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Abstract. XML grammar matching has found considerable interest recently, due to the growing 
number of heterogeneous XML documents on the Web, and the need to integrate, search and retrieve 
XML documents originated from different data sources. In this study, we provide an approach for 
automatic XML grammar matching and comparison aiming to minimize the amount of user effort 
required to perform the match task. This requires i) considering the various characteristics and 
constraints of XML grammars (in comparison with ‘grammar simplifying’ approaches), ii) allowing a 
flexible combination of different matching criteria (in comparison with static approaches), and iii) 
effectively considering the semi-structured nature of XML (in contrast with heuristic methods). To 
achieve this, we propose an extensible framework based on the concept of tree edit distance as an 
optimal technique to consider XML structure, integrating different matching criteria to capture all 
basic XML grammar characteristics, ranging over element semantic and syntactic similarities, 
cardinality and alternativeness constraints, as well as data-type correspondences and relative ordering. 
In addition, our framework is flexible, enabling the user to choose mapping cardinality (i.e., 1:1, 1:n, 
n:1, n:n), in comparison with exiting static methods (usually constrained to 1:1). User constraints and 
feedback are equally considered in order to adjust matching results to the user’s perception of correct 
matches. Experiments on real and synthetic XML grammars demonstrate the effectiveness and 
efficiency of our matching strategy in identifying mappings, in comparison with alternative methods. 
 

Keywords: XML, Semi-structured data, XML Grammar, Schema matching, Structural Similarity, 
Tree edit distance, Semantic similarity, Vector space model. 

 

1. Introduction 

With the growing amount of heterogeneous XML information on the Web, i.e., documents originated 
from different data-sources and not conforming to the same grammars, there has been an 
overwhelming need to automatically process those documents and grammars for data and schema 
integration, and consequently information extraction, retrieval and search functions. All these 
applications require, in one way or another, XML document and grammar similarity evaluation. In 
this area, most work has focused on estimating similarity between XML documents, which is relevant 
in several scenarios such as change management (finding, scoring and browsing changes between 
different versions of a document) [12, 13], XML structural querying (finding and ranking results 
according to their similarity) [57, 72], as well as structural clustering of XML documents gathered 
from the Web [14, 48]. Yet, few efforts have been dedicated to comparing XML grammars, useful for 
data integration purposes, in particular the integration of DTDs/XML schemas that contain nearly or 
exactly the same information but are constructed using different structures [18, 41]. XML grammar 
comparison is mainly exploited in data warehousing (mapping data sources to warehouse schemas) 
[51], message translation (central in B2B applications) [51], as well as XML data maintenance and 
schema evolution (detecting differences/updates between different versions of a given grammar to 
consequently revalidate corresponding XML documents) [34]. 
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In this study, we address the XML grammar matching/comparison problem, i.e., the comparison 
of DTDs [7] and/or XML Schemas [49] based on their most common characteristics. In fact, the 
effectiveness of grammar matching systems is assessed w.r.t.1 the amount of manual work required to 
perform the matching task [17], which depends on: i) the level of simplification in the representation 
of the grammars, and ii) the combination of various matching techniques [15]. In general, most XML-
related grammar matching methods in the literature are developed for generic schemas and are 
consequently adapted to XML grammars such as [15, 18, 37, 41]. On one hand, they often induce 
various simplifications to XML grammars in order to perform the match task. In particular, 
constraints on the existence, repeatability and alternativeness of XML elements (e.g., ‘?’, ‘+’ and ‘*’ 
in DTDs, or minoccurs and maxoccurs in XML Schemas) are disregarded [15, 30]. On the other hand, 
they usually exploit individual matching criteria to identify similarities [41, 60] (evaluating for 
instance the syntactic similarity between element labels, disregarding semantic meaning) and thus do 
not capture all element resemblances. Methods that do consider several criteria (semantic similarity, 
data-type similarity…) usually utilize machine learning techniques [18, 30] or basic mathematical 
formulations (e.g., max, average, etc.) [15, 52] which are not always adapted to the semi-structured 
nature of XML grammars in combining the results of different matchers. 

Here, our main goal is to develop an effective XML grammar matching method minimizing the 
amount of manual work needed to perform the match task. This requires: i) considering the various 
characteristics and constraints of the XML grammars being matched, in comparison with existing 
‘grammar simplifying’ approaches, e.g., [15, 30], ii) allowing a flexible and extensible combination of 
different matching criteria, adaptable to various application scenarios, in comparison with existing 
static methods, e.g., [41, 60], and iii) effectively considering the semi-structured nature of XML, as 
the most prominent and distinctive feature of an XML grammar [2, 46], in comparison with existing 
heuristic or generic approaches, e.g., [18, 37], in order to produce more accurate results. 

Hence, the contributions of our study can be summarized as follows. First, we devise a tree 
representation model for XML grammars that considers the hierarchical aspect and various constraints 
of XML elements/attributes, thus handling the expressive power of XML grammars without being 
constrained to a specific grammar language (e.g., DTD [7]  or XSD [49]). Second, as XML grammars 
are effectively represented as trees, we put forward a method for XML grammar matching based on the 
concept of tree edit distance. We make use of tree edit distance as an effective and efficient means for 
structural similarity evaluation and identifying the structural matches between two XML grammars. In 
addition, we exploit tree edit distance as an open framework for the integration of different match 
criteria in evaluating XML grammar tree similarity. Dedicated matchers are utilized to capture 
element semantic and syntactic similarities, as well as constraint and data-type correspondences. User 
constraints and feedback are also considered in our method. Note that to our knowledge, this is the 
first attempt to exploit tree edit distance in XML grammar matching. Experimental results reflect our 
method’s high matching quality and performance in comparison with existing approaches.  

The remainder of the paper is organized as follows. Section 2 reviews the background and state of 
the art methods related to XML grammar matching. In Section 3, we present some preliminary 
notions and definitions. Section 4 depicts our XML grammar tree representation model. Section 5 
develops our XML grammar matching framework. In Section 6, we present the experimental results 
obtained when evaluating our approach. Section 7 concludes the paper and discusses future directions. 
 

2.  Background and Related Works 
 

2.1.  XML Grammar and Constraint Operators 
 

 

An XML grammar (e.g., DTD [7] or XSD [49]) is a structure made of a set of XML elements, sub-
elements and attributes, linked together via the containment relation. It identifies element/attribute 
structural positions, data-types (e.g., ID, IDREF, Decimal, Integer, String, etc.), and the rules they 
adhere to in the XML document. These rules are defined via dedicated grammar constraint operators, 
which specify constraints on the existence and repeatability of elements/attributes. 
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XML grammar constraints consist of two main groups: cardinality constraints (cc) and 
alternativeness constraints (ac). 
 
2.1.1. Cardinality Constraint Operators 
 

Cardinality constraint operators specify the number of occurrences and repetitions allowed for a given 
element in the document instances corresponding to the grammar at hand. Five cardinality operators 
exist in the DTD language [7]: i) the ‘?’ operator indicates that the corresponding element is optional, 
ii) The ‘*’ operator specifies that an element is repeatable, and that it may occur 0 or many times, iii) 
the ‘+’ operator specifies that an element is repeatable, and that it must appear at least once. It is also 
possible to specify cardinality constraints on attributes: iv) the Implied operator specifies that an 
attribute is optional, v) the Required operator indicates that the attribute’s occurrence is mandatory.  

In XSD [49], cardinality operators amount to MinOccurs and MaxOccurs, specifying respectively 
the minimum and maximum number of times an element/attribute can appear in the corresponding 
XML document. These operators are obviously more expressive than their DTD counterparts and can 
exactly simulate the behaviors of the latter (e.g., MinOccurs=0 is equivalent to ‘?’ in DTDs, 
MaxOccurs=‘unbounded’ is equivalent to ‘+’, whereas MinOccurs=0 and MaxOccurs=‘unbounded’ 
is equivalent to ‘*’). Note that an element/attribute with no cardinality constraint (null) is mandatory. 

 
2.1.2. Alternativeness Constraint Operators 
 

Alternativeness constraint operators specify an element’s disposition w.r.t. its siblings. Two main 
operators are allowed, in both DTD/XSD languages: And and Or. The And operator (represented as ‘,’ 
in DTDs, and sequence in XML Schemas) represents a sequence of elements, such as each element 
should appear in the document. The Or operator (represented as ‘|’ in DTDs, and, choice in XML 
Schemas) represents an alternative of elements, such as one and only one of the concerned elements 
should appear in the document. An additional hybrid operator, All, is introduced in XSD [49]. It 
allows all connected siblings to appear in any order, such as all appear at once, or not at all. 
 
2.2. Overview on Grammar Matching and Comparison 
 

Identifying similarities among grammars, otherwise known as schema matching, is usually viewed as 
the task of finding correspondences between elements of two schemas [17]. It has been investigated in 
various fields, mainly in the context of data integration [17, 51], and recently in the contexts of 
schema clustering [33, 46] and change detection [34, 59].  

In general, a grammar/schema consists of a set of related elements (entities and relationships in 
the ER model, objects and relationships in the OO model, etc.). In particular, as described in the 
previous section, an XML grammar is made of a set of elements and attributes, linked together via the 
containment relation. Thus, the schema matching operator can be defined as a function that takes two 
schemas, S1 and S2, as input and returns a mapping between those schemas as output [51]. The 
mapping between two schemas indicates which elements of schema S1 are related to elements of 
schema S2 and vice-versa.  

Criteria used to match the elements of two schemas are usually based on heuristics that 
approximate the user’s understanding of a good match [51]. These heuristics usually consider the 
linguistic similarity between schema element names (e.g., string edit distance, synonyms, hyponyms, 
etc.), the similarity between element constraints (e.g., ‘?’, ‘*’, ‘+’ in DTDs, or MinOccurs and 
MaxOccurs in XML Schemas), in addition to the similarity between element structures (matching 
combinations of elements that appear together). Some matching approaches also consider the data 
content of schema elements (e.g., element/attribute values, if available) when identifying mappings 
[18]. In most approaches, scores (similarity values) in the [0, 1] interval are assigned to the identified 
matches so as to reflect their relevance. These values can be normalized to produce an overall score 
underlining the similarity between the two schemas being matched. Such overall similarity scores are 
utilized in [33, 46], for instance, to identify clusters of similar grammars prior to conducting the 
integration task. 
 



 

2.3.  State of the Art in XML Grammar Matching 
 

While schema matching is mostly studied in the relational and Entity-Relationship models [10, 32, 
44], research in XML grammar comparison has been gaining increasing importance in the past few 
years due to the unprecedented abundant use of XML, especially on the Web. As discussed in the 
introduction, the main criterion generally utilized to assess the effectiveness of automatic schema 
matching methods is the amount of manual work required to perform the matching task [17, 46]. This 
criterion depends on two main factors: i) the level of simplification in the representation of the 
schema, and ii) the combination of various matching techniques to perform the match task [15].  
 
2.3.1. Simplifying Grammar Representations 
 

While most existing methods to XML grammar matching consider, in different ways, the linguistic as 
well as the structural aspects of XML grammars, they generally differ in the internal representations 
of the grammars. In general, various simplifications are required by different approaches inducing 
adapted schema representations upon which the matching process is run. 
 

Early approaches: Methods in [37, 41, 60] tend to transform schemas into simplified graph 
representations, more similar to data-guides [26] for semi-structured data than to XML grammars. In 
general, various simplifications targeting the hierarchical structure of XML grammars, as well as 
repeatability and alternativeness constraints (e.g., ‘+’, ‘*’, MinOccurs, etc.), are usually undertaken in 
performing the match task. In [60], the authors simplify DTD constraints and merge sub-elements 
having the same label to abridge DTD graph representations. Then, a bottom-up procedure starts by 
matching leaf nodes, based on node label equality, and subsequently identifies inner-node matches 
based on the latter. In [41], the authors propose to construct a pair-wise connectivity graph (PCG) 
made of node pairs, one from each of the input schema graph. An initial similarity score, using classic 
string matching (i.e., string edit  distance) between  node  labels, is  computed  for  each  node  pair  in 
the PCG, and then refined by propagating the scores to their adjacent nodes. A similar approach is 
provided in [37], where the authors consider the linguistic features of grammars nodes (making use of 
an external thesaurus), as well as node data-types (making use of an auxiliary data-type compatibility 
table), instead of only node label equality, such as in [41, 60].  

 
Emphasis on XML structure: More recent approaches to XML grammar comparison, e.g., [6, 

25, 59, 61, 63, 69], put more emphasis on the hierarchical structure of XML, and consider (to different 
extents) XML grammar cardinality and alternativeness constraints. The authors in [59] provide a DTD 
matching approach geared toward document transformation, and exploit heuristic functions based on 
the concept of relative information capacity [29] for choosing transformation operations among 
multiple alternatives. The authors however state that the heuristics used might produce unpredictable 
matching results, due the existence of ambiguous data capacity cases [59]. In [33], the authors 
develop XClust, an integration strategy that involves the clustering of DTD trees. The proposed 
algorithm is based on the semantic similarities between element names (making use of a thesaurus or 
ontology), corresponding immediate descendents, as well as sub-tree leaf nodes (i.e., leaf nodes 
corresponding to the sub-trees rooted at the elements being compared). It also considers recursive 
element declarations. While the internal representation of DTDs, with XClust, is more sophisticated 
than the methods presented above, it does not consider DTDs that specify alternative elements (i.e., 
the Or alternativeness operator is disregarded, replaced by an And operator). Studies similar to XClust 
are proposed in [6] and [63]. They both target XML Schemas (XSD) instead of DTDs. The various 
XSD base types (e.g., decimal, string, etc.) are considered in comparing elements. The authors in [6] 
mention the need to compare complex and derived (user defined) types, using dedicated type 
hierarchies, without, however, detailing the corresponding process. Both studies disregard XML 
grammar alternativeness operators (i.e., Or and All) in their similarity computations. In [61], the 
authors propose QMatch for matching XML schemas as collections of tree paths. The proposed 
algorithm is built on top of a bunch of classifiers for i) comparing schema element/attribute labels 
(semantic comparison w.r.t. WordNet [42]), ii) comparing element/attribute properties (order, 



 

cardinality constraints, and data-types), and iii) comparing paths structures (the latter is a composite 
classifier built upon the basic label and property classifiers). However, the proposed approach does 
not consider schemas with alternative declarations (i.e., the Or and All operators are not considered).  

 
Emphasis on Structure and Grammar Constraints: The only approach we know of to 

effectively consider alternative elements (i.e., elements connected via the Or and All operators) is 
developed in [69]. The method is based on the relaxation labeling technique to solve the problem of 
assigning labels to elements w.r.t. a set of constraints1. Schemas are first compared at the element 
level considering their basic properties: element name, parent node, set of children, set of attributes, 
and set of brothers. Consequently, the pair-wise similarity matrix between all pairs of elements in both 
schemas being compared is iteratively optimized using label relaxation, taking into account the 
contextual characteristics of elements (i.e., their structural positions in the schemas being compared). 
The approach is iterative in that different variations of the pair-wise element similarity matrix are 
computed until similarities converge within a predefined threshold (or until the maximum number of 
iterations in reached). This might prove to be computationally cumbersome in practical applications 
(note that the authors do not discuss the efficiency of their approach). In addition, while it seems more 
sophisticated than its predecessors, the approach in [69] only allows restricted XML grammar 
declarations. For instance, operator concatenations, and thus composite declarations are not allowed 
(e.g., declaration root(a, b, (c|d)) is not allowed, only single operator declarations such as root(a, b, c) 
or root(a | b | c)).  

 

In short, a correspondence between the level of simplification in the grammar representations and 
the amount of manual work required for the matching task can be identified: the more schemas are 
simplified, the more manual work is required to update the matching results by considering the 
simplified constraints. For instance, if the Or operator is replaced by the And operator in the 
simplified representation of a grammar (e.g., (a | b) is replaced by (a , b) in a given DTD element 
declaration), the user has to analyze the results produced by the matching approach, and manually 
evaluate and update the matches corresponding to elements that were initially linked by the Or 
operator (i.e., alternatives) prior to the simplification phase. In this context, XClust [33], QMatch [61], 
and Relaxation Labeling [69] seem more sophisticated than alternative matching approaches. They 
induce the least simplifications to the grammars being compared. XClust and QMatch only disregard 
the Or operator (and the XSD-specific All operator), whereas Relaxation Relabeling considers XML 
grammar repeatability and alternativeness constraints with restrictive declarations.  
 
2.3.2. Combination of Several Matchers 
 

The amount of user effort required to effectively perform the matching task can also be alleviated by 
the combination of several matchers [15], i.e., the execution of several matching techniques that 
capture the correspondences between schema elements from different perspectives. In other words, 
the schemas are assessed from different angles, via multiple matching criteria, the results being 
combined to obtain the best possible matches. In this context, existing approaches can be classified in 
two major groups: hybrid method and composite methods [51]. A hybrid approach is such as various 
matching criteria are used within a single algorithm. In general, these criteria (e.g., element name, data 
type, etc.) are fixed and used in a specific way. In contrast, a composite matching approach combines 
the results of several independently executed matching algorithms (which can be simple or hybrid).   
       

Hybrid approaches: Methods of this category usually provide better match candidates and better 
performance than the separate execution of multiple matchers [51]. Superior matching quality is 
normally achieved since hybrid approaches are developed in specific contexts and target specific 
features which could be overlooked by more generic composite methods. In addition, they usually 
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provide better performance by reducing the number of passes over the schemas. Instead of going over 
the schema elements multiple times to test each matching criterion, such as with composite 
approaches, hybrid methods allow multiple criteria to be evaluated simultaneously on each element 
before continuing with the next one. In fact, most methods in the literature are hybrid, e.g., those 
discussed in the previous sub-section [6, 25, 37, 41, 59-61, 63, 69], in that various matching criteria 
(e.g., the linguistic and structural aspects of XML grammars) are simultaneously assessed in a specific 
manner within a single algorithm. In contrast, few approaches follow the alternative composite 
matching logic, i.e., combining the results of several independently executed matching algorithms, 
called matchers, in order to be flexible in choosing the criteria to evaluate, and extensible in adding 
additional ones. 

 

Composite Approaches: To our knowledge, three composite matching approaches have been 
developed in the context of XML grammar matching: LSD [18], NNPLS [30], and Coma [15]. LSD 
[18] employs machine learning techniques to semi-automatically find mappings between two 
schemas. It requires a training phase and a mapping phase. For the training phase, the system asks the 
user to provide the mappings for a small set of data sources, and then uses these mappings to train its 
set of learners. Different types of learners can be integrated in the approach to detect different types of 
similarities (e.g., label syntactic matcher, semantic matcher, etc.). A special learner is introduced to 
take into account the structure of XML data: the XML learner. An approach similar to LSD is 
developed in [30]. It exploits supervised learning, via a neural network-based classifier, NNPLS 
(Neural Network-based Partial Least Squares), to synthesize the results of various lexical measures 
(targeting XML grammar node labels, i.e., n-gram, string edit distance, etc.) and structural similarity 
measures (e.g., edge matching, path matching [9], etc.) into an overall similarity between two XML 
grammars. Similarly to LSD, the neural network classifier has to be trained prior to conducting the 
comparison process. Since both methods in [18] and [30] are based on supervised learning, their main 
drawback is the training phase which could require substantial manual effort prior to launching the 
matching process. A simple platform for combining multiple matchers in a flexible way, entitled 
COMA, is provided in [15]. The authors in [15] propose different mathematical methods to combine 
matching scores (e.g., max, average, weighted average, etc.) rather than training and using a meta-
learner such as in [18], or a neural network classifier in [30]. This avoids considerable manual effort. 
COMA could be completely automatic or iterative with user feedback. Aggregation functions, similar 
to those utilized to combine matching scores from individual matchers (e.g., max, average, weighted 
average, etc.), are employed to obtain an overall similarity score between the two schemas being 
compared. COMA is extended in [16] to efficiently process large scale schemas, by decomposing the 
latter into several smaller fragments [52], and only matching the fragment pairs with high similarity.  

All three methods discussed above consider simplified XML grammar representations, 
disregarding cardinality and alternativeness constraints in the schemas being compared. 

 
2.3.3. Large Scale XML Grammar Comparison 
 

A few methods have been proposed to extend or adapt existing approaches in processing large scale 
schemas [2, 20, 47, 55]. These exploit indexing techniques (e.g., B-tree coupled with the vector space 
model) [20], sequence encoding methods (e.g., Prufer sequences) [2], node clustering or schema 
fragmentation (to limit the target node search space) [52, 55], so as to improve matching performance. 
Another strategy to improve grammar comparison efficiency in the context of XML grammar 
clustering, consists in providing a global similarity evaluation function comparing a single grammar 
to a set (cluster) of grammars [47]. This avoids the need to compute pair-wise similarities between 
two individual grammars, and hence saves a huge amount of computing effort in performing 
grammar. Nonetheless, recall that our main concern, in this study, lies within matching quality rather 
than performance. Hence, we report the discussion around techniques to improve XML grammar 
matching performance to a dedicated upcoming study. 
 
 



 

2.3.4. Discussion 
 

To sum up, most XML grammar comparison and matching approaches in the literature require various 
simplifications in the grammars being matched, eliminating certain element/attribute constraints 
and/or operators [37, 41, 60, 61], simplifying data-types [18, 30, 33], or restricting the expressiveness 
of element declarations [69]. This produces simplified schema representations upon which the 
matching processes are executed. In this context, XClust [33], QMatch [61], and Relaxation Labeling 
[69] seem more sophisticated than alternative matching approaches, as they induce the least 
simplifications to the grammars being compared.  

On the other hand, most methods in the literature are hybrid (e.g., [6, 37, 41, 61, 63]) in that a 
predefined number of matching criteria are simultaneously evaluated within a single algorithm. Few 
approaches follow the alternative composite matching logic (e.g., [15, 18, 30]), i.e., combining the 
results of several independently executed matching algorithms, thus providing more flexibility in 
performing the matching as is it possible to select, add or remove different matching algorithms 
following the match task at hand. Few methods have been recently proposed to extend and/or adapt 
existing approaches in processing large scale schemas (e.g. [2, 20, 55]). 

 
3.  Preliminaries 
 

3.1.  Overview 
 

Our main goal in this study is to develop an effective XML grammar matching method minimizing 
the amount of manual work needed to perform the match task. As mentioned previously, this requires: 

 Considering the various characteristics and constraints of the XML grammars being 
matched, in comparison with existing ‘grammar simplifying’ approaches. 

 Allowing a flexible and extensible combination of different matching criteria, adaptable to 
different application scenarios, in comparison with existing static hybrid methods. 

 Effectively considering the semi-structured nature of XML, as the most prominent and 
distinctive feature for an XML grammar, in comparison with usually heuristic hybrid 
approaches or generic composite methods. 

 

First, we devise a tree representation model for XML grammars that considers the hierarchical 
aspect and various constraints of XML elements/attributes, thus handling the expressive power of 
XML grammars. Second, as XML grammars are effectively represented as trees, we put forward an 
approach for XML grammar matching founded on the concept of tree edit distance. We make use of 
tree edit distance as an effective and efficient means for structural similarity evaluation and 
identifying the structural matches between two XML grammars. In addition, we exploit tree edit 
distance as an open framework for the integration of different match criteria in evaluating XML 
grammar similarity. Dedicated matchers are utilized to capture element semantic and syntactic 
similarities, as well as constraint and data-type correspondences. User constraints and user feedback 
are also considered in our method. 

In the following, we present some preliminary definitions and basic notions prior to describing 
our XML grammar tree representation model and matching framework.  
 
3.2.  Basic Definitions 

 

Definition 1 – Ordered Labeled Tree: It is a rooted connected acyclic graph T in which the 
nodes are ordered and labeled. We denote by T[i] the ith node of T in preorder traversal, T[i]. its label 

and T[i].d its depth. R(T)=T[0] designates the root node of tree T ● 
 

In the remainder of this paper, the term tree denotes ordered labeled tree 
 

Definition 2 - First Level Sub-tree: Given a tree T with root p of degree k, the first level sub-
trees, FL-SbTreeT = {T1, …, Tk} of tree T (corresponding to node p) are the sub-trees rooted at the 
children nodes of p: p1, …, pk ● 



 

Definition 3 - Edit Script: It is a sequence of edit operations ES = op1, op2, …, opk . When an 
edit script ES is applied to a tree T, the resulting tree T’ is obtained by applying each of the individual 
edit operations in ES to T, following their order of appearance in the script. By associating a cost, 
CostOp, to each edit operation in ES, the cost of ES can be computed as the sum of the costs of its 
component operations: CostES  = | |

i

ES

Opi=1
Cost  [5, 11] ● 

 

Definition 4 – Tree Edit Distance: The edit distance between two trees A and B is defined as the 
minimum cost of all edit scripts that transforms A to B: TED(A, B) = Min{CostES }. Thus, the problem 
of comparing two trees A and B, i.e. evaluating the structural similarity between A and B, is defined as 

the problem of computing tree edit distance [11, 70] (usually, 1
=

1 + ( , )
( )

TED A B
Sim A,B   ) ● 

 

Definition 5 - Edit Distance Mapping: It is a graphical representation of the minimum cost edit 
script, depicting which edit operations apply to which nodes in the two trees being compared. 
Formally, it is defined as a triple (M, T, T’) from tree T to tree T’ such as M  VT × VT’, where VT and 
VT’ designate the sets of nodes of trees T and T’ respectively [5, 70] (cf. example in Figure 14).          
A mapping element m  (M, T, T’) is represented in the form {xi }  {yj }, where {xi }  VT and         
{yj }  VT’, such as {xi } and {yj } underline single nodes and/or sets of nodes (sub-trees), following 
the edit operation at hand ● 
 

Definition 6 – Mapping Cardinality: It consists of two orthogonal types: local and global 
cardinality [17]. 

 Local (also known as element-level) mapping cardinality, underlines the number of nodes 
participating in a single mapping element. Formally, given a mapping (M, T, T’), and a 
mapping element m  (M, T, T’), such as m = {xi }  {yj } (cf. Definition 5), the local 
cardinality of m amounts to the number of nodes participating in m, that is: |{xi }| : |{yj }|. 
Local cardinality can be 1:1 (one-to-one), 1:n (one-to-many), n:1 (many-to-one), or n:n 
(many-to-many). 

 Global (also known as structure-level) mapping cardinality, underlines the number of 
mappings to which a given node participates. Formally, given a mapping (M, T, T’), and a 
node x  T such as x participates in a set of mapping elements {mr }(M, T, T’), then the 
global cardinality corresponding to node x, w.r.t. (M, T, T’), amounts to 1: |{mr}|. A node 
can participate in zero (no mapping), one, or several mapping elements, underlining a 
global cardinality of 1:1, 1:n, n:1, and/or n:n ● 

 

For instance, mapping element Name  Surname is of 1:1 local cardinality, whereas Name  
(FirstName, LastName) is of 1:2 (generally designated as 1:n) local cardinality. As for global 
cardinality, if the previous mappings are considered in the same matching result, then node Name will 
be participating in two mapping elements. Hence, its global mapping cardinality is 1:2 (i.e., 1:n). 
Otherwise, if considered separately, Name would be assigned global 1:1 cardinality in both cases. 

 
In the following, we describe the edit operations utilized in our approach (adapted from [11, 48]). 

 
Definition 7 - Insert Node: Let T be an (ordered labeled) tree with an internal node p, and let    

T1, …, Tm be the first level sub-trees corresponding to node p (i.e., sub-trees rooted at the children of 
node p, Definition 2). Given a node x not belonging to T, Ins(x, i, p, ) is a node insertion operation 
applied to T, inserting x as the ith child of p. In the transformed tree T’, node p will have                          
T1,…, Ti-1, x, Ti+1 ,…, Tm+1 as its first level sub-trees, with the label of inserted leaf node x ● 

 
Definition 8 – Delete Node: Let T be a tree with an internal node p, having a leaf node x as the ith 

child of p, Del(x, p) is a node deletion operation applied to T, yielding T’ where node p will have first 
level sub-trees T1, … ,  Ti-1, Ti+1, … , Tm ● 

 



 

Definition 9 – Update Node: Given a node x in tree T, and a label , Upd(x, ) is a node update 
operation applied to x resulting in T’ which is identical to T except that in T’, x bears  as its label. The 
update operation could be also formulated as follows: Upd(x, y) where y. denotes the new label to be 
assumed by x ● 

 

Definition 10 – Insert Tree: Let T be a tree, with an internal node p, and let T1, …, Tm be the first 
level sub-trees of node p. Given a tree A not belonging to T, InsTree(A, i, p) is a tree insertion 
operation applied to T, inserting A as the ith sub-tree of p. In the transformed tree T’, node p will have  
T1, …, Ti-1 , A, Ti +1, …, Tm+1 as its first level sub-trees ● 

 

Definition 11 – Delete Tree: Let T be a tree with an internal node p, having a tree A as the ith first 
level sub-tree of p, DelTree(A, p) is a tree deletion operation applied to T, yielding T’ where node p 
will have first level sub-trees T1,…, Ti-1, Ti+1, … , Tm ● 
 

In addition to the structural properties of XML documents, XML grammars define element and 
attribute labels, which generally bear semantic meaning. Hence, the need to integrate semantic 
similarity evaluation in our XML grammar matching framework becomes obvious. In the fields of 
Natural Language Processing (NLP) and Information Retrieval (IR), manually built knowledge bases, 
(e.g., WordNet [42], Roget’s thesaurus [68], ODP [38], …) provide references for understanding 
semantic relations between concepts, and evaluating semantic similarity.  
 

Definition 12 – Knowledge base: It is a semantic network made of a set of concepts representing 
groups of words/expressions (or URLs such as with ODP), and a set of links connecting the concepts, 
representing semantic relations. It provides a framework for organizing words (expressions) into a 
semantic space [38, 42] ● 

 

 
 

Figure 1. Extract of the WordNet1 taxonomy. 
 
Consequently, several methods have been proposed to determine the semantic similarity between 

concepts in a knowledge base, e.g. [35, 53, 54]. These can be classified as edge-based and node-based 
[54]. Methods of the former group generally estimate similarity as the shortest path (in edges, edge 
weights, or number of nodes) between the two concepts being compared. Nonetheless, with node-
based approaches, semantic similarity between concepts is estimated as the maximum amount of 
information content they share in common, and makes use of the statistical distribution of 
corresponding words/expressions in a given text corpus (e.g., the Brown Corpus of American English 
[24]). Please refer to [8] for a detailed review on semantic similarity evaluation methods. 

 
4.   XML Grammar Tree Representation 
 

With most existing XML grammar comparison approaches (cf. Section 2.3), grammars are represented 
as XML-like trees. Simplified graph structures are considered when recursive definitions come to play 
[33, 60], and are usually turned acyclic to obtain trees, which are naturally easier to process. As 
mentioned previously, most existing methods simplify grammars, disregarding element/attribute data-
types and/or constraints. Hence, we provide here a tree representation that i) accurately captures the 
structural properties of XML grammars, and ii) considers their most common characteristics. 

                                                 
1 WordNet is an online lexical reference system (taxonomy), developed by a group of researchers at Princeton University NJ USA, where 

nouns, verbs, adjectives and adverbs are organized into synonym sets, each representing a lexical concept [42]. 
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4.1.  XML Grammar Tree Model 
 

First, we define the notions of composite alternativeness constraint and alternativeness constraint 
vector which are central to preserving the structural levels of XML grammar elements/attributes 
following our tree representation model. 
 

Definition 13 - Composite alternativeness constraint: It is an alternativeness operator, e.g., 
And, Or, or All, to which we associate a cardinality constraint, e.g., ?, *, etc. (cf. Section 2.1), in order 
to underline the repeatability of groups of elements. Formally, it can be represented as a doublet     
cac = (sac, cc) where sac is a simple alternativeness constraint and cc the corresponding cardinality 
constraint. For the sake of generality, a simple alternativeness constraint can be represented as a 
doublet sac = (sac, null) ● 

 

For instance, XSD declaration <All MinOccurs=0><element name=‘a’><element name=‘b’> 
</All> corresponds to an (All, MinOcc=0) composite constraint associated with both elements a and 
b. Declaration (a, b, c)+ corresponds to an (And, +) composite constraint associated with a, b, and c. 
Likewise for the Or operator. 
 

Definition 14 - Alternativeness constraint vector: It is a vector ac


 of simple and/or composite 
alternativeness constraints, underlining the disposition of an XML grammar element w.r.t. its siblings 
and parent element in the grammar ● 

 

For instance, in DTD declaration ((a | b)?, c), vector And, (Or, ?) is associated with both 
elements a and b, while vector And is associated with element c. 

 

Note that indices are associated with alternativeness operators in the ac


 
vector to distinguish 

different operators occurring at the same encapsulation level. For instance, in DTD declaration ((a,b) | 
(c,d)), vector Or, And1 would be associated with nodes a and b whereas vector Or, And2 would be 
associated with c and d, underlining the fact that elements a/b and c/d are connected via different And 
operators. Likewise with declaration ((a|b|c) , (c|d|f)), vectors And, Or1 and And, Or2 would 
distinguish the Or operators connecting nodes a/b/c and d/e/f respectively. 

A basic XML grammar consists of element, attribute, and entity declarations. Yet, entities are 
variables used to define shortcuts to common text. Thus, they are disregarded in our XML grammar 
tree model. Consequently, our XML grammar tree representation is defined as follows. 
 

Definition 15 - XML Grammar Tree: Formally, we model an XML grammar as a rooted 
ordered labeled tree G = (NG, EG, LG, CCG,

 
GAC


, TG, gG) where: 

 NG is the set of nodes (i.e., vertices) in G, 
 EG  NG × NG is the set of edges (element/attribute containment relations), which reflect the 

hierarchical structure of the XML grammar tree, 
 LG is the set of labels corresponding to the nodes of G. LG = ElG U AG such as ElG and AG 

designate respectively the labels of the elements and attributes of G, 
 CCG is the set of cardinality constraints associated with the elements and attributes of G 

(‘?’, ‘*’, ‘+’, ‘MinOccurs’, ‘MaxOccurs’, ‘Required’, ‘Implied’ and null, cf. Section 2.1.1), 
 

GAC


 
is the set of alternativeness constraint vectors associated with the elements and 

attributes of G (central to preserving the structural levels of XML grammar nodes, Figure 5), 
 TG is the set of data-types, TG= ET U AT, including the basic XML element data-types       

ET = {‘#PCDATA’, ‘String’, ‘Decimal’, ‘Integer’, … , Composite, Recursive} and attribute 
data-types AT = {‘CDATA’, ‘ID’, ‘IDREF’, ‘IDREFS’, NMTOKEN’, …, Enumeration}, 

 gG is a function gG : NG  LG, CCG, 
GAC


, TG that associates a label  LG, a  cardinality 

constraint ccCCG, an alternativeness constraint vector ac


  
GAC


 and a data-type t  TG 

to each node nNG  ● 



 

Hence, following our tree representation, an XML grammar tree node is modeled as follows:  
 

Definition 16 - XML Grammar Tree Node: A node nNG of XML grammar tree G = (NG, EG, 
LG, CCG,

 
GAC


 , TG, gG) is represented by a quintuplet n = (, cc, ac


, t, Ord) where  LG, cc  CCG,    

ac


 


GAC


 and t  TG are respectively its label, cardinality constraint, alternativeness constraint vector 

and data-type. The Ord component underlines the node’s order w.r.t. its siblings (detailed in the 
following). The constituents of node v can be referred to as n., n.cc, n. ac


, n.t, and n.Ord (Figure 2) ● 

 

 
Figure 2. Graphical representation of XML grammar tree node n. 

 
4.2.  Tree Ordering 
 

In XML documents, attributes are usually treated as unordered nodes. In other words, the order, left-
to-right, of attribute nodes corresponding to a given element is not relevant [66] (e.g., <Paper 
title=”…” Genre=”…”> is equivalent to <Paper Genre=”…” Title=”…”>). Consequently, the 
same is true for attributes in XML grammars. In addition, XML grammar element nodes connected 
via the Or/All operators are unordered [49] (e.g., DTD declaration Paper (Author | Publisher) is 
equivalent to Paper (Publisher | Author)). Thus, the XML grammar tree would encompass ordered 
parts, i.e., elements connected via the And operator, and unordered ones, i.e., elements connected via 
the Or/All operators as well as attribute nodes.  

However, algorithms for computing the edit distance between unordered trees are generally NP-
complete whereas those for comparing ordered trees are of polynomial complexity [5, 71]. Thus, 
transforming the XML grammar tree into a fully ordered tree would help amend the time efficiency of 
the edit distance based match operation. This can be done by representing attribute nodes as children 
of their encompassing element nodes, appearing before all sub-element node siblings, and 
consequently sorting all node siblings, left-to-right, by node label. An ordering score Ord will be 
associated with each grammar tree node, underlining the reordering magnitude of the node. The Ord 
score will be exploited in the matching framework so as to increase/decrease the plausibility of a 
given match: nodes closer to their initial positions, i.e., with lesser Ord scores, would constitute better 
match candidates. For n ND: 

n.Ord = 
( ( ), ( ))

  
(  )

NbHops InitPosition n FinalPosition n
[-1,1]

Number of  siblings under parent of  n  - 1
  (1)

 

Note that the ordering score Ord is not modified when sorting attribute nodes and/or element 
nodes connected via the Or and All operators since they are initially unordered.  

The pseudo-code of our node ordering algorithm is provided in Figure 3. It traverses the first-level 
sub-trees FL-SbTreeT = {T1, …, Tk} of a given tree T of root p and degree k, recursively, and orders  
corresponding root nodes following node labels p1., …, pk.. This can be achieved in average linear 
time using efficient sorting algorithms such as Quicksort, Mergesort, Bucketsort [31]. It 
simultaneously computes and associates, to each sub-tree root node pi, its corresponding Ord score. 

 

 
 

Algorithm SiblingOrdering 
 

Input: T         // XML grammar tree 
Output: T      // XML grammar tree T with reordered node siblings 
 

Begin                                                                                                                                  
                                                                                                                                            

 

MergeSort(FL-SbTreeT)      // Sorts first level sub-trees of T following their root node labels           1 
M = Degree(A)                      //The number of first level sub-trees in T, i.e., |FL-SbTT|                        2 
For (i=1 ; i ≤ M ; i++)                                                                                                                 3 
{                                                                                                                                                 4 
        SiblingOrdering(Ti)        // Recursive formulation                                                                         5 
}                                                                                                                                                  6  

 

Return T                                                                                                                                           7 
 

End  
 

Figure 3. Pseudo-code of our sibling ordering algorithm. 



 

4.3.  Sample XML Grammars and Corresponding Tree Representations 
 

Consider, for instance, the XML grammars in Figure 4. Corresponding tree representations, following 
our tree model, are depicted in Figure 5 (note that elements of the same structural level are 
represented in a stair-like manner to fit in page margins). 
 

<!ELEMENT Paper ((Publisher | Author+), PaperLength?,  
                                   References, url*)> 
 
<!ATTLIST Paper Title CDATA #IMPLIED> 
<!ATTLIST Paper  Genre CDATA> 
 
<!ELEMENT Publisher (#PCDATA)> 
<!ELEMENT Author (FirstName, MiddleName?, LastName)> 
<!ELEMENT Length (#PCDATA)> 
<!ELEMENT References (Paper+)> 
<!ELEMENT url (Homepage, Download+)?> 
<!ELEMENT Homepage (#PCDATA)> 
<!ELEMENT Download (#PCDATA)> 
 
<!ELEMENT FisrtName (#PCDATA)> 
<!ELEMENT MiddleName (#PCDATA)> 
<!ELEMENT LastName (#PCDATA)> 

<element name= “Publication”> 
       <sequence> 
             <element name= “Title” type="String"/> 
             <element name= “Year” type= “Date”/> 
             <choice> 
                       <element name= “Author” MaxOccurs= “unbounded”> 
                               <sequence> 
                                       <element name= “First” type= “String”> 
                                       <element name= “Last” type= “String”> 
                               </sequence> 
                      </element> 
                      <element name= “Editor” MaxOccurs= “unbounded”> 
                                  <all> 
                                      <element name= “Name” type= “String”> 
                                      <element name= “Country” type= “String”> 
                                  </all> 
                       </element> 
            </choice> 
             <element name= “Publisher” type= “String” MinOccurs= “0” /> 
             <element name= “Length” type= “Decimal”/>  
             <element name= “References”> 
                        <element ref= “Publication” MaxOccurs= “unbounded”> 
             </element> 
             <element name=“Link” type=“String” MinOccurs= “0”/> 
     </sequence> 
</element> 

a. Paper.dtd b. Publication.xsd 
 

 

Figure 4.  Sample XML grammars. 
 

 

a. Tree representation P of grammar Paper.dtd in Figure 4. 
 

 

b. Tree representation Q of grammar Publication.xsd in Figure 4. 
 

 

Figure 5. XML grammar tree representations. 
 
In the tree representation of grammar Paper.dtd, nodes of labels ‘Title’ and ‘Genre’ are attributes. 

In other words, the sorting process does not affect their ordering scores (which maintain zero values), 
nor the scores of their siblings. Similarly, nodes of labels ‘Publisher’ and ‘Author’ underline elements 
connected via the Or operator. In other words, they are unordered w.r.t. each other and the positioning 
of node ‘Author’ before ‘Publisher’ does not affect their ordering scores. The score of node ‘Author’ 

remains equal to zero whereas that of ‘Publisher’ is equal to 1
6

= 0.1667, since ‘Publisher’ changed its 

position w.r.t. node ‘PaperLength’ with which it is associated via an And operator. 
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4.4.  Special Case of Recursive Elements 
 

To our knowledge, only two existing XML grammar matching approaches consider recursive element 
declarations, i.e., [33, 60]. In both methods, the authors represent (recursive) XML grammars as 
acyclic graphs (i.e., trees) by creating for each recursive element node n a new leaf node n’ to which 
are directed all edges entering n. Consequently, the similarity between recursive elements 
simultaneously i) contributes to the similarity of their reference nodes, ii) and is determined based on 
the similarity of the latter, if the reference nodes are matched. 

We follow the same strategy in our approach. For each recursive grammar node n, we create a 
new leaf node n’, such as n’ has the same components as n, to the exception of its data-type, which is 
set to Recursive. For instance, each of the XML grammars Paper.dtd and Publication.xsd in Figure 4 
encompasses a recursive element declaration, referencing root elements Paper and Publication 
respectively. Hence, dedicated leaf nodes are introduced in the corresponding tree representations (cf. 
Figure 5). Note that the similarity between recursive leaf nodes contributes to the similarity of their 
reference nodes, and is determined based on the latter if they match. The similarity evaluation issue is 
detailed in the following section. 

Since XML grammars are represented as special ordered labeled trees (cf. Definition 15), the 
problem of matching two grammars comes down to matching the corresponding trees. 

 
5.   XML Grammar Matching Framework 
 

Tree edit distance methods have been widely utilized to compare XML documents, represented as 
Ordered Labeled Trees [66], and have been proven optimal w.r.t. less accurate structural comparison 
methods [9] (such as weighted tag [48] or Fourier Transform [22]). In addition, an advantage of using 
the edit distance is that along the similarity value, a mapping between the nodes in the compared trees 
is provided in terms of the edit script (cf. Definition 3 and Definition 5). This proves to be crucial in 
the context of schema matching, as it would basically constitute the output of the match operation 
(recall that the schema matching operator can be defined as a function that takes two schemas, S1 and 
S2, as input and returns a mapping between the schemas as output [51]). To our knowledge, this study 
underlines the first attempt to exploit tree edit distance in XML grammar matching. In addition, the 
edit distance mapping could be utilized as an explanation component, which could help the user adapt 
weights for the distance measure in order to reflect her individual notion of matching.  
 

 
 

Figure 6. Simplified activity diagram describing our XML grammar matching framework. 
 

 
Our XML grammar matching and comparison approach (Figure 6) consists of four components: 
 

i. The XML Grammar Tree Comparison component for computing the distance (and 
consequently the similarity) between two XML grammar trees,  

ii. The extensible Matchers component, encompassing several independent matching 
algorithms, exploited via the Edit Distance component to capture the similarities between 
XML grammar nodes based on their characteristics (label, data-type, cardinality constraints, 
alternativeness constraints, and node ordering, cf. Definition 16), 
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iii. The Mapping Identification component, interacting with the Tree Edit Distance component 
to identify the edit script (ES_Extraction), and consequently the edit distance mappings, 
between the compared XML grammar trees,  

iv. The UserFeed component to consider user predefined mappings and user feedback in 
producing matching results. 

 

In the remainder, sub-sections 5.1 to 5.4 respectively develop each of the components above. 
 
5.1.  XML Grammar Tree Comparison Component 
 

Several algorithms have been developed to compute a distance, as the sum of a sequence of elemental 
edit operations that can transform one tree structure into another (cf. [5] for a detailed survey on Tree 
Edit Distance). In the context of XML, the most recent and efficient proposals, e.g., [48, 62], have 
stressed on the importance of considering XML sub-tree similarities in computing edit distance, as a 
crucial requirement to obtaining more accurate results. Here, we follow a similar strategy in 
comparing grammars. We first develop a method, SGS, to compute the Similarity between XML 
Grammar Sub-trees, based on the vector space model in information retrieval [40]. XML grammar 
sub-tree similarities are consequently exploited as tree edit operations’ costs in a dynamic 
programming Tree Edit Distance algorithm (TEDXGram, cf. system architecture in Figure 6).  

Note that our grammar comparison method can be viewed as an extension of [62], one of the most 
recent tree edit distance based methods for comparing XML document structures. 
 
5.1.1. Similarity between XML Grammar Sub-trees (SGS) 

 

When evaluating XML grammar sub-tree similarity, one should consider all grammar node 
characteristics (element names, depth and relative order, cardinality constraints, alternativeness 
constraint vectors, data-types, and ordering scores) so as to produce accurate results. To do so, we 
exploit the vector space model in information retrieval [40]. When comparing two grammar sub-trees 
SbTi and SbTj, each is represented as a vector, iV


 and jV


 respectively, with weights underlining the 

similarities between their nodes.  
 

Definition 17 – XML Grammar Sub-tree Vector Space: Given two sub-trees SbTi and SbTj, we 
define corresponding sub-tree vectors iV


 and jV



 

in a space which dimensions represent, each, a single 

node nr  SbTi   SbTj, such as 1 < r < n where n is the number of distinct nodes in both SbTi and 
SbTj, grammar nodes being distinguished by their components (i.e., label, cardinality and 
alternativeness constraints, data-type and ordering score). The coordinate of a given sub-tree vector 

iV


 on dimension nr is noted 
 ( )

i
r

V
w n , and stands for the weight of nr in sub-tree SbTi  

When node nr SbTi, vector coordinate 
 ( )

i
r

V
w n

 
underlines corresponding sub-tree node occurrences 

(which comes down to computing TF – Term Frequency – in classic vector space model [40]) ● 
 

Definition 18 – XML Grammar Node Weight: The weight of a node nr in vector iV


, 

representing a sub-tree SbTi, is composed of two factors: a node/vector similarity Sim(nr, iV


, Aux) 

factor and a depth D-factor(nr) factor, such as 
 ( )

i
r

V
w n  = Sim(nr, iV


, Aux) × D-factor(nr)   [0, 1]: 

 Sim(nr, iV


, Aux) quantifies the similarity between node nr and sub-tree vector iV


. It is 

computed as the maximum similarity between nr and all nodes of SbTi considering the 
various grammar node characteristics (cf. Definition 16). Formally, 

  

( )= ( ( , , ))
i

r i GNode r
n V

Sim n ,  V , Aux Max Sim n n Aux





 
 [0, 1]. 



 

 D-factor(nr) considers the hierarchical depth of node nr when computing its weight in sub-
tree vector iV


. Generally, information placed near the root node of an XML document 

and/or grammar is more important than information further down in the hierarchy [4, 72]. 
Thus, node labels higher in the XML document and/or grammar tree hierarchy should have 
a greater influence than their lower counterparts. This could be mathematically concretized 
using Formula (2), adapted from [72]: 

   

1
 - ( )=

1 + r
r

D factor n
n .d

    [0, 1] where n.d designates the depth of node nr ● (2)

 

Definition 19 - Similarity between XML Grammar Nodes: It quantities the similarity between 
two grammar nodes, considering their various characteristics: 
 

if   ((n.t = Recursive    m.t = Recursive)   ˅   (n.t  Recursive     m. t  Recursive)) 

             SimGNode(n, m, Aux) =   fAgg ( SimLabel(n., m., SN ),  

                                                             SimCConstraint(n.cc, m.cc, CCT),    
                                                              SimAConstraint (n. ac


, m. ac


, CCT),  

                                                              SimData-Type(n.t, m.t, DTCT),  
                                                              SimOrdScore(n.Ord, m.Ord) ) 
Otherwise     

                  SimGNode(n, m, Aux) = 0 

(3)

 

where f is an aggregation function for combining the similarity values between XML grammar node 
characteristics, Aux={SN, CCT, DTCT} designates the auxiliary data sources required by the matchers 
to compute similarity: SN (weighted semantic network), CCT (constraint compatibility table) and 
DTCT (data-type compatibility table, cf. Section 5.2)  ● 
 

Formula (3) considers the special case of recursive leaf nodes. Similarity is null whenever a 
recursive leaf node is compared to a non-recursive leaf node, regardless of the remaining node 
characteristics (i.e., label, cardinality/alternativeness constraints and ordering). It thus allows a 
recursive leaf node to be compared (and hence possibly matched) to only another recursive leaf node. 
This is in accordance with both studies in [33, 60], which explicitly consider the case of leaf node 
declarations in XML grammars.  

As for the aggregation function, various mathematical formulations for combining matcher results 
have been investigated in [15, 50], among which the maximum, minimum, average and weighted sum 
functions. Here, we exploit the latter as it provides flexibility in performing the match operation, 
adapting the process w.r.t. the user’s perception of XML grammar element similarity:  
 

                                      fAgg (SimLabel(n., m., SN), ..., SimOrdScore(n.Ord, m.Ord))  

                                              =       wLabel  SimLabel(n., m., SN ) + 

                                                    wCConstraint  SimCConstraint(n.cc, m.cc, CCT) + 
                                                     wAConstraint  SimAConstraint (n. ac


, m. ac


, CCT) + 

                                                  wData-Type  SimData-Type(n.t, m.t, DTCT)  + 
                                                    wOrdScore  SimOrdScore(n.Ord, m.Ord) 

(4)

 

where wLabel + wCConstraint + wAConstraint + wData-Type wOrdScore = 1 and (wLabel , wConstraint , wAConstraint, wData-

Type, wOrdScore) ≥ 0, having SimLabel,  SimCConstraints, SimAConstraints, SimData-Types and SimOrdScore  the similarity 
scores between corresponding node labels, cardinality constraints, alternative constraint vectors, data-
types and ordering scores. Similarity scores are computed via corresponding matchers (Section 5.2).  

Following Formula (4), different weights are assigned to different node component similarities, 
reflecting the impact of each of the grammar element characteristics in identifying the mappings. The 
fine-tuning of similarity weights comes down to an optimization problem so as to maximize the 
overall similarity aggregation function in Formula (4). This can be solved using a number of 



 

techniques that exploit machine learning, such as Neural Networks [39], bootstrapping [21], and non-
linear combination functions [1], in order to identify the best weights for a given problem class [50]. 
The main idea with such techniques is to assign a higher (lower) weight with higher (lower) similarity 
values, acting like contrast filters in image processing by increasing the contrast on input matrixes. 
Providing such a capability, in addition to manual tuning, would enable the user to parameterize and 
adapt the matching process following the application scenario and XML grammars at hand. We do not 
further address the fine-tuning of similarity weights here since it is out of the scope of this paper (and 
will be addressed in a subsequent empirical study). 

Having transformed XML grammar sub-trees into weighted vectors, the similarity between two 
sub-trees is evaluated using a measure of similarity between vectors such as the inner product, the 
cosine measure, the Jaccard measure, etc. Here, we adopt the cosine measure (Formula (5)) widely 
exploited in information retrieval [56]. 
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Algorithm SGS         // Similarity between XML Grammar Sub-trees
 

Input: SbTi, SbTj       // XML grammar subtrees 

           Aux = { SN , CCT, DTCT}   // Auxiliary information required by the different matchers 

                                                            // including the weighted semantic network SN ,  
                                                              // the constraint compatibility table CCT, 
                                                            // and the data-type compatibility table DTCT. 
 

Output: SGS(SbTi, SbTj)               // Similarity between SbTi and SbTj 
 

Begin                                                                                                               
 

VS = Generate_Vector_Space(SbTi, SbTj)                                                                                    1 

i


V = Generate_Occurrence_Vector(SbTi, VS)     // Node occurrence weights: 0/non null,                    2 

j


V = Generate_Occurrence_Vector(SbTj, VS)     // taking into account node depths                             3 

 

For each node nr in 
i


V              // Computing weights for vector 

iV


                                                                   4  

{                                                                                                                                                      5 
If (
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V
nw  == 0)                                                                                                                      6  

For each node ns in SbTi                                                                                                                   7 
 {                                                                                                                                              8 
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V ) = Sim(nr, ns, Aux) × D-factor(nr)                       // Node weight                      9 
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V ) }         // Max weight                          10 
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jV
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                                                                   13 

{                                                                                                                                                    14 
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nw  == 0)                                                                                                                      15 

For each node nr in SbTj                                                                                                  16 
{                                                                                                                                           17 
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
V ) = Sim(ns, nr, Aux) × D-factor(ns)                      // Node weight                          18 
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V ) }        // Max weight                             19 

}                                                                                                                                           20 
}                                                                                                                                                      21 
 

Return  Cos(
i


V ,

j


V )             // SGS (SbTi , SbTj , Aux) = Cos(

iV


, 
jV


), cf. Formula (5)                          22 
 

End     
 

Figure 7. Algorithm SGS for computing the similarity between two XML grammar sub-trees. 

 



 

Algorithm SGS for computing the similarity between grammar sub-trees is developed in     
Figure 7. It consists in building the vector space corresponding to the grammar sub-trees being 
compared, and computing the node weights and sub-tree vector similarity as described above. The 
algorithm’s input parameters are the sub-trees SbTi and SbTj to be compared, as well as the various 
kinds of auxiliary information Aux required by the different matchers to compute node similarity. It 
outputs the sub-tree similarity value SGS(SbTi, SbTj, Aux).  
 

Computation Example: Consider the simple grammar trees in Figure 8 (truncated from those in 
Figure 5, to simplify computations). When comparing sub-trees D1 and T1 following SGS, the 
corresponding vector space would consist of 6 dimensions, related to each distinct node in both sub-
trees: n1=(‘Author’, +, And, Or, Composite, 0), n2= (‘FirstName’,  , And, #PCDATA, 0), n3= 
(‘LastName’,  , And, #PCDATA, 0.5), n4= (‘MiddleName’, ? , And, #PCDATA, 0.5), n5= (‘First’,  , 
And, #PCDATA, 0), n6 = (‘Last’,  , And, #PCDATA, 0). Note that both sub-tree root nodes are 
identical, i.e., they bear identical labels, constraints (‘+’ ≡ ‘MaxOccurs= ’)1, data-types and ordering 
scores. Hence, they are not distinct and would be represented in one dimension corresponding to n1. 

In this example, and for the sake of simplicity, we only consider node labels in computing 
similarity (i.e., wLabel = 1, whereas remaining weights are set to zero) and consider a simple syntactic 

string comparison metric in evaluating string similarity:

 

1 2

1 2

S S
S S



, which belongs to the N-Gram string 

matching family (1-Gram matcher, identifying the number of characters in common between two 
strings w.r.t. the total number of characters, cf. Section 5.2.1). Hence, in the current example, no 
auxiliary information is needed (i.e., Aux=Ø, the Aux input parameter being omitted for simplicity). 

 

 
 

 

Figure 8. Sample XML grammar trees truncated from those in Figure 5. 

 
 n1 n2 n3 n4 n5 n6   n1 n2 n3 n4 n5 n6 

VD1 1 1 1 1 0 0  VD1 1 1 1 1 0.5556 0.5714 

VT1 1 0 0 0 1 1  VT1 1 0.5556 0.5714 0.2222 1 1 
      

                 a. Simple node occurrence vectors.                                       b. Node vector similarity factor values. 
 

 n1 n2 n3 n4 n5 n6 
VD1 0.5 0.3333 0.3333 0.3333 0.1852 0.1905 

VT1 0.5 0.1852 0.1905 0.0741 0.3333 0.3333 
 

c. Final weights, i.e., Sim ×D-factor. 
 

Figure 9. Sub-tree vectors obtained when comparing sub-trees D1 and T1. 
  

For instance, Sim(n5, D1V


) = 0.5556 designates the maximum similarity between node n5 and all 

nodes of sub-tree vector D1V


. It comes down to the similarity between nodes n5 (n5. = ‘FirstName’) 

and n2 (n5. = ‘First’), sharing similar characteristics (recall that we only consider label syntactic 
similarity via the N-Gram matcher here). Final vector weights are obtained by multiplying both 
                                                 
1 Note that the ‘+’ DTD constraint is equivalent to MinOccurs=1 Λ MaxOccurs=. Nonetheless, MinOccurs = 1 is a default 
XSD constraint, which is why it is usually omitted.  
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similarity and depth factors Sim × D-factor as shown in Figure 9.c (cf. Definition 18). As a result, the 
similarity between grammar sub-trees D1 and T1 is computed: SGS(D1, T1) = Cos( D1V


, T1V


) = 0.8770. 

When comparing D2 with either T1 or T2, the similarity between the recursive leaf node Paper and 
all nodes in T1 and T2 is null, since neither sub-tree encompasses recursive elements. Likewise for the 
recursive leaf node of label Publication in sub-tree T3, when comparing T3 with D1. In our current 
example, the latter recursive nodes can only be compared to each other, i.e., when evaluating the 
similarity between sub-trees D2 and T3. When comparing D2 and T3, the vector space consists of 3 
dimensions: n1=(‘References’, , And, Or, Composite, 0), n2=(‘Paper’, +, And, Recursive, 0), and 
n2=(‘Publication’, +, And, Recursive, 0). Vector weights are shown in Figure 10, with Sim(n3, D2V


) 

= Sim(n2, T3V


) = Sim(n2, n3) = 2
12

= 0.1667 (applying the 1-Gram matcher to compare recursive node 

labels). Hence, SGS(D2, T3) = 0.7881. 
 

n1 n2 n3   n1 n2 n3   n1 n2 n3 
VD2 1 1 0  VD2 1 1 0.1667  VD2 0.5 0.3333 0.0567 
VT3 1 0 1  VT3 1 0.1667 1  VT3 0.5 0.0567 0.3333 

      

         a. Node occurrences.              b. Node vector similarity factor values.             c. Final weights, i.e., Sim ×D-factor. 
 

Figure 10. Sub-tree vectors obtained when comparing sub-trees D2 and T3. 
 
5.1.2. Tree Edit Operations Costs and Tree Edit Distance (TEDXGram) 
 

The tree edit distance algorithm TEDXGram, utilized in our study, is an adaptation of Nierman and 
Jagadish’s main edit distance process [48]. It exploits SGS to identify the similarities between each 
pair of sub-trees (SbTi and SbTj) in the two trees T1 and T2 being compared, assigning tree insert/delete 
operation costs accordingly. Tree operations costs will hence vary as follows [62]: 
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x SGSMax
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Given two XML grammar trees T1 and T2 being compared, the maximum tree edit operation cost 
for a given sub-tree SbTi  T1, CostDelTree/InsTree(SbTi), is equal to the cost of deleting/inserting each 

node of SbTi, Del/Ins
All  nodes  of  SbTi

 Cost ( )
x

x , underlining a minimal sub-tree similarity between SbTi and all sub-

trees in T2, (SGS(SbTi, SbTj, Aux)=0 for all SbTj  T2). Consequently, the operation cost decreases 
w.r.t. the similarity between SbTi and its counterparts SbTj  T2. Details concerning tree edit 
operations costs and their mathematical properties, are provided in [62]. 

In addition to tree insertion/deletion operations costs which vary w.r.t. XML grammar sub-tree 
similarities (cf. SGS developed in the previous section), the TEDXGram algorithm (Figure 11) considers 
XML grammar node similarities in computing update operations costs (cf. Figure 11, line 5). Using 
the update operation, TEDXGram compares the roots of sub-trees considered in the recursive process (at 
startup, these would correspond to the grammar tree roots). With update operations applied to classic 
ordered labeled trees (e.g., XML document OLTs), element labels are the only information to be 
assessed. Hence, the cost of the update operation usually varies w.r.t. label equality/difference such as 
a minimum operation cost is assigned when the compared labels are identical (i.e., CostUpd(a, b) = 0 
when a. = b.), as opposed to a maximum unit cost otherwise (i.e., CostUpd(a, b) = 1 when a. ≠ b.). 
Yet, when XML grammar trees come to play, grammar element constraints and data-types have to be 
considered. Thus, we redefine the update operation, in the context of XML grammar trees, as follows: 



 

Definition 20 - Update XML Grammar Node: Given a node n in XML grammar tree T, a label 
, a cardinality constraint c, an alternativeness constraint vector ac


, a data-type t and an ordering 

score Ord, Upd(n, , cc, ac


, t, Ord) is a node update operation applied to n resulting in T’ which is 

identical to T except that in T’, n bears  as its label, cc as its cardinality constraint, ac


 

as its 

alternativeness constraint vector, t as its data-type and Ord as its ordering score. The update operation 
could also be formulated as follows: Upd(n, m) where m., m.cc,, m.t, m. ac


, m.Ord denote 

respectively the new label, cardinality constraint, alternativeness constraint vector, data-type and 
ordering score ●  
 

Hence, the cost of the update operation varies as follows: 
 

Upd

Upd

GNode
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Following Formula (8), the more initial and replacing XML grammar nodes are similar, the lesser 
will be the update operation cost, which will transitively yield a lesser minimum cost edit script 
(higher similarity value). When nodes are identical (having identical labels, constraints, data-types 
and ordering scores), similarity is maximal, and thus the cost of the update operation is zero, 
indicating that there are no changes to be made. The operation is assigned an infinite cost so as to 
guaranty that recursive leaf nodes can only be replaced (and hence matched) with other recursive 
nodes. In other words, the update operation cannot be executed on a pair of nodes such as only one of 
them is recursive, the latter being deemed incomparable [33, 60]. 

 
Computation Example: Consider, for instance, the grammar trees in Figure 8. Similarly to the 

example in the previous section, for the sake of simplicity, we only consider the node label criterion in 
computing similarity (i.e., wLabel = 1, whereas remaining weights are set to zero) and use the same 
syntactic string comparison metric utilized previously:

 
1 2

1 2

S S
S S



, (1-Gram matcher, which does not 

require any auxiliary input, i.e., Aux=Ø). In order to compare trees D and T, we start by computing 
tree edit operations costs (costs of leaf node sub-trees are omitted here for the sake of simplicity): 

CostDelTree(D1) =  
Del

1All  nodes  of D

1 1
4 2.1311

1 1+0.8770
 Cost ( ) =  = 

 + ( , )
 

x 1 1

x
SGS D T

          
 

CostDelTree(D2) =  Del

2All  nodes  of D ,

1 1
2 1.1185

1 1+0.7881
 Cost ( ) =  = 

 + ( )
 

x 2 3

x
SGS D T

   = CostInsTree(T3), related SGS 

computations are detailed in the computation example developed in previous section. 
Likewise, CostInsTree(T1) = 1.5983 and CostInsTree(T2) = 1.7574.

 
Thus, the TEDXGram algorithm yields 

TEDXGram(D, T) = 3.4189, having: CostUpd(R(D), R(T)) = 1 – SimGNode(R(D), R(T)) =1 – 2
12

 = 0.8333. 

 

Table 1. Computing edit distance for XML trees D and T. 
 

                                                                                b. Second recurrence matrix,  
                                                                                                transforming D1 to T1.                 c. Last recurrence matrix, 

   a. First recurrence matrix.   R(T1) T[2] T[3]        transforming D2 to T3. 
 R(T) T1 T2 T3  R(D1) 0 0.5408 1.0780  R(T3) T[8] 

R(D) 0.8333 2.4316 4.1889 5.3074  D[2] 0.5408 0.1481 0.6853 R(D2) 0 0.8571 
D1 2.9644 1.6615 3.4189 4.5374  D[3] 1.0780 0.6853 0.2910 D[6] 0.8571 0.2778 
D2 4.0829 2.78 4.5374 3.6967  D[4] 1.6152 1.2225 0.8282    

 
Computational details for the first recurrence matrix, i.e., Table 1.a: 



 

 Dist[0] = 0.8333, cost of updating R(D) to R(T), 
 Dist[1][1] =Dist[0]+TEDXGram(D1, T1) = 0.8333+0.8282, cost of transforming D1 to T1, 
 Dist[1][2] = Dist[1][1] + CostInsTree( T2) = 1.6615 +1.7574, cost of inserting T2 into D, 
 Dist[2][3] = Dist[1][2] + TEDXGram(D2, T3) = 3.4189 + 0.2778, where TEDXGram(D2, T3) comes 

down to CostUpd(D[6], T[8]).   
 

Likewise for Table 1.b and Table 1.c. Note that nodes D[6] and T[8] in Table 1.c (of labels Paper and 
Publication respectively) are both recursive (referencing root nodes R(D) and R(T) respectively, cf. 
Figure 8) which is why they are comparable. Thus, the similarity between XML grammar trees D and 

T, w.r.t. the 1-Gram node label similarity criterion, is 
 

1
=

1 + ( , )
(  )XGram

XGram
TED D T

Sim D, T  = 0.7150. 

 
Algorithm ES_Extraction() 
 
Input: XML grammar trees A and B, {Dist[][]} the set of distance 
           matrixes computed by TEDXGram among which the  
           starting matrix Dist[][]A,B 

 
Output: Edit script ES transforming A to B 
 
Begin                                                                                            1
 

i = Degree(A)                // |FL-SbTreeA|                                        2  
j = Degree(B)                  // |FL-SbTreeB|                                          3

 

While (i>0 and j>0)                                                                  4
{                                                                                              5

If (Dist[i][j]A,B = Dist[i-1][j]A,B + CostDelTree(Ai)                        6
{                                                                                          7

ES = ES + DelTree(Ai)                                                   8
i = i-1                                                                                 9

}                                                                                          10
Else if (Dist[i][j]A,B=Dist[i][j-1]A,B + CostInsTree(Bj))                   11
{                                                                                           12

ES = ES + InsTree(Bj)                                                  13
j = j-1                                                                               14

}                                                                                         15
Else                                                                                    16
{                                                                                           17

If (Ai  Bj)         //Recursive formulation                              18
{                                                                                   19

ES_Extraction_Core(Ai, Bj, Dist[][]Ai,Bj )                  20
}                                                                                    21
i=i-1                                                                               22
j=j-1                                                                                   23

}                                                                                           24
 

While (i>0)       // identifying remaining deletions                   25
{                                                                                           26

ES = ES + DelTree(Ai)                                                   27
i = i-1                                                                              28

}                                                                                           29  
    

While (j>0)       // identifying remaining insertions                     30
{                                                                                             31

ES = ES + InsTree(Bj)                                                    32
j = j-1                                                                               33

}                                                                                             34  
 

If (i = 0 and j = 0 and R(Ai)  R(Bj))                                   35  
{                                                                                            36

ES = ES + Upd(R(Ai), R(Bj))                                          37
}                                                                                         38

                                                                                                                                        

Reorder(ES)       // Reversing edit operations’ order                          39
Return ES          // Edit script transforming tree A to B                        40

 

End 

Algorithm TEDXGram() 
 
Input: XML grammar trees A and B, operations costs  
           CostDelTree/CostInsTree for all sub-trees  

           in A and B, Aux = { SN , CCT, DCT} 
Output: Edit distance between A and B 
 

Begin                                                                              1
 

M = Degree(A)             // |FL-SbTreeA|                                  2  
N = Degree(B)               // |FL-SbTreeB|                                   3

 
Dist [][] = new [0...M][0…N]                                            4
Dist[0][0] = CostUpd(R(A), R(B), Aux)                               5 

 
For (i = 1 ; i ≤ M ; i++)                                                     6
{ Dist[i][0] = Dist[i-1][0] + CostDelTree(Ai) }                        7  

 
For (j = 1 ; j ≤ N ; j++)                                                     8
{ Dist[0][j] = Dist[0][j-1] + CostInsTree(Bj) }                         9  

 
For (i = 1 ; i ≤ M ; i++)                                                       10
{                                                                                      11

For (j = 1 ; j ≤ N ; j++)                                                  12
 {                                                                                  13  

Dist[i][j] = min{                                                            14  
Dist[i-1][j-1] + EditDistance(Ai, Bj),                     15
Dist[i-1][j] + CostDelTree(Ai),                                 16
Dist[i][j-1] + CostInsTree(Bj)    }                             17

}                                                                                   18  
}                                                                                       19
                                                                                                                                                

Return Dist[M][N]                                                            20
 

End                    
 

Figure 11. Tree edit distance algorithm. 
 

Algorithm UserFeed() 
 

Input: Grammar tree A, user matches (preM, A, B) 
Output: Transformed grammar tree A’ 
 

Begin                                                                              1
 

A’ = A                                                                                    2
M = Degree(A’)           // |FL-SbTreeA|                                     3

                            

For (i = 1 ; i ≤ M ; i++)                                                     4
{                                                                                   5

If(R(Ai)  (preM, A, B))                                           6
{ A’ = A’ - Ai’ }                                                         7
Else                                                                       8
{ Ai’ = UserFeed(Ai , (preM, A, B)) }                          9  

}                                                                                  10
 

End  
 

Figure 12. Edit script extraction algorithm. 
 

 

Figure 13. User feed transformation algorithm. 
 



 

To sum up, the TEDXGram algorithm goes through the sub-trees of each of the grammar trees being 
compared. It exploits sub-tree insertion/deletion costs (via SGS) and update operations costs which 
reflect the similarities between each sub-tree in the source/destination trees being compared, in order 
to compute the overall distance (similarity) value. 
 
5.2.  XML Grammar Element Matchers 
 

As mentioned previously, we make use of dedicated matchers to evaluate the similarities between 
XML grammar node labels, constraints, data-types, and ordering scores, their results being integrated 
in our XML grammar comparison method (cf. Definition 19). Recall that the use of independent 
matchers provides flexibility in performing the match operation since it is possible to select or 
disregard different matchers (i.e., different match criteria) following the task at hand. Table 2 depicts 
the matchers considered in our XML grammar matching approach so far, along with the different 
kinds of auxiliary information they exploit. 

Matcher results can be combined in several ways, using for instance the maximum, minimum, 
average or weighted sum functions [15, 50]. Here, we also make use of the weighted sum function 
since it enables the user to choose the weight of each simple matcher in accordance with her notion of 
similarity (such as when computing the similarity between two XML grammar nodes, cf. Definition 
19). Thus, for each of the composite matchers CM and its component mathchers Mi=1..n, similarity is 
evaluated as follows: 

 

                              SimCM =  fAgg(SimMi)  =  
i=1...n ii Mw   Sim   [0, 1] (9)

Where   
i=1...n i = 1w   , (wi=1…n) ≥ 0 and (SimM i=1…n)   [0, 1] 

 
Table 2. XML grammar element matchers. 

 

Matcher Type Target Auxiliary Information 

 
 Label 

  Composite - Computational Labels Weighted semantic network 
  Syntactic Composite - Computational Labels --- 

 String- ED Simple- Computational Labels --- 
 N-Gram Simple - Computational Labels --- 
     

  Semantic Composite- Computational Labels Weighted semantic network 
 Lin Simple - Computational Element labels Weighed semantic network 
 WuPalmer Simple - Computational Element labels Semantic network 

      

Data-Type Simple - Tabular Data-Types Data-type compatibility table 

Cardinality Constraint 
Hybrid - Tabular,  

Rule-based and Computational 
Cardinality 
constraints 

Constraint compatibility table 

Alternativeness Constraint Hybrid - Computational 
Alternativeness 

constraint vectors 
Constraint compatibility table 

OrdScore Simple - Computational Ordering scores --- 

5.2.1.  Label Matcher 
 

It is a composite matcher encompassing, in turn two composite ones: the Syntactic and Semantic 
matchers for comparing element labels. While the former combines simple matchers that capture the 
syntactic resemblances between grammar node labels (e.g., String-ED [64] and N-Gram [28]), the 
latter makes use of methods for evaluating their semantic meaning (e.g., WuPalmer [67] and Lin 
[35]), by looking up their terminological relationships in a given semantic network [8]. The Label 
matcher computes label similarity as follows: 

 

                        SimLabel(1, 2) = fAgg(SimSyn (1, 2), SimSem(1, 2, SN )) 

                         = wSyn SimSyn (1, 2) + wSem SimSem(1, 2, SN ) 
(10)

where wSyntactic + wSemantic = 1 and (wSyntactic, wSemantic) ≥ 0. 
Note that (SimSyntactic , SimSemanticc) [0, 1]. 

 
Likewise, for remaining composite matchers:  



 

                                  SimSyntactic(1, 2) = fAgg(SimString-ED (1, 2), SimN-Gram(1, 2)) 

                                                    = wString-ED SimString-ED (1, 2) + wN-Gram  SimN-Gram(1, 2) 
(11)  

where wString-ED + wM-Gram = 1 and (wString-ED, wN-Gram) ≥ 0. 
Note that (SimString-ED , SimN-Gram) [0, 1]. 

 
SimSemantic(1, 2, SN ) = (wWuPalmerSimWuPalmer (1, 2, SN) + wLin  SimLin(1, 2, SN )) (12)  

where wWuPalmer+ wLin=1 and (wWuPalmer, wLin) ≥ 0. 
Note that (SimWuPalmer, SimLin) [0, 1] 

 
Note that the Label (Syntactic and Semantic) composite matcher is extensible to additional 

matching techniques and processes [28] (for instance, a Phonetic matcher could be integrated so as to 
identify the similarity between labels based on their soundex codes [15]). 

 
5.2.2.  Data-type Matcher 
 

This matcher is tabular (in contrast with its computational predecessors) and makes use of a dedicated 
compatibility table to assess the similarity between schema elements. Note that a tabular matcher 
derives its similarity/distance values by retrieval only (i.e., no computations are involved). The 
similarity/distance between every two values of the domain is stored in a table (here the DTCT table), 
and the matcher simply searches the table to retrieve the values [45]. 

 
Table 3. Default DTCT (Data-Type Compatibility Table). 

 

 PCDATA String Decimal ANY Composite CDATA ID … 
PCDATA 1 0.95 0.6 0.6 0.5 0.8 0.4  

String 0.95 1 0.7 0.6 0.5 0.7 0.4  
Decimal 0.7 0.7 1 0.6 0.5 0.5 0.4  

ANY 0.6 0.6 0.6 1 0.7 0.4 0.4  
Composite 0.5 0.5 0.5 0.7 1 0.4 0.4  
CDATA 0.8 0.8 0.5 0.4 0.4 1 0.7  

ID 0.4 0.4 0.4 0.4 0.4 0.7 1  
…         

 
Note that Table 3 comprises sample values which can be utilized as default input. Nonetheless, 

different data-type compatibility values can be provided by the user. In other words, the user can 
adapt data-type similarities according to the context at hand, but should do so consistently through the 
whole DTCT table. In Table 3 for example, SimData-Type(‘#PCDATA’, ‘CDATA’) = 0.8 underlines that 
both data-types allow string data values. Nonetheless, similarity is not maximal (=1) since #PCDATA 
corresponds to grammar (DTD) elements whereas CDATA describes attribute contents. This is also 
reflected by SimData-Type(‘ID, ‘CDATA’) > SimData-Type(‘ID’, ‘#PCDATA’) which underlines that data-
types ID and CDATA both correspond to attributes whereas #PCDATA is an element type. 

Similarly to the reference semantic network (exploited in the Semantic label matcher), the data-
type compatibility table (DTCT) is considered as auxiliary information (exploited in the Data-type 
matcher) following our grammar matching approach, and thus is to be provided by the user prior to 
executing the match task. Corresponding values reflect the user’s perception of data-type similarities, 
such as SimData-type  [0, 1]. 

 
5.2.3.  Cardinality Matcher 
 

It is a hybrid matcher, including tabular and rule-based computational matching features, to assess 
the similarity between XML grammar element cardinality constraints. It exploits CCT (cf. Table 4) in 
identifying constraint compatibility scores. Yet, in contrast with DTCT (Table 3), not all values in 
CCT are pre-computed. That is due to the presence of the MinOccurs and MaxOccurs operators of the 
XSD language [49]. Thus, a rule-based feature component is introduced to evaluate the compatibility 
of MinOccurs and MaxOccurs values w.r.t. remaining cardinality operators: 
 



 

 Rule 1: SimCConstraint(‘?’, minOccurs=0) = 1 
 Rule 2: SimCConstraint(‘+’, maxOccurs=‘unbounded’) = 1 
 Rule 3: SimCConstraint(‘*’, minOccurs=0   maxoccurs=‘unbounded’) = 1  
 … 

 
In addition, a computational feature component is exploited to evaluation the compatibility 

between the infinite number of minoccurs and maxoccurs configurations themselves. It comes down 
to evaluating the similarity between their corresponding values. 

 

SimCConstraint( MinOccurs = x   MaxOccurs= y, MinOccurs=x’MaxOccurs=y’) = 

     
| ' || ' |

1 1
| | | ' | | | | ' |

2

y yx x

x x y y



 

 
  

   
     

(13)  

For instance,
CConstraint 1

|1 5 |
Sim ( , ) = 0.3333

|1| | 5 |
minoccurs = 1 minoccurs = 5 

 


. Likewise for maxoccurs. 

 

Table 4. Default CCT (Constraint Compatibility Table). 
 

 ? * + Implied Required null minOccurs maxOcuurs 
? 1 0.5 0.5 1 0.8 0.8 

Rule-based compatibility 
values 

* 0.5 1 0.8 0.5 0.5 0.5 
+ 0.5 0.8 1 0.5 0.5 0.5 

Implied 1 0.5 0.5 1 0.8 0.8 
Required 0.8 0.5 0.5 0.8 1 1 

null 0.8 0.5 0.5 0.8 1 1 
minOccurs 

Rule-based compatibility values Computational values 
maxOccurs 

 
Similarly to DTCT in Table 3, Table 4 comprises of sample values which can be utilized as 

default CCT input. Nonetheless, different input compatibility scores can be provided by the user. The 
CCT table is also required as input auxiliary information to be provided by the user prior to executing 
the match task. Corresponding values reflect the user’s perception of cardinality constraint 
similarities, such as SimCConstraint  [0, 1]. 

 
5.2.4.  Alternativeness Constraint Vector Matcher 
 

It is based on the classic Wagner-Fisher string edit distance algorithm [64] and compares 
alternativeness constraint vectors as series of simple/composite alternativeness constraints 
underscoring the disposition of an XML grammar element w.r.t. its siblings and parent node in the 
grammar (cf. Definition 14). In other words, it can be viewed as a special string matcher where 
characters stand for alternativeness constraints. The main idea is to identify the number of edit 
operations (simple insertions, deletions and updates) necessary to transform one alternativeness 
constraint vector ( ac


1) into another ( ac


2).  

With classic string edit distance, string characters are considered unrelated. However, alternative 
constraints share similarities due to associated cardinality constraints. Recall that an alternativeness 
constraint is represented as a doublet (sac, cc) where sac is the simple alternativeness operator (And, 
Or, or All) and cc is the associated cardinality constraint (e.g., ‘?’, ‘+’, Minoccurs, cf. Definition 13). 
For instance, ac


1=(And, +)  and ac


2 = (And, *) are similar having ac


1.sac = ac


2.sac = And. 

Their similarity comes down to that of their corresponding cardinality constraints, i.e., ac


1.cc= + and 

ac


2.cc = *. Such similarities are considered in our matcher, by varying operations costs accordingly. 
Thus, in order to compare alternativeness constraint operators, we vary the cost of the update 
operation, in the Wagner-Fisher algorithm [64], as follows (insertion and deletion operations 
maintaining unit costs): 

              
2

1 2

CConstraint 1
1 2Upd

1                                                        ac .sac  ac .sacac ac
1 - Sim (ac .cc, ac .cc)                  

Cost ( , ) = if  
otherwise

 
 
 

  
      (14)  



 

For instance, comparing alternativeness constraint operators corresponding to the elements of 
label ‘Publisher’ in grammar trees P (Paper.dtd) and Q (Publication.xsd) in Figure 5, such as                
ac


1= Or , And and ac


2=And, yields: 

 SimAConstraint( ac


1,

 
ac


2) = 

1 2ac ac

1

1 + ( , )
WagnerFisher

ED
  = 0.5, having EDWagner-Fisher = 1 the cost of 

deleting constraint Or transforming ac


1 to ac


2. 
 

If ac


2 was equal to (And, ?), the similarity would be computed as follows: 

 SimAConstraint( ac


1, ac


2) = 
1 2ac ac

1

1 + ( , )
WagnerFisher

ED
   = 0.4546, having EDWagner-Fisher = 1.2, which is 

the sum of the costs of deleting Or and updating And transforming it to And? 
(SimCConstraint(null, ?) = 0.8 following Table 4). 

 
Note that our Alternativeness Constraint Vector comparison process is viewed as a hybrid 

matcher that interacts with its Cardinality Constraint counterpart (computing SimCConstraint values) 
when comparing alternativeness constraint vectors, such as SimAConstraint  [0, 1]. 

 
5.2.5.  Ordering Score Matcher 
 

It compares the ordering scores of two XML grammar nodes, such as those having similar scores 
(similar initial positions) would constitute better match candidates. Recall that in our tree 
representation, XML grammar nodes are sorted left-to-right by node label, assigned each an ordering 
score Ord in the [-1, 1] interval, reflecting the reordering magnitude and direction of the node at hand. 
This allows considering both ordered and unordered parts of the XML grammar in the comparison 
process, and producing more meaningful mappings (cf. Section 4.2). Hence, our OrdScore matcher 
handles the task of comparing two Ord scores as follows: 
 

OrdScore

|  - |
Sim ( , ) = 1 - 

2
1 2

1 2

Ord Ord
Ord Ord  [0, 1] (15)

where  Max(|Ord1| + |Ord2|)=2 
 

Note that we normalize ordering similarity by the maximum sum of the ordering scores (i.e., 2) 
instead of the actual sum itself (i.e., |Ord1| + |Ord2|) since the latter would unanimously yield zero 
values whenever one of the scores involved in the comparison is equal to zero (regardless of the other 
score) which is not accurate. 

For instance, the ordering score similarity between nodes of labels ‘Author’ in grammar trees P 

(Paper.dtd) and Q (Publication.xsd) is SimOrdScore = 1- 0.2857

2
= 0.8572. This designates the difference 

in ordering positions between the node in P (which retained a zero score after the ordering phase, 
since it is connected to its sibling ‘Publisher’ via an Or alternativeness constraint, i.e., it is unordered 
w.r.t. ‘Publisher’) and that of Q (which changed positions). By normalizing via the actual sum of the 
ordering scores, we would have achieved SimOrdScore=0 which is least accurate. On the other hand, 
nodes of labels ‘FirstName’ and ‘First’ in trees P and Q respectively have identical ordering 
positions. Hence, corresponding SimOrdScore is maximal (=1). Recall that the ordering score is essential 
in our tree model, enabling the distinction between ordered and unordered siblings (attributes, as well 
as elements connected via the Or/All alternativeness constraints), and the comparison of sibling 
positions in the case of ordered nodes, such as SimOrdScore  [0, 1]. 
 
5.3.  Edit Script Extraction and Mapping Identification 
 

Identifying the similarity between two XML grammars is useful in applications such as grammar 
clustering [3, 33], and can be exploited as a pre-processing to the schema integration phase [51]. Yet, 
the grammar matching operation itself requires identifying element correspondences, which is where 



 

edit distance mappings come to play. The XML Grammar Tree Comparison component returns the 
edit distance between two XML grammar trees, in other words the overall similarity value between 
the grammars. However, identifying the mappings (cf. Definition 5) requires a post-processing of the 
tree edit distance result. This comes down to identifying/extracting the edit script. 

 
5.3.1.  Edit Script Extraction 
 

In fact, edit distance computations are generally undertaken in a dynamic manner, combining and 
comparing the costs of various edit operations to identify the minimum distance (maximum 
similarity). Nonetheless, to identify the minimum cost edit script itself, one has to process the 
intermediary edit distance computations, going throw the edit distance matrixes, (identified as 
{Dist[][]} in the TEDXGram algorithm, cf. Figure 11) tracing the edit script operations costs. Our 
algorithm for identifying the minimum cost tree edit script is provided in Figure 12. It considers as 
input the XML grammar trees being compared as well as the related edit distance matrixes computed 
in TEDXGram. It outputs the corresponding edit script (simplified tree operation syntaxes are shown in 
Figure 12 for ease of algorithm presentation) yielding the minimum amount of modifications to the 
source grammar tree. As it traverses the edit distance matrixes, the algorithm identifies corresponding 
tree insertion/deletion and node update operations, gradually building the edit script. Note that while 
different minimum edit scripts might exist, we designed our algorithm to identify the one which 
prioritizes deletion operations (i.e., tree deletions - lines 8 and 27 - are treated prior to tree insertion 
operations - lines 13 and 32), so as to reduce the number of node match candidates, by reducing the 
number of nodes in the source grammar tree involved in the edit distance mapping. Reducing 
matching candidates would help reduce the number of erroneous results, and thus amend match 
quality (as we will show in Section 5.4). The edit script operations’ order is inversed (cf. Figure 12, 
line 38), due to the backward processing of the edit distance matrixes. Note that the operations’ order 
is insignificant regarding the mappings, but is relevant w.r.t. the edit distance result (e.g., operations 
applied on inner nodes should appear before those applied on leaf nodes in the edit script). 

Consider trees D and T in Figure 8 and the corresponding edit distance computations developed in 
Table 1. Based on the distance matrixes, ESDiscovery generates the following edit script: ES(D, T) = 
Upd(D[0], T[0]), Upd(D[2], T[2]), Upd(D[3], T[3]), DelTree(D[4]), InsTree(T2), Upd(D[6], T[8]), 
identifying the edit operations to be applied to XML grammar tree D in order to transform it into T. 
Then, XML grammar tree mappings are deduced from the corresponding minimum cost edit script, 
depicting which edit operations apply to which nodes in the two grammar trees being compared. 
 
5.3.2.  Mapping Identification 
 

As stated previously, the schema matching problem comes down to identifying mappings between the 
elements of two schemas S1 and S2. These mappings indicate which elements of S1 are related (i.e., 
similar) to those of S2 and vice-versa. With tree edit distance, mappings are inferred from the edit 
script (Definition 5). Thus, producing the mappings between two trees basically comes down to 
generating the edit script transforming the source tree into the destination one.  

Tree edit distance mappings depend on the edit distance operations that are allowed and how they 
are used. Recall that in our tree edit distance component, we utilize five edit operations: insert node, 
delete node, update node, insert tree and delete tree. Hence, the mapping between two XML grammar 
trees S1 and S2 is constructed as follow. 

 

 Simple 1:1 mappings connect: 
 

 Initially matching nodes. Two nodes of S1 and S2 initially match if they are identical (i.e., 
nodes with identical labels, constraints, data-types, relative order and hierarchical depth). 

 Nodes related by the update operation. 
 
 
 
 
 
 
 
 



 

 Complex 1:1, 1:n, n:1 or n:n mappings connect:  
 

 Sub-trees of S1 that are affected by the tree deletion operation, to similar sub-trees in S2. 
Such edges are identified when computing the similarity between sub-trees of S1 and S2 
(cf. mapping example below). No edges are introduced if the sub-tree being deleted from 
S1 has no similarities in S2. 

 

 Sub-trees of S2 that are affected by the tree insertion operation, to similar sub-trees in S1. 
No edges are introduced if the sub-tree being inserted has no similarities in S1. 

 
Node insertion/deletion operations are treated as tree insertion/deletion ones. Note that node 

insertions/deletions are utilized to compute the costs of insert/delete tree operations and are not 
directly employed in the main tree edit distance algorithm (cf. algorithm TEDXGram in Figure 11). For 
instance, Del(D[4]) ≡ DelTree(D[4]) in our running example. 

Figure 14 depicts the mapping results corresponding to the edit distance computations 
(developed previously) between grammar trees D and T of Figure 8. Recall the edit script 
transforming tree D into T: 

 ES(D, T) = Upd(D[0], T[0]), Upd(D[2], T[2]), Upd(D[3], T[3]), DelTree(D[4]), 
InsTree(T2), Upd(D[6], T[8])  

 
We only show node labels in Figure 14 for ease of presentation. Mappings are shown in Table 5 

(Mapping scores underline node/sub-tree similarity values and will be addressed in the following).  
 
 

 
 

Figure 14. XML grammar tree mappings. 
 

Table 5. Matching elements corresponding to grammar trees D and T of Figure 8. 
 

Local match 
cardinality 

Elements of tree D Elements of tree T 
Mapping 

Scores 

1:1 

D[0] (D[0].= ‘Paper’) T[0] (B[0]. =‘Publication’) 0.1667 

D[1] (D[1].= ‘Author’) T[1] (T[1]. =‘Author’) 1 

D[2] (D[2].= ‘FirstName’) T[2] (T[2]. =‘First’) 0.8519 

D[3] (D[3].= ‘LastName’) T[3] (T[3]. =‘Last’) 0.8571 

D[4] (D[4]. = ‘MiddleName’) T[6] (T[6]. = ‘Name’) 0.4628 

D[5] (D[5]. = ‘References’) T[7] (T[7]. = ‘References’) 1 

D[6] (D[6]. = ‘Paper’) T[8] (T[8]. = ‘Publication’) 0.1667 

n:n D[1], D[2], D[3], D[4] (sub-tree D1) T[4], T[5], T[6] (sub-tree T2) 0.4142 

 
Each of the nodes D[0], D[1], D[2], D[3], D[4], D[6] and T[0], T[1], T[2], T[3], T[7], T[8] in 

grammar trees D and T participates in an individual 1:1 local mapping. In addition, D[1], D[2], D[3], 
D[4], and T[4], T[5], T[6] participate in a local n:n mapping. Thus, the matching result between trees 
D and T yields 1:1 and n:n local cardinalities, as well as a 1:n global mapping, each of the nodes 
D[1], D[2], D[3] in tree D participating in more than one individual mapping (two mappings to be 
exact, one 1:1 and one n:n). 

In short, our approach produces all kinds of mapping cardinalities, ranging from 1:1 to n:n. 
Nonetheless, the nature of a mapping is often dependent on user requirements or those of the module 
that accepts the mapping results. In general, existing matching approaches tend to focus on 1:1 local 
(and global) mappings [18]. Such mappings are usually easier to comprehend, evaluate and 
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Author 
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manipulate by users and automated processes alike. Nevertheless, complex 1:n, n:1 and n:n mappings 
are required in certain application domains, mainly in automatic document transformation [6] and 
schema mediation [55]. Thus, we provide the user with a flexible framework able to produce either:  

 1:1 local and global mappings (most restricted case, especially useful for query discovery-
related applications [43]),  

 1:1 local mappings (simplifying complex 1:n, n:1 and n:n mappings, with no specific 
restrictions on global cardinality),  

 All kinds of mappings (no cardinality restrictions).  
 

On one hand, restricting mapping cardinalities to both local and global 1:1 means disregarding 
all kinds of sub-tree similarities and repetitions when comparing the XML grammar trees. To achieve 
this, we only disable algorithm SGS and make use of the main tree edit distance algorithm TEDXGram 
(cf. overall method architecture in Figure 6). In this case, tree insertion/deletion mapping edges (which 
induce complex 1:n, n:1 and n:n mappings) are eliminated and we are left with those corresponding to 
matched nodes (1:1) and update operations (strictly producing 1:1 mappings). On the other hand, 
restricting mappings to 1:1 local cardinality is undertaken by decomposing the global sub-tree related 
mappings (e.g., mapping connecting sub-trees D1 and T2 in our running example). This is achieved by 
recursively running the XML Grammar Tree Comparison process on the concerned sub-trees (D1 and 
T2 in our running example), until single node 1:1 mappings are obtained. Duplicate mappings, i.e., 
mappings that already exist prior to the execution of the Edit Distance recurrence, are disregarded.  

Table 6.a and Table 6.b show the mapping results obtained when restricting mapping 
cardinalities to 1:1 local/global and 1:1 local respectively (note that mapping scores hereunder 
underline node similarity values, cf. Section 5.3.3). One can see that while mappings are of local 1:1 
cardinality in Table 6.b, they are obviously of global 1:n. Additional mappings in Table 6.b underline 
the decomposition of the n:n local mapping between sub-trees D1 and T2 (cf. Table 5), and represent 
their corresponding edit script: ES(D1, T2) = Upd(D[1], T[4]), Upd(D[2], T[5]), Upd(D[3], T[6]), 
Ins(D[4]). The last mapping in Table 6.b corresponds to operation Ins(D[4]) of ES(D1, T2) and is 
automatically disregarded since it already exists in the set of mappings. 

 

Table 6. One-to-one 1:1 cardinality mappings. 
 

                a.  Local and global 1:1                             b. Local 1:1 mappings (no restriction on global cardinality) 
 

Elements of tree D Elements of tree T  Elements of tree D Elements of tree T Mapping cores 
D[0] (=’Paper’) T[0] (=‘Publication’)  D[0] (=’Paper’) T[0] ( =‘Publication’) 0.1667 

D[1] (=’Author’) T[1] ( =‘Author’)  D[1] (=’Author’) T[1] ( =‘Author’) 1 

D[2] (=’FirstName’) T[2] ( =‘First’)  D(2] (=’FirstName’) T[2] ( =‘First’) 0.8519 

D[3] (=’LastName’) T[3] ( =‘Last’)  D[3] (=’LastName’) T[3] ( =‘Last’) 0.8571 

D[4] (=‘MiddleName’) T[6] ( = ‘Name’)  D[4] (=‘MiddleName’) T[6] ( = ‘Name’) 0.4628 

D[5] ( = ‘References’) T[7] ( = ‘References’)  D[5] ( = ‘References’) T[7] (= ‘References’) 1 

D[6] ( = ‘Paper’) T[8] ( = ‘Publication’)  D[6] ( = ‘Paper’) T[8] ( = ‘Publication’) 0.1667 

   D[1] (=‘Author’) T[4] (= ‘Editor’) 0.3333 
   D[2] ( =‘FirstName’) T[5] (= ‘Affiliation’) 0.6153 
   D[3] (= ‘LastName’) T[6] (= ‘Name’) 0.7857 
   D[4] (=‘MiddleName’) T[6] (= ‘Name’) 0.4628 
 

To sum up, our approach allows the user to choose whether to produce 1:1 local and global 
mappings (disregarding SGS), 1:1 local mappings (dissecting composite sub-tree related mappings by 
recursively running the Edit Distance component), or more complex 1:n, n:1 and n:n mappings 
(applying our matching approach without any restrictions). 
 
5.3.3.  Mapping Scores 
 

Most schema matching approaches associate scores to the identified mappings. These scores underline 
values, usually in the [0, 1] interval, that reflect the plausibility of matches (0 for strong dissimilarity, 
1 for strong similarity, and values in between). In addition, these values can be normalized to produce 
an overall score underlining the similarity between the two schemas being matched. 



 

With respect to edit distance, mapping scores denote, in a roundabout way, the costs of the edit 
operations inducing the corresponding mappings: 

 Mappings linking nodes that initially match (nodes that are identical) are assigned a maximum 
similarity value, i.e., MapScore = 1. 

 Mappings underlining the update operation between two nodes are assigned scores as follows: 
MapScore = 1 – CostUpd(n, m, Aux)  [0, 1], 1 being the maximum allowable update 
operation cost (Formula (8)). In other words, the mapping score designates the similarity 
value between the concerned nodes, i.e., SimGNode(n, m, Aux)  [0, 1]. 

 Following the same logic, mappings corresponding to tree insertion/deletion operations are 
assigned scores as follows:  

   

All  nodes   S

All  nodes   S

Ins/Del InsTree/DelTree

Ins/Del

 ( )

 Cost ( )

Cost  Cost (S)
MapScore  =    x

x

x

x
[0,1]








   
 (16)

having 
All  nodes   S

Ins/Del ( ) Cost
x

x


  the maximum tree insertion/deletion operation cost for the sub-tree 

at hand. Hence, as the similarities between inserted/delete sub-trees and the source/destination 
XML grammar trees increase/decrease, the mapping scores will follow accordingly.  

 
Note that for the special case of recursive leaf nodes, the mapping score between two recursive 

nodes being matched comes down to that of their referenced nodes, if the latter are matched. 
Otherwise, the recursive nodes retain the score computed based on their corresponding edit operation. 
For instance, in our running example, recursive leaf nodes D[6] (=’Paper’) and T[8] 

(=’Publication’) are linked via an update operation, of cost 0.2778 (cf. Section 5.1.2 for 

computational details). Nonetheless, they are assigned the mapping score of their referenced nodes, 
since the latter are matched (cf. Table 5). This process is in line with [33, 60] (i.e., the main XML 
grammar matching studies to consider the case of recursive declarations) allowing for the recursive 
nodes to both: i) contribute to the similarity of their reference nodes (recursive elements being 
represented as descendents of their referenced nodes, and thus contributing to the latter’s edit distance 
computation result), ii) and obtain a mapping score based on the similarity of the reference nodes, if 
the latter are matched (cf. Section 4.4).  

The overall similarity score between the grammar trees being compared is computed based on the 
obtained global edit distance value. Similarity measures based on edit distance are generally 
computed as follows:   

                  

 

XGram 1 2
1 2XGram

1
T , T =

1 + TED (T , T , Aux)
Sim ( )  (17)

 
Computation Example: Table 5 and Table 6 show the mappings generated in our running 

example and related mapping scores. For instance, MapScore(D[0], T[0]) = 1– CostUpd(D[0], T[0]) = 

Sim(D[0], T[0]) = ' '   ' '

' '   ' '

Paper Publication

Paper Publication




 = 0.1667 (using the 1-Gram string matching criterion, 

with Aux=Ø). Likewise for remaining 1:1 matches based on the update operation. Nodes that initially 
match (e.g., D[1] and T[1], having D[1]. = T[1]. = ’Author’) are assigned a unit mapping score 
(maximum similarity). As for 1:n, n:1 or n:n mappings, such as the one linking sub-trees D1 and T2, 

MapScore = 2

2

All  nodes  of  T

All  nodes  of  T

 ( ) 

 ( )

( )
x

x

Ins InsTree 2

Ins

Cost x - 

Cost x

Cost T


=

3 - 1.7203

3
= 0.4142, CostInsTree(T2) being identified w.r.t. T2’s 

similarity with D1 (cf. Section 5.1.2 for CostInsTree(T2) computation details).  



 

Hence, the overall similarity score between trees D and T of our running example (using the 1-
Gram label syntactic matcher, with Aux=Ø) is SimXGram(D, T) = 0.2263, having TEDXGram(D, T) = 
3.4189 (following Formula (6)). 

In addition to the XML Grammar Tree Comparison and Mapping Identification components, our 
matching framework encompasses a UserFeed component which enables the users to manually match 
a few hard-to-match XML grammar nodes. 

 
5.4.  User Constraints and User Feedback 

 

Considering user input constraints and user feedback in the XML grammar matching process could 
further improve matching accuracy. Predefined user mappings happen to be particularly useful in 
matching ambiguous schema elements [18]. 

Consider for instance elements of labels ‘url’ and ‘Link’ in grammars Paper.dtd and 
Publication.xsd of Figure 4 respectively (cf. Figure 5 for corresponding tree representations). These 
elements encompass labels which are neither syntactically nor semantically similar (namely when 
using a generic WordNet-based semantic network where the word ‘url’ does not exist). In addition, 
element ‘url’ in Paper.dtd encompasses two sub-elements, of labels ‘Homepage’ and ‘Download’, 
both of them identifying links. In such situations, the system is left with a set of confusing matching 
possibilities (‘url’‘Link’, ‘Homepage’‘Link’ or ‘Download’‘Link’, nodes being identified by 
their labels here for simplicity), which is where user constraints and feedback come to play.  

In our approach, we enable the user to explicitly specify matching elements as input to the 
match operation, i.e., input user constraints. Likewise, after the execution of the match operation, if 
the user is still not happy with the produced matches, she can provide new ones (i.e., user feedback), 
then run the edit distance process once again to output new mappings (cf. overall method architecture 
in Figure 6). In essence, we consider user input constraints and user feedback in our matching 
framework by updating input XML grammar trees following the constraints at hand, and consequently 
comparing the updated trees. To do so, we define the UserFeed transformation operation as follows.  
 

Definition 21 – UserFeed: It is an operation that transforms an XML grammar tree A into A’, 
such as in the destination tree A’, nodes corresponding to predefined matches are eliminated, along 
with their corresponding sub-trees.  
Formally, UserFeed(A, (preM, A, B)) = A’ where: 

 A and B are the XML grammar trees being compared, 
 (preM, A, B) is the set of predefined user matches from A to B such as preM                    

VA – {R(A)}  ×  VB – {R(B)}, where VA and VB designate respectively the sets of nodes of 
trees A and B, R(A) and R(B) underlining corresponding grammar tree roots, 

 A’ is the transformed tree, such as A’ = A – {the set of sub-trees Ai / R(Ai)  (preM, A, B)} ● 
 
Sub-trees rooted at the manually matched nodes are eliminated from the grammar trees since 

structural matching, particularly tree edit distance, is sibling and ancestor order preserving [58]. In 
other words, given a node i1 participating in mapping i1  j1, a sibling of i1 occurring after i1 in the 
source grammar cannot match a node occurring before j1 in the destination grammar (otherwise, the 
matching would not be order preserving). In addition, the descendent of a given node i1, i1 

participating in mapping i1  j1, cannot match a node outside j1’s sub-tree (otherwise, it would not be 
a structurally sound mapping, disregarding the ancestor/descendent relationship). Following the user, 
these sub-trees can be henceforth independently evaluated for mapping identification, depending on 
the mapping cardinality of choice (Section 5.3.2). 

Consider for instance the XML grammar trees D and T and corresponding mappings in Figure 
14 (Table 5). Here, the user might want to specify (before, or after the first execution of the edit 
distance matching process) that nodes entitled ‘Author’ in both grammars actually match, or she might 
prefer to indicate that node ‘Editor’ in grammar tree T does not match any node in D (i.e., Null  
T[4]). In the first case, sub-trees D1 and T1 would be truncated from D and T respectively, and could 
be processed independently for mapping evaluation. In the second case, sub-tree T2 would be 



 

truncated from tree D prior to the matching process. Both cases would lead to the elimination of the 
final mapping in Table 5, i.e., the one linking sub-trees D1 and T2, preserving remaining matches 
(which would be what the user intended to obtain).  

Thus, our Edit Distance component compares the transformed grammar trees, where nodes 
corresponding to predefined matches are eliminated, along with their corresponding sub-trees 
(preserving sibling and ancestor order [29]). Note that tree roots, R(A) and R(B), are not included in 
the predefined user matches since their inclusion would indicate that the whole grammar trees actually 
match, thus eliminating the need to perform the matching task in the first place. Disregarding 
predefined matches in the edit distance process would: i) eliminate the possibility of automatically 
modifying these matches, and ii) lessen the risk of attaining confusing matches by reducing the 
number of match candidates. The UserFeed process is shown in Figure 13. User mappings are 
consequently added to those produced by the system: (M, A, B) = (SystemM, A, B) U (preM, A, B). 

 
5.5.  Complexity Analysis 
 

The overall time complexity of our XML grammar matching and comparison approach simplifies to 
O(|T1|×|T2|×|SN|×Depth(SN)), where |T1| and |T2| denote the cardinalities of the compared trees, |SN| 
the cardinality of the weighted semantic network exploited for semantic similarity assessment, and 
Depth(SN) its depth. Overall complexity is evaluated as the sum of the complexities of the various 
components constituting our XML grammar comparison method, and comes down to 
XGramTreeRepresentationComplexity + XGramTreeComparisonComplexity + MappingIdentificationComplexity 
+ UserFeedComplexity, the MatchersComplexity factor being encompassed in that of the Tree Comparison 
component. 

 Transforming an XML grammar into its tree representation is undertaken in average linear 
time w.r.t. the number of elements/attributes in the grammar, and comes down to the 
complexity of the SiblingOrdering algorithm in Figure 3, i.e., O(|T|×log(|T|)). 

 The complexity of our XML grammar tree comparison component is of 
O(|T1|×|T2|)×MatchersComplexity, where O(|T1|×|T2|) underlines the complexity of the TEDXGram 
algorithm (Figure 11). It comes down to O(|T1|×|T2|×|SN|×Depth(SN)), the complexity of the 
matchers component simplifying to that of the label semantic matchers (i.e., WuPalmer [67] 
and Lin [35]), which come down to O(|SN|×Depth(SN)). 

 The complexity of the mapping identification component comes down to that of the 
ES_Extraction algorithm (cf. Figure 12), which complexity simplifies to O(|T1|+|T2|).  

 The User Feed component allows a seamless integration of user-predefined mappings, and 
thus simplifies to O(|T1|×|T2|). 

 
To sum up, note that the time complexity of our matching approach simplifies from to 

O(|T1|×|T2|×|SN|×Depth(SN)) to O(|T1|×|T2|) (i.e., complexity of the edit distance process) when the 
composite Semantic matcher is disregarded, remaining matchers having marginal complexity levels 
with respect to the overall approach (as will be demonstrated in our timing experiments). 

As for memory usage, our method requires RAM space to store the grammar trees being compared, 
as well as the distance matrixes and weighted vectors being computed. It simplifies to O(|T1||T2|). 

 
6.  Experimental Evaluation 
 

We conducted various experiments to test and evaluate our XML grammar matching framework. In 
the following, we start by briefly describing our experimental prototype. Section 6.2 presents the test 
methodology and evaluation metrics adopted in our experimental evaluation process. Section 6.3 
details our matching experiments. Performance analysis is presented in Section 6.4. 
 
6.1. Prototype 

 

We have implemented our XML grammar matching framework in the experimental XS3 prototype 
(XML Structural and Semantic Similarity). The system includes four main grammar comparison 



 

modules: One to One, One to Many, Many to Many (consequently  allowing the  clustering of similar 
XML grammars) and Set comparison (computing average inter-set and intra-set similarities, and 
therefore allowing XML grammar classification). 
For each of the modules above, the user starts by 
providing her matcher weights and corresponding 
auxiliary information if available (i.e., reference 
semantic network as well as constraint and data-
type compatibility tables).  

Note that an extract of the WordNet taxonomy 
and predefined compatibility tables are provided as 
default inputs by the system. A prototype snapshot 
is shown in Figure 15. 

In addition to our approach, we have 
implemented three of its most prominent alternative 
methods proposed in the literature: COMA [15], 
XClust [33] and Relaxation Labeling [69], so as to 
compare our approach w.r.t. existing XML 
grammar matching and comparison solutions. The 
XS3 prototype system is available online1. 

 

 
 

 

Figure 15. Snapshot of the XS3 One to one        
comparison interface.     

6.2. Test Methodology and Evaluation Metrics 
 

As stated previously, the main criterion used to assess the effectiveness of automatic schema matching 
methods is the amount of manual work and user effort required to perform the matching task. In this 
context, most existing approaches propose to first manually solve the match task, in order to exploit 
the obtained results as a reference to evaluate the quality of the matches produced by the system [17]. 
Thus, similarly to information retrieval, the Precision and Recall metrics can be utilized in comparing 
‘real’ and system generated matches. 

Precision (PR) identifies the number of correctly generated matches, w.r.t. the total number of 
matches (correct and false) produced by the system. Recall (R) underlines the number of correctly 
identified matches, w.r.t. the total number of correct matches, including those not identified by the 
system. Having: 

 A the number of correctly identified matches (true positives) 
 B the number of wrongly identified matches (false positives) 
 C the number of real matches not identified by the system (false negatives) 

 
Precision and recall are computed as follows:  

                    
 PR [0,1]A

A B
 


   and    R [0,1]A

A C
 


 

 

(18)

High precision denotes that the matching task achieved high accuracy in identifying correct 
matches, whereas high recall means that very few correct matches where missed by the system.  

In addition to comparing one approach’s precision improvement to another’s recall improvement, 
it is a common practice to consider a combined measure. The F-value measure was originally 
introduced in information retrieval, and consequently used in XML grammar matching [17]. It 
represents the harmonic mean of precision and recall. High precision and recall, and thus high         
F-value (indicating in our case high matching quality) characterize a good grammar matching and 
comparison method.  
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


      (19)

                                                 
1 http://www.u-bourgogne.fr/DbConf/XS3 



 

Another combined measure, named Overall, dedicated to schema matching, was introduced in 
[41]. Unlike classical information retrieval metrics, Overall was designed in such a way to attain 
negative values when the number of false positives (B) exceeds the number of true ones (A), i.e., 
Precision<0.5. A negative Overall underlines that half the matches generated by the system are 
wrong, and that it might (hypothetically) take the user more effort to remove the false positives (B) 
and add the false negatives (C) than to perform the whole matching by hand. Overall is maximized 
(=1) with maximum Precision and Recall (PR=R=1), indicating excellent matching quality. 

             

1
2( )   Overall R [- , 1]

PR
     (20)

 

The behavior of both F-Value and Overall measures is studied in detail in [17].  
 

6.3. Matching Experiments 
 

Recent efforts to building a common benchmark for evaluating the quality of XML grammar 
matching methods have been underlined in [19]. The XBenchMatch system described in [19] takes as 
input: i) the results of a grammar matching and integration algorithm and ii) the intended user output, 
and generates statistics about the quality of the input and the performance of the matching tool. While 
it measures matching quality (via Precision and Recall metrics, similarly to XS3), nonetheless, the 
XBenchMatch system is particularly geared toward grammar integration (i.e., constructing a global 
grammar encompassing the concepts contained in a set of corresponding grammars), and provides 
evaluation measures mainly dedicated to comparing the quality of integrated grammars (e.g., 
structural overlap measuring the number of nodes shared by each of the input grammars and the 
integrated grammar, the backbone measure identifying the size of the largest common sub-tree 
between the input and integrated grammars, etc.). In addition, XBenchMatch merely consists of a 
statistical computation platform, and does not provide predefined mapping results in order to conduct 
comparative matching tests. To our knowledge, gold standard mappings, for evaluating the quality of 
XML grammar matching methods, do not exist to date. 

Hence, in order to evaluate the performance of our approach, we conducted a set of matching 
experiments using a select collection of real and synthetic XML grammars (including those exploited 
in our running example). Real grammars (DTDs and XML Schemas) were acquired from various 
online sources1, including grammars exploited in previous evaluation studies, e.g., [15, 37, 63]. For 
each matching task, the grammars were first manually evaluated, identifying the set of user-relevant 
matching elements (three different test subjects, two doctoral students and two post-doctoral 
researcher, were involved in the experiment). Manual answers were consequently mapped to the 
system generated ones so as to compute PR, R, F-Value and Overall accordingly. Section 6.3.1 details 
the mapping results for the matching task considered in our running example. Section 6.3.2 provides 
PR, R, F-Value and Overall results for all matching experiments. Section 6.3.3 discusses the impact of 
user feedback of matching quality. Section 6.3.4 compares the results obtained using our method and 
three of its recent alternatives (i.e., COMA [15], XClust [33] and Relaxation Labeling [69]).  

Details concerning all experimental results are provided in the technical report2. 
 

6.3.1.  Evaluation of our Running Example 
 

When matching grammars Paper.dtd and Publication.xsd (cf. Figure 4 and Figure 5), our method 
identified 6 correct mappings, disregarded 2, and generated 2 incorrect ones (Table 7). The mappings 
which are missed by the system (‘PaperLenght’-‘Length’ and ‘Download-Link’) are in fact replaced 
by others (e.g., ‘Genre’-Length’ and ‘PaperLength’-‘Link’) which seem more structurally plausible. 
Recall that the topological structure of grammar nodes is crucial in determining the mappings, 
following our approach, since we focus on semi-structured and structured data (which is not 
necessarily verified with user mappings).  
                                                 
1 http://www.acm.org/sigmod/xml, http://www.cs.wisc.edu/niagara/, http://www.BizTalk.org, http://www.xmlfiles.com, etc. 
2 Available online at http://www.u-bourgogne.fr/Dbconf/XGM. 
 



 

Despite some of the inconsistencies obtained in the matching results, PR, R, F-Value and 
particularly Overall show that more than half of the mappings generated by the system are correct, 
which reduces the amount of user effort and is clearly easier than manually performing the matching. 
In all our matching tests, all basic matchers were considered with identical weights (wLabel = wCardinality 
= w Data-Type = wAlternativeness = wOrd = 0.2 whereas wString-ED = wN-Gram = wLin = wWuPalmer = 0.5). Extracts of 
WordNet were adopted as reference semantic networks, covering the grammars at hand, and default 
DTCT and CCT were exploited (cf. Table 3 and Table 4).  

 
Table 7. Matching Paper.dtd and Publication.xsd of Figure 4. 

 

Manual Mappings  System Mappings 
paper.dtd publication.xsd  paper.dtd publication.xsd Scores 

Paper Publication  Paper Publication 0.8863 
Author Author  Author Author 0.9714 

FirstName First  FirstName First 0.8378 
LastName Last  LastName Last 0.7886 

PaperLength Length     
Publisher Publisher  Publisher Publisher 0.8433 

Title Title  Title Title 0.8343 
Reference Reference  Reference Reference 0.9857 
PaperRec PublicationRec  PaperRec PublicationRec 0.8863 

Download Link     
   PaperLength Link 0.7736 
   Genre Length 0.7486 

 

PR= 0.8     R = 0.8    F-Value=0.8   Overall = 0.6 
 

Note that in this study, we do not address the issue of assigning different matcher weights, 
which could help the user fine-tune her input parameters to obtain optimal performance. This comes 
down to an optimization problem requiring a thorough analysis of the relative effect of each 
individual matcher and criterion on matching quality (similarly to [15]), as well as the evaluation of 
different optimization techniques to semi-automatically adapt and combine matcher weights (similarly 
to [50]). We report the latter to a dedicated empirical study. 

 
6.3.2.  Evaluation on Real World and Synthetic XML Grammars 
 

The characteristics of the various test grammars1 exploited in our experimental analysis are 
summarized in Table 8 (many of which have been exploited in previous evaluations [15, 37, 63]). 

 
Table 8. Characteristics of test grammars. 

 

Grammars N# of nodes Max depth Ave depth Grammars N# of nodes Max depth Ave depth 

OrdinaryIssuePage.dtd 
2 23 7 3.913 BizTalk_PO.xsd 

3
 25 3 1.96 

SigmodRecord.dtd 2 12 7 3.75 Oreilly_PO.xsd 
4
 22 3 1.9091 

bookstore.dtd 
5
 12 3 2.0833 BizTalk_CIDX_PO.xsd 2 35 2 1.8 

bib.dtd 
6
 14 3 1.8571 BizTalk_Excel_PO.xsd 2 53 3 2.5283 

paper.dtd 
7
 12 2 1.3334 MS_PO_Excel.xsd 

8
 37 3 1.9456 

publication.xsd 6 12 2 1.25 Syn_PO.xsd 
1
 47 3 2.2766 

 

Hereunder, we present the results of 18 match tasks (including our running example, i.e., task# 3), 
each matching two different grammars (Table 9). To give an impression of the problem size in each 
match task, we estimate the actual similarity ratio between the compared schemas, as the number of 
user matches to be identified, w.r.t. the maximum number of elements in the grammars at hand. 
Results show that the tasks are almost equally partitioned between relatively disparate grammars (with 
similarity around 50%) and more similar ones (similarity higher than 60%). This is an indicator of the 

                                                 
1 http://www.u-bourgogne.fr/Dbconf/XGM                  

2 http://www.acm.org/sigmod/xml                            3 http://www.BizTalk.org                          
4  http://www.xml.com/pub/a/1999/07/schemas/            

5 http://www.xmlfiles.com                                       
6 http://www.cs.wisc.edu/niagara/   

7 Running example                                                      

8 http://office.microsoft.com/en-us/templates/ 
 



 

balanced context in which our matching experiments were conducted. Note that the similarity ratio 
has nothing to do with matching quality (the latter depending on the conformance between the user 
and system generated mappings, no matter how similar/different the grammars are). PR, R, F-Value 
and Overall results are shown in Table 9, and depicted in Figure 16. 

In 12 of the 18 match tasks, our approach effectively identified most user mappings, while 
disregarding some, and generating a few false ones. In task # 2, our method achieved 
PR=R=Overall=1 due to the high resemblance between the grammars being matched (bookstore.dtd 

3 
and bib.dtd 4). Negative Overall was obtained in 6 of the 18 matching operations. This is due to the 
structural heterogeneity between the grammars being matched, the system generating mappings which 
are structurally coherent (following sibling order and ancestor/descendent relations) but which do not 
correspond to actual user mappings, the latter not necessarily verifying structural integrity. Recall that 
structural integrity in the context of semi-structured data (and tree edit distance) underlines that the 
descendent of a given node i1, given that i1 participates in mapping i1  j1, cannot match a node 
outside j1’s sub-tree (otherwise, it wouldn’t be a structurally sound mapping), and that matching has to 
be undertaken w.r.t. sibling order. 

 

Table 9. Our approach’s PR, R, F-Value and Overall results. 
 

 

Match 
Task 

Similarity 
ratio (%) 

Grammars Precision Recall F-Value Overall 

1 52.17 OrdinaryIssuePage.dtd SigmodRecord.dtd 0.9231 1 0.9600 0.9167 
2 64.29 bookstore.dtd bib.dtd 1 1 1 1 
3 66.67 paper.dtd (running example) publication.xsd 0.75 0.75 0.75 0.5 
4 80 BizTalk_PO.xsd Oreilly_PO.xsd 0.8261 0.95 0.8837 0.75 
5 68.57 BizTalk_CIDX_PO.xsd Oreilly_PO.xsd 0.6818 0.625 0.6522 0.3333 
6 52.83 BizTalk_Excel_PO.xsd Oreilly_PO.xsd 0.3409 0.5357 0.4167 -0.5000 
7 52.83 BizTalk_PO.xsd BizTalk_Excel_PO.xsd 0.2195 0.3214 0.2647 -0.8214 
8 62.26 BizTalk_CIDX_PO.xsd BizTalk_Excel_PO.xsd 0.625 0.7575 0.6849 0.303 
9 77.14 BizTalk _PO.xsd BizTalk_CIDX_PO.xsd 0.7586 0.8462 0.8000 0.5769 

10 83.78 MS_PO_Excel.xsd BizTalk_PO.xsd 0.7083 0.8947 0.7907 0.5262 
11 58.49 MS_PO_Excel.xsd BizTalk_Excel_PO.xsd 0.3818 0.7 0.4999 -0.4334 
12 64.86 MS_PO_Excel.xsd BizTalk_CIDX_PO.xsd 0.4595 0.7083 0.5574 -0.1248 
13 54.05 MS_PO_Excel.xsd Oreilly_PO.xsd 0.8696 1 0.9303 0.8500 
14 44.68 Syn_PO.xsd Oreilly_PO.xsd 0.5927 0.7619 0.6667 0.2383 
15 48.94 Syn_PO.xsd BizTalk_PO.xsd 0.4571 0.7619 0.5714 -0.1430 
16 61.70 Syn_PO.xsd BizTalk_CIDX_PO.xsd 0.6316 0.8276 0.7164 0.3449 
17 67.92 Syn_PO.xsd BizTalk_Excel_PO.xsd 0.2326 0.2778 0.2598 -0.6387 
18 51.06 Syn_PO.xsd MS_PO_Excel.xsd 0.5152 0.7083 0.5965 0.0418 

 

 

Figure 16. Graphical representation of our approach’s PR, R, F-Value and Overall results. 
 
Note that in cases where Overall is negative, PR is lesser than 0.5, indicating that it might be 

easier for the user to carry out the matching by hand, instead of correcting the system generated ones.  
In short, our system seems efficient in identifying XML grammar mappings since it yielded 

positive Overall results for more than ⅔ of the experiments, while maintaining high PR and R values. 
 

6.3.3.  Improvements via User Feedback 
 

In addition to testing the raw capabilities of the system, we conducted experiments to evaluate the 
effect of user feedback on matching quality. Hereunder, we consider the six matching tasks where 
negative Overall was achieved in the initial matching phase (i.e., tasks n# 6, 7, 11, 12, 15 and 17). For 
each task, we carried out three runs, providing an additional user input mapping at each run (note that 



 

the same three subjects who defined the reference user mappings, were asked to provide the user 
feedback). Results in Figure 17 show that user feedback positively affects matching accuracy, 
amending Precision, Recall, F-Value and Overall levels for all six matching tasks. Note that in tasks 
n# 11, 12, 15 and 17, one can see that Recall gradually increases with user feedback (as excepted), but 
without surpassing the levels obtained in the initial (pre-feedback) phase (to the exception of task 
n#12 - third run). In fact, in tasks 11, 12, 15 and 17, the system performs well in reducing the amount 
of incorrect mappings while producing matches, reflected by the higher Precision levels. At the same 
time, it identifies, in tasks 11, 12, 15 and 17, less correct mappings in comparison with the initial (pre-
feedback) phase. Yet, the consistently increasing F-Value levels (F-Value measuring the system’s 
performance in both correctly disregarded (PR) and produced (R) mappings) indicate that the slight 
decrease in Recall, w.r.t. the initial matching phase, is compensated by a higher gain in Precision.  
 

 
 

 

 

 

 
 

         a. Task n# 6              b. Task n# 7           c. Task n# 11 
 

 

 

 
           d. Task n# 12          e. Task n# 15           f. Task n# 17 

   

 
 

Figure 17.  Comparing PR, R, F-value and Overall results for matching tasks n# 6, 7, 11, 12, 15 and 17 to 
evaluate the effectiveness of our approach in incorporating user feedback.  

 
With respect to Overall, the system obtains positive values with three out of six tasks (tasks n# 

7, 12 and 15), right after the first run (i.e., with only one user input mapping). In other words, in each 
of the tasks n# 7, 12 and 15, manually resolving one mapping has eliminated enough ambiguity for 
the system to produce more than half of the correct mappings. The system achieves positive Overall 
with all tasks, to the exception of n# 6 (Figure 17.a), after the third run (i.e., with three user input 
mappings). The Overall levels of task n# 6 were gradually amended by user feedback, but obviously 
require more user input mappings so as to cross the zero barrier (i.e., PR > 0.5). Note that the number 
of user input mappings required to amend Overall reflects the amount of structural heterogeneity and 
element mapping ambiguity amongst the grammars being compared: the more grammars are 
structurally similar and the lesser the schema element ambiguities, the lesser the number of input 
mappings needed to obtain positive Overall. 

 
6.3.4.  Comparative Study 
 

In order to further evaluate our method, we conducted a comparative study to assess its effectiveness 
w.r.t. existing XML grammar matching methods. On one hand, our method is i) dedicated to XML 
grammars, ii) considers the various kinds of XML grammar characteristics, iii) while being extensible 
to different matchers, which are crucial criteria required to minimizing user effort in undertaking the 
match task. On the other hand, most existing methods are either i) too generic, thus not adapted to the 



 

structured nature of XML grammars, ii) too restrictive, simplifying grammar constraints, or iii) too 
specific, i.e., not flexible and extensible to additional matching criteria. Table 10 summarizes the main 
differences between our method and its alternatives. 

We experimentally compared our method's effectiveness to three of its most recent and efficient 
alternatives, i.e., COMA [15], XClust [33] and Relaxation Labeling [69]. Recall that XClust and 
Relaxation Labeling seem more sophisticated than alternative matching approaches since they induce 
the least simplifications to the grammars being compared (XClust only disregards the Or operator, 
whereas Relaxation Labeling allows restrictive alternative declarations), while COMA is one the most 
efficient methods to follow the composite matching logic, i.e., combining the results of several 
matching algorithms using simple mathematical formulations (in comparison with expensive learning-
based methods, cf. background in Section 2.3). 

 
Table 10. Comparing our method to alternative solutions. 

 

Approaches 
Considers 
cardinality 
constraints 

Considers 
alternativeness 

constraints 

Considers 
data-types 

Considers 
recursive 

declarations

Extensible to 
several 

Matchers 

Flexible w.r.t. 
mapping 

cardinalities 

Dedicated to 
XML 

grammars 
Cupid [37]       (1:1, 1:n) 

Similarity Flooding [41]       (1:1) 
LSD [18]       (1:1)  (DTD) 

NNPLS [30]       (undefined)  (XSD) 
Syntactic Similarity [60]       (1:1)  (DTD) 

Porsche [55]       (1:1, 1:n, n:1)  (XSD) 
XPruM [2]       (1:1, 1:n, n:1)  (XSD) 
COMA [15]       (1:1) 
XClust [33]       (1:1)  (DTD) 

Relaxation Labeling [69]   (restrictive)  (restrictive)    (1:1)  (XSD) 
Our Approach       

 
We ran each of the algorithms on the same 18 matching tasks described in Table 9. Note that 

with each of the alternative matching approaches, optimal input parameters, as indicated in their 
corresponding studies, were provided. In addition, the same WordNet extracts utilized with our 
approach were provided as reference semantic networks to COMA and XClust, both methods 
encompassing semantic-based label comparison measures. PR, R, F-Value and Overall results, are 
depicted in Figures 18-21 and Table 11. Our method’s PR, R, F-Value and Overall results, when 
integrating user feedback, are also presented in the figures below. Improvements due to user feedback 
are depicted via a colored area reflecting their span from the results obtained with our fully automated 
approach, the latter being underlined by the base graph in each figure. 

Note that Precision vs Recall graphs, usually utilized to describe the answer quality of 
information retrieval systems, are irrelevant here since the matching tasks are completely unrelated. 

 

 
 

Figure 18. Precision (PR) results, comparing our method with COMA [15], XClust [33] and RL [69]. 

 



 

  
 

 
Figure 19. Recall (PR) results, comparing our method with COMA [15], XClust [33] and RL [69]. 

 

 
Figure 20. F-Value results, comparing our method with COMA [15], XClust [33] and RL [69]. 

 

 
 

 
Figure 21. Overall results, comparing our method with COMA [15], XClust [33] and RL [69]. 

 
Table 11. Average PR, R, F-Value and Overall values. 

 

 PR R F-Value 
N# of negative 

Overalls 
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Without user 
feedback 

0.6096 0.7488 0.6667 6 

User feedback: 
1 input mapping 

0.6517 0.7703 0.7027 2 

User feedback: 
2 input mappings 

0.6700 0.7909 0.7221 2 

User feedback: 
3 input mappings 

0.6842 0.8048 0.7367 1 

COMA 0.7205 0.5101 0.5790 2 

XClust 0.5047 0.554 0.5251 7 

Relaxation Labeling 0.4629 0.3030 0.3224 11 



 

Recall that user feedback, with our approach, is only considered with 6 of the 18 match tasks: 
those which attained negative Overall scores in the initial matching phase (cf., Section 6.3.3). Results 
provided in Table 11 show that our method yields average Precision levels higher than those achieved 
by its predecessors (with and without user feedback), to the exception of COMA. That is due to the 
generic nature of COMA considering mappings which do not necessarily verify structurally integrity 
(i.e., they do not verify sibling order nor do they verify ancestor/descendent relations), but which 
correspond to user mappings. Such mappings are replaced by structurally valid ones using our 
approach, but which might not be correct w.r.t. the user (similarly to the falsely detected mappings in 
Table 7, which our system replaced by structurally correct ones). On the other hand, our method 
consistently maintains Recall levels higher than those of all its alternatives (with and without user 
feedback). In cases where higher/lower Precision/Recall levels are obtained simultaneously, the F-
Value measure is fundamental in assessing the overall loss and gain in average Precision/Recall, and 
thus evaluate result quality. With respect to all 18 matching tests, our method yields higher average  
F-Values in comparison with COMA, XClust and Relaxation Labeling (with and without user 
feedback). We omit average Overall values since the measure is non-linear in terms of Precision and 
Recall. On one hand, its averaging in the presence of negative values is meaningless (when 
Precision<0, Overall decreases with the increase of Recall, which is counter-intuitive). On the other 
hand, its averaging with only positive values would yield results proportional to those of F-Value, yet 
less optimistic [17].  

Hence, we exploit Overall by assessing the number of matching tasks with negative Overall 
values (i.e., where more than half of the produced mappings are incorrect). Recall that in such cases, it 
might be easier for the user to perform the whole matching task from scratch, instead of analyzing and 
correcting those produced by the system. Results show that our method, in its initial (pre-feedback) 
matching phase, produces 6 negatives (negative Overall values were obtained with 6 matching tasks), 
2 negatives after the first feedback run (with 1 user mapping for each of the 6 tasks), and only 1 
negative after the third run. In comparison, COMA produced negative Overall values with 2 of the 
matching tasks, XClust and RL producing 7 and 11 negatives respectively. In short, w.r.t. Overall, our 
method outperforms both XClust and RL without user feedback, and produces the same amount of 
negative Overall values as COMA after one user input, consequently outperforming COMA with three 
user inputs. Recall that while it produces more negative Overalls than COMA in its initial 
(automated) phase, our approach always yields higher F-value scores. In other words, in most 
matching tasks where more than half the mappings are correct (OverallOurApp > 0), our method 
generates more accurate mappings than COMA (F-ValueOurApp > F-ValueCOMA). Recall that COMA is 
more generic than our approach (it does not strictly focus on the topological structure of XML 
grammar nodes, using an XML structure matcher among others) and thus yields average results in 
most cases. However, our approach is dedicated to structured data; it might induce lower quality with 
certain matching tasks (usually with structurally disparate grammars), yet generates higher quality 
mappings in the general case. 
 
6.4. Performance Evaluation 
 

In addition to testing the effectiveness of our approach in identifying correct mappings, we evaluated 
its efficiency levels, i.e., its time and space performance. We also compared our method’s execution 
time w.r.t. manual mapping in order to estimate the amount of user (time) savings in performing the 
match task. In addition, we compared our approach with some of its prominent alternative methods.  
 
6.4.1. Time and Space Analysis 

 

As shown in Section 5.5, the complexity of our XML grammar comparison method comes down to 
O(|T1|×|T2|×|SN|×Depth(SN)) time and O(|T1|×|T2|) space. Time complexity simplifies to 
O(|T1|×|T2|) when the label Semantic similarity matcher is disregarded.  

We start by verifying our approach’s polynomial (quadratic) time dependency on XML grammar 
tree size, i.e., O(|T1|×|T2|), which equally underlines a linear dependency on the size of each XML 
grammar tree being compared (cf. Figure 22.a). Here, all matchers were considered to the exception 



 

of the Semantic one. Timing experiments were carried out on a PC with an Intel Xeon 2.66 GHz 
processor with 1GB RAM. Figure 22.a shows that the time to identify the mappings between two 
XML grammar trees of various sizes grows in an almost perfect linear fashion with tree size.  

 
 

  

 
 

a. Timing analysis with Semantic matcher deactivated.   

b. Timing analysis with Semantic matcher activated. 
 

Figure 22. Timing results. 
 

When exploiting the Semantic matcher in the matching process, the size and depth of the 
reference semantic network (utilized to evaluate label semantic similarity) come to play. As shown in 
Section 5.5, the complexity of the Semantic matcher is estimated as O(|SN|×Depth(SN)) which is due 
to traversing the semantic network when searching for the lowest common ancestor between two 
nodes (concepts) [35, 67]. Thus, in order to reduce our method’s complexity, we pre-compute 
semantic similarity for each pair of nodes in the semantic network considered (which took more than 
5 CPU hours for a 600 node semantic network) and store the results in two dedicated indexed tables, 
one for each semantic measure (Lin and WuPalmer) (Oracle 9i DB)1. In other words, the Semantic 
matcher is no longer computational, but becomes tabular [45]. Consequently, the system would 
access the indexed tables to acquire semantic values instead of traversing the semantic network to 
compute semantic similarity each time it is needed (pair-wise similarity values are computed once, 
prior to comparing XML grammars). Due to this process, we eliminated the impact of semantic 
network depth on overall timing complexity. Timing results in Figure 22.b show that our approach 
becomes linearly dependent on the size on the semantic network considered, complexity simplifying 
from of O(|T1|×|T2|×|SN|×Depth(SN)) to O(|T1|×|T2|×|SN|).   
 

 

 

Figure 23. Memory usage. 
 

As for space complexity, memory usage results in Figure 23 show that our approach is 
quadratic in the combined size of the trees being compares, O(|T1|×|T2|), which underlines a linear 
dependency on the size of each tree. Note that grammar tree size does not seem to increase the slope 

                                                 

1  Oracle uses the B-Tree indexing technique. 



 

of memory chart lines (only the y-intersect). This underlines the possibility of further optimizing      
our implemented processes, so as to gain in memory, and maybe obtain implementations                 
that run in sub-linear space.  

 
6.4.2. Comparison with User Time 

 

In order to evaluate the efficiency of our tool in minimizing the amount of manual work to perform 
the match task, we compare our system’s timing results to those of manual user mappings. In this 
experiment, we evaluate the system’s semi-automatic time, which comprises of two subsequent 
intervals: i) the average time required by the system to automatically perform the match task, and ii) 
the average time required by the user to adjust and correct the resulting system mappings. 

First, to give a better impression of the problem size at hand, Figure 24.a depicts the actual 
similarity ratio (i.e., the number of user matches to be identified, w.r.t. the maximum number of 
elements in the grammars being compared), Figure 24.b presents the total number of nodes in each 
pair of grammars corresponding to the matching tasks described in Table 9, and Figure 24.c presents 
the average time it took for each user to manually perform each of the matching tasks (recall that three 
test subjects, two doctoral students and one post-doctoral researcher, were involved in the experiment). 
Consequently, Figure 24.d compares average user time and semi-automatic mapping time.  

Note that the matching tasks in our experiment are unrelated. Nonetheless, we utilize the graph 
paradigm to depict the experimental results for ease and clearness of presentation. 

 
 

 

 

 

a. Similarity ratio for each of the 18 matching tasks.  
 

b. Total number of nodes in each of the matching tasks. 
 

 
 

 

 
 

 

c. Manual mapping time. 

 

d. Comparing average manual mapping time and semi-automatic 
system mapping time. 

 

Figure 24. Comparing manual and automatic mapping time. 
 
Results in Figure 24.d show that semi-automatic mapping reduces matching time by a factor of 2 

on average (i.e., approximately 100% reduction in mapping time), in comparison with manual 
mapping. Results for match tasks 6, 15 and 17 underline a greater variation (increase) in semi-
automatic mapping time, in comparison with manual mapping time. That is due to the high amount of 
false positives generated by the system (highlighted by negative Overall values in our previous 
experimental results in Section 6.3), which requires the user a greater amount of time to adjust the 



 

system mappings (without however surpassing the time levels of full manual mapping). In other 
words, while negative Overall values (hypothetically) suggest that it might be easier for the user to 
manually perform the whole matching task from scratch, our timing results (w.r.t. all 6 match tasks 
with negative Overall values, cf. Table 9) show that it remains more profitable for the user to run the 
system, acquire the ‘correct’ system mappings, and adjust the ‘false’ ones. Results in Figure 24 also 
reflect an interesting observation: both manual time and semi-automatic mapping time closely 
correlate with the number of nodes in the grammars being compared (cf. Figure 24.b): the larger the 
grammars, the more time it takes for the users and the system to solve the matching task (cf. lower 
and higher peaks at tasks n# 9, 10, 11, 13 and 17 in each of the graphs in 23.b, c and d). Nonetheless, 
the similarity ratio (cf. Figure 24.a) does not seem to affect mapping time. 

In addition, we evaluate the effect of user feedback on mapping performance, estimating the average 
amount of time required by the user to: i) analyze the system mapping results, ii) provide her feedback 
input, and iii) adjust the resulting mappings produced by the system following the feedback phase. 
 

 

 
 

 

Figure 25. Average user feedback time. 

Results in Figure 25 show that user feedback considerably reduces matching time, ranging from 
an average factor of 2 (i.e., 100% reduction in mapping time) with one input mapping, an average 
factor of 2.4 (120% time reduction) with the second input mapping, and an average factor of 3 (200% 
time reduction) with the third input mapping. In other words, the more user feedback is provided to 
the system, the lesser the number of grammar nodes to be automatically matched, and thus: i) lesser 
time is required by the system to perform the match operation, and ii) lesser time is usually required 
by the user to adjust the matching results (since input user mappings need not be re-evaluated).  

For the sake of discussion, note that user feedback might sometimes induce higher semi-automatic 
mapping time (cf. Figure 25, mapping task n# 12, 2nd feedback input), which is due to the additional 
user effort required to i) select the feedback input and/or ii) analyze the mapping results. Yet, such 
cases remain trivial in comparison with the general trend (reflected in all remaining tasks in Figure 
25). In short, results in Figure 25 show that it is often easier (i.e., faster) for the user to select an input 
mapping, (which only requires a partial analysis of the system generated mappings) than to perform 
the whole matching task by hand. 
 
6.4.3.  Comparison with Existing Approaches 
 

In addition to verifying the complexity levels of our approach, and highlighting its efficiency w.r.t. 
manual user mapping, we assess our method’s overall time performance w.r.t. some of its most 
prominent alternatives: COMA [15], XClust [33] and Relaxation Labeling [69]. 

In this context, we conducted three main experiments, measuring: i) automatic mapping time, ii) 
semi-automatic mapping time (including the user time to adjust matching results), and iii) time 
analysis w.r.t. varying grammar sizes. The first experiment measures the time required in order to 
automatically perform each of the matching tasks described in Table 9. Results in Figure 26 show that 
our method and XClust provide, on average, the best time levels throughout all 18 matching tasks. 
COMA comes second in time consumption, underlining the inherent complexity of its individual 



 

matcher algorithms (e.g., path matchers, sibling matchers, leaf node matchers… [15]). Relaxation 
labeling is the most time consuming approach, emphasizing its iterative nature (recall that the 
Relaxation Labeling technique in [69] computes different variations of the similarity matrix, until 
either a certain convergence threshold or the maximum number of iterations are obtained, as 
previously described in the state of art, Section 2.3).  
 

 
 
 

 

 

a. Comparison results including Relaxation Labeling. 
 

b. Comparison with COMA and XClust. 
 

Figure 26. Time comparison with COMA, XClust, and Relaxation Labeling. 
 
The second experiment measures two subsequent time intervals: i) automatic mapping time, plus 

ii) the average time required by the user to adjust system mappings. Results in Figure 27 show that 
our method requires, on average, the least amount of time to semi-automatically solve the matching 
tasks. Relaxation labeling underlines the worst time, whereas XClust and COMA fall in between. Note 
that timing results in this experiment are also an indicator of each approach’s matching quality, since 
greater user mapping time (to adjust the mapping results) underlines inferior automatic mapping 
quality. Hence, results in Figure 27 confirm that our method provides, on average, higher matching 
quality than its predecessors. 
 

 

 

Figure 27. Semi-automatic mapping time. 
 

The third experiment measures time performance for varying grammar sizes (ranging from 50 
nodes, up to 1000 nodes per grammar). Results in Figure 28 show that our approach and XClust 
provide the best timings (with almost identical levels) for grammars under 650 nodes. XClust 
gradually outperforms our approach with larger grammars (encompassing more than 700 nodes). 
Recall that XClust simplifies XML grammar representations (disregarding alternativeness element 
declarations and element/attribute data-types), and is constrained to DTD grammars (disregarding 
more expressive XSD constraints such as Minoccurs and Maxoccurs), which might explain its higher 
execution speed when comparing larger XML grammars. COMA is constantly more time-expensive 
than both our approach and XClust. Note that in our experiments, Relaxation Labeling provided the 



 

worst timing levels (cf. Figure 28.a), exceeding our approach, XClust and COMA by a factor of 18 on 
average (for instance, comparing two 50 node schemas with Relaxation Labeling requires 19 seconds 
on average, whereas it is performed in 0.2 seconds using our approach, 0.55 using XClust, and 0.9 
seconds using COMA).  

 
 
 

 

 

  a. Time results, including Relaxation Labeling. 
 

  b. Time comparison with COMA and XClust.  
 

Figure 28. Time analysis with varying grammar sizes. 

Note that our current experimental results were undertaken on the most basic implementation of 
our approach, regardless on any special indexing or pointer structures, in order to test the raw 
capabilities of our method. Nonetheless, we are currently investigating various performance 
enhancement techniques (such as B-tree indexing [20], Prufer sequence encoding [2], node clustering 
[55], etc.), in order to improve our method’s efficiency in comparing large XML grammars.  

In addition to time analysis, we compared the memory consumption of each of the methods 
mentioned above w.r.t. varying grammar sizes. Results with COMA, XClust, and Relaxation Labeling 
were similar to the ones obtained using our method (cf. Figure 23). Apparently, memory usage  
mainly depends on the sizes of the grammars being compared, rather than the storage of local 
variables and similarity matrixes computed by each approach, which seem to consume relatively 
negligible memory size. 
 
6.5. Discussion 
 

In order to concisely recap the results of the various experiments described in this section, we portray 
the differences in performance levels of each of the matching approaches exploited in our 
experimental study, on a scale from 4 (best performance) to 1 (worst performance) w.r.t. each of the 
main experiments. F-Value and Overall underline the results obtained in our matching quality 
experiments (cf. Section 6.3.4). Semi-Auto underlines the average semi-automatic mapping time 
required to perform the match tasks (cf. Figure 27). Auto Time levels underline respectively: the 
average time to automatically perform the match tasks, and time variation w.r.t. grammar size.  
 

   

 

 
 

Figure 29. Time analysis with varying grammar sizes. 



 

The graph in Figure 29 provides a simplified overview of our experimental results: 
 

- Our approach provides high quality results in terms of both effectiveness and efficiency levels, 
- COMA tends to provide better mapping quality (effectiveness) than time performance 

(efficiency), which emphasizes its composite nature (i.e., execution of several independent 
matching algorithms, cf. Section 2.3.2) and the inherent complexity of its individual matcher 
algorithms (e.g., path matchers, sibling matchers, leaf node matchers, etc. [15]), 

- XClust tends to provide better time performance (than the separate execution of multiple 
independent matchers such as with COMA, or the more fine-grained approach developed in 
this study), but usually yields less accurate mapping results (probably due to the simplification 
of the grammars being compared [33]). 

- Relaxation Labeling underlines the worst performance results in terms of both effectiveness 
and efficiency. Despite considering most basic XML grammar constraints, the relaxation 
labeling technique (which iteratively updates the pair-wise element similarity matrix until 
either a predefined convergence factor or a maximum iteration time is obtained [69]) seems 
detrimental to both mapping accuracy and execution time. 

 

7.  Conclusion 
 

In recent years, the proliferation of distributed and heterogeneous XML data sources on the Web has 
highlighted the challenge to integrate and interoperate such repositories so as to access, acquire and 
manipulate more complete information. Hence, solving the XML grammar matching and comparison 
problem, which is at the core of the integration process, becomes an obvious need.  

In this paper, we propose a framework for XML grammar matching and comparison, based on 
the concept of edit distance. To our knowledge, this is the first attempt to exploit tree edit distance in 
an XML grammar matching context. Our method aims at minimizing the amount of manual work 
needed to perform the match task by i) considering all basic XML grammar characteristics and 
constraints, via a dedicated grammar tree model, in comparison with existing ‘grammar simplifying’ 
approaches, ii) allowing a flexible and extensible combination of different matching criteria, 
adaptable to various application scenarios, in comparison with existing static methods, and iii) 
effectively considering the semi-structured nature of XML, as the most prominent and distinctive 
feature of an XML grammar, in comparison with existing heuristic or generic approaches, in order to 
produce more accurate results. We have implemented our approach and conducted various              
tests to validate its effectiveness and efficiency in identifying XML grammar mappings, w.r.t. 
alternative methods.  

As continuing work, we are currently investigating the extension of our method to deal with user 
derived data-types. These are allowed in the XSD language [49] via dedicated data-type restriction 
and extension operators (which do not exist in DTDs). For instance, a user defined data-type IntEven 
which only allows even integer values, is a restriction of the predefined XSD Integer data-type, 
allowing both even and odd numbers. Likewise, one can imagine much more intricate type extensions 
and restrictions, involving both simple and complex elements (e.g., extending a complex type by 
adding new elements specific to the newly defined complex type). In this context, dedicated 
knowledge bases (i.e., semantic networks) and user-defined semantics [65] would have to be 
considered to assess the relatedness between the various data-types [23]. We are also currently 
investigating techniques to performance enhancement (e.g., such as B-tree indexing [20], Prufer 
sequence encoding [2], node clustering [55]…) in order amend our method’s performance levels so as 
to efficiently compare large scale schemas. In the near future, we plan to study the effect of the 
different matchers and criteria on matching effectiveness, proposing (if possible) weighting schemes 
that could help the user tune her input parameters to obtain optimal results. In the long run, we plan to 
study XML grammar integration, one of the main application domains of grammar matching, toward 
manipulating materialized XML views [36] and XML schema evolution functions. 
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