantic relatedness 
between RSS items. We have studied and provided a technique for computing text and label 
relatedness, taking into account different kinds of relationships among text (element content) and 
elements. Our approach detects disjointness, intersection, inclusion and equality relationships 
among atomic and complex RSS elements. The identified relationships are used in adapting the 
level based single link clustering algorithm. We have developed a prototype validating the 
complexity of our relatedness measure. The resulting f-score value computed on both real and 
synthetic data shows that our measure generates relevant clusters compared to xSim and TF-IDF. 
In addition, we have shown the capability of our measure in identifying relationships between 
items. We have compared our relationship aware clustering algorithm against the classic single 
link level based algorithm. Results confirm the advantage of detecting relationships in identifying 
relevant RSS data clusters.  Finally, our measure is used in defining RSS item merging operators, 
and consequently performing the merging. We are currently developing a full-fledged merging 
language, exploiting our merging operators, and integrating user preferences.  In addition, we plan 
to extend the relatedness measure in the merging of multimedia related scenarios (SVG, MPEG 7, 
etc.) 
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