
Fast Text Classification using Lean Gradient Descent Feed
Forward Neural Network for Category Feature Augmentation

Joseph Attieh

E.C.E Dept., School of Engineering

Lebanese American University (LAU)
36 Byblos, Lebanon

joseph.attieh@lau.edu

Joe Tekli

E.C.E Dept., School of Engineering

Lebanese American University (LAU)
36 Byblos, Lebanon
joe.tekli@lau.edu.lb

Abstract—Text classification is a key task of the Natural
Language Processing (NLP) field that aims at assigning predefined
categories to textual documents. Performing text classification
requires features that effectively represent the content and the
meaning of textual documents. Selecting a suitable method for term
weighting is of central importance and can improve the quality of the
classification method. In this paper, we propose to a new text
classification solution to perform Category-based Feature
Augmentation (CFA) on the document representation. First, a term-
category feature matrix is derived from a modified version of the
supervised Term-Frequency Inverse-Category-Frequency (TF-ICF)
weighting model. This is done by embedding the TF-ICF matrix in a
one-layer feed-forward neural network. The latter is trained using
the gradient descent algorithm allowing to iteratively update the
term-category matrix until reaching convergence. The model
produces category-based feature vector representations that are used
to augment the document representations and perform the
classification task. Experimental results on four benchmark datasets
show that our lean model approach improves text classification
accuracy and is significantly more efficient compared with its deep
model alternatives.

Keywords—Text Classification, Document and Text Processing,
Feature Engineering, Supervised Term Weighting, Inverse Category
Frequency, TF-IDF, Text Representation.

I. INTRODUCTION

Text classification has become a key task in the NLP field [2, 28],
with applications ranging over different domains, including
information retrieval (e.g., classifying customer complaints into
predefined categories [15, 32]), information filtering (e.g.,
identifying spam emails and filtering them for better user
experience [3, 19]), and sentiment analysis (e.g., classifying texts
into different polarities, e.g., positive, negative, or affective
categories, e.g., happy, angry, sad [12, 13]). Text classification
consists of two main phases: i) feature representation phase, and
ii) classification phase. State-of-the-art feature representations
mainly compute a weighted representation of the terms in the
target documents. This stems from the assumption that terms that
are more important in describing a given document are assigned a
higher weight. The weighted document representations are then
run through a trained classifier to categorize the documents
against a set of target classes or categories. Therefore, selecting
an adequate method for term weighting is important as it affects
the effectiveness of the text classification. Here, we distinguish
between two types of weighting schemes used to represent the
document: i) unsupervised, where the representations rely on the
distribution of the terms across the input documents, and ii)
supervised, where representations are influenced by the target
categories.

In this paper, we propose to perform Category-based Feature
Augmentation (CFA). The proposed method aims to improve
classification quality by introducing term-category relationships
in the document representation. Our solution consists of a
supervised weighting scheme derived from a modified version of
the Term-Frequency Inverse-Category-Frequency (TF-ICF)
scheme (cf. Section III). Different from existing approaches
which are designed for document representation (cf. Section
II.A), we adapt TF-ICF to produce weighted representations for
the target categories. We augment each document with synthetic
features that improve category classification quality. This is done
by first embedding a term-category TF-ICF matrix in a one-layer
Feed-Forward Neural Network (FFNN). This model then
produces category representations and updates these
representations using the gradient descent algorithm until
reaching convergence. Compared with existing deep learning
solutions (cf. Section II.B), the main contributions of our study
are summarized as follows: i) this is the first approach that
employs the TF-ICF weighting scheme to represent text
categories, while existing solutions employ this scheme to
represent the input documents rather than the target categories; ii)
we introduce a new set of features inferred from the proposed
weighting scheme for a more effective classification; and iii) we
introduce a new classification model, GradientDescentFFNN,
with a lean architecture consisting of a one-layered structure
compared with its more complex deep learning alternatives for a
more efficient classification. Experimental results on four
benchmark datasets show that our solution improves text
classification accuracy while requiring significantly fewer model
parameters and computation time compared with its deep learning
and deep attention alternatives.

The remainder of the paper is organized as follows. Section
II reviews the related works. Section III introduces our supervised
TF-ICF weighting scheme. Section IV describe our approach.
Section V presents the complexity analysis. Section VI describes
our experimental evaluation, before concluding in Section VII.

II. RELATED WORKS

A. Feature Representation

State-of-the-art text features mainly rely on a weighted
representation of the terms in the target documents, e.g., [4, 11].
The underlying idea is that terms that are more important in
describing a given document are assigned a higher weight. We
distinguish between two kinds of weighting schemes: i)
unsupervised and ii) supervised.

Unsupervised term weighting methods compute the weights
of the terms in the specific document based on the distribution of
the terms in the source documents. An example of such methods

is the standard Term Frequency – Inverse Document Frequency
(TF-IDF) of the Vector Space Model (VSM) [27, 33]. While
effective in many applications [32], the main drawback of such
methods is that they only focus on the term distributions within
the collection of documents, without considering the relationship
between the source terms/documents and the target categories.
Supervised term weighing methods solve this limitation by using
statistical information extracted from the text documents and the
corresponding categories. Various supervised term-weighting
schemes have been suggested to replace the IDF factor of TF-
IDF, including schemes like chi-squared (χ2) [9], information
gain (IR) [9], and odd ratio (OR) [29]. More recently, the authors
in [42] introduced a supervised version of the IDF called ICF
(Inverse Category Frequency). The ICF scheme describes the
importance of terms in describing target categories, e.g., [11, 37],
and creates a different representation of each document based on
its associated category. Experimental results in [10, 11, 38]
indicate that the ICF weighting schemes exhibit superior
performance in comparison to conventional supervised and
unsupervised weighting. In this study, we adopt the ICF
weighting scheme and propose a supervised scheme based on a
variant of TF-ICF.

B. Classification Techniques

Text classifiers use machine learning algorithms adapted to deal
with textual features by employing a two-step process consisting
of a documentation representation stage and a document
classification stage. For most text classifiers, the information
about the target categories is only utilized at the classification
stage and is not considered during the document representation
stage. Therefore, recent approaches propose to replace the one-
hot vectors representing the target categories by an embedding
vector which integrates information about the
term/document/category relationships, e.g., [41, 43, 46]. The
authors of [43] present LEAM (Label Embedding Attentive
Model). LEAM treats the text classification problem as a
category-term joint embedding problem where each category is
embedded in the same space as the term vectors. The text
representation is computed using a weighted average of the term
embeddings, where the weights correspond to the category-based
attention scores. These scores are learned on a training set of
categorized samples. Similarly, the authors in [46] formulate the
text classification problem as a vector matching problem, in
which they compute a matching score between the embedding
vector representation of the input text and the embedding
representation of each category vector. The embedding
representation of the input text is generated using an input
encoder, while the representation of each category is generated
using a category label encoder. The authors in [41] first compute
a category-based text representation from both the input terms
and the target category label embeddings. Then, a convolutional
neural network (CNN) is used to compute the weights of the
terms from the convolution operation of both the category-based
text representation and the term-based text representation (this is
similar to the attention score obtained by the attention mechanism
proposed in [43]). Finally, fully connected softmax layers are
used to perform the classification task. In [45], the authors
propose a Text Graph Convolutional Network (Text GCN). This
network embeds the document into a single graph, where the
nodes represent the documents and terms, and edges represent the

document-term and term-term weights. TextGCN is initialized
with a one-hot representation for each node. Then, TextGCN
jointly learns the embeddings for both terms and documents using
the labelled documents. In [26], the authors introduce another
graph-based approach, GraphStar, which adds a virtual “star”
node to propagate global information to all nodes. This approach
learns better representations by introducing topological
modifications of the original graph. In [23], the authors suggest
that most category-augmented embedding solutions suffer from
partial semantic loss, as they ignore the interaction between terms
and sentences in the source text. Therefore, they propose LAHAN
(Label-Attentive Hierarchical Attention Network) which extracts
better text embeddings using a hierarchical architecture
integrating category information at both term and sentence levels.

C. Discussion

As mentioned previously, traditional text classification methods
leverage information about the target categories only in the
classification phase, ignoring their role in the document
representation phase, e.g., [2, 20]. Therefore, recent approaches
have proposed supervised term weighting solutions to augment
and transform the document representation with category
information, using ICF (Inverse Category Frequency) weighting
schemes and category label embeddings, e.g., [4, 10, 42]. They
have produced better results compared with their traditional and
unsupervised counterparts [11, 23, 41]. In this study, we adopt a
supervised weighting scheme based on a variant of the ICF model
and introduce a lean Feed-Forward Neural Network (FFNN)
architecture to update this scheme.

III. ICF WEIGHTING MODEL

Besides representing each document by its individual TF-IDF
vector, we represent each category by a TF-ICF vector where the
dimensions represent distinctive terms and the weight of each
dimension reflects the frequency of occurrence of the term in the
documents belonging to the category. We then embed the new
weighting scheme in our GradientDescentFFNN classification
model to capture the relationships between document terms and
target categories.

Table 1. Variant of the TF-ICF model adopted in our study.

Variable Description

TF () ()
j p

k j

j
i c i d i

d c

TF freq t freq t

CF () ()
ii tCF t freq C

ICF
| | 1

log 1
() 1i

i

C
ICF

CF t

TF-ICF j j
i i iTF ICF TF ICF

We designate by D ={d1, d2, …, d|D|} the set of training
documents, T ={t1, t2, …, t|T|} the set of terms that occur in the
documents in D (the vocabulary of D), and C ={c1, c2, …, c|C|} the
set of predefined target categories (classes or labels). We compute
the TF-ICF of a term tiT in category cjC as shown in Table 1.
TF represents the frequency of a term inside the set of documents
pertaining to the category cj, where more recurrent terms are
assigned higher TF scores. ICF represents the fraction of

categories that contain term ti , where less recurrent terms are
assigned higher ICF scores. The less categories term ti occurs in,
the more descriptive it will be in distinctively describing the
categories it occurs in, and vice versa (the more categories term ti
occurs in, the less expressive it will be in distinguishing the
categories).

IV. GRADIENT DESCENT FFNN CLASSIFICATION

We aim to augment each document representation with a feature
vector that can help identify the correct category for the
document. This feature vector is of size |C| where every feature
dimension represents how likely the document will be assigned to
a category cj C. We aim to identify features that satisfy the
following expression:

 1 | |
 /() { , ..., } arg max (())

k C k kC jc c cF d f f F d c

 (1)

where F(dk) represents the set of features representing document
dk,

icf is the feature representation of category ci, and C is the set

of target categories. We simplify this problem by assuming that
the features inferred for every document are an aggregation of the
features of every term in the document. This assumption follows
the bag-of-words model and can be expressed as an arithmetic
addition of the features of every term in the document. Therefore,
the problem can be formulated as follows:

1 | |
() { ,..., } argmax ((/))

j
C k kk

i i

C

i k i k

t t
c c c

t d t d

F d f f F d c

 (2)

Accordingly, we identify a term-category matrix of size
|T||C| where every vector in the matrix corresponds to a
category-representation of a term, and every value in the matrix
corresponds to the TF-ICF weight of a term ti T w.r.t. a
category cj C. We introduce two term-category matrices: a seed
matrix M computed using our TF-ICF weighting scheme
described earlier; and a dynamic version of M denoted by M’,
computed using the gradient descent algorithm. The matrix
computation process consists of: i) linguistic preprocessing, ii)
matrix initialization, and iii) matrix update.

A. Linguistic Preprocessing

Linguistic preprocessing cleans the content of the documents
through a series of steps that include tokenization, removal of
stop words, removal of capitalization and punctuation, and
stemming. This is crucial to form an appropriate vocabulary that
will be used to represent the features of the documents in the
vector space model.

Running example: Consider training documents D = {d1, d2,
d3, d4, d5} and their desired categories C ={c1, c2, c3} in Table 2.a.
The preprocessed documents and their TF vectors are shown in
Table 2.b. The vector dimensions represent the terms T = {t1, …,
t8} which will be utilized to compute the seed TF-ICF matrix M.

B. Matrix Initialization

Matrix initialization computes the seed matrix M using the TF-
ICF statistic introduced previously. The resulting matrix

describes the initial impact of each term ti T on every predefined
category cj C (cf. running example in Table 3).

Table 2. Sample training documents used in our running example.

a. Training documents and their category labels.

Documents D Categories C

d1 “He ate a green apple then cooked an apple pie” c1 Food

d2 “He wrote it on his green book” c2 Study
d3 “She cooked one apple pie and another apple pie” c1 Food
d4 “The grass was green” c3 Nature
d5 “The apple cook book” c2 Study

 b. Preprocessed documents and their term-frequency vectors.

Preprocessed
Documents D

Term-document vector dimensions
t1 t2 t3 t4 t5 t6 t7 t8

eat green apple write book cook pie grass

<“eat”, “green”, “apple”,
“cook”, “apple”, “pie”>

1 1 2 0 0 1 1 0

<“write”, “green”, “book”> 0 1 0 1 1 0 0 0

<“cook”, “apple” ,“pie”,
“apple” ,“pie”>

0 0 2 0 0 1 2 0

<“grass”, “green”> 0 1 0 0 0 0 0 1

<“apple”, “cook”, “book”> 0 0 1 0 1 1 0 0

Table 3. TF-ICF seed matrix M computed based on our running

example from Table 2.

a. Term-Frequency (TF) weight matrix.

Categories C

Term-category vector dimensions
t1 t2 t3 t4 t5 t6 t7 t8

eat green apple write book cook pie grass

c1 Food 1 1 4 0 0 2 3 0

c2 Study 0 1 1 1 2 1 0 0

c3 Nature 0 1 0 0 0 0 0 1

b. Inverse Category Frequency (ICF) weight vector.

Category
collection

Term-category vector dimensions
t1 t2 t3 t4 t5 t6 t7 t8

eat green apple write book cook Pie grass

C 1.7 1 1.29 1.7 1.7 1.29 1.7 1.7

c. Combined TF-ICF seed matrix M.

Categories C

Term-category vector dimensions
t1 t2 t3 t4 t5 t6 t7 t8

eat green apple write book cook pie grass

c1 Food 1.7 1 5.16 0 0 2.58 5.1 0

c2 Study 0 1 1.29 1.7 3.4 1.29 0 0

c3 Nature 0 1 0 0 0 0 0 1.7

C. Matrix Update

1) Matrix Model

We propose to refine the seed matrix M into a matrix M’ using
the gradient descent algorithm. Note that other optimization
solutions can be used to refine the matrix, such as evolutionary-
developmental algorithms, e.g., [1, 7]. We propose to model the
term-category matrix using a 1-layer FFNN, where the inputs
correspond to the terms in the vocabulary, and the outputs
correspond to the predefined categories (Fig. 1). The FFNN has a
weight matrix of size |T||C| which represents the term-category
matrix M. We adopt a 1-layered FFNN as the simplest possible

solution to the problem, yet deeper neural structures can be
considered. We utilize softmax as the activation function of the
final layer (i.e., the only layer in our current 1-layered network),
which is suitable with our decision function (i.e., the category
with the highest weight in the output determines the category of
the document).

Fig. 1. Simplified diagram describing GradientDescentFFNN.

2) Matrix Update

The matrix update step is responsible for updating the matrix M-
into-M’ to answer our problem, and consists of training the FFNN
using the gradient descent algorithm. The matrix update ends
when the gradient descent algorithm reaches convergence (i.e.,
the matrix M’ is of desired quality), or when reaching a maximum
number of (user or system specified) iterations. We propose to
evaluate the quality of the updated matrix by splitting the set of
training documents D into i) a reference subset (70%), and ii) a
validation subset (30%)1. The reference subset is used to optimize
the FFNN and update the category-term matrix, while the
validation subset is used to evaluate the quality of the updated
matrix. The quality of the matrix is evaluated using the category
inference accuracy, by comparing the categories inferred by the
FFNN for every document in the evaluation subset with the
expected document categories.

 This is suitable with the problem formulation in Equation
(2). Following our TF-ICF weighting scheme, the weights inside
matrix M’ reflect the likelihood of occurrence of each term in
each category. Hence, performing category inference comes
down to finding the category that is most described by the terms
inside the document. This is reflected by computing the
summation of the TF-ICF weights of the terms occurring in the
document, for each category in C. This is analogous to the
operation performed by the FFNN.

D. Augmented TF-ICF Document Features for Classification

As mentioned previously, producing the matrix M’ using the
FFNN and the gradient descent algorithm maximizes category
inference accuracy. We formulate the category inference:

1 We adopt a random 70/30 split (other forms of cross-validation splitting can be

used, like k-fold or Monte-Carlo).

,
j

Inference k ij
i k

c C
t d

Category d C arg max TF ICF

(3)

where dk is the document being processed for category inference,
and cj is the category which is assigned to dk as a result of the
category inference process. After computing the TF-ICF seed
matrix M and generating its updated version M’, we produce the
augmented TF-ICF document features needed for the
classification phase. The overall process is visualized in Fig. 2.
From both M and M’, we extract the following aggregate feature
vectors for each document:

 The summation of the weights of the terms occurring in the
document per category (i.e., the soft scores per category
using the category inference):

-
i k

k
i

t d

TF ICF

 (4)

 The maximum of the weights of the terms occurring in the

document per category:

 -
i k

k
i

t d
max TF ICF

 (5)

The above features are concatenated to form the new

aggregate TF-ICF feature vector for the document, which length
is equal to four times the number of categories (since each feature
vector has one dimension per category). We extract these
aggregate TF-ICF features for all the documents in the training
set, where each document is now associated with: i) a traditional
TF-IDF vector representation, and ii) the aggregate TF-ICF
vector representation described above. Both features are used to
train the classifier model. The classifier adopted in this study is a
Linear Support Vector Machine (SVM) due to its quality in
performing text classification (SVM is specifically designed to
handle sparse feature vectors, which is the case with high-
dimensional text data). Nonetheless, other classifiers can be used
following the system designer’s preferences. Once trained, the
classifier predicts the category of a new input document based on
its traditional TF-IDF and learned TF-ICF feature vectors.

Table 4. Feature augmentation based on the TF-ICF seed matrix M

from Table 3.c.

Categories C

Term-Category vector dimensions

 maxt1 t2 t3 t4 t5 t6 t7 t8

eat green apple write book cook Pie grass

c1 Food 1.7 1 5.16 0 0 2.58 5.1 0 7.74 5.16

c2 Study 0 1 1.29 1.7 3.4 1.29 0 0 5.98 3.4

c3 Nature 0 1 0 0 0 0 0 1.7 0 0

Running example: Consider training document d5 =“The

apple cook book” and its desired category c2 = Study. Using seed
matrix M from our running example (Table 3), the initial category
inference process applied on d5 produces category c1 = Food (cf.
inference computation in Table 4). This assignment is incorrect
since the document is supposed to be assigned with its desired
category c2 = Study. This discrepancy in category assignment is
solved by updating the seed matrix by training the FFNN through
the gradient descent method.

Parameters

Input Training
Documents

Input Testing
Documents

Document
Categories

User input

Preprocessed, tokenized,
and labelled

Preprocessed
and tokenized

Matrix
Initialization

Feature
Extraction

Feature
Extraction

Model
Training

Category
Inference

Term-Cat.
Seed Matrix

Augmented
Training Docs

TF-ICF Features

Augmented
Testing Docs

TF-ICF Features

SVM
Classifier

Other
classifiers

can be used

Term-Cat.
Updated Matrix

T
er

m
s

C
at

eg
or

y
ve

ct
or

s

M

M’

TF-ICF
computation

Maximum weight
summation

Term-Cat. Matrix Computation

Training Phase

Execution Phase

Fig. 2. Simplified diagram describing the document features computation, and the features’ usage within the classification process.

V. COMPLEXITY ANALYSIS

The computational complexity of the proposed solution is O(t
c) where t is the number of tokens in the vocabulary (forming the
document-term vector dimensions, t = |T|), and c is the number of
target categories (forming the document-category matrix
dimensions, i.e., c = |C|). Table 5 compares our method with
existing solutions in the literature in terms of the number of
compositional parameters and the computational complexity.

Table 5. Number of parameters and computational complexity of

existing solutions.

t represents the number of tokens in the vocabulary (i.e. t=|T|), c the
number of target categories (c = |C|), f the number of filters in the

CNN, s the size of the CNN filter, h as the number of dimensions of
hidden units in the LSTM, n and e respectively represent the
number of nodes and the number of edges in GCN, and p the

number of dimensions of the sequence (length of the embedding).

Approach Parameters
Computational

Complexity
CNN-non-static [21] 𝑠 ൈ 𝑓 ൈ 𝑝 𝑂ሺ𝑠 ൈ 𝑓 ൈ 𝑝 ൈ 𝑡ሻ

Bi-LSTM [45] 4ℎ ൈ ሺℎ 𝑝ሻ 𝑂ሺ𝑡 ൈ ℎଶ 𝑡 ൈ ℎ ൈ 𝑝ሻ
SWEM [35] ∅ 𝑂ሺ𝑡 ൈ 𝑝ሻ

TextGCN [45] 𝑝ଶ 𝑛ଶ 𝑂ሺ𝑛 ൈ 𝑝ଶ 𝑒 ൈ 𝑝ሻ
LEAM [43] 𝑐 ൈ 𝑝 𝑂ሺ𝑐 ൈ 𝑡 ൈ 𝑝ሻ

GradientDescentFFNN 𝑡 ൈ 𝑐 𝑂ሺ 𝑡 ൈ 𝑐ሻ

On the one hand, SWEM [35] requires the least number of
parameters, followed by our approach and LEAM [43] requiring t
 c and c p respectively, where p is the number of dimensions
of the sequence representation (i.e., length of the embedding). On
the other hand, our solution requires the least amount of
computational complexity, since the number of target categories
is usually much smaller than the size of the embedding vector
compared with existing solutions including SWEM, i.e., c << p.
This is also evident in the time performance results reported in
Section VI.C, where our model is clearly more efficient than
existing solutions.

VI. EMPIRICAL EVALUATION

A. Experimental Setup

We experiment on multiple benchmark datasets from the text
classification literature: i) R52 2 is a subset of Reuters-21,578
including 9,100 documents organized in 52 categories (e.g, earn,

2 https://ana.cachopo.org/datasets-for-single-label-text-categorization

trade, fuel, coffee), ii) Ohsumed3 is an extract of the MEDLINE
database where every document represents an abstract of a
medical paper from the database, and is categorized in one of 23
diseases (e.g., endocrine diseases, eye diseases, and virus
diseases),), iii) 20 News-Group4 consists of 18,846 short news
post organized into 20 categories (e.g., comp.graphics, sci.med,
rec.autos, misc.forsale), and iv) AG News5 is a collection of short
news articles collected from more than 2,000 news sources, and
organized into 4 categories (e.g., world, sports, business, and
sci/Tec). We adopted the standard split between training and
testing sets as provided by the datasets. The dataset
characteristics are shown in Table 6. The experimental prototype,
test data, and test results are available online6.

Table 6. Characteristics of experimental datasets used in our study.

Dataset
Training set
(# of docs)

Testing set
(# of docs)

Avg. size of doc
(# of terms)

of
categories

R52 6,532 2,568 113 52

Ohsumed 3,357 4,043 185 23

20NewsGroup 11,314 7,532 318 20

AGNews 120,000 7,600 39 4

We train our 1-layered gradient descent FFNN considering a
maximum 100 epochs, with an early stopping rule if the
validation accuracy converges and is stable for 10 consecutive
epochs. We use softmax as the activation function.

B. Classification Quality

1) Weighting Scheme Evaluation

This first experiment evaluates four variants for our approach: i)
one trained on our supervised document-category TF-ICF
weighting scheme, and three others trained on ii) unsupervised
Boolean TF [22, 34], ii) unsupervised TF-IDF [18, 45], and iv)
supervised document TF-ICF [11, 38]. Table 7 presents the mean
accuracy for these variants. As shown in the table, the
Supervised Document-Category TF-ICF (our scheme)
consistently produces better results compared with the other
existing weighting models. This can be attributed to the
supervised nature of the algorithm as well as the optimized
document-category weighting used. As mentioned in Section
II.A, supervised schemes consider the relationship between the

3 http://disi.unitn.it/moschitti/corpora.htm
4 http://qwone.com/~jason/20Newsgroups/
5 https://www.kaggle.com/amananandrai/ag-news-classification-dataset
6 http://sigappfr.acm.org/Projects/CFE/

Terms

Documents

Categories

T
er

m
s

Matrix
Initialization

Matrix
Update

Document Feature
Augmentation

Model Training
and Execution

Initial
Features

Augmented
Features

Seed Matrix M Updated Matrix M’

max

Categories Categories

Categories

Categories

Categories

Category

Augmented
Features

Augmented
Features

Augmented
Features

T
er

m
s

max

source terms/documents and the target categories, unlike the
unsupervised schemes that only focus on the term distributions
within the collection of documents. This explains why the
proposed algorithm outperforms its unsupervised
counterparts (i.e., TF and TF-IDF schemes), as it incorporates
both document and category information in the document
representation. This observation is also confirmed as the other
supervised weighting scheme presented (i.e., the supervised
document TF-ICF scheme) outperforms other unsupervised
schemes on all datasets except AGNews. Even though both
supervised schemes presented (i.e., original TF-ICF scheme and
our scheme) are based on TF-ICF, our scheme operates on the
level of the category collection. Additionally, our scheme uses the
gradient descent for iterative refinement of the weights used,
which leads to optimized and improved features compared to the
vanilla TF-ICF scheme.

Table 7. Mean accuracy results for CFA classification approaches.

Red color refers to the best score, and green color refers to the second best
for each dataset. We run all models 10 times and report mean accuracy and

standard deviation results (between parentheses).

Weight
Scheme

Benchmark Dataset

R52 Ohsumed 20NewsGroup AGNews

Unsupervised
 Boolean TF [22, 34]

92.37 (0.00) 56.79 (0.00) 79.07 (0.01) 85.80 (0.11)

Unsupervised
TF-IDF [18, 45]

90.16 (0.47) 50.10 (2.9) 78.11 (0.90) 88.00 (0.06)

Supervised Document TF-ICF
[11, 38] (original scheme)

92.7 (0.06) 66.9 (0.00) 79.14 (0.01) 85.61 (0.34)

Supervised Document-Category
TF-ICF (our scheme)

93.85 (0.00) 68.79 (0.05) 86.02 (0.05) 91.75 0.01)

2) Varying Dimensionality and Training Data Size

We analyze the effect of varying i) the number of dimensions
representing the document feature vectors, and ii) the size of the
training data. We vary the number of dimensions by considering
the top weighted feature dimensions ranging over: 1,000, 2,000,
5,000, 10,000 and 15,000 dimensions per vector. We also vary
the size of the training data by performing k-fold cross validation,
for k= 2, 4, 5 and 10. For every model trained with a number of
folds k, we compute and report average accuracy on the
corresponding testing dataset. Results on the R52 dataset are
shown in Fig. 3.

Fig. 3. Mean accuracy results with varying dimensionality and
training data size applied on the R52 dataset (similar results were

produced with the other datasets [5]).

We highlight the following observations: First, our solution
suffers from a drop in accuracy levels when increasing the
number of feature dimensions. This implies that better category
features are inferred when using a smaller set of top weighted
terms. We can attribute the drop in accuracy to the curse of
dimensionality. In fact, increasing the number of dimensions will
increase the sparsity of the data. This will make it more difficult
for the gradient descent algorithm to converge, affecting the
quality of the features produced in the matrix update phase.
Perhaps, choosing the size of the feature set should be a
hyperparameter that can be tuned before applying the CFA
approach. We aim to investigate this behavior in a dedicated
empirical study. Second, results clearly show that classification
accuracy improves when increasing the number of folds k. This
means that we were able to learn better document-category
mappings with larger training data size.

3) Comparative Study

We also compare our CFA approaches against state-of-the-art
text classification solutions and benchmark datasets. We utilize
the same parameter settings described in Section VI.A, and we set
the number of feature dimensions to be 15,000 for all models.

Table 8. Comparative mean accuracy results on benchmark datasets.

Red color refers to the best score, and green color refers to the second best.
Results for alternative approaches are verified from their respective papers.

Standard deviation results are shown between parentheses.

Approach
Benchmark Dataset

R52 Ohsumed 20NewsGroup AGNews

Non-
parametric

TF-IDF+LR 86.95 (0.00) 54.66 (0.00) 83.19 (0.00) -
FastText 92.81(0.09) 57.70 (0.49) 79.40 (0.30) -

FastTextBigrams 90.99 (0.05) 55.69 (0.39) 79.67 (0.29) -

Deep
Learning

CNN-non-static
Bi-LSTM
SWEM

GraphCNN
GraphStar

87.59 (0.48)
90.54 (0.91)
92.94 (0.24)
92.75 (0.22)
95.00 (0.30)

58.44 (1.06)
49.27 (1.07)
63.12 (0.55)
63.89 (0.53)
63.86 (0.53)

82.15 (0.52)
73.18 (0.18)
85.16 (0.29)
81.42 (0.32)
86.90 (0.30)

-
-
-
-
-

Deep
Attention

PV-DM
PV-DBOW

LEAM
LAHAN

74.92 (0.05)
78.29 (0.11)
91.84 (0.23)

-

51.14 (0.22)
46.65 (0.19)
58.58 (0.79)

-

29.50 (0.07)
74.36 (0.18)
81.91 (0.24)

-

-
-

91.75 (0.24)
92.45 (0.00)

CFA
GradientDescent

FFNN
93.85 (0.00) 68.79 (0.05) 86.02 (0.05) 91.75 (0.01)

Mean accuracy results in Table 8 show that our solution ranks
best on one of the benchmark datasets used in our study (i.e.,
Ohsumed) and second best on the other three datasets (i.e., R52,
20NewsGroup, and AGNews). Our solution computes term-
category relationships using supervised TF-ICF weighting. This
produces more accurate classification results compared with i)
FastText and FastTextBigrams which make use of the n-gram
model to extract term-term relationships, ii) PV-DM and PV-
DBOW which are trained to predict terms that are randomly
sampled from the document, and iii) SWEM and GraphCNN
which make use of term-document relationships through their
weighted graph and hypergraph structures. Our solution utilizes a
shallow (1-layered) architecture which is significantly easier to
train and manipulate. This is mainly due to our supervised TF-
ICF scheme which is the first proposal to use a variation of TF-
ICF weighting for representing the target text categories, while
existing solutions are designed for input document representation
rather than target category representation. Our lean classification
model was designed around our term-category TF-ICF scheme,

0.91

0.915

0.92

0.925

0.93

0.935

0 5,000 10,000 15,000 20,000 25,000

M
ea
n
 a
cc
u
ra
cy
 g
iv
en

 K

Feature Set Size

2 4 5 10k‐fold:

producing results which are on a par with and surpass many deep
learning and supervised weighting solutions. Nonetheless, our
approach is outperformed by its deep learning counterpart
GraphStar on three datasets. This can be attributed to the
semantic similarities that exist between certain target classes
(e.g., “talk.politics.guns” and “talk.politics.misc”, and
“comp.graphics” and “comp.windows.x” in 20NewsGroup),
compared with more distinctive categories. An closer analysis of
the results showed that similarities between the target categories
in 20NewsGroup produced similarities between the TF-ICF
category feature vectors, resulting in confusion and
misclassification for our approach. A possible solution would be
to fine-tune and calibrate the parameters of our classifier
according to the target categories of each dataset. This can be
handled as an optimization problem using a number of known
techniques that apply linear programming and machine learning
to identify the best weights for a given problem class, e.g., [6,
48]. This issue needs to be further investigated in a dedicated
study.

The reader can refer to [5] for a more detailed description of
the experimental results, as well as the whole framework.

Note that transformer-based methods, e.g., [24, 25], are not
included in our comparative study since they rely on transfer
learning and provide additional knowledge that is extrinsic to the
dataset. For this reason, we compare with classification methods
which infer derived features from the dataset itself without
including any external knowledge or transfer learning.

C. Time Performance

We also evaluate our solution’s time performance and compare it
with existing solutions. Time experiments were carried out on
12th Gen Intel(R) Core(TM) i7-1260P processor with a 2.66 GHz
processor and 16 GB of RAM. Table 9 reports computation time
as the wall-clock time for 1000 iterations, applied on the Yahoo
Answers dataset. Results were scaled and averaged across
multiple runs, to ensure consistency across the different models.
Results show that our solution uses much less parameters and
require significantly less computation time compared with
existing solutions.

Table 9. Comparing the number of parameters and computation time

with existing solutions.

Approach Parameters Computation time (s)

CNN-non-static [21] 541K 171
Bi-LSTM [45] 1.8M 598
SWEM [35] 61K 63
LEAM [43] 65K 65

CFA-GradientDescentFFNN 20K 17

VII. CONCLUSION

In this paper, we introduce a new approach for Category-based
Feature Augmentation (CFA). The proposed method aims to
improve classification quality by introducing term-category
relationships in the document representation. Our solution
consists of a supervised weighting scheme derived from a
modified version of the Term-Frequency Inverse-Category-
Frequency (TF-ICF) scheme [37]. Different from existing
approaches which are designed for document representation, e.g.,
[11, 38, 42], we adapt TF-ICF to produce weighted
representations for the target categories. We augment each

document with synthetic features that improve the category
classification quality. This is done by first embedding a term-
category TF-ICF matrix in a one-layer feed-forward neural
network titled GradientDescentFFNN. This model then produces
category representations and updates these representations using
the gradient descent algorithm until reaching convergence.
GradientDescentFFNN provides a lean architecture, compared
with its more complex deep learning and deep attention model
alternatives, while mostly producing improved and comparable
classification results.

We are conducting more experiments by integrating corpus-
based statistics (e.g., distributional thesaurus [40], association
rule mining [17], unsupervised clustering [16]), and considering
structure data augmentation [36, 39], and semantic data
augmentation [8, 44], to augment the target feature vectors. We
plan to consider man-made knowledge bases like WordNet [31,
47] and DBPedia [14, 30], to compare corpus-based and
knowledge-based feature representations. We also aim to
generalize this approach to consider more complex architectures
like transformer-based models.

REFERENCES

[1] Abboud R. and Tekli J., Integration of Non-Parametric Fuzzy
Classification with an Evolutionary-Developmental Framework
to perform Music Sentiment-based Analysis and Composition.
Springer Soft Computing, 2019. 24(13): 9875-9925

[2] Aggarwal C. and Zhai C., A Survey of Text Classification
Algorithms. Mining Text Data, 2012. pp. 163-222.

[3] Ahmed H., et al., Detecting Opinion Spams and Fake News
using Text Classification. Security and Privacy, 2018. 1(1).

[4] Alsaeedi A., A Survey of Term Weighting Schemes for Text
Classification. International Journal of Data Mining, Modelling
and Management, 2020. 12(2): 237-254.

[5] Attieh J. and Tekli J., Supervised Term-Category Feature
Weighting for Improved Text Classification. Knowledge Based
Systems 2023. 261:110215.

[6] Azar D., et al., A Combined Ant Colony Optimization and
Simulated Annealing Algorithm to Assess Stability and Fault-
Proneness of Classes Based on Internal Software Quality
Attributes. International Journal of Artificial Intelligence (ISSN
0974-0635), 2016. 14:2.

[7] Byerly A. and Kalganova T., Homogeneous Vector Capsules
Enable Adaptive Gradient Descent in Convolutional Neural
Networks. IEEE Access, 2021. 9: 48519-48530.

[8] Cai L., et al., A Hybrid BERT Model That Incorporates Label
Semantics via Adjustive Attention for Multi-Label Text
Classification. IEEE Access, 2020. 8:152183-152192.

[9] Debole F. and Sebastiani F., Supervised Term Weighting for
Automated Text Categorization. Text Mining and Its
Applications, Springer, Berlin, Heidelberg., 2004. pp .81–97.

[10] Domeniconi G., et al., A Study on Term Weighting for Text
Categorization: A Novel Supervised Variant of TF-IDF. Inter.
Conf. on Data Technologies and Applications (DATA'15) 2015.
pp. 26-37.

[11] Domeniconi G., et al., A Comparison of Term Weighting
Schemes for Text Classification and Sentiment Analysis with a
Supervised Variant of TF-IDF. Inter. Conf. on Data
Technologies and Applications (DATA'16) 2016. pp. 39-58.

[12] Fares M., et al., Difficulties and Improvements to Graph-based
Lexical Sentiment Analysis using LISA. IEEE Inter. Conf. on
Cognitive Computing (ICCC'19), 2019. pp. 28-35.

[13] Fares M., et al., Unsupervised Word-level Affect Analysis and
Propagation in a Lexical Knowledge Graph. Elsevier
Knowledge-Based Systems, 2019. 165: 432-459.

[14] Flisar J. and Podgorelec V., Improving Short Text Classification
using Information from DBpedia Ontology. Fundamenta
Informaticae, 2020. 172(3): 261-297.

[15] Han J. and Akbari M., Vertical Domain Text Classification:
Towards Understanding IT Tickets Using Deep Neural
Networks. AAAI Conf. on Artificial Intelligence (AAAI'18),
2018. pp. 8202-8203.

[16] Haraty R., et al., An Enhanced k-Means Clustering Algorithm
for Pattern Discovery in Healthcare Data. Intelligent Journal on
Distributed Sensor Networks, 2015. 11: 615740:1-615740:11.

[17] Haraty R. and Nasrallah R., Indexing Arabic Texts using
Association Rule Data Mining. Library Hi Tech, 2019. 37(1):
101-117.

[18] Joulin A., et al., Bag of Tricks for Efficient Text Classification.
Conference of the European Chapter of the Association for
Computational Linguistics (EACL'17), 2017. pp. 427-431.

[19] Kaddoura S., et al., A Spam Email Detection Mechanism for
English Language Text Emails Using Deep Learning Approach.
IEEE International Workshops on Enabling Technologies:
Infrastracture for Collaborative Enterprises (WETICE'20) 2020.
pp. 193-198.

[20] Kadhim A., Survey on Supervised Machine Learning
Techniques for Automatic Text Classification. Artificial
Intelligence Review, 2019. 52(1): 273-292.

[21] Kim Y., Convolutional Neural Networks for Sentence
Classification. Conference on Empirical Methods in Natural
Language Processing (EMNLP'14), 2014. pp. 1746–1751.

[22] Lee J. H., Properties of Extended Boolean Models in
Information Retrieval. Proceedings of the ACM SIGIR
Conference, 1994. Springer-Verlag New York, pp.182-190.

[23] Li X., et al., Label-Attentive Hierarchical Attention Network for
Text Classification. Proceedings of the 2020 5th International
Conference on Big Data and Computing (ICBDC'20), 2020. pp.
90–96.

[24] Lin X., et al., ET-BERT: A Contextualized Datagram
Representation with Pre-training Transformers for Encrypted
Traffic Classification. World Wide Web Conference (WWW'22)
2022. pp. 633-642.

[25] Lin Y., et al., BertGCN: Transductive Text Classification by
Combining GCN and BERT. Cornell University - Computer
Science - Computation and Language, 2021. CoRR
abs/2105.05727.

[26] Lu H., et al., Graph Star Net for Generalized Multi-Task
Learning. Computing Research Repository, 2019. CoRR
abs/1906.12330 (2019).

[27] McGill M., Introduction to Modern Information Retrieval. 1983.
McGraw-Hill, New York.

[28] Mironczuk M. and Protasiewicz J., A Recent Overview of the
State-of-the-Art Elements of Text Classification. Expert Systems
and Applications 2018. 106: 36-54.

[29] Mladenic D. and Grobelnik M., Feature Selection for
Classification based on Text Hierarchy. Conf. on Automated
Learning and Discovery (CONALD'98), 1998.

[30] Mouriño-García M., et al., Wikipedia-based Hybrid Document
Representation for Textual News Classification. Soft
Computing, 2018. 22(18): 6047-6065.

[31] Poostchi H. and Piccardi M., Cluster Labeling by Word
Embeddings and WordNet's Hypernymy. Australasian Language
Technology Association Workshop (ALTA'18) 2018. pp. 66-70.

[32] Revina A., et al., IT Ticket Classification: The Simpler, the
Better. IEEE Access, 2020. 8:193380-193395.

[33] Salton G., Automatic text processing: the transformation,
analysis, and retrieval of information by computer. Addison-
Wesley Longman, Boston, MA, USA 1989. pp. 530.

[34] Salton G. and Buckley C., Term-weighting approaches in
automatic text retrieval. Info. Processing and Management,
1988. 24(5):513 -523.

[35] Shen D., et al., Baseline Needs More Love: On Simple Word-
Embedding-Based Models and Associated Pooling Mechanisms.
Annual Meeting of the Association for Computational
Linguistics (ACL'18), 2018. pp. 440-450.

[36] Taddesse F.G., et al., Semantic-based Merging of RSS Items.
World Wide Web Journal, 2010. 13(1-2): 169-207, Springer
Netherlands.

[37] Tang Z., et al., Several Alternative Term Weighting Methods for
Text Representation and Classification. Knowledge Based
Systems, 2020. 207:106399.

[38] Tang Z., et al., An Improved Supervised Term Weighting
Scheme for Text Representation and Classification. Expert
Systems and Applications, 2022. 189: 115985.

[39] Tekli J., et al., Minimizing User Effort in XML Grammar
Matching. Elsevier Information Sciences Journal, 2012. 210:1-
40.

[40] Tekli J., et al., Full-fledged Semantic Indexing and Querying
Model Designed for Seamless Integration in Legacy RDBMS.
Data and Knowledge Engineering, 2018. 117: 133-173.

[41] Wang C. and Tan C., Label-Based Convolutional Neural
Network for Text Classification. International Conference on
Control Engineering and Artificial Intelligence (CCEAI'2021)
2021. pp. 136–140.

[42] Wang D. and Zhang H., Inverse-Category-Frequency based
Supervised Term Weighting Schemes for Text Categorization.
Journal of Information Science and Engineering, 2013. 29(2):
209-225.

[43] Wang G., et al., Joint Embedding of Words and Labels for Text
Classification. Annual Meeting of the Association for
Computational Linguistics (ACL'18), 2018. 2321-2331.

[44] Wei J. and Zou K., EDA: Easy Data Augmentation Techniques
for Boosting Performance on Text Classification Tasks.
Conference on Empirical Methods in Natural Language
Processing (EMNLP'19), 2019. (1) 2019: 6381-6387.

[45] Yao L., et al., Graph Convolutional Networks for Text
Classification. AAAI Conference on Artificial Intelligence
(AAAI'19), 2019. pp. 7370-7377.

[46] Zhang H., et al., Multi-Task Label Embedding for Text
Classification. Conference on Empirical Methods in Natural
Language Processing (EMNLP'18), 2018. pp. 4545-4553.

[47] Zhu X., et al., An Improved Class-Center Method for Text
Classification Using Dependencies and WordNet. Natural
Language Processing and Chinese Computing (NLPCC'19),
2019. (2): 3-15.

[48] Zou F., et al., A Reinforcement Learning Approach for Dynamic
Multi-objective Optimization. Information Sciences, 2021. 546:
815-834.

