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Abstract—Text classification is a key task of the Natural 
Language Processing (NLP) field that aims at assigning predefined 
categories to textual documents. Performing text classification 
requires features that effectively represent the content and the 
meaning of textual documents. Selecting a suitable method for term 
weighting is of central importance and can improve the quality of the 
classification method. In this paper, we propose to a new text 
classification solution to perform Category-based Feature 
Augmentation (CFA) on the document representation. First, a term-
category feature matrix is derived from a modified version of the 
supervised Term-Frequency Inverse-Category-Frequency (TF-ICF) 
weighting model. This is done by embedding the TF-ICF matrix in a 
one-layer feed-forward neural network. The latter is trained using 
the gradient descent algorithm allowing to iteratively update the 
term-category matrix until reaching convergence. The model 
produces category-based feature vector representations that are used 
to augment the document representations and perform the 
classification task. Experimental results on four benchmark datasets 
show that our lean model approach improves text classification 
accuracy and is significantly more efficient compared with its deep 
model alternatives. 

Keywords—Text Classification, Document and Text Processing, 
Feature Engineering, Supervised Term Weighting, Inverse Category 
Frequency, TF-IDF, Text Representation. 

I. INTRODUCTION 

Text classification has become a key task in the NLP field [2, 28], 
with applications ranging over different domains, including 
information retrieval (e.g., classifying customer complaints into 
predefined categories [15, 32]), information filtering (e.g., 
identifying spam emails and filtering them for better user 
experience [3, 19]), and sentiment analysis (e.g., classifying texts 
into different polarities, e.g., positive, negative, or affective 
categories, e.g., happy, angry, sad [12, 13]). Text classification 
consists of two main phases: i) feature representation phase, and 
ii) classification phase.  State-of-the-art feature representations 
mainly compute a weighted representation of the terms in the 
target documents. This stems from the assumption that terms that 
are more important in describing a given document are assigned a 
higher weight. The weighted document representations are then 
run through a trained classifier to categorize the documents 
against a set of target classes or categories. Therefore, selecting 
an adequate method for term weighting is important as it affects 
the effectiveness of the text classification. Here, we distinguish 
between two types of weighting schemes used to represent the 
document: i) unsupervised, where the representations rely on the 
distribution of the terms across the input documents, and ii) 
supervised, where representations are influenced by the target 
categories. 

In this paper, we propose to perform Category-based Feature 
Augmentation (CFA). The proposed method aims to improve 
classification quality by introducing term-category relationships 
in the document representation. Our solution consists of a 
supervised weighting scheme derived from a modified version of 
the Term-Frequency Inverse-Category-Frequency (TF-ICF) 
scheme (cf. Section III). Different from existing approaches 
which are designed for document representation (cf. Section 
II.A), we adapt TF-ICF to produce weighted representations for 
the target categories. We augment each document with synthetic 
features that improve category classification quality. This is done 
by first embedding a term-category TF-ICF matrix in a one-layer 
Feed-Forward Neural Network (FFNN). This model then 
produces category representations and updates these 
representations using the gradient descent algorithm until 
reaching convergence. Compared with existing deep learning 
solutions (cf. Section II.B), the main contributions of our study 
are summarized as follows: i) this is the first approach that 
employs the TF-ICF weighting scheme to represent text 
categories, while existing solutions employ this scheme to 
represent the input documents rather than the target categories; ii) 
we introduce a new set of features inferred from the proposed 
weighting scheme for a more effective classification; and iii) we 
introduce a new classification model, GradientDescentFFNN, 
with a lean architecture consisting of a one-layered structure 
compared with its more complex deep learning alternatives for a 
more efficient classification. Experimental results on four 
benchmark datasets show that our solution improves text 
classification accuracy while requiring significantly fewer model 
parameters and computation time compared with its deep learning 
and deep attention alternatives. 

The remainder of the paper is organized as follows. Section 
II reviews the related works. Section III introduces our supervised 
TF-ICF weighting scheme. Section IV describe our approach. 
Section V presents the complexity analysis. Section VI describes 
our experimental evaluation, before concluding in Section VII. 

 

II. RELATED WORKS 

A. Feature Representation 

State-of-the-art text features mainly rely on a weighted 
representation of the terms in the target documents, e.g., [4, 11]. 
The underlying idea is that terms that are more important in 
describing a given document are assigned a higher weight. We 
distinguish between two kinds of weighting schemes: i) 
unsupervised and ii) supervised. 

Unsupervised term weighting methods compute the weights 
of the terms in the specific document based on the distribution of 
the terms in the source documents. An example of such methods 



is the standard Term Frequency – Inverse Document Frequency 
(TF-IDF) of the Vector Space Model (VSM) [27, 33]. While 
effective in many applications [32], the main drawback of such 
methods is that they only focus on the term distributions within 
the collection of documents, without considering the relationship 
between the source terms/documents and the target categories. 
Supervised term weighing methods solve this limitation by using 
statistical information extracted from the text documents and the 
corresponding categories. Various supervised term-weighting 
schemes have been suggested to replace the IDF factor of TF-
IDF, including schemes like chi-squared (χ2) [9], information 
gain (IR) [9], and odd ratio (OR) [29]. More recently, the authors 
in [42] introduced a supervised version of the IDF called ICF 
(Inverse Category Frequency). The ICF scheme describes the 
importance of terms in describing target categories, e.g., [11, 37], 
and creates a different representation of each document based on 
its associated category. Experimental results in [10, 11, 38] 
indicate that the ICF weighting schemes exhibit superior 
performance in comparison to conventional supervised and 
unsupervised weighting. In this study, we adopt the ICF 
weighting scheme and propose a supervised scheme based on a 
variant of TF-ICF. 

B. Classification Techniques 

Text classifiers use machine learning algorithms adapted to deal 
with textual features by employing a two-step process consisting 
of a documentation representation stage and a document 
classification stage. For most text classifiers, the information 
about the target categories is only utilized at the classification 
stage and is not considered during the document representation 
stage. Therefore, recent approaches propose to replace the one-
hot vectors representing the target categories by an embedding 
vector which integrates information about the 
term/document/category relationships, e.g., [41, 43, 46].  The 
authors of [43] present LEAM (Label Embedding Attentive 
Model). LEAM treats the text classification problem as a 
category-term joint embedding problem where each category is 
embedded in the same space as the term vectors.  The text 
representation is computed using a weighted average of the term 
embeddings, where the weights correspond to the category-based 
attention scores. These scores are learned on a training set of 
categorized samples. Similarly, the authors in [46] formulate the 
text classification problem as a vector matching problem, in 
which they compute a matching score between the embedding 
vector representation of the input text and the embedding 
representation of each category vector.  The embedding 
representation of the input text is generated using an input 
encoder, while the representation of each category is generated 
using a category label encoder. The authors in [41] first compute 
a category-based text representation from both the input terms 
and the target category label embeddings. Then, a convolutional 
neural network (CNN) is used to compute the weights of the 
terms from the convolution operation of both the category-based 
text representation and the term-based text representation (this is 
similar to the attention score obtained by the attention mechanism 
proposed in [43]). Finally, fully connected softmax layers are 
used to perform the classification task. In [45], the authors 
propose a Text Graph Convolutional Network (Text GCN). This 
network embeds the document into a single graph, where the 
nodes represent the documents and terms, and edges represent the 

document-term and term-term weights. TextGCN is initialized 
with a one-hot representation for each node. Then, TextGCN 
jointly learns the embeddings for both terms and documents using 
the labelled documents.  In [26], the authors introduce another 
graph-based approach, GraphStar, which adds a virtual “star” 
node to propagate global information to all nodes. This approach 
learns better representations by introducing topological 
modifications of the original graph. In [23], the authors suggest 
that most category-augmented embedding solutions suffer from 
partial semantic loss, as they ignore the interaction between terms 
and sentences in the source text. Therefore, they propose LAHAN 
(Label-Attentive Hierarchical Attention Network) which extracts 
better text embeddings using a hierarchical architecture 
integrating category information at both term and sentence levels.  

C. Discussion 

As mentioned previously, traditional text classification methods 
leverage information about the target categories only in the 
classification phase, ignoring their role in the document 
representation phase, e.g., [2, 20]. Therefore, recent approaches 
have proposed supervised term weighting solutions to augment 
and transform the document representation with category 
information, using ICF (Inverse Category Frequency) weighting 
schemes and category label embeddings, e.g., [4, 10, 42]. They 
have produced better results compared with their traditional and 
unsupervised counterparts [11, 23, 41]. In this study, we adopt a 
supervised weighting scheme based on a variant of the ICF model 
and introduce a lean Feed-Forward Neural Network (FFNN) 
architecture to update this scheme. 

 

III. ICF WEIGHTING MODEL 
 

Besides representing each document by its individual TF-IDF 
vector, we represent each category by a TF-ICF vector where the 
dimensions represent distinctive terms and the weight of each 
dimension reflects the frequency of occurrence of the term in the 
documents belonging to the category. We then embed the new 
weighting scheme in our GradientDescentFFNN classification 
model to capture the relationships between document terms and 
target categories. 

 
Table 1. Variant of the TF-ICF model adopted in our study. 
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We designate by D ={d1, d2, …, d|D|} the set of training 
documents, T ={t1, t2, …, t|T|} the set of terms that occur in the 
documents in D (the vocabulary of D), and C ={c1, c2, …, c|C|} the 
set of predefined target categories (classes or labels). We compute 
the TF-ICF of a term tiT in category cjC as shown in Table 1. 
TF represents the frequency of a term inside the set of documents 
pertaining to the category cj, where more recurrent terms are 
assigned higher TF scores. ICF represents the fraction of 



categories that contain term ti , where less recurrent terms are 
assigned higher ICF scores. The less categories term ti occurs in, 
the more descriptive it will be in distinctively describing the 
categories it occurs in, and vice versa (the more categories term ti 
occurs in, the less expressive it will be in distinguishing the 
categories).   

IV. GRADIENT DESCENT FFNN CLASSIFICATION 
 

We aim to augment each document representation with a feature 
vector that can help identify the correct category for the 
document. This feature vector is of size |C| where every feature 
dimension represents how likely the document will be assigned to 
a category cj  C. We aim to identify features that satisfy the 
following expression: 
 

 1 | |
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   (1) 

 
where F(dk) represents the set of features representing document 
dk,

icf is the feature representation of category ci, and C is the set 

of target categories. We simplify this problem by assuming that 
the features inferred for every document are an aggregation of the 
features of every term in the document. This assumption follows 
the bag-of-words model and can be expressed as an arithmetic 
addition of the features of every term in the document. Therefore, 
the problem can be formulated as follows: 
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Accordingly, we identify a term-category matrix of size 
|T||C| where every vector in the matrix corresponds to a 
category-representation of a term, and every value in the matrix 
corresponds to the TF-ICF weight of a term ti  T w.r.t. a 
category cj  C. We introduce two term-category matrices: a seed 
matrix M computed using our TF-ICF weighting scheme 
described earlier; and a dynamic version of M denoted by M’, 
computed using the gradient descent algorithm. The matrix 
computation process consists of: i) linguistic preprocessing, ii) 
matrix initialization, and iii) matrix update.  

A. Linguistic Preprocessing 

Linguistic preprocessing cleans the content of the documents 
through a series of steps that include tokenization, removal of 
stop words, removal of capitalization and punctuation, and 
stemming. This is crucial to form an appropriate vocabulary that 
will be used to represent the features of the documents in the 
vector space model. 

Running example: Consider training documents D = {d1, d2, 
d3, d4, d5} and their desired categories C ={c1, c2, c3} in Table 2.a. 
The preprocessed documents and their TF vectors are shown in 
Table 2.b. The vector dimensions represent the terms T = {t1, …, 
t8} which will be utilized to compute the seed TF-ICF matrix M.  

B. Matrix Initialization 

Matrix initialization computes the seed matrix M using the TF-
ICF statistic introduced previously. The resulting matrix 

describes the initial impact of each term ti T on every predefined 
category cj C (cf. running example in Table 3). 

 
Table 2. Sample training documents used in our running example. 

 

a. Training documents and their category labels. 
 

Documents D Categories C 

d1 “He ate a green apple then cooked an apple pie” c1 Food 

d2 “He wrote it on his green book” c2 Study 
d3 “She cooked one apple pie and another apple pie” c1 Food 
d4 “The grass was green” c3 Nature 
d5 “The apple cook book” c2 Study 

 

  b. Preprocessed documents and their term-frequency vectors. 
 

Preprocessed 
Documents D 

Term-document vector dimensions 
t1 t2 t3 t4 t5 t6 t7 t8 

eat green apple write book cook pie grass 

<“eat”, “green”, “apple”, 
“cook”, “apple”, “pie”> 

1 1 2 0 0 1 1 0 

<“write”, “green”, “book”> 0 1 0 1 1 0 0 0 

<“cook”, “apple” ,“pie”, 
“apple” ,“pie”> 

0 0 2 0 0 1 2 0 

<“grass”, “green”> 0 1 0 0 0 0 0 1 

<“apple”, “cook”, “book”> 0 0 1 0 1 1 0 0 
 

 
Table 3. TF-ICF seed matrix M computed based on our running 

example from Table 2. 
 

a. Term-Frequency (TF) weight matrix. 
 

Categories C 

Term-category vector dimensions 
t1 t2 t3 t4 t5 t6 t7 t8 

eat green apple write book cook pie grass 

c1 Food 1 1 4 0 0 2 3 0 

c2 Study 0 1 1 1 2 1 0 0 

c3 Nature 0 1 0 0 0 0 0 1 
 

b. Inverse Category Frequency (ICF) weight vector. 
 

Category 
collection 

Term-category vector dimensions 
t1 t2 t3 t4 t5 t6 t7 t8 

eat green apple write book cook Pie grass 

C 1.7 1 1.29 1.7 1.7 1.29 1.7 1.7 
 

c. Combined TF-ICF seed matrix M. 
 

Categories C 

Term-category vector dimensions 
t1 t2 t3 t4 t5 t6 t7 t8 

eat green apple write book cook pie grass 

c1 Food 1.7 1 5.16 0 0 2.58 5.1 0 

c2 Study 0 1 1.29 1.7 3.4 1.29 0 0 

c3 Nature 0 1 0 0 0 0 0 1.7 
 

C. Matrix Update 

1) Matrix Model  
 

We propose to refine the seed matrix M into a matrix M’ using 
the gradient descent algorithm. Note that other optimization 
solutions can be used to refine the matrix, such as evolutionary-
developmental algorithms, e.g., [1, 7]. We propose to model the 
term-category matrix using a 1-layer FFNN, where the inputs 
correspond to the terms in the vocabulary, and the outputs 
correspond to the predefined categories (Fig. 1). The FFNN has a 
weight matrix of size |T||C| which represents the term-category 
matrix M. We adopt a 1-layered FFNN as the simplest possible 



solution to the problem, yet deeper neural structures can be 
considered. We utilize softmax as the activation function of the 
final layer (i.e., the only layer in our current 1-layered network), 
which is suitable with our decision function (i.e., the category 
with the highest weight in the output determines the category of 
the document).  

 

   

Fig. 1. Simplified diagram describing GradientDescentFFNN.  
 

2)  Matrix Update  
 

The matrix update step is responsible for updating the matrix M-
into-M’ to answer our problem, and consists of training the FFNN 
using the gradient descent algorithm. The matrix update ends 
when the gradient descent algorithm reaches convergence (i.e., 
the matrix M’ is of desired quality), or when reaching a maximum 
number of (user or system specified) iterations. We propose to 
evaluate the quality of the updated matrix by splitting the set of 
training documents D into i) a reference subset (70%), and ii) a 
validation subset (30%)1. The reference subset is used to optimize 
the FFNN and update the category-term matrix, while the 
validation subset is used to evaluate the quality of the updated 
matrix.  The quality of the matrix is evaluated using the category 
inference accuracy, by comparing the categories inferred by the 
FFNN for every document in the evaluation subset with the 
expected document categories.  

 This is suitable with the problem formulation in Equation 
(2). Following our TF-ICF weighting scheme, the weights inside 
matrix M’ reflect the likelihood of occurrence of each term in 
each category. Hence, performing category inference comes 
down to finding the category that is most described by the terms 
inside the document. This is reflected by computing the 
summation of the TF-ICF weights of the terms occurring in the 
document, for each category in C. This is analogous to the 
operation performed by the FFNN. 

 
D. Augmented TF-ICF Document Features for Classification 

As mentioned previously, producing the matrix M’ using the 
FFNN and the gradient descent algorithm maximizes category 
inference accuracy. We formulate the category inference: 

                                                           
1  We adopt a random 70/30 split (other forms of cross-validation splitting can be 

used, like k-fold or Monte-Carlo). 
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where dk is the document being processed for category inference, 
and cj is the category which is assigned to dk as a result of the 
category inference process. After computing the TF-ICF seed 
matrix M and generating its updated version M’, we produce the 
augmented TF-ICF document features needed for the 
classification phase. The overall process is visualized in Fig. 2. 
From both M and M’, we extract the following aggregate feature 
vectors for each document: 
 

 The summation of the weights of the terms occurring in the 
document per category (i.e., the soft scores per category 
using the category inference): 
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The above features are concatenated to form the new 

aggregate TF-ICF feature vector for the document, which length 
is equal to four times the number of categories (since each feature 
vector has one dimension per category). We extract these 
aggregate TF-ICF features for all the documents in the training 
set, where each document is now associated with: i) a traditional 
TF-IDF vector representation, and ii) the aggregate TF-ICF 
vector representation described above. Both features are used to 
train the classifier model. The classifier adopted in this study is a 
Linear Support Vector Machine (SVM) due to its quality in 
performing text classification (SVM is specifically designed to 
handle sparse feature vectors, which is the case with high-
dimensional text data). Nonetheless, other classifiers can be used 
following the system designer’s preferences. Once trained, the 
classifier predicts the category of a new input document based on 
its traditional TF-IDF and learned TF-ICF feature vectors.  

 
Table 4. Feature augmentation based on the TF-ICF seed matrix M 

from Table 3.c. 
 

Categories C 

Term-Category vector dimensions 

 maxt1 t2 t3 t4 t5 t6 t7 t8 

eat green apple write book cook Pie grass

c1 Food 1.7 1 5.16 0 0 2.58 5.1 0 7.74 5.16

c2 Study 0 1 1.29 1.7 3.4 1.29 0 0 5.98 3.4 

c3 Nature 0 1 0 0 0 0 0 1.7 0 0 

 
Running example: Consider training document d5 =“The 

apple cook book” and its desired category c2 = Study. Using seed 
matrix M from our running example (Table 3), the initial category 
inference process applied on d5 produces category c1 = Food (cf. 
inference computation in Table 4). This assignment is incorrect 
since the document is supposed to be assigned with its desired 
category c2 = Study. This discrepancy in category assignment is 
solved by updating the seed matrix by training the FFNN through 
the gradient descent method. 
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Fig. 2. Simplified diagram describing the document features computation, and the features’ usage within the classification process. 
 

 
V. COMPLEXITY ANALYSIS 

The computational complexity of the proposed solution is O(t  
c) where t is the number of tokens in the vocabulary (forming the 
document-term vector dimensions, t = |T|), and c is the number of 
target categories (forming the document-category matrix 
dimensions, i.e., c = |C|).  Table 5 compares our method with 
existing solutions in the literature in terms of the number of 
compositional parameters and the computational complexity.  

 
Table 5. Number of parameters and computational complexity of 

existing solutions. 
 

t represents the number of tokens in the vocabulary (i.e. t=|T|), c the 
number of target categories (c = |C|), f the number of filters in the 

CNN, s the size of the CNN filter, h as the number of dimensions of 
hidden units in the LSTM, n and e respectively represent the 
number of nodes and the number of edges in GCN, and p the 

number of dimensions of the sequence (length of the embedding). 
 

Approach Parameters 
Computational 

Complexity 
CNN-non-static [21] 𝑠 ൈ 𝑓 ൈ 𝑝 𝑂ሺ𝑠 ൈ  𝑓 ൈ 𝑝 ൈ 𝑡ሻ

Bi-LSTM [45] 4ℎ ൈ ሺℎ  𝑝ሻ 𝑂ሺ𝑡 ൈ ℎଶ   𝑡 ൈ ℎ ൈ 𝑝ሻ
SWEM [35] ∅ 𝑂ሺ𝑡 ൈ 𝑝ሻ

TextGCN [45] 𝑝ଶ    𝑛ଶ 𝑂ሺ𝑛 ൈ 𝑝ଶ   𝑒 ൈ 𝑝ሻ
LEAM  [43] 𝑐 ൈ 𝑝 𝑂ሺ𝑐 ൈ  𝑡 ൈ 𝑝ሻ

GradientDescentFFNN 𝑡 ൈ 𝑐 𝑂ሺ 𝑡 ൈ 𝑐ሻ

 
On the one hand, SWEM [35] requires the least number of 
parameters, followed by our approach and LEAM [43] requiring t 
 c and c  p respectively, where p is the number of dimensions 
of the sequence representation (i.e., length of the embedding). On 
the other hand, our solution requires the least amount of 
computational complexity, since the number of target categories 
is usually much smaller than the size of the embedding vector 
compared with existing solutions including SWEM, i.e., c << p. 
This is also evident in the time performance results reported in 
Section VI.C, where our model is clearly more efficient than 
existing solutions. 

 
VI. EMPIRICAL EVALUATION 

 

A. Experimental Setup 
 

We experiment on multiple benchmark datasets from the text 
classification literature: i) R52 2  is a subset of Reuters-21,578 
including 9,100 documents organized in 52 categories (e.g, earn, 

                                                           
2   https://ana.cachopo.org/datasets-for-single-label-text-categorization 

trade, fuel, coffee), ii) Ohsumed3 is an extract of the MEDLINE 
database where every document represents an abstract of a 
medical paper from the database, and is categorized in one of 23 
diseases (e.g., endocrine diseases, eye diseases, and virus 
diseases), ), iii) 20 News-Group4 consists of 18,846 short news 
post organized into 20 categories (e.g., comp.graphics, sci.med, 
rec.autos, misc.forsale), and iv) AG News5 is a collection of short 
news articles collected from more than 2,000 news sources, and 
organized into 4 categories (e.g., world, sports, business, and 
sci/Tec). We adopted the standard split between training and 
testing sets as provided by the datasets. The dataset 
characteristics are shown in Table 6. The experimental prototype, 
test data, and test results are available online6. 

 
Table 6. Characteristics of experimental datasets used in our study. 

 

Dataset 
Training set
(# of docs) 

Testing set 
(# of docs) 

Avg. size of doc 
(# of terms) 

# of 
categories

R52 6,532 2,568 113 52 

Ohsumed 3,357 4,043 185 23 

20NewsGroup 11,314 7,532 318 20 

AGNews 120,000 7,600 39 4 

 
We train our 1-layered gradient descent FFNN considering a 
maximum 100 epochs, with an early stopping rule if the 
validation accuracy converges and is stable for 10 consecutive 
epochs. We use softmax as the activation function. 

B. Classification Quality 
 

1) Weighting Scheme Evaluation 

This first experiment evaluates four variants for our approach: i) 
one trained on our supervised document-category TF-ICF 
weighting scheme, and three others trained on ii) unsupervised 
Boolean TF [22, 34], ii) unsupervised TF-IDF [18, 45], and iv) 
supervised document TF-ICF [11, 38]. Table 7 presents the mean 
accuracy for these variants.  As shown in the table, the 
Supervised Document-Category TF-ICF (our scheme) 
consistently produces better results compared with the other 
existing weighting models. This can be attributed to the 
supervised nature of the algorithm as well as the optimized 
document-category weighting used. As mentioned in Section 
II.A, supervised schemes consider the relationship between the 

                                                           
3   http://disi.unitn.it/moschitti/corpora.htm 
4   http://qwone.com/~jason/20Newsgroups/ 
5   https://www.kaggle.com/amananandrai/ag-news-classification-dataset 
6   http://sigappfr.acm.org/Projects/CFE/   
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source terms/documents and the target categories, unlike the 
unsupervised schemes that only focus on the term distributions 
within the collection of documents. This explains why the 
proposed algorithm outperforms its unsupervised 
counterparts (i.e., TF and TF-IDF schemes), as it incorporates 
both document and category information in the document 
representation.  This observation is also confirmed as the other 
supervised weighting scheme presented (i.e., the supervised 
document TF-ICF scheme) outperforms other unsupervised 
schemes on all datasets except AGNews. Even though both 
supervised schemes presented (i.e., original TF-ICF scheme and 
our scheme) are based on TF-ICF, our scheme operates on the 
level of the category collection. Additionally, our scheme uses the 
gradient descent for iterative refinement of the weights used, 
which leads to optimized and improved features compared to the 
vanilla TF-ICF scheme. 
 

Table 7. Mean accuracy results for CFA classification approaches. 
 

Red color refers to the best score, and green color refers to the second best 
for each dataset. We run all models 10 times and report mean accuracy and 

standard deviation results (between parentheses).  
 

Weight  
Scheme 

Benchmark Dataset 

R52 Ohsumed 20NewsGroup AGNews 

Unsupervised 
 Boolean TF [22, 34] 

92.37 (0.00) 56.79 (0.00) 79.07 (0.01) 85.80 (0.11)

Unsupervised 
TF-IDF  [18, 45] 

90.16 (0.47) 50.10 (2.9) 78.11 (0.90) 88.00 (0.06)

Supervised Document TF-ICF  
[11, 38] (original scheme) 

92.7 (0.06) 66.9 (0.00) 79.14 (0.01) 85.61 (0.34)

Supervised Document-Category  
TF-ICF (our scheme) 

93.85 (0.00) 68.79 (0.05) 86.02 (0.05) 91.75 0.01)

 

2) Varying Dimensionality and Training Data Size 
 

We analyze the effect of varying i) the number of dimensions 
representing the document feature vectors, and ii) the size of the 
training data. We vary the number of dimensions by considering 
the top weighted feature dimensions ranging over: 1,000, 2,000, 
5,000, 10,000 and 15,000 dimensions per vector. We also vary 
the size of the training data by performing k-fold cross validation, 
for k= 2, 4, 5 and 10. For every model trained with a number of 
folds k, we compute and report average accuracy on the 
corresponding testing dataset. Results on the R52 dataset are 
shown in Fig. 3.  

 

 

Fig. 3. Mean accuracy results with varying dimensionality and 
training data size applied on the R52 dataset (similar results were 

produced with the other datasets [5]). 
 

We highlight the following observations: First, our solution 
suffers from a drop in accuracy levels when increasing the 
number of feature dimensions. This implies that better category 
features are inferred when using a smaller set of top weighted 
terms. We can attribute the drop in accuracy to the curse of 
dimensionality. In fact, increasing the number of dimensions will 
increase the sparsity of the data. This will make it more difficult 
for the gradient descent algorithm to converge, affecting the 
quality of the features produced in the matrix update phase. 
Perhaps, choosing the size of the feature set should be a 
hyperparameter that can be tuned before applying the CFA 
approach. We aim to investigate this behavior in a dedicated 
empirical study. Second, results clearly show that classification 
accuracy improves when increasing the number of folds k. This 
means that we were able to learn better document-category 
mappings with larger training data size. 
 

3) Comparative Study 
 

We also compare our CFA approaches against state-of-the-art 
text classification solutions and benchmark datasets. We utilize 
the same parameter settings described in Section VI.A, and we set 
the number of feature dimensions to be 15,000 for all models. 
 
Table 8. Comparative mean accuracy results on benchmark datasets. 

 

Red color refers to the best score, and green color refers to the second best. 
Results for alternative approaches are verified from their respective papers. 

Standard deviation results are shown between parentheses. 
 

Approach 
Benchmark Dataset 

R52 Ohsumed 20NewsGroup AGNews

Non-
parametric

TF-IDF+LR 86.95 (0.00) 54.66 (0.00) 83.19 (0.00) - 
FastText 92.81(0.09) 57.70 (0.49) 79.40 (0.30) - 

FastTextBigrams 90.99 (0.05) 55.69 (0.39) 79.67 (0.29) - 

Deep 
Learning

CNN-non-static 
Bi-LSTM 
SWEM 

GraphCNN 
GraphStar 

87.59 (0.48) 
90.54 (0.91) 
92.94 (0.24) 
92.75 (0.22) 
95.00 (0.30) 

58.44 (1.06) 
49.27 (1.07) 
63.12 (0.55) 
63.89 (0.53) 
63.86 (0.53) 

82.15 (0.52) 
73.18 (0.18) 
85.16 (0.29) 
81.42 (0.32) 
86.90 (0.30) 

- 
- 
- 
- 
- 

Deep 
Attention 

PV-DM 
PV-DBOW 

LEAM 
LAHAN 

74.92 (0.05) 
78.29 (0.11) 
91.84 (0.23) 

- 

51.14 (0.22) 
46.65 (0.19) 
58.58 (0.79) 

- 

29.50 (0.07) 
74.36 (0.18) 
81.91 (0.24)

- 

- 
- 

91.75 (0.24)
92.45 (0.00)

CFA 
GradientDescent 

FFNN 
93.85 (0.00) 68.79 (0.05) 86.02 (0.05) 91.75 (0.01)

 
Mean accuracy results in Table 8 show that our solution ranks 
best on one of the benchmark datasets used in our study (i.e., 
Ohsumed) and second best on the other three datasets (i.e., R52, 
20NewsGroup, and AGNews). Our solution computes term-
category relationships using supervised TF-ICF weighting. This 
produces more accurate classification results compared with i) 
FastText and FastTextBigrams which make use of the n-gram 
model to extract term-term relationships, ii) PV-DM and PV-
DBOW which are trained to predict terms that are randomly 
sampled from the document, and iii) SWEM and GraphCNN 
which make use of term-document relationships through their 
weighted graph and hypergraph structures. Our solution utilizes a 
shallow (1-layered) architecture which is significantly easier to 
train and manipulate. This is mainly due to our supervised TF-
ICF scheme which is the first proposal to use a variation of TF-
ICF weighting for representing the target text categories, while 
existing solutions are designed for input document representation 
rather than target category representation. Our lean classification 
model was designed around our term-category TF-ICF scheme, 
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producing results which are on a par with and surpass many deep 
learning and supervised weighting solutions. Nonetheless, our 
approach is outperformed by its deep learning counterpart 
GraphStar on three datasets. This can be attributed to the 
semantic similarities that exist between certain target classes  
(e.g., “talk.politics.guns” and “talk.politics.misc”, and 
“comp.graphics” and “comp.windows.x” in 20NewsGroup), 
compared with more distinctive categories. An closer analysis of 
the results showed that similarities between the target categories 
in 20NewsGroup produced similarities between the TF-ICF 
category feature vectors, resulting in confusion and 
misclassification for our approach. A possible solution would be 
to fine-tune and calibrate the parameters of our classifier 
according to the target categories of each dataset. This can be 
handled as an optimization problem using a number of known 
techniques that apply linear programming and machine learning 
to identify the best weights for a given problem class, e.g., [6, 
48]. This issue needs to be further investigated in a dedicated 
study. 

The reader can refer to [5] for a more detailed description of 
the experimental results, as well as the whole framework. 

Note that transformer-based methods, e.g., [24, 25], are not 
included in our comparative study since they rely on transfer 
learning and provide additional knowledge that is extrinsic to the 
dataset. For this reason, we compare with classification methods 
which infer derived features from the dataset itself without 
including any external knowledge or transfer learning. 

C. Time Performance 

We also evaluate our solution’s time performance and compare it 
with existing solutions. Time experiments were carried out on 
12th Gen Intel(R) Core(TM) i7-1260P processor with a 2.66 GHz 
processor and 16 GB of RAM. Table 9 reports computation time 
as the wall-clock time for 1000 iterations, applied on the Yahoo 
Answers dataset. Results were scaled and averaged across 
multiple runs, to ensure consistency across the different models. 
Results show that our solution uses much less parameters and 
require significantly less computation time compared with 
existing solutions.  

 
Table 9. Comparing the number of parameters and computation time 

with existing solutions.  
 

Approach Parameters Computation time (s) 

CNN-non-static [21] 541K 171 
Bi-LSTM [45] 1.8M 598 
SWEM [35] 61K 63 
LEAM  [43] 65K 65 

CFA-GradientDescentFFNN 20K 17 
 
 

VII. CONCLUSION 

In this paper, we introduce a new approach for Category-based 
Feature Augmentation (CFA). The proposed method aims to 
improve classification quality by introducing term-category 
relationships in the document representation. Our solution 
consists of a supervised weighting scheme derived from a 
modified version of the Term-Frequency Inverse-Category-
Frequency (TF-ICF) scheme [37]. Different from existing 
approaches which are designed for document representation, e.g., 
[11, 38, 42], we adapt TF-ICF to produce weighted 
representations for the target categories. We augment each 

document with synthetic features that improve the category 
classification quality. This is done by first embedding a term-
category TF-ICF matrix in a one-layer feed-forward neural 
network titled GradientDescentFFNN. This model then produces 
category representations and updates these representations using 
the gradient descent algorithm until reaching convergence. 
GradientDescentFFNN provides a lean architecture, compared 
with its more complex deep learning and deep attention model 
alternatives, while mostly producing improved and comparable 
classification results. 

We are conducting more experiments by integrating corpus-
based statistics (e.g., distributional thesaurus [40], association 
rule mining [17], unsupervised clustering [16]), and considering 
structure data augmentation [36, 39], and semantic data 
augmentation [8, 44], to augment the target feature vectors. We 
plan to consider man-made knowledge bases like WordNet [31, 
47] and DBPedia [14, 30], to compare corpus-based and 
knowledge-based feature representations. We also aim to 
generalize this approach to consider more complex architectures 
like transformer-based models.  

REFERENCES 

[1]  Abboud R. and Tekli J., Integration of Non-Parametric Fuzzy 
Classification with an Evolutionary-Developmental Framework 
to perform Music Sentiment-based Analysis and Composition. 
Springer Soft Computing, 2019. 24(13): 9875-9925  

[2]  Aggarwal C. and Zhai C., A Survey of Text Classification 
Algorithms. Mining Text Data, 2012. pp. 163-222. 

[3]  Ahmed H., et al., Detecting Opinion Spams and Fake News 
using Text Classification. Security and Privacy, 2018. 1(1). 

[4]  Alsaeedi A., A Survey of Term Weighting Schemes for Text 
Classification. International Journal of Data Mining, Modelling 
and Management, 2020. 12(2): 237-254. 

[5]  Attieh J. and Tekli J., Supervised Term-Category Feature 
Weighting for Improved Text Classification. Knowledge Based 
Systems 2023. 261:110215. 

[6]  Azar D., et al., A Combined Ant Colony Optimization and 
Simulated Annealing Algorithm to Assess Stability and Fault-
Proneness of Classes Based on Internal Software Quality 
Attributes. International Journal of Artificial Intelligence (ISSN 
0974-0635), 2016. 14:2. 

[7]  Byerly A. and Kalganova T., Homogeneous Vector Capsules 
Enable Adaptive Gradient Descent in Convolutional Neural 
Networks. IEEE Access, 2021. 9: 48519-48530. 

[8]  Cai L., et al., A Hybrid BERT Model That Incorporates Label 
Semantics via Adjustive Attention for Multi-Label Text 
Classification. IEEE Access, 2020. 8:152183-152192. 

[9]  Debole F. and Sebastiani F., Supervised Term Weighting for 
Automated Text Categorization. Text Mining and Its 
Applications, Springer, Berlin, Heidelberg., 2004. pp .81–97. 

[10]  Domeniconi G., et al., A Study on Term Weighting for Text 
Categorization: A Novel Supervised Variant of TF-IDF. Inter. 
Conf. on Data Technologies and Applications (DATA'15) 2015. 
pp. 26-37. 

[11]  Domeniconi G., et al., A Comparison of Term Weighting 
Schemes for Text Classification and Sentiment Analysis with a 
Supervised Variant of TF-IDF. Inter. Conf. on Data 
Technologies and Applications (DATA'16) 2016. pp. 39-58. 

[12]  Fares M., et al., Difficulties and Improvements to Graph-based 
Lexical Sentiment Analysis using LISA. IEEE Inter. Conf. on 
Cognitive Computing (ICCC'19), 2019. pp. 28-35. 



[13]  Fares M., et al., Unsupervised Word-level Affect Analysis and 
Propagation in a Lexical Knowledge Graph. Elsevier 
Knowledge-Based Systems, 2019. 165: 432-459. 

[14]  Flisar J. and Podgorelec V., Improving Short Text Classification 
using Information from DBpedia Ontology. Fundamenta 
Informaticae, 2020. 172(3): 261-297. 

[15]  Han J. and Akbari M., Vertical Domain Text Classification: 
Towards Understanding IT Tickets Using Deep Neural 
Networks. AAAI Conf. on Artificial Intelligence (AAAI'18), 
2018. pp. 8202-8203. 

[16]  Haraty R., et al., An Enhanced k-Means Clustering Algorithm 
for Pattern Discovery in Healthcare Data. Intelligent Journal on 
Distributed Sensor Networks, 2015. 11: 615740:1-615740:11. 

[17]  Haraty R. and Nasrallah R., Indexing Arabic Texts using 
Association Rule Data Mining. Library Hi Tech, 2019. 37(1): 
101-117. 

[18]  Joulin A., et al., Bag of Tricks for Efficient Text Classification. 
Conference of the European Chapter of the Association for 
Computational Linguistics (EACL'17), 2017. pp. 427-431. 

[19]  Kaddoura S., et al., A Spam Email Detection Mechanism for 
English Language Text Emails Using Deep Learning Approach. 
IEEE International Workshops on Enabling Technologies: 
Infrastracture for Collaborative Enterprises (WETICE'20) 2020. 
pp. 193-198. 

[20]  Kadhim A., Survey on Supervised Machine Learning 
Techniques for Automatic Text Classification. Artificial 
Intelligence Review, 2019. 52(1): 273-292. 

[21]  Kim Y., Convolutional Neural Networks for Sentence 
Classification. Conference on Empirical Methods in Natural 
Language Processing (EMNLP'14), 2014. pp. 1746–1751. 

[22]  Lee J. H., Properties of Extended Boolean Models in 
Information Retrieval. Proceedings of the ACM SIGIR 
Conference, 1994. Springer-Verlag New York, pp.182-190. 

[23]  Li X., et al., Label-Attentive Hierarchical Attention Network for 
Text Classification. Proceedings of the 2020 5th International 
Conference on Big Data and Computing (ICBDC'20), 2020. pp. 
90–96. 

[24]  Lin X., et al., ET-BERT: A Contextualized Datagram 
Representation with Pre-training Transformers for Encrypted 
Traffic Classification. World Wide Web Conference (WWW'22) 
2022. pp. 633-642. 

[25]  Lin Y., et al., BertGCN: Transductive Text Classification by 
Combining GCN and BERT. Cornell University - Computer 
Science - Computation and Language, 2021. CoRR 
abs/2105.05727. 

[26]  Lu H., et al., Graph Star Net for Generalized Multi-Task 
Learning. Computing Research Repository, 2019. CoRR 
abs/1906.12330 (2019). 

[27]  McGill M., Introduction to Modern Information Retrieval. 1983. 
McGraw-Hill, New York. 

[28]  Mironczuk M. and Protasiewicz J., A Recent Overview of the 
State-of-the-Art Elements of Text Classification. Expert Systems 
and Applications 2018. 106: 36-54. 

[29]  Mladenic D. and Grobelnik M., Feature Selection for 
Classification based on Text Hierarchy. Conf. on Automated 
Learning and Discovery (CONALD'98), 1998. 

[30]  Mouriño-García M., et al., Wikipedia-based Hybrid Document 
Representation for Textual News Classification. Soft 
Computing, 2018. 22(18): 6047-6065. 

[31]  Poostchi H. and Piccardi M., Cluster Labeling by Word 
Embeddings and WordNet's Hypernymy. Australasian Language 
Technology Association Workshop (ALTA'18) 2018. pp. 66-70. 

[32]  Revina A., et al., IT Ticket Classification: The Simpler, the 
Better. IEEE Access, 2020. 8:193380-193395. 

[33]  Salton G., Automatic text processing: the transformation, 
analysis, and retrieval of information by computer. Addison-
Wesley Longman, Boston, MA, USA 1989. pp. 530. 

[34]  Salton G. and Buckley C., Term-weighting approaches in 
automatic text retrieval. Info. Processing and Management, 
1988. 24(5):513 -523. 

[35]  Shen D., et al., Baseline Needs More Love: On Simple Word-
Embedding-Based Models and Associated Pooling Mechanisms. 
Annual Meeting of the Association for Computational 
Linguistics (ACL'18), 2018. pp.  440-450. 

[36]  Taddesse F.G., et al., Semantic-based Merging of RSS Items. 
World Wide Web Journal, 2010. 13(1-2): 169-207, Springer 
Netherlands. 

[37]  Tang Z., et al., Several Alternative Term Weighting Methods for 
Text Representation and Classification. Knowledge Based 
Systems, 2020. 207:106399. 

[38]  Tang Z., et al., An Improved Supervised Term Weighting 
Scheme for Text Representation and Classification. Expert 
Systems and Applications, 2022. 189: 115985. 

[39]  Tekli J., et al., Minimizing User Effort in XML Grammar 
Matching. Elsevier Information Sciences Journal, 2012. 210:1-
40. 

[40]  Tekli J., et al., Full-fledged Semantic Indexing and Querying 
Model Designed for Seamless Integration in Legacy RDBMS. 
Data and Knowledge Engineering, 2018. 117: 133-173. 

[41]  Wang C. and Tan C., Label-Based Convolutional Neural 
Network for Text Classification. International Conference on 
Control Engineering and Artificial Intelligence (CCEAI'2021) 
2021. pp. 136–140. 

[42]  Wang D. and Zhang H., Inverse-Category-Frequency based 
Supervised Term Weighting Schemes for Text Categorization. 
Journal of Information Science and Engineering, 2013. 29(2): 
209-225. 

[43]  Wang G., et al., Joint Embedding of Words and Labels for Text 
Classification. Annual Meeting of the Association for 
Computational Linguistics (ACL'18), 2018. 2321-2331. 

[44]  Wei J. and Zou K., EDA: Easy Data Augmentation Techniques 
for Boosting Performance on Text Classification Tasks. 
Conference on Empirical Methods in Natural Language 
Processing (EMNLP'19), 2019. (1) 2019: 6381-6387. 

[45]  Yao L., et al., Graph Convolutional Networks for Text 
Classification. AAAI Conference on Artificial Intelligence 
(AAAI'19), 2019. pp. 7370-7377. 

[46]  Zhang H., et al., Multi-Task Label Embedding for Text 
Classification. Conference on Empirical Methods in Natural 
Language Processing (EMNLP'18), 2018. pp. 4545-4553. 

[47]  Zhu X., et al., An Improved Class-Center Method for Text 
Classification Using Dependencies and WordNet. Natural 
Language Processing and Chinese Computing (NLPCC'19), 
2019. (2): 3-15. 

[48]  Zou F., et al., A Reinforcement Learning Approach for Dynamic 
Multi-objective Optimization. Information Sciences, 2021. 546: 
815-834. 

 

 
 

 
 


